src/share/vm/c1/c1_LIRGenerator.cpp

Wed, 02 Feb 2011 11:35:26 -0500

author
bobv
date
Wed, 02 Feb 2011 11:35:26 -0500
changeset 2508
b92c45f2bc75
parent 2487
aa4b04b68652
child 2634
425688247f3d
permissions
-rw-r--r--

7016023: Enable building ARM and PPC from src/closed repository
Reviewed-by: dholmes, bdelsart

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciCPCache.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/heapRegion.hpp"
    40 #endif
    42 #ifdef ASSERT
    43 #define __ gen()->lir(__FILE__, __LINE__)->
    44 #else
    45 #define __ gen()->lir()->
    46 #endif
    48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    49 #ifdef ARM
    50 #define PATCHED_ADDR  (204)
    51 #else
    52 #define PATCHED_ADDR  (max_jint)
    53 #endif
    55 void PhiResolverState::reset(int max_vregs) {
    56   // Initialize array sizes
    57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    58   _virtual_operands.trunc_to(0);
    59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    60   _other_operands.trunc_to(0);
    61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    62   _vreg_table.trunc_to(0);
    63 }
    67 //--------------------------------------------------------------
    68 // PhiResolver
    70 // Resolves cycles:
    71 //
    72 //  r1 := r2  becomes  temp := r1
    73 //  r2 := r1           r1 := r2
    74 //                     r2 := temp
    75 // and orders moves:
    76 //
    77 //  r2 := r3  becomes  r1 := r2
    78 //  r1 := r2           r2 := r3
    80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    81  : _gen(gen)
    82  , _state(gen->resolver_state())
    83  , _temp(LIR_OprFact::illegalOpr)
    84 {
    85   // reinitialize the shared state arrays
    86   _state.reset(max_vregs);
    87 }
    90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    91   assert(src->is_valid(), "");
    92   assert(dest->is_valid(), "");
    93   __ move(src, dest);
    94 }
    97 void PhiResolver::move_temp_to(LIR_Opr dest) {
    98   assert(_temp->is_valid(), "");
    99   emit_move(_temp, dest);
   100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   101 }
   104 void PhiResolver::move_to_temp(LIR_Opr src) {
   105   assert(_temp->is_illegal(), "");
   106   _temp = _gen->new_register(src->type());
   107   emit_move(src, _temp);
   108 }
   111 // Traverse assignment graph in depth first order and generate moves in post order
   112 // ie. two assignments: b := c, a := b start with node c:
   113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   114 // Generates moves in this order: move b to a and move c to b
   115 // ie. cycle a := b, b := a start with node a
   116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   117 // Generates moves in this order: move b to temp, move a to b, move temp to a
   118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   119   if (!dest->visited()) {
   120     dest->set_visited();
   121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   122       move(dest, dest->destination_at(i));
   123     }
   124   } else if (!dest->start_node()) {
   125     // cylce in graph detected
   126     assert(_loop == NULL, "only one loop valid!");
   127     _loop = dest;
   128     move_to_temp(src->operand());
   129     return;
   130   } // else dest is a start node
   132   if (!dest->assigned()) {
   133     if (_loop == dest) {
   134       move_temp_to(dest->operand());
   135       dest->set_assigned();
   136     } else if (src != NULL) {
   137       emit_move(src->operand(), dest->operand());
   138       dest->set_assigned();
   139     }
   140   }
   141 }
   144 PhiResolver::~PhiResolver() {
   145   int i;
   146   // resolve any cycles in moves from and to virtual registers
   147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   148     ResolveNode* node = virtual_operands()[i];
   149     if (!node->visited()) {
   150       _loop = NULL;
   151       move(NULL, node);
   152       node->set_start_node();
   153       assert(_temp->is_illegal(), "move_temp_to() call missing");
   154     }
   155   }
   157   // generate move for move from non virtual register to abitrary destination
   158   for (i = other_operands().length() - 1; i >= 0; i --) {
   159     ResolveNode* node = other_operands()[i];
   160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   161       emit_move(node->operand(), node->destination_at(j)->operand());
   162     }
   163   }
   164 }
   167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   168   ResolveNode* node;
   169   if (opr->is_virtual()) {
   170     int vreg_num = opr->vreg_number();
   171     node = vreg_table().at_grow(vreg_num, NULL);
   172     assert(node == NULL || node->operand() == opr, "");
   173     if (node == NULL) {
   174       node = new ResolveNode(opr);
   175       vreg_table()[vreg_num] = node;
   176     }
   177     // Make sure that all virtual operands show up in the list when
   178     // they are used as the source of a move.
   179     if (source && !virtual_operands().contains(node)) {
   180       virtual_operands().append(node);
   181     }
   182   } else {
   183     assert(source, "");
   184     node = new ResolveNode(opr);
   185     other_operands().append(node);
   186   }
   187   return node;
   188 }
   191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   192   assert(dest->is_virtual(), "");
   193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   194   assert(src->is_valid(), "");
   195   assert(dest->is_valid(), "");
   196   ResolveNode* source = source_node(src);
   197   source->append(destination_node(dest));
   198 }
   201 //--------------------------------------------------------------
   202 // LIRItem
   204 void LIRItem::set_result(LIR_Opr opr) {
   205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   206   value()->set_operand(opr);
   208   if (opr->is_virtual()) {
   209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   210   }
   212   _result = opr;
   213 }
   215 void LIRItem::load_item() {
   216   if (result()->is_illegal()) {
   217     // update the items result
   218     _result = value()->operand();
   219   }
   220   if (!result()->is_register()) {
   221     LIR_Opr reg = _gen->new_register(value()->type());
   222     __ move(result(), reg);
   223     if (result()->is_constant()) {
   224       _result = reg;
   225     } else {
   226       set_result(reg);
   227     }
   228   }
   229 }
   232 void LIRItem::load_for_store(BasicType type) {
   233   if (_gen->can_store_as_constant(value(), type)) {
   234     _result = value()->operand();
   235     if (!_result->is_constant()) {
   236       _result = LIR_OprFact::value_type(value()->type());
   237     }
   238   } else if (type == T_BYTE || type == T_BOOLEAN) {
   239     load_byte_item();
   240   } else {
   241     load_item();
   242   }
   243 }
   245 void LIRItem::load_item_force(LIR_Opr reg) {
   246   LIR_Opr r = result();
   247   if (r != reg) {
   248 #if !defined(ARM) && !defined(E500V2)
   249     if (r->type() != reg->type()) {
   250       // moves between different types need an intervening spill slot
   251       r = _gen->force_to_spill(r, reg->type());
   252     }
   253 #endif
   254     __ move(r, reg);
   255     _result = reg;
   256   }
   257 }
   259 ciObject* LIRItem::get_jobject_constant() const {
   260   ObjectType* oc = type()->as_ObjectType();
   261   if (oc) {
   262     return oc->constant_value();
   263   }
   264   return NULL;
   265 }
   268 jint LIRItem::get_jint_constant() const {
   269   assert(is_constant() && value() != NULL, "");
   270   assert(type()->as_IntConstant() != NULL, "type check");
   271   return type()->as_IntConstant()->value();
   272 }
   275 jint LIRItem::get_address_constant() const {
   276   assert(is_constant() && value() != NULL, "");
   277   assert(type()->as_AddressConstant() != NULL, "type check");
   278   return type()->as_AddressConstant()->value();
   279 }
   282 jfloat LIRItem::get_jfloat_constant() const {
   283   assert(is_constant() && value() != NULL, "");
   284   assert(type()->as_FloatConstant() != NULL, "type check");
   285   return type()->as_FloatConstant()->value();
   286 }
   289 jdouble LIRItem::get_jdouble_constant() const {
   290   assert(is_constant() && value() != NULL, "");
   291   assert(type()->as_DoubleConstant() != NULL, "type check");
   292   return type()->as_DoubleConstant()->value();
   293 }
   296 jlong LIRItem::get_jlong_constant() const {
   297   assert(is_constant() && value() != NULL, "");
   298   assert(type()->as_LongConstant() != NULL, "type check");
   299   return type()->as_LongConstant()->value();
   300 }
   304 //--------------------------------------------------------------
   307 void LIRGenerator::init() {
   308   _bs = Universe::heap()->barrier_set();
   309 }
   312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   313 #ifndef PRODUCT
   314   if (PrintIRWithLIR) {
   315     block->print();
   316   }
   317 #endif
   319   // set up the list of LIR instructions
   320   assert(block->lir() == NULL, "LIR list already computed for this block");
   321   _lir = new LIR_List(compilation(), block);
   322   block->set_lir(_lir);
   324   __ branch_destination(block->label());
   326   if (LIRTraceExecution &&
   327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   328       !block->is_set(BlockBegin::exception_entry_flag)) {
   329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   330     trace_block_entry(block);
   331   }
   332 }
   335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   336 #ifndef PRODUCT
   337   if (PrintIRWithLIR) {
   338     tty->cr();
   339   }
   340 #endif
   342   // LIR_Opr for unpinned constants shouldn't be referenced by other
   343   // blocks so clear them out after processing the block.
   344   for (int i = 0; i < _unpinned_constants.length(); i++) {
   345     _unpinned_constants.at(i)->clear_operand();
   346   }
   347   _unpinned_constants.trunc_to(0);
   349   // clear our any registers for other local constants
   350   _constants.trunc_to(0);
   351   _reg_for_constants.trunc_to(0);
   352 }
   355 void LIRGenerator::block_do(BlockBegin* block) {
   356   CHECK_BAILOUT();
   358   block_do_prolog(block);
   359   set_block(block);
   361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   362     if (instr->is_pinned()) do_root(instr);
   363   }
   365   set_block(NULL);
   366   block_do_epilog(block);
   367 }
   370 //-------------------------LIRGenerator-----------------------------
   372 // This is where the tree-walk starts; instr must be root;
   373 void LIRGenerator::do_root(Value instr) {
   374   CHECK_BAILOUT();
   376   InstructionMark im(compilation(), instr);
   378   assert(instr->is_pinned(), "use only with roots");
   379   assert(instr->subst() == instr, "shouldn't have missed substitution");
   381   instr->visit(this);
   383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   385 }
   388 // This is called for each node in tree; the walk stops if a root is reached
   389 void LIRGenerator::walk(Value instr) {
   390   InstructionMark im(compilation(), instr);
   391   //stop walk when encounter a root
   392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   394   } else {
   395     assert(instr->subst() == instr, "shouldn't have missed substitution");
   396     instr->visit(this);
   397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   398   }
   399 }
   402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   403   assert(state != NULL, "state must be defined");
   405   ValueStack* s = state;
   406   for_each_state(s) {
   407     if (s->kind() == ValueStack::EmptyExceptionState) {
   408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   409       continue;
   410     }
   412     int index;
   413     Value value;
   414     for_each_stack_value(s, index, value) {
   415       assert(value->subst() == value, "missed substitution");
   416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   417         walk(value);
   418         assert(value->operand()->is_valid(), "must be evaluated now");
   419       }
   420     }
   422     int bci = s->bci();
   423     IRScope* scope = s->scope();
   424     ciMethod* method = scope->method();
   426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   427     if (bci == SynchronizationEntryBCI) {
   428       if (x->as_ExceptionObject() || x->as_Throw()) {
   429         // all locals are dead on exit from the synthetic unlocker
   430         liveness.clear();
   431       } else {
   432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
   433       }
   434     }
   435     if (!liveness.is_valid()) {
   436       // Degenerate or breakpointed method.
