src/share/vm/oops/methodData.hpp

Tue, 09 Apr 2013 09:54:17 -0700

author
iignatyev
date
Tue, 09 Apr 2013 09:54:17 -0700
changeset 4908
b84fd7d73702
parent 4541
d05ff4bf41b3
child 5097
92ef81e2f571
permissions
-rw-r--r--

8007288: Additional WB API for compiler's testing
Reviewed-by: kvn, vlivanov

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75 private:
    76   // Every data layout begins with a header.  This header
    77   // contains a tag, which is used to indicate the size/layout
    78   // of the data, 4 bits of flags, which can be used in any way,
    79   // 4 bits of trap history (none/one reason/many reasons),
    80   // and a bci, which is used to tie this piece of data to a
    81   // specific bci in the bytecodes.
    82   union {
    83     intptr_t _bits;
    84     struct {
    85       u1 _tag;
    86       u1 _flags;
    87       u2 _bci;
    88     } _struct;
    89   } _header;
    91   // The data layout has an arbitrary number of cells, each sized
    92   // to accomodate a pointer or an integer.
    93   intptr_t _cells[1];
    95   // Some types of data layouts need a length field.
    96   static bool needs_array_len(u1 tag);
    98 public:
    99   enum {
   100     counter_increment = 1
   101   };
   103   enum {
   104     cell_size = sizeof(intptr_t)
   105   };
   107   // Tag values
   108   enum {
   109     no_tag,
   110     bit_data_tag,
   111     counter_data_tag,
   112     jump_data_tag,
   113     receiver_type_data_tag,
   114     virtual_call_data_tag,
   115     ret_data_tag,
   116     branch_data_tag,
   117     multi_branch_data_tag,
   118     arg_info_data_tag
   119   };
   121   enum {
   122     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   123     // The trap state breaks down further as [recompile:1 | reason:3].
   124     // This further breakdown is defined in deoptimization.cpp.
   125     // See Deoptimization::trap_state_reason for an assert that
   126     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   127     //
   128     // The trap_state is collected only if ProfileTraps is true.
   129     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   130     trap_shift = BitsPerByte - trap_bits,
   131     trap_mask = right_n_bits(trap_bits),
   132     trap_mask_in_place = (trap_mask << trap_shift),
   133     flag_limit = trap_shift,
   134     flag_mask = right_n_bits(flag_limit),
   135     first_flag = 0
   136   };
   138   // Size computation
   139   static int header_size_in_bytes() {
   140     return cell_size;
   141   }
   142   static int header_size_in_cells() {
   143     return 1;
   144   }
   146   static int compute_size_in_bytes(int cell_count) {
   147     return header_size_in_bytes() + cell_count * cell_size;
   148   }
   150   // Initialization
   151   void initialize(u1 tag, u2 bci, int cell_count);
   153   // Accessors
   154   u1 tag() {
   155     return _header._struct._tag;
   156   }
   158   // Return a few bits of trap state.  Range is [0..trap_mask].
   159   // The state tells if traps with zero, one, or many reasons have occurred.
   160   // It also tells whether zero or many recompilations have occurred.
   161   // The associated trap histogram in the MDO itself tells whether
   162   // traps are common or not.  If a BCI shows that a trap X has
   163   // occurred, and the MDO shows N occurrences of X, we make the
   164   // simplifying assumption that all N occurrences can be blamed
   165   // on that BCI.
   166   int trap_state() {
   167     return ((_header._struct._flags >> trap_shift) & trap_mask);
   168   }
   170   void set_trap_state(int new_state) {
   171     assert(ProfileTraps, "used only under +ProfileTraps");
   172     uint old_flags = (_header._struct._flags & flag_mask);
   173     _header._struct._flags = (new_state << trap_shift) | old_flags;
   174   }
   176   u1 flags() {
   177     return _header._struct._flags;
   178   }
   180   u2 bci() {
   181     return _header._struct._bci;
   182   }
   184   void set_header(intptr_t value) {
   185     _header._bits = value;
   186   }
   187   void release_set_header(intptr_t value) {
   188     OrderAccess::release_store_ptr(&_header._bits, value);
   189   }
   190   intptr_t header() {
   191     return _header._bits;
   192   }
   193   void set_cell_at(int index, intptr_t value) {
   194     _cells[index] = value;
   195   }
   196   void release_set_cell_at(int index, intptr_t value) {
   197     OrderAccess::release_store_ptr(&_cells[index], value);
   198   }
   199   intptr_t cell_at(int index) {
   200     return _cells[index];
   201   }
   203   void set_flag_at(int flag_number) {
   204     assert(flag_number < flag_limit, "oob");
   205     _header._struct._flags |= (0x1 << flag_number);
   206   }
   207   bool flag_at(int flag_number) {
   208     assert(flag_number < flag_limit, "oob");
   209     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   210   }
   212   // Low-level support for code generation.