   437       bailout("Degenerate or breakpointed method");
   438     } else {
   439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   440       for_each_local_value(s, index, value) {
   441         assert(value->subst() == value, "missed substition");
   442         if (liveness.at(index) && !value->type()->is_illegal()) {
   443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   444             walk(value);
   445             assert(value->operand()->is_valid(), "must be evaluated now");
   446           }
   447         } else {
   448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   449           s->invalidate_local(index);
   450         }
   451       }
   452     }
   453   }
   455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
   456 }
   459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   460   return state_for(x, x->exception_state());
   461 }
   464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   465   if (!obj->is_loaded() || PatchALot) {
   466     assert(info != NULL, "info must be set if class is not loaded");
   467     __ oop2reg_patch(NULL, r, info);
   468   } else {
   469     // no patching needed
   470     __ oop2reg(obj->constant_encoding(), r);
   471   }
   472 }
   475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   478   if (index->is_constant()) {
   479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   480                 index->as_jint(), null_check_info);
   481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   482   } else {
   483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   486   }
   487 }
   490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   491   CodeStub* stub = new RangeCheckStub(info, index, true);
   492   if (index->is_constant()) {
   493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   495   } else {
   496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   497                 java_nio_Buffer::limit_offset(), T_INT, info);
   498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   499   }
   500   __ move(index, result);
   501 }
   505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   506   LIR_Opr result_op = result;
   507   LIR_Opr left_op   = left;
   508   LIR_Opr right_op  = right;
   510   if (TwoOperandLIRForm && left_op != result_op) {
   511     assert(right_op != result_op, "malformed");
   512     __ move(left_op, result_op);
   513     left_op = result_op;
   514   }
   516   switch(code) {
   517     case Bytecodes::_dadd:
   518     case Bytecodes::_fadd:
   519     case Bytecodes::_ladd:
   520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   521     case Bytecodes::_fmul:
   522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   524     case Bytecodes::_dmul:
   525       {
   526         if (is_strictfp) {
   527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   528         } else {
   529           __ mul(left_op, right_op, result_op); break;
   530         }
   531       }
   532       break;
   534     case Bytecodes::_imul:
   535       {
   536         bool    did_strength_reduce = false;
   538         if (right->is_constant()) {
   539           int c = right->as_jint();
   540           if (is_power_of_2(c)) {
   541             // do not need tmp here
   542             __ shift_left(left_op, exact_log2(c), result_op);
   543             did_strength_reduce = true;
   544           } else {
   545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   546           }
   547         }
   548         // we couldn't strength reduce so just emit the multiply
   549         if (!did_strength_reduce) {
   550           __ mul(left_op, right_op, result_op);
   551         }
   552       }
   553       break;
   555     case Bytecodes::_dsub:
   556     case Bytecodes::_fsub:
   557     case Bytecodes::_lsub:
   558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   561     // ldiv and lrem are implemented with a direct runtime call
   563     case Bytecodes::_ddiv:
   564       {
   565         if (is_strictfp) {
   566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   567         } else {
   568           __ div (left_op, right_op, result_op); break;
   569         }
   570       }
   571       break;
   573     case Bytecodes::_drem:
   574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   576     default: ShouldNotReachHere();
   577   }
   578 }
   581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   582   arithmetic_op(code, result, left, right, false, tmp);
   583 }
   586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   588 }
   591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   593 }
   596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   597   if (TwoOperandLIRForm && value != result_op) {
   598     assert(count != result_op, "malformed");
   599     __ move(value, result_op);
   600     value = result_op;
   601   }
   603   assert(count->is_constant() || count->is_register(), "must be");
   604   switch(code) {
   605   case Bytecodes::_ishl:
   606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   607   case Bytecodes::_ishr:
   608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   609   case Bytecodes::_iushr:
   610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   611   default: ShouldNotReachHere();
   612   }
   613 }
   616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   617   if (TwoOperandLIRForm && left_op != result_op) {
   618     assert(right_op != result_op, "malformed");
   619     __ move(left_op, result_op);
   620     left_op = result_op;
   621   }
   623   switch(code) {
   624     case Bytecodes::_iand:
   625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   627     case Bytecodes::_ior:
   628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   630     case Bytecodes::_ixor:
   631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   633     default: ShouldNotReachHere();
   634   }
   635 }
   638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   639   if (!GenerateSynchronizationCode) return;
   640   // for slow path, use debug info for state after successful locking
   641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   642   __ load_stack_address_monitor(monitor_no, lock);
   643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   645 }
   648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   649   if (!GenerateSynchronizationCode) return;
   650   // setup registers
   651   LIR_Opr hdr = lock;
   652   lock = new_hdr;
   653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   654   __ load_stack_address_monitor(monitor_no, lock);
   655   __ unlock_object(hdr, object, lock, scratch, slow_path);
   656 }
   659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   660   jobject2reg_with_patching(klass_reg, klass, info);
   661   // If klass is not loaded we do not know if the klass has finalizers:
   662   if (UseFastNewInstance && klass->is_loaded()
   663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   669     assert(klass->is_loaded(), "must be loaded");
   670     // allocate space for instance
   671     assert(klass->size_helper() >= 0, "illegal instance size");
   672     const int instance_size = align_object_size(klass->size_helper());
   673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   675   } else {
   676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   678     __ branch_destination(slow_path->continuation());
   679   }
   680 }
   683 static bool is_constant_zero(Instruction* inst) {
   684   IntConstant* c = inst->type()->as_IntConstant();
   685   if (c) {
   686     return (c->value() == 0);
   687   }
   688   return false;
   689 }
   692 static bool positive_constant(Instruction* inst) {
   693   IntConstant* c = inst->type()->as_IntConstant();
   694   if (c) {
   695     return (c->value() >= 0);
   696   }
   697   return false;
   698 }
   701 static ciArrayKlass* as_array_klass(ciType* type) {
   702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   703     return (ciArrayKlass*)type;
   704   } else {
   705     return NULL;
   706   }
   707 }
   709 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   710   Instruction* src     = x->argument_at(0);
   711   Instruction* src_pos = x->argument_at(1);
   712   Instruction* dst     = x->argument_at(2);
   713   Instruction* dst_pos = x->argument_at(3);
   714   Instruction* length  = x->argument_at(4);
   716   // first try to identify the likely type of the arrays involved
   717   ciArrayKlass* expected_type = NULL;
   718   bool is_exact = false;
   719   {
   720     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   721     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   722     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   723     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   725       // the types exactly match so the type is fully known
   726       is_exact = true;
   727       expected_type = src_exact_type;
   728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   730       ciArrayKlass* src_type = NULL;
   731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   732         src_type = (ciArrayKlass*) src_exact_type;
   733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   734         src_type = (ciArrayKlass*) src_declared_type;
   735       }
   736       if (src_type != NULL) {
   737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   738           is_exact = true;
   739           expected_type = dst_type;
   740         }
   741       }
   742     }
   743     // at least pass along a good guess
   744     if (expected_type == NULL) expected_type = dst_exact_type;
   745     if (expected_type == NULL) expected_type = src_declared_type;
   746     if (expected_type == NULL) expected_type = dst_declared_type;
   747   }
   749   // if a probable array type has been identified, figure out if any
   750   // of the required checks for a fast case can be elided.
   751   int flags = LIR_OpArrayCopy::all_flags;
   752   if (expected_type != NULL) {
   753     // try to skip null checks
   754     if (src->as_NewArray() != NULL)
   755       flags &= ~LIR_OpArrayCopy::src_null_check;
   756     if (dst->as_NewArray() != NULL)
   757       flags &= ~LIR_OpArrayCopy::dst_null_check;
   759     // check from incoming constant values
   760     if (positive_constant(src_pos))
   761       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   762     if (positive_constant(dst_pos))
   763       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   764     if (positive_constant(length))
   765       flags &= ~LIR_OpArrayCopy::length_positive_check;
   767     // see if the range check can be elided, which might also imply
   768     // that src or dst is non-null.