   213   static ByteSize header_offset() {
   214     return byte_offset_of(DataLayout, _header);
   215   }
   216   static ByteSize tag_offset() {
   217     return byte_offset_of(DataLayout, _header._struct._tag);
   218   }
   219   static ByteSize flags_offset() {
   220     return byte_offset_of(DataLayout, _header._struct._flags);
   221   }
   222   static ByteSize bci_offset() {
   223     return byte_offset_of(DataLayout, _header._struct._bci);
   224   }
   225   static ByteSize cell_offset(int index) {
   226     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   227   }
   228   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   229   static int flag_number_to_byte_constant(int flag_number) {
   230     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   231     DataLayout temp; temp.set_header(0);
   232     temp.set_flag_at(flag_number);
   233     return temp._header._struct._flags;
   234   }
   235   // Return a value which, when or-ed as a word into _header, sets the flag.
   236   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   237     DataLayout temp; temp.set_header(0);
   238     temp._header._struct._flags = byte_constant;
   239     return temp._header._bits;
   240   }
   242   ProfileData* data_in();
   244   // GC support
   245   void clean_weak_klass_links(BoolObjectClosure* cl);
   246 };
   249 // ProfileData class hierarchy
   250 class ProfileData;
   251 class   BitData;
   252 class     CounterData;
   253 class       ReceiverTypeData;
   254 class         VirtualCallData;
   255 class       RetData;
   256 class   JumpData;
   257 class     BranchData;
   258 class   ArrayData;
   259 class     MultiBranchData;
   260 class     ArgInfoData;
   263 // ProfileData
   264 //
   265 // A ProfileData object is created to refer to a section of profiling
   266 // data in a structured way.
   267 class ProfileData : public ResourceObj {
   268 private:
   269 #ifndef PRODUCT
   270   enum {
   271     tab_width_one = 16,
   272     tab_width_two = 36
   273   };
   274 #endif // !PRODUCT
   276   // This is a pointer to a section of profiling data.
   277   DataLayout* _data;
   279 protected:
   280   DataLayout* data() { return _data; }
   282   enum {
   283     cell_size = DataLayout::cell_size
   284   };
   286 public:
   287   // How many cells are in this?
   288   virtual int cell_count() {
   289     ShouldNotReachHere();
   290     return -1;
   291   }
   293   // Return the size of this data.
   294   int size_in_bytes() {
   295     return DataLayout::compute_size_in_bytes(cell_count());
   296   }
   298 protected:
   299   // Low-level accessors for underlying data
   300   void set_intptr_at(int index, intptr_t value) {
   301     assert(0 <= index && index < cell_count(), "oob");
   302     data()->set_cell_at(index, value);
   303   }
   304   void release_set_intptr_at(int index, intptr_t value) {
   305     assert(0 <= index && index < cell_count(), "oob");
   306     data()->release_set_cell_at(index, value);
   307   }
   308   intptr_t intptr_at(int index) {
   309     assert(0 <= index && index < cell_count(), "oob");
   310     return data()->cell_at(index);
   311   }
   312   void set_uint_at(int index, uint value) {
   313     set_intptr_at(index, (intptr_t) value);
   314   }
   315   void release_set_uint_at(int index, uint value) {
   316     release_set_intptr_at(index, (intptr_t) value);
   317   }
   318   uint uint_at(int index) {
   319     return (uint)intptr_at(index);
   320   }
   321   void set_int_at(int index, int value) {
   322     set_intptr_at(index, (intptr_t) value);
   323   }
   324   void release_set_int_at(int index, int value) {
   325     release_set_intptr_at(index, (intptr_t) value);
   326   }
   327   int int_at(int index) {
   328     return (int)intptr_at(index);
   329   }
   330   int int_at_unchecked(int index) {
   331     return (int)data()->cell_at(index);
   332   }
   333   void set_oop_at(int index, oop value) {
   334     set_intptr_at(index, (intptr_t) value);
   335   }
   336   oop oop_at(int index) {
   337     return (oop)intptr_at(index);
   338   }
   340   void set_flag_at(int flag_number) {
   341     data()->set_flag_at(flag_number);
   342   }
   343   bool flag_at(int flag_number) {
   344     return data()->flag_at(flag_number);
   345   }
   347   // two convenient imports for use by subclasses:
   348   static ByteSize cell_offset(int index) {
   349     return DataLayout::cell_offset(index);
   350   }
   351   static int flag_number_to_byte_constant(int flag_number) {
   352     return DataLayout::flag_number_to_byte_constant(flag_number);
   353   }
   355   ProfileData(DataLayout* data) {
   356     _data = data;
   357   }
   359 public:
   360   // Constructor for invalid ProfileData.