   769     ArrayLength* al = length->as_ArrayLength();
   770     if (al != NULL) {
   771       if (al->array() == src) {
   772         // it's the length of the source array
   773         flags &= ~LIR_OpArrayCopy::length_positive_check;
   774         flags &= ~LIR_OpArrayCopy::src_null_check;
   775         if (is_constant_zero(src_pos))
   776           flags &= ~LIR_OpArrayCopy::src_range_check;
   777       }
   778       if (al->array() == dst) {
   779         // it's the length of the destination array
   780         flags &= ~LIR_OpArrayCopy::length_positive_check;
   781         flags &= ~LIR_OpArrayCopy::dst_null_check;
   782         if (is_constant_zero(dst_pos))
   783           flags &= ~LIR_OpArrayCopy::dst_range_check;
   784       }
   785     }
   786     if (is_exact) {
   787       flags &= ~LIR_OpArrayCopy::type_check;
   788     }
   789   }
   791   if (src == dst) {
   792     // moving within a single array so no type checks are needed
   793     if (flags & LIR_OpArrayCopy::type_check) {
   794       flags &= ~LIR_OpArrayCopy::type_check;
   795     }
   796   }
   797   *flagsp = flags;
   798   *expected_typep = (ciArrayKlass*)expected_type;
   799 }
   802 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   803   assert(opr->is_register(), "why spill if item is not register?");
   805   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   806     LIR_Opr result = new_register(T_FLOAT);
   807     set_vreg_flag(result, must_start_in_memory);
   808     assert(opr->is_register(), "only a register can be spilled");
   809     assert(opr->value_type()->is_float(), "rounding only for floats available");
   810     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   811     return result;
   812   }
   813   return opr;
   814 }
   817 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   818   assert(type2size[t] == type2size[value->type()], "size mismatch");
   819   if (!value->is_register()) {
   820     // force into a register
   821     LIR_Opr r = new_register(value->type());
   822     __ move(value, r);
   823     value = r;
   824   }
   826   // create a spill location
   827   LIR_Opr tmp = new_register(t);
   828   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   830   // move from register to spill
   831   __ move(value, tmp);
   832   return tmp;
   833 }
   835 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   836   if (if_instr->should_profile()) {
   837     ciMethod* method = if_instr->profiled_method();
   838     assert(method != NULL, "method should be set if branch is profiled");
   839     ciMethodData* md = method->method_data_or_null();
   840     assert(md != NULL, "Sanity");
   841     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   842     assert(data != NULL, "must have profiling data");
   843     assert(data->is_BranchData(), "need BranchData for two-way branches");
   844     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   845     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   846     if (if_instr->is_swapped()) {
   847       int t = taken_count_offset;
   848       taken_count_offset = not_taken_count_offset;
   849       not_taken_count_offset = t;
   850     }
   852     LIR_Opr md_reg = new_register(T_OBJECT);
   853     __ oop2reg(md->constant_encoding(), md_reg);
   855     LIR_Opr data_offset_reg = new_pointer_register();
   856     __ cmove(lir_cond(cond),
   857              LIR_OprFact::intptrConst(taken_count_offset),
   858              LIR_OprFact::intptrConst(not_taken_count_offset),
   859              data_offset_reg, as_BasicType(if_instr->x()->type()));
   861     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   862     LIR_Opr data_reg = new_pointer_register();
   863     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   864     __ move(data_addr, data_reg);
   865     // Use leal instead of add to avoid destroying condition codes on x86
   866     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   867     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   868     __ move(data_reg, data_addr);
   869   }
   870 }
   872 // Phi technique:
   873 // This is about passing live values from one basic block to the other.
   874 // In code generated with Java it is rather rare that more than one
   875 // value is on the stack from one basic block to the other.
   876 // We optimize our technique for efficient passing of one value
   877 // (of type long, int, double..) but it can be extended.
   878 // When entering or leaving a basic block, all registers and all spill
   879 // slots are release and empty. We use the released registers
   880 // and spill slots to pass the live values from one block
   881 // to the other. The topmost value, i.e., the value on TOS of expression
   882 // stack is passed in registers. All other values are stored in spilling
   883 // area. Every Phi has an index which designates its spill slot
   884 // At exit of a basic block, we fill the register(s) and spill slots.
   885 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   886 // and locks necessary registers and spilling slots.
   889 // move current value to referenced phi function
   890 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   891   Phi* phi = sux_val->as_Phi();
   892   // cur_val can be null without phi being null in conjunction with inlining
   893   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   894     LIR_Opr operand = cur_val->operand();
   895     if (cur_val->operand()->is_illegal()) {
   896       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   897              "these can be produced lazily");
   898       operand = operand_for_instruction(cur_val);
   899     }
   900     resolver->move(operand, operand_for_instruction(phi));
   901   }
   902 }
   905 // Moves all stack values into their PHI position
   906 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
   907   BlockBegin* bb = block();
   908   if (bb->number_of_sux() == 1) {
   909     BlockBegin* sux = bb->sux_at(0);
   910     assert(sux->number_of_preds() > 0, "invalid CFG");
   912     // a block with only one predecessor never has phi functions
   913     if (sux->number_of_preds() > 1) {
   914       int max_phis = cur_state->stack_size() + cur_state->locals_size();
   915       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
   917       ValueStack* sux_state = sux->state();
   918       Value sux_value;
   919       int index;
   921       assert(cur_state->scope() == sux_state->scope(), "not matching");
   922       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
   923       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
   925       for_each_stack_value(sux_state, index, sux_value) {
   926         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
   927       }
   929       for_each_local_value(sux_state, index, sux_value) {
   930         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
   931       }
   933       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
   934     }
   935   }
   936 }
   939 LIR_Opr LIRGenerator::new_register(BasicType type) {
   940   int vreg = _virtual_register_number;
   941   // add a little fudge factor for the bailout, since the bailout is
   942   // only checked periodically.  This gives a few extra registers to
   943   // hand out before we really run out, which helps us keep from
   944   // tripping over assertions.
   945   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
   946     bailout("out of virtual registers");
   947     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
   948       // wrap it around
   949       _virtual_register_number = LIR_OprDesc::vreg_base;
   950     }
   951   }
   952   _virtual_register_number += 1;
   953   return LIR_OprFact::virtual_register(vreg, type);
   954 }
   957 // Try to lock using register in hint
   958 LIR_Opr LIRGenerator::rlock(Value instr) {
   959   return new_register(instr->type());
   960 }
   963 // does an rlock and sets result
   964 LIR_Opr LIRGenerator::rlock_result(Value x) {
   965   LIR_Opr reg = rlock(x);
   966   set_result(x, reg);
   967   return reg;
   968 }
   971 // does an rlock and sets result
   972 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
   973   LIR_Opr reg;
   974   switch (type) {
   975   case T_BYTE:
   976   case T_BOOLEAN:
   977     reg = rlock_byte(type);
   978     break;
   979   default:
   980     reg = rlock(x);
   981     break;
   982   }
   984   set_result(x, reg);
   985   return reg;
   986 }
   989 //---------------------------------------------------------------------
   990 ciObject* LIRGenerator::get_jobject_constant(Value value) {
   991   ObjectType* oc = value->type()->as_ObjectType();
   992   if (oc) {
   993     return oc->constant_value();
   994   }
   995   return NULL;
   996 }
   999 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1000   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1001   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1003   // no moves are created for phi functions at the begin of exception
  1004   // handlers, so assign operands manually here
  1005   for_each_phi_fun(block(), phi,
  1006                    operand_for_instruction(phi));
  1008   LIR_Opr thread_reg = getThreadPointer();
  1009   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1010                exceptionOopOpr());
  1011   __ move_wide(LIR_OprFact::oopConst(NULL),
  1012                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1013   __ move_wide(LIR_OprFact::oopConst(NULL),
  1014                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1016   LIR_Opr result = new_register(T_OBJECT);
  1017   __ move(exceptionOopOpr(), result);
  1018   set_result(x, result);
  1022 //----------------------------------------------------------------------
  1023 //----------------------------------------------------------------------
  1024 //----------------------------------------------------------------------
  1025 //----------------------------------------------------------------------
  1026 //                        visitor functions
  1027 //----------------------------------------------------------------------
  1028 //----------------------------------------------------------------------
  1029 //----------------------------------------------------------------------
  1030 //----------------------------------------------------------------------
  1032 void LIRGenerator::do_Phi(Phi* x) {
  1033   // phi functions are never visited directly
  1034   ShouldNotReachHere();
  1038 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1039 void LIRGenerator::do_Constant(Constant* x) {
  1040   if (x->state_before() != NULL) {
  1041     // Any constant with a ValueStack requires patching so emit the patch here
  1042     LIR_Opr reg = rlock_result(x);
  1043     CodeEmitInfo* info = state_for(x, x->state_before());
  1044     __ oop2reg_patch(NULL, reg, info);
  1045   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1046     if (!x->is_pinned()) {
  1047       // unpinned constants are handled specially so that they can be
  1048       // put into registers when they are used multiple times within a
  1049       // block.  After the block completes their operand will be
  1050       // cleared so that other blocks can't refer to that register.
  1051       set_result(x, load_constant(x));
  1052     } else {
  1053       LIR_Opr res = x->operand();
  1054       if (!res->is_valid()) {
  1055         res = LIR_OprFact::value_type(x->type());
  1057       if (res->is_constant()) {
  1058         LIR_Opr reg = rlock_result(x);
  1059         __ move(res, reg);
  1060       } else {
  1061         set_result(x, res);
  1064   } else {
  1065     set_result(x, LIR_OprFact::value_type(x->type()));
  1070 void LIRGenerator::do_Local(Local* x) {
  1071   // operand_for_instruction has the side effect of setting the result
  1072   // so there's no need to do it here.
  1073   operand_for_instruction(x);
  1077 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1078   Unimplemented();
  1082 void LIRGenerator::do_Return(Return* x) {
  1083   if (compilation()->env()->dtrace_method_probes()) {
  1084     BasicTypeList signature;
  1085     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1086     signature.append(T_OBJECT); // methodOop
  1087     LIR_OprList* args = new LIR_OprList();
  1088     args->append(getThreadPointer());
  1089     LIR_Opr meth = new_register(T_OBJECT);
  1090     __ oop2reg(method()->constant_encoding(), meth);
  1091     args->append(meth);
  1092     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1095   if (x->type()->is_void()) {
  1096     __ return_op(LIR_OprFact::illegalOpr);
  1097   } else {
  1098     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1099     LIRItem result(x->result(), this);
  1101     result.load_item_force(reg);
  1102     __ return_op(result.result());
  1104   set_no_result(x);
  1108 // Example: object.getClass ()
  1109 void LIRGenerator::do_getClass(Intrinsic* x) {
  1110   assert(x->number_of_arguments() == 1, "wrong type");
  1112   LIRItem rcvr(x->argument_at(0), this);
  1113   rcvr.load_item();
  1114   LIR_Opr result = rlock_result(x);
  1116   // need to perform the null check on the rcvr
  1117   CodeEmitInfo* info = NULL;
  1118   if (x->needs_null_check()) {
  1119     info = state_for(x);
  1121   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1122   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
  1123                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
  1127 // Example: Thread.currentThread()
  1128 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1129   assert(x->number_of_arguments() == 0, "wrong type");
  1130   LIR_Opr reg = rlock_result(x);
  1131   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1135 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1136   assert(x->number_of_arguments() == 1, "wrong type");
  1137   LIRItem receiver(x->argument_at(0), this);
  1139   receiver.load_item();
  1140   BasicTypeList signature;
  1141   signature.append(T_OBJECT); // receiver
  1142   LIR_OprList* args = new LIR_OprList();
  1143   args->append(receiver.result());
  1144   CodeEmitInfo* info = state_for(x, x->state());
  1145   call_runtime(&signature, args,
  1146                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1147                voidType, info);
  1149   set_no_result(x);
  1153 //------------------------local access--------------------------------------
  1155 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1156   if (x->operand()->is_illegal()) {
  1157     Constant* c = x->as_Constant();
  1158     if (c != NULL) {
  1159       x->set_operand(LIR_OprFact::value_type(c->type()));
  1160     } else {
  1161       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1162       // allocate a virtual register for this local or phi
  1163       x->set_operand(rlock(x));
  1164       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1167   return x->operand();
  1171 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1172   if (opr->is_virtual()) {
  1173     return instruction_for_vreg(opr->vreg_number());
  1175   return NULL;
  1179 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1180   if (reg_num < _instruction_for_operand.length()) {
  1181     return _instruction_for_operand.at(reg_num);
  1183   return NULL;
  1187 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1188   if (_vreg_flags.size_in_bits() == 0) {
  1189     BitMap2D temp(100, num_vreg_flags);
  1190     temp.clear();
  1191     _vreg_flags = temp;
  1193   _vreg_flags.at_put_grow(vreg_num, f, true);
  1196 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1197   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1198     return false;
  1200   return _vreg_flags.at(vreg_num, f);
  1204 // Block local constant handling.  This code is useful for keeping
  1205 // unpinned constants and constants which aren't exposed in the IR in
  1206 // registers.  Unpinned Constant instructions have their operands
  1207 // cleared when the block is finished so that other blocks can't end
  1208 // up referring to their registers.
  1210 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1211   assert(!x->is_pinned(), "only for unpinned constants");
  1212   _unpinned_constants.append(x);
  1213   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1217 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1218   BasicType t = c->type();
  1219   for (int i = 0; i < _constants.length(); i++) {
  1220     LIR_Const* other = _constants.at(i);
  1221     if (t == other->type()) {
  1222       switch (t) {
  1223       case T_INT:
  1224       case T_FLOAT:
  1225         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1226         break;
  1227       case T_LONG:
  1228       case T_DOUBLE:
  1229         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1230         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1231         break;
  1232       case T_OBJECT:
  1233         if (c->as_jobject() != other->as_jobject()) continue;
  1234         break;
  1236       return _reg_for_constants.at(i);
  1240   LIR_Opr result = new_register(t);
  1241   __ move((LIR_Opr)c, result);
  1242   _constants.append(c);
  1243   _reg_for_constants.append(result);
  1244   return result;
  1247 // Various barriers
  1249 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1250   // Do the pre-write barrier, if any.
  1251   switch (_bs->kind()) {
  1252 #ifndef SERIALGC
  1253     case BarrierSet::G1SATBCT:
  1254     case BarrierSet::G1SATBCTLogging:
  1255       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
  1256       break;
  1257 #endif // SERIALGC
  1258     case BarrierSet::CardTableModRef:
  1259     case BarrierSet::CardTableExtension:
  1260       // No pre barriers
  1261       break;
  1262     case BarrierSet::ModRef:
  1263     case BarrierSet::Other:
  1264       // No pre barriers
  1265       break;
  1266     default      :
  1267       ShouldNotReachHere();
  1272 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1273   switch (_bs->kind()) {
  1274 #ifndef SERIALGC
  1275     case BarrierSet::G1SATBCT:
  1276     case BarrierSet::G1SATBCTLogging:
  1277       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1278       break;
  1279 #endif // SERIALGC
  1280     case BarrierSet::CardTableModRef:
  1281     case BarrierSet::CardTableExtension:
  1282       CardTableModRef_post_barrier(addr,  new_val);
  1283       break;
  1284     case BarrierSet::ModRef:
  1285     case BarrierSet::Other:
  1286       // No post barriers
  1287       break;
  1288     default      :
  1289       ShouldNotReachHere();
  1293 ////////////////////////////////////////////////////////////////////////
  1294 #ifndef SERIALGC
  1296 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1297   if (G1DisablePreBarrier) return;
  1299   // First we test whether marking is in progress.
  1300   BasicType flag_type;
  1301   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1302     flag_type = T_INT;
  1303   } else {
  1304     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1305               "Assumption");
  1306     flag_type = T_BYTE;
  1308   LIR_Opr thrd = getThreadPointer();
  1309   LIR_Address* mark_active_flag_addr =
  1310     new LIR_Address(thrd,
  1311                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1312                              PtrQueue::byte_offset_of_active()),
  1313                     flag_type);
  1314   // Read the marking-in-progress flag.
  1315   LIR_Opr flag_val = new_register(T_INT);
  1316   __ load(mark_active_flag_addr, flag_val);
  1318   LIR_PatchCode pre_val_patch_code =
  1319     patch ? lir_patch_normal : lir_patch_none;
  1321   LIR_Opr pre_val = new_register(T_OBJECT);
  1323   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1324   if (!addr_opr->is_address()) {
  1325     assert(addr_opr->is_register(), "must be");
  1326     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1328   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
  1329                                         info);
  1330   __ branch(lir_cond_notEqual, T_INT, slow);
  1331   __ branch_destination(slow->continuation());
  1334 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1335   if (G1DisablePostBarrier) return;
  1337   // If the "new_val" is a constant NULL, no barrier is necessary.
  1338   if (new_val->is_constant() &&
  1339       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1341   if (!new_val->is_register()) {
  1342     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1343     if (new_val->is_constant()) {
  1344       __ move(new_val, new_val_reg);
  1345     } else {
  1346       __ leal(new_val, new_val_reg);
  1348     new_val = new_val_reg;
  1350   assert(new_val->is_register(), "must be a register at this point");
  1352   if (addr->is_address()) {
  1353     LIR_Address* address = addr->as_address_ptr();
  1354     LIR_Opr ptr = new_register(T_OBJECT);
  1355     if (!address->index()->is_valid() && address->disp() == 0) {
  1356       __ move(address->base(), ptr);
  1357     } else {
  1358       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1359       __ leal(addr, ptr);
  1361     addr = ptr;
  1363   assert(addr->is_register(), "must be a register at this point");
  1365   LIR_Opr xor_res = new_pointer_register();
  1366   LIR_Opr xor_shift_res = new_pointer_register();
  1367   if (TwoOperandLIRForm ) {
  1368     __ move(addr, xor_res);
  1369     __ logical_xor(xor_res, new_val, xor_res);
  1370     __ move(xor_res, xor_shift_res);
  1371     __ unsigned_shift_right(xor_shift_res,
  1372                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1373                             xor_shift_res,
  1374                             LIR_OprDesc::illegalOpr());
  1375   } else {
  1376     __ logical_xor(addr, new_val, xor_res);
  1377     __ unsigned_shift_right(xor_res,
  1378                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1379                             xor_shift_res,
  1380                             LIR_OprDesc::illegalOpr());
  1383   if (!new_val->is_register()) {
  1384     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1385     __ leal(new_val, new_val_reg);
  1386     new_val = new_val_reg;
  1388   assert(new_val->is_register(), "must be a register at this point");
  1390   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1392   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1393   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1394   __ branch_destination(slow->continuation());
  1397 #endif // SERIALGC
  1398 ////////////////////////////////////////////////////////////////////////
  1400 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1402   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1403   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1404   if (addr->is_address()) {
  1405     LIR_Address* address = addr->as_address_ptr();
  1406     LIR_Opr ptr = new_register(T_OBJECT);
  1407     if (!address->index()->is_valid() && address->disp() == 0) {
  1408       __ move(address->base(), ptr);
  1409     } else {
  1410       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1411       __ leal(addr, ptr);
  1413     addr = ptr;
  1415   assert(addr->is_register(), "must be a register at this point");
  1417 #ifdef ARM
  1418   // TODO: ARM - move to platform-dependent code
  1419   LIR_Opr tmp = FrameMap::R14_opr;
  1420   if (VM_Version::supports_movw()) {
  1421     __ move((LIR_Opr)card_table_base, tmp);
  1422   } else {
  1423     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1426   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1427   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1428   if(((int)ct->byte_map_base & 0xff) == 0) {
  1429     __ move(tmp, card_addr);
  1430   } else {
  1431     LIR_Opr tmp_zero = new_register(T_INT);
  1432     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1433     __ move(tmp_zero, card_addr);
  1435 #else // ARM
  1436   LIR_Opr tmp = new_pointer_register();
  1437   if (TwoOperandLIRForm) {
  1438     __ move(addr, tmp);
  1439     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1440   } else {
  1441     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1443   if (can_inline_as_constant(card_table_base)) {
  1444     __ move(LIR_OprFact::intConst(0),
  1445               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1446   } else {
  1447     __ move(LIR_OprFact::intConst(0),
  1448               new LIR_Address(tmp, load_constant(card_table_base),
  1449                               T_BYTE));
  1451 #endif // ARM
  1455 //------------------------field access--------------------------------------
  1457 // Comment copied form templateTable_i486.cpp
  1458 // ----------------------------------------------------------------------------
  1459 // Volatile variables demand their effects be made known to all CPU's in
  1460 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1461 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1462 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1463 // reorder volatile references, the hardware also must not reorder them).
  1464 //
  1465 // According to the new Java Memory Model (JMM):
  1466 // (1) All volatiles are serialized wrt to each other.
  1467 // ALSO reads & writes act as aquire & release, so:
  1468 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1469 // the read float up to before the read.  It's OK for non-volatile memory refs
  1470 // that happen before the volatile read to float down below it.
  1471 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1472 // that happen BEFORE the write float down to after the write.  It's OK for
  1473 // non-volatile memory refs that happen after the volatile write to float up
  1474 // before it.
  1475 //
  1476 // We only put in barriers around volatile refs (they are expensive), not
  1477 // _between_ memory refs (that would require us to track the flavor of the
  1478 // previous memory refs).  Requirements (2) and (3) require some barriers
  1479 // before volatile stores and after volatile loads.  These nearly cover
  1480 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1481 // case is placed after volatile-stores although it could just as well go
  1482 // before volatile-loads.