   361   ProfileData();
   363   u2 bci() {
   364     return data()->bci();
   365   }
   367   address dp() {
   368     return (address)_data;
   369   }
   371   int trap_state() {
   372     return data()->trap_state();
   373   }
   374   void set_trap_state(int new_state) {
   375     data()->set_trap_state(new_state);
   376   }
   378   // Type checking
   379   virtual bool is_BitData()         { return false; }
   380   virtual bool is_CounterData()     { return false; }
   381   virtual bool is_JumpData()        { return false; }
   382   virtual bool is_ReceiverTypeData(){ return false; }
   383   virtual bool is_VirtualCallData() { return false; }
   384   virtual bool is_RetData()         { return false; }
   385   virtual bool is_BranchData()      { return false; }
   386   virtual bool is_ArrayData()       { return false; }
   387   virtual bool is_MultiBranchData() { return false; }
   388   virtual bool is_ArgInfoData()     { return false; }
   391   BitData* as_BitData() {
   392     assert(is_BitData(), "wrong type");
   393     return is_BitData()         ? (BitData*)        this : NULL;
   394   }
   395   CounterData* as_CounterData() {
   396     assert(is_CounterData(), "wrong type");
   397     return is_CounterData()     ? (CounterData*)    this : NULL;
   398   }
   399   JumpData* as_JumpData() {
   400     assert(is_JumpData(), "wrong type");
   401     return is_JumpData()        ? (JumpData*)       this : NULL;
   402   }
   403   ReceiverTypeData* as_ReceiverTypeData() {
   404     assert(is_ReceiverTypeData(), "wrong type");
   405     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   406   }
   407   VirtualCallData* as_VirtualCallData() {
   408     assert(is_VirtualCallData(), "wrong type");
   409     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   410   }
   411   RetData* as_RetData() {
   412     assert(is_RetData(), "wrong type");
   413     return is_RetData()         ? (RetData*)        this : NULL;
   414   }
   415   BranchData* as_BranchData() {
   416     assert(is_BranchData(), "wrong type");
   417     return is_BranchData()      ? (BranchData*)     this : NULL;
   418   }
   419   ArrayData* as_ArrayData() {
   420     assert(is_ArrayData(), "wrong type");
   421     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   422   }
   423   MultiBranchData* as_MultiBranchData() {
   424     assert(is_MultiBranchData(), "wrong type");
   425     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   426   }
   427   ArgInfoData* as_ArgInfoData() {
   428     assert(is_ArgInfoData(), "wrong type");
   429     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   430   }
   433   // Subclass specific initialization
   434   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   436   // GC support
   437   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   439   // CI translation: ProfileData can represent both MethodDataOop data
   440   // as well as CIMethodData data. This function is provided for translating
   441   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   442   // most ProfileData don't require any translation, so we provide the null
   443   // translation here, and the required translators are in the ci subclasses.
   444   virtual void translate_from(ProfileData* data) {}
   446   virtual void print_data_on(outputStream* st) {
   447     ShouldNotReachHere();
   448   }
   450 #ifndef PRODUCT
   451   void print_shared(outputStream* st, const char* name);
   452   void tab(outputStream* st);
   453 #endif
   454 };
   456 // BitData
   457 //
   458 // A BitData holds a flag or two in its header.