  1485 void LIRGenerator::do_StoreField(StoreField* x) {
  1486   bool needs_patching = x->needs_patching();
  1487   bool is_volatile = x->field()->is_volatile();
  1488   BasicType field_type = x->field_type();
  1489   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1491   CodeEmitInfo* info = NULL;
  1492   if (needs_patching) {
  1493     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1494     info = state_for(x, x->state_before());
  1495   } else if (x->needs_null_check()) {
  1496     NullCheck* nc = x->explicit_null_check();
  1497     if (nc == NULL) {
  1498       info = state_for(x);
  1499     } else {
  1500       info = state_for(nc);
  1505   LIRItem object(x->obj(), this);
  1506   LIRItem value(x->value(),  this);
  1508   object.load_item();
  1510   if (is_volatile || needs_patching) {
  1511     // load item if field is volatile (fewer special cases for volatiles)
  1512     // load item if field not initialized
  1513     // load item if field not constant
  1514     // because of code patching we cannot inline constants
  1515     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1516       value.load_byte_item();
  1517     } else  {
  1518       value.load_item();
  1520   } else {
  1521     value.load_for_store(field_type);
  1524   set_no_result(x);
  1526 #ifndef PRODUCT
  1527   if (PrintNotLoaded && needs_patching) {
  1528     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1529                   x->is_static() ?  "static" : "field", x->printable_bci());
  1531 #endif
  1533   if (x->needs_null_check() &&
  1534       (needs_patching ||
  1535        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1536     // emit an explicit null check because the offset is too large
  1537     __ null_check(object.result(), new CodeEmitInfo(info));
  1540   LIR_Address* address;
  1541   if (needs_patching) {
  1542     // we need to patch the offset in the instruction so don't allow
  1543     // generate_address to try to be smart about emitting the -1.
  1544     // Otherwise the patching code won't know how to find the
  1545     // instruction to patch.
  1546     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1547   } else {
  1548     address = generate_address(object.result(), x->offset(), field_type);
  1551   if (is_volatile && os::is_MP()) {
  1552     __ membar_release();
  1555   if (is_oop) {
  1556     // Do the pre-write barrier, if any.
  1557     pre_barrier(LIR_OprFact::address(address),
  1558                 needs_patching,
  1559                 (info ? new CodeEmitInfo(info) : NULL));
  1562   if (is_volatile) {
  1563     assert(!needs_patching && x->is_loaded(),
  1564            "how do we know it's volatile if it's not loaded");
  1565     volatile_field_store(value.result(), address, info);
  1566   } else {
  1567     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1568     __ store(value.result(), address, info, patch_code);
  1571   if (is_oop) {
  1572     // Store to object so mark the card of the header
  1573     post_barrier(object.result(), value.result());
  1576   if (is_volatile && os::is_MP()) {
  1577     __ membar();
  1582 void LIRGenerator::do_LoadField(LoadField* x) {
  1583   bool needs_patching = x->needs_patching();
  1584   bool is_volatile = x->field()->is_volatile();
  1585   BasicType field_type = x->field_type();
  1587   CodeEmitInfo* info = NULL;
  1588   if (needs_patching) {
  1589     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1590     info = state_for(x, x->state_before());
  1591   } else if (x->needs_null_check()) {
  1592     NullCheck* nc = x->explicit_null_check();
  1593     if (nc == NULL) {
  1594       info = state_for(x);
  1595     } else {
  1596       info = state_for(nc);
  1600   LIRItem object(x->obj(), this);
  1602   object.load_item();
  1604 #ifndef PRODUCT
  1605   if (PrintNotLoaded && needs_patching) {
  1606     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1607                   x->is_static() ?  "static" : "field", x->printable_bci());
  1609 #endif
  1611   if (x->needs_null_check() &&
  1612       (needs_patching ||
  1613        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1614     // emit an explicit null check because the offset is too large
  1615     __ null_check(object.result(), new CodeEmitInfo(info));
  1618   LIR_Opr reg = rlock_result(x, field_type);
  1619   LIR_Address* address;
  1620   if (needs_patching) {
  1621     // we need to patch the offset in the instruction so don't allow
  1622     // generate_address to try to be smart about emitting the -1.
  1623     // Otherwise the patching code won't know how to find the
  1624     // instruction to patch.
  1625     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1626   } else {
  1627     address = generate_address(object.result(), x->offset(), field_type);
  1630   if (is_volatile) {
  1631     assert(!needs_patching && x->is_loaded(),
  1632            "how do we know it's volatile if it's not loaded");
  1633     volatile_field_load(address, reg, info);
  1634   } else {
  1635     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1636     __ load(address, reg, info, patch_code);
  1639   if (is_volatile && os::is_MP()) {
  1640     __ membar_acquire();
  1645 //------------------------java.nio.Buffer.checkIndex------------------------
  1647 // int java.nio.Buffer.checkIndex(int)
  1648 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1649   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1650   // the buffer is non-null (because checkIndex is package-private and
  1651   // only called from within other methods in the buffer).
  1652   assert(x->number_of_arguments() == 2, "wrong type");
  1653   LIRItem buf  (x->argument_at(0), this);
  1654   LIRItem index(x->argument_at(1), this);
  1655   buf.load_item();
  1656   index.load_item();
  1658   LIR_Opr result = rlock_result(x);
  1659   if (GenerateRangeChecks) {
  1660     CodeEmitInfo* info = state_for(x);
  1661     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1662     if (index.result()->is_constant()) {
  1663       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1664       __ branch(lir_cond_belowEqual, T_INT, stub);
  1665     } else {
  1666       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1667                   java_nio_Buffer::limit_offset(), T_INT, info);
  1668       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1670     __ move(index.result(), result);
  1671   } else {
  1672     // Just load the index into the result register
  1673     __ move(index.result(), result);
  1678 //------------------------array access--------------------------------------
  1681 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1682   LIRItem array(x->array(), this);
  1683   array.load_item();
  1684   LIR_Opr reg = rlock_result(x);
  1686   CodeEmitInfo* info = NULL;
  1687   if (x->needs_null_check()) {
  1688     NullCheck* nc = x->explicit_null_check();
  1689     if (nc == NULL) {
  1690       info = state_for(x);
  1691     } else {
  1692       info = state_for(nc);
  1695   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1699 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1700   bool use_length = x->length() != NULL;
  1701   LIRItem array(x->array(), this);
  1702   LIRItem index(x->index(), this);
  1703   LIRItem length(this);
  1704   bool needs_range_check = true;
  1706   if (use_length) {
  1707     needs_range_check = x->compute_needs_range_check();
  1708     if (needs_range_check) {
  1709       length.set_instruction(x->length());
  1710       length.load_item();
  1714   array.load_item();
  1715   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1716     // let it be a constant
  1717     index.dont_load_item();
  1718   } else {
  1719     index.load_item();
  1722   CodeEmitInfo* range_check_info = state_for(x);
  1723   CodeEmitInfo* null_check_info = NULL;
  1724   if (x->needs_null_check()) {
  1725     NullCheck* nc = x->explicit_null_check();
  1726     if (nc != NULL) {
  1727       null_check_info = state_for(nc);
  1728     } else {
  1729       null_check_info = range_check_info;
  1733   // emit array address setup early so it schedules better
  1734   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1736   if (GenerateRangeChecks && needs_range_check) {
  1737     if (use_length) {
  1738       // TODO: use a (modified) version of array_range_check that does not require a
  1739       //       constant length to be loaded to a register
  1740       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1741       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1742     } else {
  1743       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1744       // The range check performs the null check, so clear it out for the load
  1745       null_check_info = NULL;
  1749   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1753 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1754   if (x->can_trap()) {
  1755     LIRItem value(x->obj(), this);
  1756     value.load_item();
  1757     CodeEmitInfo* info = state_for(x);
  1758     __ null_check(value.result(), info);
  1763 void LIRGenerator::do_Throw(Throw* x) {
  1764   LIRItem exception(x->exception(), this);
  1765   exception.load_item();
  1766   set_no_result(x);
  1767   LIR_Opr exception_opr = exception.result();
  1768   CodeEmitInfo* info = state_for(x, x->state());
  1770 #ifndef PRODUCT
  1771   if (PrintC1Statistics) {
  1772     increment_counter(Runtime1::throw_count_address(), T_INT);
  1774 #endif
  1776   // check if the instruction has an xhandler in any of the nested scopes
  1777   bool unwind = false;
  1778   if (info->exception_handlers()->length() == 0) {
  1779     // this throw is not inside an xhandler
  1780     unwind = true;
  1781   } else {
  1782     // get some idea of the throw type
  1783     bool type_is_exact = true;
  1784     ciType* throw_type = x->exception()->exact_type();
  1785     if (throw_type == NULL) {
  1786       type_is_exact = false;
  1787       throw_type = x->exception()->declared_type();
  1789     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1790       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1791       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1795   // do null check before moving exception oop into fixed register
  1796   // to avoid a fixed interval with an oop during the null check.
  1797   // Use a copy of the CodeEmitInfo because debug information is
  1798   // different for null_check and throw.
  1799   if (GenerateCompilerNullChecks &&
  1800       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1801     // if the exception object wasn't created using new then it might be null.