   459 class BitData : public ProfileData {
   460 protected:
   461   enum {
   462     // null_seen:
   463     //  saw a null operand (cast/aastore/instanceof)
   464     null_seen_flag              = DataLayout::first_flag + 0
   465   };
   466   enum { bit_cell_count = 0 };  // no additional data fields needed.
   467 public:
   468   BitData(DataLayout* layout) : ProfileData(layout) {
   469   }
   471   virtual bool is_BitData() { return true; }
   473   static int static_cell_count() {
   474     return bit_cell_count;
   475   }
   477   virtual int cell_count() {
   478     return static_cell_count();
   479   }
   481   // Accessor
   483   // The null_seen flag bit is specially known to the interpreter.
   484   // Consulting it allows the compiler to avoid setting up null_check traps.
   485   bool null_seen()     { return flag_at(null_seen_flag); }
   486   void set_null_seen()    { set_flag_at(null_seen_flag); }
   489   // Code generation support
   490   static int null_seen_byte_constant() {
   491     return flag_number_to_byte_constant(null_seen_flag);
   492   }
   494   static ByteSize bit_data_size() {
   495     return cell_offset(bit_cell_count);
   496   }
   498 #ifndef PRODUCT
   499   void print_data_on(outputStream* st);
   500 #endif
   501 };
   503 // CounterData
   504 //
   505 // A CounterData corresponds to a simple counter.
   506 class CounterData : public BitData {
   507 protected:
   508   enum {
   509     count_off,
   510     counter_cell_count
   511   };
   512 public:
   513   CounterData(DataLayout* layout) : BitData(layout) {}
   515   virtual bool is_CounterData() { return true; }
   517   static int static_cell_count() {
   518     return counter_cell_count;
   519   }
   521   virtual int cell_count() {
   522     return static_cell_count();
   523   }
   525   // Direct accessor
   526   uint count() {
   527     return uint_at(count_off);
   528   }
   530   // Code generation support
   531   static ByteSize count_offset() {
   532     return cell_offset(count_off);
   533   }
   534   static ByteSize counter_data_size() {
   535     return cell_offset(counter_cell_count);
   536   }
   538   void set_count(uint count) {
   539     set_uint_at(count_off, count);
   540   }
   542 #ifndef PRODUCT
   543   void print_data_on(outputStream* st);
   544 #endif
   545 };
   547 // JumpData
   548 //
   549 // A JumpData is used to access profiling information for a direct
   550 // branch.  It is a counter, used for counting the number of branches,
   551 // plus a data displacement, used for realigning the data pointer to
   552 // the corresponding target bci.
   553 class JumpData : public ProfileData {
   554 protected:
   555   enum {
   556     taken_off_set,
   557     displacement_off_set,
   558     jump_cell_count
   559   };
   561   void set_displacement(int displacement) {
   562     set_int_at(displacement_off_set, displacement);
   563   }
   565 public:
   566   JumpData(DataLayout* layout) : ProfileData(layout) {
   567     assert(layout->tag() == DataLayout::jump_data_tag ||
   568       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   569   }
   571   virtual bool is_JumpData() { return true; }
   573   static int static_cell_count() {
   574     return jump_cell_count;
   575   }
   577   virtual int cell_count() {
   578     return static_cell_count();
   579   }
   581   // Direct accessor
   582   uint taken() {
   583     return uint_at(taken_off_set);
   584   }
   586   void set_taken(uint cnt) {
   587     set_uint_at(taken_off_set, cnt);
   588   }
   590   // Saturating counter
   591   uint inc_taken() {
   592     uint cnt = taken() + 1;
   593     // Did we wrap? Will compiler screw us??
   594     if (cnt == 0) cnt--;
   595     set_uint_at(taken_off_set, cnt);
   596     return cnt;
   597   }
   599   int displacement() {
   600     return int_at(displacement_off_set);
   601   }
   603   // Code generation support
   604   static ByteSize taken_offset() {
   605     return cell_offset(taken_off_set);
   606   }
   608   static ByteSize displacement_offset() {
   609     return cell_offset(displacement_off_set);
   610   }
   612   // Specific initialization.
   613   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   615 #ifndef PRODUCT
   616   void print_data_on(outputStream* st);
   617 #endif
   618 };
   620 // ReceiverTypeData
   621 //
   622 // A ReceiverTypeData is used to access profiling information about a
   623 // dynamic type check.  It consists of a counter which counts the total times
   624 // that the check is reached, and a series of (Klass*, count) pairs
   625 // which are used to store a type profile for the receiver of the check.
   626 class ReceiverTypeData : public CounterData {
   627 protected:
   628   enum {
   629     receiver0_offset = counter_cell_count,
   630     count0_offset,
   631     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   632   };
   634 public:
   635   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   636     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   637            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   638   }
   640   virtual bool is_ReceiverTypeData() { return true; }
   642   static int static_cell_count() {
   643     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   644   }
   646   virtual int cell_count() {
   647     return static_cell_count();
   648   }
   650   // Direct accessors
   651   static uint row_limit() {
   652     return TypeProfileWidth;
   653   }
   654   static int receiver_cell_index(uint row) {
   655     return receiver0_offset + row * receiver_type_row_cell_count;
   656   }
   657   static int receiver_count_cell_index(uint row) {
   658     return count0_offset + row * receiver_type_row_cell_count;
   659   }
   661   Klass* receiver(uint row) {
   662     assert(row < row_limit(), "oob");
   664     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
   665     assert(recv == NULL || recv->is_klass(), "wrong type");
   666     return recv;
   667   }
   669   void set_receiver(uint row, Klass* k) {
   670     assert((uint)row < row_limit(), "oob");
   671     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
   672   }
   674   uint receiver_count(uint row) {
   675     assert(row < row_limit(), "oob");
   676     return uint_at(receiver_count_cell_index(row));
   677   }
   679   void set_receiver_count(uint row, uint count) {
   680     assert(row < row_limit(), "oob");
   681     set_uint_at(receiver_count_cell_index(row), count);
   682   }
   684   void clear_row(uint row) {
   685     assert(row < row_limit(), "oob");
   686     // Clear total count - indicator of polymorphic call site.
   687     // The site may look like as monomorphic after that but
   688     // it allow to have more accurate profiling information because
   689     // there was execution phase change since klasses were unloaded.
   690     // If the site is still polymorphic then MDO will be updated
   691     // to reflect it. But it could be the case that the site becomes
   692     // only bimorphic. Then keeping total count not 0 will be wrong.
   693     // Even if we use monomorphic (when it is not) for compilation
   694     // we will only have trap, deoptimization and recompile again
   695     // with updated MDO after executing method in Interpreter.
   696     // An additional receiver will be recorded in the cleaned row
   697     // during next call execution.
   698     //
   699     // Note: our profiling logic works with empty rows in any slot.
   700     // We do sorting a profiling info (ciCallProfile) for compilation.
   701     //
   702     set_count(0);
   703     set_receiver(row, NULL);
   704     set_receiver_count(row, 0);
   705   }
   707   // Code generation support
   708   static ByteSize receiver_offset(uint row) {
   709     return cell_offset(receiver_cell_index(row));
   710   }
   711   static ByteSize receiver_count_offset(uint row) {
   712     return cell_offset(receiver_count_cell_index(row));
   713   }
   714   static ByteSize receiver_type_data_size() {
   715     return cell_offset(static_cell_count());
   716   }
   718   // GC support
   719   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   721 #ifndef PRODUCT
   722   void print_receiver_data_on(outputStream* st);
   723   void print_data_on(outputStream* st);
   724 #endif
   725 };
   727 // VirtualCallData
   728 //
   729 // A VirtualCallData is used to access profiling information about a
   730 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   731 class VirtualCallData : public ReceiverTypeData {
   732 public:
   733   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   734     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   735   }
   737   virtual bool is_VirtualCallData() { return true; }
   739   static int static_cell_count() {
   740     // At this point we could add more profile state, e.g., for arguments.
   741     // But for now it's the same size as the base record type.
   742     return ReceiverTypeData::static_cell_count();
   743   }
   745   virtual int cell_count() {
   746     return static_cell_count();
   747   }
   749   // Direct accessors
   750   static ByteSize virtual_call_data_size() {
   751     return cell_offset(static_cell_count());
   752   }
   754 #ifndef PRODUCT
   755   void print_data_on(outputStream* st);
   756 #endif
   757 };
   759 // RetData
   760 //
   761 // A RetData is used to access profiling information for a ret bytecode.