  1802     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1805   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1806     // we need to go through the exception lookup path to get JVMTI
  1807     // notification done
  1808     unwind = false;
  1811   // move exception oop into fixed register
  1812   __ move(exception_opr, exceptionOopOpr());
  1814   if (unwind) {
  1815     __ unwind_exception(exceptionOopOpr());
  1816   } else {
  1817     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  1822 void LIRGenerator::do_RoundFP(RoundFP* x) {
  1823   LIRItem input(x->input(), this);
  1824   input.load_item();
  1825   LIR_Opr input_opr = input.result();
  1826   assert(input_opr->is_register(), "why round if value is not in a register?");
  1827   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  1828   if (input_opr->is_single_fpu()) {
  1829     set_result(x, round_item(input_opr)); // This code path not currently taken
  1830   } else {
  1831     LIR_Opr result = new_register(T_DOUBLE);
  1832     set_vreg_flag(result, must_start_in_memory);
  1833     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  1834     set_result(x, result);
  1838 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  1839   LIRItem base(x->base(), this);
  1840   LIRItem idx(this);
  1842   base.load_item();
  1843   if (x->has_index()) {
  1844     idx.set_instruction(x->index());
  1845     idx.load_nonconstant();
  1848   LIR_Opr reg = rlock_result(x, x->basic_type());
  1850   int   log2_scale = 0;
  1851   if (x->has_index()) {
  1852     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1853     log2_scale = x->log2_scale();
  1856   assert(!x->has_index() || idx.value() == x->index(), "should match");
  1858   LIR_Opr base_op = base.result();
  1859 #ifndef _LP64
  1860   if (x->base()->type()->tag() == longTag) {
  1861     base_op = new_register(T_INT);
  1862     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1863   } else {
  1864     assert(x->base()->type()->tag() == intTag, "must be");
  1866 #endif
  1868   BasicType dst_type = x->basic_type();
  1869   LIR_Opr index_op = idx.result();
  1871   LIR_Address* addr;
  1872   if (index_op->is_constant()) {
  1873     assert(log2_scale == 0, "must not have a scale");
  1874     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  1875   } else {
  1876 #ifdef X86
  1877 #ifdef _LP64
  1878     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1879       LIR_Opr tmp = new_pointer_register();
  1880       __ convert(Bytecodes::_i2l, index_op, tmp);
  1881       index_op = tmp;
  1883 #endif
  1884     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  1885 #elif defined(ARM)
  1886     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  1887 #else
  1888     if (index_op->is_illegal() || log2_scale == 0) {
  1889 #ifdef _LP64
  1890       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1891         LIR_Opr tmp = new_pointer_register();
  1892         __ convert(Bytecodes::_i2l, index_op, tmp);
  1893         index_op = tmp;
  1895 #endif
  1896       addr = new LIR_Address(base_op, index_op, dst_type);
  1897     } else {
  1898       LIR_Opr tmp = new_pointer_register();
  1899       __ shift_left(index_op, log2_scale, tmp);
  1900       addr = new LIR_Address(base_op, tmp, dst_type);
  1902 #endif
  1905   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  1906     __ unaligned_move(addr, reg);
  1907   } else {
  1908     if (dst_type == T_OBJECT && x->is_wide()) {
  1909       __ move_wide(addr, reg);
  1910     } else {
  1911       __ move(addr, reg);
  1917 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  1918   int  log2_scale = 0;
  1919   BasicType type = x->basic_type();
  1921   if (x->has_index()) {
  1922     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1923     log2_scale = x->log2_scale();
  1926   LIRItem base(x->base(), this);
  1927   LIRItem value(x->value(), this);
  1928   LIRItem idx(this);
  1930   base.load_item();
  1931   if (x->has_index()) {
  1932     idx.set_instruction(x->index());
  1933     idx.load_item();
  1936   if (type == T_BYTE || type == T_BOOLEAN) {
  1937     value.load_byte_item();
  1938   } else {
  1939     value.load_item();
  1942   set_no_result(x);
  1944   LIR_Opr base_op = base.result();
  1945 #ifndef _LP64
  1946   if (x->base()->type()->tag() == longTag) {
  1947     base_op = new_register(T_INT);
  1948     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1949   } else {
  1950     assert(x->base()->type()->tag() == intTag, "must be");
  1952 #endif
  1954   LIR_Opr index_op = idx.result();
  1955   if (log2_scale != 0) {
  1956     // temporary fix (platform dependent code without shift on Intel would be better)
  1957     index_op = new_pointer_register();
  1958 #ifdef _LP64
  1959     if(idx.result()->type() == T_INT) {
  1960       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  1961     } else {
  1962 #endif
  1963       // TODO: ARM also allows embedded shift in the address
  1964       __ move(idx.result(), index_op);
  1965 #ifdef _LP64
  1967 #endif
  1968     __ shift_left(index_op, log2_scale, index_op);
  1970 #ifdef _LP64
  1971   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  1972     LIR_Opr tmp = new_pointer_register();
  1973     __ convert(Bytecodes::_i2l, index_op, tmp);
  1974     index_op = tmp;
  1976 #endif
  1978   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  1979   __ move(value.result(), addr);
  1983 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  1984   BasicType type = x->basic_type();
  1985   LIRItem src(x->object(), this);
  1986   LIRItem off(x->offset(), this);
  1988   off.load_item();
  1989   src.load_item();
  1991   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
  1993   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  1994   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  1998 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  1999   BasicType type = x->basic_type();
  2000   LIRItem src(x->object(), this);
  2001   LIRItem off(x->offset(), this);
  2002   LIRItem data(x->value(), this);
  2004   src.load_item();
  2005   if (type == T_BOOLEAN || type == T_BYTE) {
  2006     data.load_byte_item();
  2007   } else {
  2008     data.load_item();
  2010   off.load_item();
  2012   set_no_result(x);
  2014   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2015   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2016   if (x->is_volatile() && os::is_MP()) __ membar();
  2020 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2021   LIRItem src(x->object(), this);
  2022   LIRItem off(x->offset(), this);
  2024   src.load_item();
  2025   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2026     // let it be a constant
  2027     off.dont_load_item();
  2028   } else {
  2029     off.load_item();
  2032   set_no_result(x);
  2034   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2035   __ prefetch(addr, is_store);
  2039 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2040   do_UnsafePrefetch(x, false);
  2044 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2045   do_UnsafePrefetch(x, true);
  2049 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2050   int lng = x->length();
  2052   for (int i = 0; i < lng; i++) {
  2053     SwitchRange* one_range = x->at(i);
  2054     int low_key = one_range->low_key();
  2055     int high_key = one_range->high_key();
  2056     BlockBegin* dest = one_range->sux();
  2057     if (low_key == high_key) {
  2058       __ cmp(lir_cond_equal, value, low_key);
  2059       __ branch(lir_cond_equal, T_INT, dest);
  2060     } else if (high_key - low_key == 1) {
  2061       __ cmp(lir_cond_equal, value, low_key);
  2062       __ branch(lir_cond_equal, T_INT, dest);
  2063       __ cmp(lir_cond_equal, value, high_key);
  2064       __ branch(lir_cond_equal, T_INT, dest);
  2065     } else {
  2066       LabelObj* L = new LabelObj();
  2067       __ cmp(lir_cond_less, value, low_key);
  2068       __ branch(lir_cond_less, L->label());
  2069       __ cmp(lir_cond_lessEqual, value, high_key);
  2070       __ branch(lir_cond_lessEqual, T_INT, dest);
  2071       __ branch_destination(L->label());
  2074   __ jump(default_sux);
  2078 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2079   SwitchRangeList* res = new SwitchRangeList();
  2080   int len = x->length();
  2081   if (len > 0) {
  2082     BlockBegin* sux = x->sux_at(0);
  2083     int key = x->lo_key();
  2084     BlockBegin* default_sux = x->default_sux();
  2085     SwitchRange* range = new SwitchRange(key, sux);
  2086     for (int i = 0; i < len; i++, key++) {
  2087       BlockBegin* new_sux = x->sux_at(i);
  2088       if (sux == new_sux) {
  2089         // still in same range
  2090         range->set_high_key(key);
  2091       } else {
  2092         // skip tests which explicitly dispatch to the default
  2093         if (sux != default_sux) {
  2094           res->append(range);
  2096         range = new SwitchRange(key, new_sux);
  2098       sux = new_sux;
  2100     if (res->length() == 0 || res->last() != range)  res->append(range);
  2102   return res;
  2106 // we expect the keys to be sorted by increasing value
  2107 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2108   SwitchRangeList* res = new SwitchRangeList();
  2109   int len = x->length();
  2110   if (len > 0) {
  2111     BlockBegin* default_sux = x->default_sux();
  2112     int key = x->key_at(0);
  2113     BlockBegin* sux = x->sux_at(0);
  2114     SwitchRange* range = new SwitchRange(key, sux);
  2115     for (int i = 1; i < len; i++) {
  2116       int new_key = x->key_at(i);
  2117       BlockBegin* new_sux = x->sux_at(i);
  2118       if (key+1 == new_key && sux == new_sux) {
  2119         // still in same range
  2120         range->set_high_key(new_key);
  2121       } else {
  2122         // skip tests which explicitly dispatch to the default
  2123         if (range->sux() != default_sux) {
  2124           res->append(range);
  2126         range = new SwitchRange(new_key, new_sux);
  2128       key = new_key;
  2129       sux = new_sux;
  2131     if (res->length() == 0 || res->last() != range)  res->append(range);
  2133   return res;
  2137 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2138   LIRItem tag(x->tag(), this);
  2139   tag.load_item();
  2140   set_no_result(x);
  2142   if (x->is_safepoint()) {
  2143     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2146   // move values into phi locations
  2147   move_to_phi(x->state());
  2149   int lo_key = x->lo_key();
  2150   int hi_key = x->hi_key();
  2151   int len = x->length();
  2152   LIR_Opr value = tag.result();
  2153   if (UseTableRanges) {
  2154     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2155   } else {
  2156     for (int i = 0; i < len; i++) {
  2157       __ cmp(lir_cond_equal, value, i + lo_key);
  2158       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2160     __ jump(x->default_sux());
  2165 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2166   LIRItem tag(x->tag(), this);
  2167   tag.load_item();
  2168   set_no_result(x);
  2170   if (x->is_safepoint()) {
  2171     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2174   // move values into phi locations
  2175   move_to_phi(x->state());
  2177   LIR_Opr value = tag.result();
  2178   if (UseTableRanges) {
  2179     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2180   } else {
  2181     int len = x->length();
  2182     for (int i = 0; i < len; i++) {
  2183       __ cmp(lir_cond_equal, value, x->key_at(i));
  2184       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2186     __ jump(x->default_sux());
  2191 void LIRGenerator::do_Goto(Goto* x) {
  2192   set_no_result(x);
  2194   if (block()->next()->as_OsrEntry()) {
  2195     // need to free up storage used for OSR entry point
  2196     LIR_Opr osrBuffer = block()->next()->operand();
  2197     BasicTypeList signature;
  2198     signature.append(T_INT);
  2199     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2200     __ move(osrBuffer, cc->args()->at(0));
  2201     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2202                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2205   if (x->is_safepoint()) {
  2206     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2208     // increment backedge counter if needed
  2209     CodeEmitInfo* info = state_for(x, state);
  2210     increment_backedge_counter(info, info->stack()->bci());
  2211     CodeEmitInfo* safepoint_info = state_for(x, state);
  2212     __ safepoint(safepoint_poll_register(), safepoint_info);
  2215   // Gotos can be folded Ifs, handle this case.