   762 // It is composed of a count of the number of times that the ret has
   763 // been executed, followed by a series of triples of the form
   764 // (bci, count, di) which count the number of times that some bci was the
   765 // target of the ret and cache a corresponding data displacement.
   766 class RetData : public CounterData {
   767 protected:
   768   enum {
   769     bci0_offset = counter_cell_count,
   770     count0_offset,
   771     displacement0_offset,
   772     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   773   };
   775   void set_bci(uint row, int bci) {
   776     assert((uint)row < row_limit(), "oob");
   777     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   778   }
   779   void release_set_bci(uint row, int bci) {
   780     assert((uint)row < row_limit(), "oob");
   781     // 'release' when setting the bci acts as a valid flag for other
   782     // threads wrt bci_count and bci_displacement.
   783     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   784   }
   785   void set_bci_count(uint row, uint count) {
   786     assert((uint)row < row_limit(), "oob");
   787     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   788   }
   789   void set_bci_displacement(uint row, int disp) {
   790     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   791   }
   793 public:
   794   RetData(DataLayout* layout) : CounterData(layout) {
   795     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   796   }
   798   virtual bool is_RetData() { return true; }
   800   enum {
   801     no_bci = -1 // value of bci when bci1/2 are not in use.
   802   };
   804   static int static_cell_count() {
   805     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   806   }
   808   virtual int cell_count() {
   809     return static_cell_count();
   810   }
   812   static uint row_limit() {
   813     return BciProfileWidth;
   814   }
   815   static int bci_cell_index(uint row) {
   816     return bci0_offset + row * ret_row_cell_count;
   817   }
   818   static int bci_count_cell_index(uint row) {
   819     return count0_offset + row * ret_row_cell_count;
   820   }
   821   static int bci_displacement_cell_index(uint row) {
   822     return displacement0_offset + row * ret_row_cell_count;
   823   }
   825   // Direct accessors
   826   int bci(uint row) {
   827     return int_at(bci_cell_index(row));
   828   }
   829   uint bci_count(uint row) {
   830     return uint_at(bci_count_cell_index(row));
   831   }
   832   int bci_displacement(uint row) {
   833     return int_at(bci_displacement_cell_index(row));
   834   }
   836   // Interpreter Runtime support
   837   address fixup_ret(int return_bci, MethodData* mdo);
   839   // Code generation support
   840   static ByteSize bci_offset(uint row) {
   841     return cell_offset(bci_cell_index(row));
   842   }
   843   static ByteSize bci_count_offset(uint row) {
   844     return cell_offset(bci_count_cell_index(row));
   845   }
   846   static ByteSize bci_displacement_offset(uint row) {
   847     return cell_offset(bci_displacement_cell_index(row));
   848   }
   850   // Specific initialization.
   851   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   853 #ifndef PRODUCT
   854   void print_data_on(outputStream* st);
   855 #endif
   856 };
   858 // BranchData
   859 //
   860 // A BranchData is used to access profiling data for a two-way branch.
   861 // It consists of taken and not_taken counts as well as a data displacement
   862 // for the taken case.
   863 class BranchData : public JumpData {
   864 protected:
   865   enum {
   866     not_taken_off_set = jump_cell_count,
   867     branch_cell_count
   868   };
   870   void set_displacement(int displacement) {
   871     set_int_at(displacement_off_set, displacement);
   872   }
   874 public:
   875   BranchData(DataLayout* layout) : JumpData(layout) {
   876     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   877   }
   879   virtual bool is_BranchData() { return true; }
   881   static int static_cell_count() {
   882     return branch_cell_count;
   883   }
   885   virtual int cell_count() {
   886     return static_cell_count();
   887   }
   889   // Direct accessor
   890   uint not_taken() {
   891     return uint_at(not_taken_off_set);
   892   }
   894   void set_not_taken(uint cnt) {
   895     set_uint_at(not_taken_off_set, cnt);
   896   }
   898   uint inc_not_taken() {
   899     uint cnt = not_taken() + 1;
   900     // Did we wrap? Will compiler screw us??
   901     if (cnt == 0) cnt--;
   902     set_uint_at(not_taken_off_set, cnt);
   903     return cnt;
   904   }
   906   // Code generation support
   907   static ByteSize not_taken_offset() {
   908     return cell_offset(not_taken_off_set);
   909   }
   910   static ByteSize branch_data_size() {
   911     return cell_offset(branch_cell_count);
   912   }
   914   // Specific initialization.