  2216   if (x->should_profile()) {
  2217     ciMethod* method = x->profiled_method();
  2218     assert(method != NULL, "method should be set if branch is profiled");
  2219     ciMethodData* md = method->method_data_or_null();
  2220     assert(md != NULL, "Sanity");
  2221     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2222     assert(data != NULL, "must have profiling data");
  2223     int offset;
  2224     if (x->direction() == Goto::taken) {
  2225       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2226       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2227     } else if (x->direction() == Goto::not_taken) {
  2228       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2229       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2230     } else {
  2231       assert(data->is_JumpData(), "need JumpData for branches");
  2232       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2234     LIR_Opr md_reg = new_register(T_OBJECT);
  2235     __ oop2reg(md->constant_encoding(), md_reg);
  2237     increment_counter(new LIR_Address(md_reg, offset,
  2238                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2241   // emit phi-instruction move after safepoint since this simplifies
  2242   // describing the state as the safepoint.
  2243   move_to_phi(x->state());
  2245   __ jump(x->default_sux());
  2249 void LIRGenerator::do_Base(Base* x) {
  2250   __ std_entry(LIR_OprFact::illegalOpr);
  2251   // Emit moves from physical registers / stack slots to virtual registers
  2252   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2253   IRScope* irScope = compilation()->hir()->top_scope();
  2254   int java_index = 0;
  2255   for (int i = 0; i < args->length(); i++) {
  2256     LIR_Opr src = args->at(i);
  2257     assert(!src->is_illegal(), "check");
  2258     BasicType t = src->type();
  2260     // Types which are smaller than int are passed as int, so
  2261     // correct the type which passed.
  2262     switch (t) {
  2263     case T_BYTE:
  2264     case T_BOOLEAN:
  2265     case T_SHORT:
  2266     case T_CHAR:
  2267       t = T_INT;
  2268       break;
  2271     LIR_Opr dest = new_register(t);
  2272     __ move(src, dest);
  2274     // Assign new location to Local instruction for this local
  2275     Local* local = x->state()->local_at(java_index)->as_Local();
  2276     assert(local != NULL, "Locals for incoming arguments must have been created");
  2277 #ifndef __SOFTFP__
  2278     // The java calling convention passes double as long and float as int.
  2279     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2280 #endif // __SOFTFP__
  2281     local->set_operand(dest);
  2282     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2283     java_index += type2size[t];
  2286   if (compilation()->env()->dtrace_method_probes()) {
  2287     BasicTypeList signature;
  2288     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2289     signature.append(T_OBJECT); // methodOop
  2290     LIR_OprList* args = new LIR_OprList();
  2291     args->append(getThreadPointer());
  2292     LIR_Opr meth = new_register(T_OBJECT);
  2293     __ oop2reg(method()->constant_encoding(), meth);
  2294     args->append(meth);
  2295     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2298   if (method()->is_synchronized()) {
  2299     LIR_Opr obj;
  2300     if (method()->is_static()) {
  2301       obj = new_register(T_OBJECT);
  2302       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2303     } else {
  2304       Local* receiver = x->state()->local_at(0)->as_Local();
  2305       assert(receiver != NULL, "must already exist");
  2306       obj = receiver->operand();
  2308     assert(obj->is_valid(), "must be valid");
  2310     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2311       LIR_Opr lock = new_register(T_INT);
  2312       __ load_stack_address_monitor(0, lock);
  2314       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2315       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2317       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2318       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2322   // increment invocation counters if needed
  2323   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2324     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2325     increment_invocation_counter(info);
  2328   // all blocks with a successor must end with an unconditional jump
  2329   // to the successor even if they are consecutive
  2330   __ jump(x->default_sux());
  2334 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2335   // construct our frame and model the production of incoming pointer
  2336   // to the OSR buffer.
  2337   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2338   LIR_Opr result = rlock_result(x);
  2339   __ move(LIR_Assembler::osrBufferPointer(), result);
  2343 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2344   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
  2345   for (; i < args->length(); i++) {
  2346     LIRItem* param = args->at(i);
  2347     LIR_Opr loc = arg_list->at(i);
  2348     if (loc->is_register()) {
  2349       param->load_item_force(loc);
  2350     } else {
  2351       LIR_Address* addr = loc->as_address_ptr();
  2352       param->load_for_store(addr->type());
  2353       if (addr->type() == T_OBJECT) {
  2354         __ move_wide(param->result(), addr);
  2355       } else
  2356         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2357           __ unaligned_move(param->result(), addr);
  2358         } else {
  2359           __ move(param->result(), addr);
  2364   if (x->has_receiver()) {
  2365     LIRItem* receiver = args->at(0);
  2366     LIR_Opr loc = arg_list->at(0);
  2367     if (loc->is_register()) {
  2368       receiver->load_item_force(loc);
  2369     } else {
  2370       assert(loc->is_address(), "just checking");
  2371       receiver->load_for_store(T_OBJECT);
  2372       __ move_wide(receiver->result(), loc->as_address_ptr());
  2378 // Visits all arguments, returns appropriate items without loading them
  2379 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2380   LIRItemList* argument_items = new LIRItemList();
  2381   if (x->has_receiver()) {
  2382     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2383     argument_items->append(receiver);
  2385   if (x->is_invokedynamic()) {
  2386     // Insert a dummy for the synthetic MethodHandle argument.
  2387     argument_items->append(NULL);
  2389   int idx = x->has_receiver() ? 1 : 0;
  2390   for (int i = 0; i < x->number_of_arguments(); i++) {
  2391     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2392     argument_items->append(param);
  2393     idx += (param->type()->is_double_word() ? 2 : 1);
  2395   return argument_items;
  2399 // The invoke with receiver has following phases:
  2400 //   a) traverse and load/lock receiver;
  2401 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2402 //   c) push receiver on stack
  2403 //   d) load each of the items and push on stack
  2404 //   e) unlock receiver
  2405 //   f) move receiver into receiver-register %o0
  2406 //   g) lock result registers and emit call operation
  2407 //
  2408 // Before issuing a call, we must spill-save all values on stack
  2409 // that are in caller-save register. "spill-save" moves thos registers
  2410 // either in a free callee-save register or spills them if no free
  2411 // callee save register is available.
  2412 //
  2413 // The problem is where to invoke spill-save.
  2414 // - if invoked between e) and f), we may lock callee save
  2415 //   register in "spill-save" that destroys the receiver register
  2416 //   before f) is executed
  2417 // - if we rearange the f) to be earlier, by loading %o0, it
  2418 //   may destroy a value on the stack that is currently in %o0
  2419 //   and is waiting to be spilled
  2420 // - if we keep the receiver locked while doing spill-save,
  2421 //   we cannot spill it as it is spill-locked
  2422 //
  2423 void LIRGenerator::do_Invoke(Invoke* x) {
  2424   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2426   LIR_OprList* arg_list = cc->args();
  2427   LIRItemList* args = invoke_visit_arguments(x);
  2428   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2430   // setup result register
  2431   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2432   if (x->type() != voidType) {
  2433     result_register = result_register_for(x->type());
  2436   CodeEmitInfo* info = state_for(x, x->state());
  2438   // invokedynamics can deoptimize.
  2439   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
  2441   invoke_load_arguments(x, args, arg_list);
  2443   if (x->has_receiver()) {
  2444     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2445     receiver = args->at(0)->result();
  2448   // emit invoke code
  2449   bool optimized = x->target_is_loaded() && x->target_is_final();
  2450   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2452   // JSR 292
  2453   // Preserve the SP over MethodHandle call sites.
  2454   ciMethod* target = x->target();
  2455   if (target->is_method_handle_invoke()) {
  2456     info->set_is_method_handle_invoke(true);
  2457     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2460   switch (x->code()) {
  2461     case Bytecodes::_invokestatic:
  2462       __ call_static(target, result_register,
  2463                      SharedRuntime::get_resolve_static_call_stub(),
  2464                      arg_list, info);
  2465       break;
  2466     case Bytecodes::_invokespecial:
  2467     case Bytecodes::_invokevirtual:
  2468     case Bytecodes::_invokeinterface:
  2469       // for final target we still produce an inline cache, in order
  2470       // to be able to call mixed mode
  2471       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2472         __ call_opt_virtual(target, receiver, result_register,
  2473                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2474                             arg_list, info);
  2475       } else if (x->vtable_index() < 0) {
  2476         __ call_icvirtual(target, receiver, result_register,
  2477                           SharedRuntime::get_resolve_virtual_call_stub(),
  2478                           arg_list, info);
  2479       } else {
  2480         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2481         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2482         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2484       break;
  2485     case Bytecodes::_invokedynamic: {
  2486       ciBytecodeStream bcs(x->scope()->method());
  2487       bcs.force_bci(x->state()->bci());
  2488       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
  2489       ciCPCache* cpcache = bcs.get_cpcache();
  2491       // Get CallSite offset from constant pool cache pointer.
  2492       int index = bcs.get_method_index();
  2493       size_t call_site_offset = cpcache->get_f1_offset(index);
  2495       // If this invokedynamic call site hasn't been executed yet in
  2496       // the interpreter, the CallSite object in the constant pool
  2497       // cache is still null and we need to deoptimize.
  2498       if (cpcache->is_f1_null_at(index)) {
  2499         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  2500         // clone all handlers.  This is handled transparently in other
  2501         // places by the CodeEmitInfo cloning logic but is handled
  2502         // specially here because a stub isn't being used.
  2503         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  2505         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
  2506         __ jump(deopt_stub);
  2509       // Use the receiver register for the synthetic MethodHandle
  2510       // argument.
  2511       receiver = LIR_Assembler::receiverOpr();
  2512       LIR_Opr tmp = new_register(objectType);
  2514       // Load CallSite object from constant pool cache.
  2515       __ oop2reg(cpcache->constant_encoding(), tmp);
  2516       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
  2518       // Load target MethodHandle from CallSite object.
  2519       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
  2521       __ call_dynamic(target, receiver, result_register,
  2522                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2523                       arg_list, info);
  2524       break;
  2526     default:
  2527       ShouldNotReachHere();
  2528       break;
  2531   // JSR 292
  2532   // Restore the SP after MethodHandle call sites.