   915   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   917 #ifndef PRODUCT
   918   void print_data_on(outputStream* st);
   919 #endif
   920 };
   922 // ArrayData
   923 //
   924 // A ArrayData is a base class for accessing profiling data which does
   925 // not have a statically known size.  It consists of an array length
   926 // and an array start.
   927 class ArrayData : public ProfileData {
   928 protected:
   929   friend class DataLayout;
   931   enum {
   932     array_len_off_set,
   933     array_start_off_set
   934   };
   936   uint array_uint_at(int index) {
   937     int aindex = index + array_start_off_set;
   938     return uint_at(aindex);
   939   }
   940   int array_int_at(int index) {
   941     int aindex = index + array_start_off_set;
   942     return int_at(aindex);
   943   }
   944   oop array_oop_at(int index) {
   945     int aindex = index + array_start_off_set;
   946     return oop_at(aindex);
   947   }
   948   void array_set_int_at(int index, int value) {
   949     int aindex = index + array_start_off_set;
   950     set_int_at(aindex, value);
   951   }
   953   // Code generation support for subclasses.
   954   static ByteSize array_element_offset(int index) {
   955     return cell_offset(array_start_off_set + index);
   956   }
   958 public:
   959   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   961   virtual bool is_ArrayData() { return true; }
   963   static int static_cell_count() {
   964     return -1;
   965   }
   967   int array_len() {
   968     return int_at_unchecked(array_len_off_set);
   969   }
   971   virtual int cell_count() {
   972     return array_len() + 1;
   973   }
   975   // Code generation support
   976   static ByteSize array_len_offset() {
   977     return cell_offset(array_len_off_set);
   978   }
   979   static ByteSize array_start_offset() {
   980     return cell_offset(array_start_off_set);
   981   }
   982 };
   984 // MultiBranchData
   985 //
   986 // A MultiBranchData is used to access profiling information for
   987 // a multi-way branch (*switch bytecodes).  It consists of a series
   988 // of (count, displacement) pairs, which count the number of times each
   989 // case was taken and specify the data displacment for each branch target.
   990 class MultiBranchData : public ArrayData {
   991 protected:
   992   enum {
   993     default_count_off_set,
   994     default_disaplacement_off_set,
   995     case_array_start
   996   };
   997   enum {
   998     relative_count_off_set,
   999     relative_displacement_off_set,
  1000     per_case_cell_count
  1001   };
  1003   void set_default_displacement(int displacement) {
  1004     array_set_int_at(default_disaplacement_off_set, displacement);
  1006   void set_displacement_at(int index, int displacement) {
  1007     array_set_int_at(case_array_start +
  1008                      index * per_case_cell_count +
  1009                      relative_displacement_off_set,
  1010                      displacement);
  1013 public:
  1014   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1015     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1018   virtual bool is_MultiBranchData() { return true; }
  1020   static int compute_cell_count(BytecodeStream* stream);
  1022   int number_of_cases() {
  1023     int alen = array_len() - 2; // get rid of default case here.
  1024     assert(alen % per_case_cell_count == 0, "must be even");
  1025     return (alen / per_case_cell_count);
  1028   uint default_count() {
  1029     return array_uint_at(default_count_off_set);
  1031   int default_displacement() {
  1032     return array_int_at(default_disaplacement_off_set);
  1035   uint count_at(int index) {
  1036     return array_uint_at(case_array_start +
  1037                          index * per_case_cell_count +
  1038                          relative_count_off_set);
  1040   int displacement_at(int index) {
  1041     return array_int_at(case_array_start +
  1042                         index * per_case_cell_count +
  1043                         relative_displacement_off_set);
  1046   // Code generation support
  1047   static ByteSize default_count_offset() {
  1048     return array_element_offset(default_count_off_set);
  1050   static ByteSize default_displacement_offset() {
  1051     return array_element_offset(default_disaplacement_off_set);
  1053   static ByteSize case_count_offset(int index) {
  1054     return case_array_offset() +
  1055            (per_case_size() * index) +
  1056            relative_count_offset();
  1058   static ByteSize case_array_offset() {
  1059     return array_element_offset(case_array_start);
  1061   static ByteSize per_case_size() {
  1062     return in_ByteSize(per_case_cell_count) * cell_size;
  1064   static ByteSize relative_count_offset() {
  1065     return in_ByteSize(relative_count_off_set) * cell_size;
  1067   static ByteSize relative_displacement_offset() {
  1068     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1071   // Specific initialization.