  2533   if (target->is_method_handle_invoke()) {
  2534     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2537   if (x->type()->is_float() || x->type()->is_double()) {
  2538     // Force rounding of results from non-strictfp when in strictfp
  2539     // scope (or when we don't know the strictness of the callee, to
  2540     // be safe.)
  2541     if (method()->is_strict()) {
  2542       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2543         result_register = round_item(result_register);
  2548   if (result_register->is_valid()) {
  2549     LIR_Opr result = rlock_result(x);
  2550     __ move(result_register, result);
  2555 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2556   assert(x->number_of_arguments() == 1, "wrong type");
  2557   LIRItem value       (x->argument_at(0), this);
  2558   LIR_Opr reg = rlock_result(x);
  2559   value.load_item();
  2560   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2561   __ move(tmp, reg);
  2566 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2567 void LIRGenerator::do_IfOp(IfOp* x) {
  2568 #ifdef ASSERT
  2570     ValueTag xtag = x->x()->type()->tag();
  2571     ValueTag ttag = x->tval()->type()->tag();
  2572     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2573     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2574     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2576 #endif
  2578   LIRItem left(x->x(), this);
  2579   LIRItem right(x->y(), this);
  2580   left.load_item();
  2581   if (can_inline_as_constant(right.value())) {
  2582     right.dont_load_item();
  2583   } else {
  2584     right.load_item();
  2587   LIRItem t_val(x->tval(), this);
  2588   LIRItem f_val(x->fval(), this);
  2589   t_val.dont_load_item();
  2590   f_val.dont_load_item();
  2591   LIR_Opr reg = rlock_result(x);
  2593   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2594   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2598 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2599   switch (x->id()) {
  2600   case vmIntrinsics::_intBitsToFloat      :
  2601   case vmIntrinsics::_doubleToRawLongBits :
  2602   case vmIntrinsics::_longBitsToDouble    :
  2603   case vmIntrinsics::_floatToRawIntBits   : {
  2604     do_FPIntrinsics(x);
  2605     break;
  2608   case vmIntrinsics::_currentTimeMillis: {
  2609     assert(x->number_of_arguments() == 0, "wrong type");
  2610     LIR_Opr reg = result_register_for(x->type());
  2611     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
  2612                          reg, new LIR_OprList());
  2613     LIR_Opr result = rlock_result(x);
  2614     __ move(reg, result);
  2615     break;
  2618   case vmIntrinsics::_nanoTime: {
  2619     assert(x->number_of_arguments() == 0, "wrong type");
  2620     LIR_Opr reg = result_register_for(x->type());
  2621     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
  2622                          reg, new LIR_OprList());
  2623     LIR_Opr result = rlock_result(x);
  2624     __ move(reg, result);
  2625     break;
  2628   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2629   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2630   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2632   case vmIntrinsics::_dlog:           // fall through
  2633   case vmIntrinsics::_dlog10:         // fall through
  2634   case vmIntrinsics::_dabs:           // fall through
  2635   case vmIntrinsics::_dsqrt:          // fall through
  2636   case vmIntrinsics::_dtan:           // fall through
  2637   case vmIntrinsics::_dsin :          // fall through
  2638   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  2639   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2641   // java.nio.Buffer.checkIndex
  2642   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2644   case vmIntrinsics::_compareAndSwapObject:
  2645     do_CompareAndSwap(x, objectType);
  2646     break;
  2647   case vmIntrinsics::_compareAndSwapInt:
  2648     do_CompareAndSwap(x, intType);
  2649     break;
  2650   case vmIntrinsics::_compareAndSwapLong:
  2651     do_CompareAndSwap(x, longType);
  2652     break;
  2654     // sun.misc.AtomicLongCSImpl.attemptUpdate
  2655   case vmIntrinsics::_attemptUpdate:
  2656     do_AttemptUpdate(x);
  2657     break;
  2659   default: ShouldNotReachHere(); break;
  2663 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2664   // Need recv in a temporary register so it interferes with the other temporaries
  2665   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2666   LIR_Opr mdo = new_register(T_OBJECT);
  2667   // tmp is used to hold the counters on SPARC
  2668   LIR_Opr tmp = new_pointer_register();
  2669   if (x->recv() != NULL) {
  2670     LIRItem value(x->recv(), this);
  2671     value.load_item();
  2672     recv = new_register(T_OBJECT);
  2673     __ move(value.result(), recv);
  2675   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
  2678 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  2679   // We can safely ignore accessors here, since c2 will inline them anyway,
  2680   // accessors are also always mature.
  2681   if (!x->inlinee()->is_accessor()) {
  2682     CodeEmitInfo* info = state_for(x, x->state(), true);
  2683     // Increment invocation counter, don't notify the runtime, because we don't inline loops,
  2684     increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
  2688 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  2689   int freq_log;
  2690   int level = compilation()->env()->comp_level();
  2691   if (level == CompLevel_limited_profile) {
  2692     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  2693   } else if (level == CompLevel_full_profile) {
  2694     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  2695   } else {
  2696     ShouldNotReachHere();
  2698   // Increment the appropriate invocation/backedge counter and notify the runtime.
  2699   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  2702 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  2703                                                 ciMethod *method, int frequency,
  2704                                                 int bci, bool backedge, bool notify) {
  2705   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  2706   int level = _compilation->env()->comp_level();
  2707   assert(level > CompLevel_simple, "Shouldn't be here");
  2709   int offset = -1;
  2710   LIR_Opr counter_holder = new_register(T_OBJECT);
  2711   LIR_Opr meth;
  2712   if (level == CompLevel_limited_profile) {
  2713     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
  2714                                  methodOopDesc::invocation_counter_offset());
  2715     __ oop2reg(method->constant_encoding(), counter_holder);
  2716     meth = counter_holder;
  2717   } else if (level == CompLevel_full_profile) {
  2718     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
  2719                                  methodDataOopDesc::invocation_counter_offset());
  2720     ciMethodData* md = method->method_data_or_null();
  2721     assert(md != NULL, "Sanity");
  2722     __ oop2reg(md->constant_encoding(), counter_holder);
  2723     meth = new_register(T_OBJECT);
  2724     __ oop2reg(method->constant_encoding(), meth);
  2725   } else {
  2726     ShouldNotReachHere();
  2728   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  2729   LIR_Opr result = new_register(T_INT);
  2730   __ load(counter, result);
  2731   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  2732   __ store(result, counter);
  2733   if (notify) {
  2734     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  2735     __ logical_and(result, mask, result);
  2736     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  2737     // The bci for info can point to cmp for if's we want the if bci
  2738     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  2739     __ branch(lir_cond_equal, T_INT, overflow);
  2740     __ branch_destination(overflow->continuation());
  2744 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  2745   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  2746   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  2748   if (x->pass_thread()) {
  2749     signature->append(T_ADDRESS);
  2750     args->append(getThreadPointer());
  2753   for (int i = 0; i < x->number_of_arguments(); i++) {
  2754     Value a = x->argument_at(i);
  2755     LIRItem* item = new LIRItem(a, this);
  2756     item->load_item();
  2757     args->append(item->result());
  2758     signature->append(as_BasicType(a->type()));
  2761   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  2762   if (x->type() == voidType) {
  2763     set_no_result(x);
  2764   } else {
  2765     __ move(result, rlock_result(x));
  2769 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2770   LIRItemList args(1);
  2771   LIRItem value(arg1, this);
  2772   args.append(&value);
  2773   BasicTypeList signature;
  2774   signature.append(as_BasicType(arg1->type()));
  2776   return call_runtime(&signature, &args, entry, result_type, info);
  2780 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2781   LIRItemList args(2);
  2782   LIRItem value1(arg1, this);
  2783   LIRItem value2(arg2, this);
  2784   args.append(&value1);
  2785   args.append(&value2);
  2786   BasicTypeList signature;
  2787   signature.append(as_BasicType(arg1->type()));
  2788   signature.append(as_BasicType(arg2->type()));
  2790   return call_runtime(&signature, &args, entry, result_type, info);
  2794 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  2795                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2796   // get a result register
  2797   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2798   LIR_Opr result = LIR_OprFact::illegalOpr;
  2799   if (result_type->tag() != voidTag) {
  2800     result = new_register(result_type);
  2801     phys_reg = result_register_for(result_type);
  2804   // move the arguments into the correct location
  2805   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2806   assert(cc->length() == args->length(), "argument mismatch");
  2807   for (int i = 0; i < args->length(); i++) {
  2808     LIR_Opr arg = args->at(i);
  2809     LIR_Opr loc = cc->at(i);
  2810     if (loc->is_register()) {
  2811       __ move(arg, loc);
  2812     } else {
  2813       LIR_Address* addr = loc->as_address_ptr();
  2814 //           if (!can_store_as_constant(arg)) {
  2815 //             LIR_Opr tmp = new_register(arg->type());
  2816 //             __ move(arg, tmp);
  2817 //             arg = tmp;
  2818 //           }
  2819       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2820         __ unaligned_move(arg, addr);
  2821       } else {
  2822         __ move(arg, addr);
  2827   if (info) {
  2828     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2829   } else {
  2830     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2832   if (result->is_valid()) {
  2833     __ move(phys_reg, result);
  2835   return result;
  2839 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  2840                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2841   // get a result register
  2842   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2843   LIR_Opr result = LIR_OprFact::illegalOpr;
  2844   if (result_type->tag() != voidTag) {
  2845     result = new_register(result_type);
  2846     phys_reg = result_register_for(result_type);
  2849   // move the arguments into the correct location
  2850   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2852   assert(cc->length() == args->length(), "argument mismatch");
  2853   for (int i = 0; i < args->length(); i++) {
  2854     LIRItem* arg = args->at(i);
  2855     LIR_Opr loc = cc->at(i);
  2856     if (loc->is_register()) {
  2857       arg->load_item_force(loc);
  2858     } else {
  2859       LIR_Address* addr = loc->as_address_ptr();
  2860       arg->load_for_store(addr->type());
  2861       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2862         __ unaligned_move(arg->result(), addr);
  2863       } else {
  2864         __ move(arg->result(), addr);
  2869   if (info) {
  2870     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2871   } else {
  2872     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2874   if (result->is_valid()) {
  2875     __ move(phys_reg, result);
  2877   return result;

mercurial