  1072   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1074 #ifndef PRODUCT
  1075   void print_data_on(outputStream* st);
  1076 #endif
  1077 };
  1079 class ArgInfoData : public ArrayData {
  1081 public:
  1082   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1083     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1086   virtual bool is_ArgInfoData() { return true; }
  1089   int number_of_args() {
  1090     return array_len();
  1093   uint arg_modified(int arg) {
  1094     return array_uint_at(arg);
  1097   void set_arg_modified(int arg, uint val) {
  1098     array_set_int_at(arg, val);
  1101 #ifndef PRODUCT
  1102   void print_data_on(outputStream* st);
  1103 #endif
  1104 };
  1106 // MethodData*
  1107 //
  1108 // A MethodData* holds information which has been collected about
  1109 // a method.  Its layout looks like this:
  1110 //
  1111 // -----------------------------
  1112 // | header                    |
  1113 // | klass                     |
  1114 // -----------------------------
  1115 // | method                    |
  1116 // | size of the MethodData* |
  1117 // -----------------------------
  1118 // | Data entries...           |
  1119 // |   (variable size)         |
  1120 // |                           |
  1121 // .                           .
  1122 // .                           .
  1123 // .                           .
  1124 // |                           |
  1125 // -----------------------------
  1126 //
  1127 // The data entry area is a heterogeneous array of DataLayouts. Each
  1128 // DataLayout in the array corresponds to a specific bytecode in the
  1129 // method.  The entries in the array are sorted by the corresponding
  1130 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1131 // which point to the underlying blocks of DataLayout structures.
  1132 //
  1133 // During interpretation, if profiling in enabled, the interpreter
  1134 // maintains a method data pointer (mdp), which points at the entry
  1135 // in the array corresponding to the current bci.  In the course of
  1136 // intepretation, when a bytecode is encountered that has profile data
  1137 // associated with it, the entry pointed to by mdp is updated, then the
  1138 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1139 // is NULL to begin with, the interpreter assumes that the current method
  1140 // is not (yet) being profiled.
  1141 //
  1142 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1143 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1144 // from the base of the data entry array.  A "displacement" is the byte offset
  1145 // in certain ProfileData objects that indicate the amount the mdp must be
  1146 // adjusted in the event of a change in control flow.
  1147 //
  1149 class MethodData : public Metadata {
  1150   friend class VMStructs;
  1151 private:
  1152   friend class ProfileData;
  1154   // Back pointer to the Method*
  1155   Method* _method;
  1157   // Size of this oop in bytes
  1158   int _size;
  1160   // Cached hint for bci_to_dp and bci_to_data
  1161   int _hint_di;
  1163   MethodData(methodHandle method, int size, TRAPS);
  1164 public:
  1165   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1166   MethodData() {}; // For ciMethodData
  1168   bool is_methodData() const volatile { return true; }
  1170   // Whole-method sticky bits and flags
  1171   enum {
  1172     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1173     _trap_hist_mask     = max_jubyte,
  1174     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1175   }; // Public flag values
  1176 private:
  1177   uint _nof_decompiles;             // count of all nmethod removals
  1178   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1179   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1180   union {
  1181     intptr_t _align;
  1182     u1 _array[_trap_hist_limit];
  1183   } _trap_hist;
  1185   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1186   intx              _eflags;          // flags on escape information
  1187   intx              _arg_local;       // bit set of non-escaping arguments
  1188   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1189   intx              _arg_returned;    // bit set of returned arguments
  1191   int _creation_mileage;              // method mileage at MDO creation
  1193   // How many invocations has this MDO seen?
  1194   // These counters are used to determine the exact age of MDO.
  1195   // We need those because in tiered a method can be concurrently
  1196   // executed at different levels.
  1197   InvocationCounter _invocation_counter;
  1198   // Same for backedges.
  1199   InvocationCounter _backedge_counter;
  1200   // Counter values at the time profiling started.
  1201   int               _invocation_counter_start;
  1202   int               _backedge_counter_start;
  1203   // Number of loops and blocks is computed when compiling the first
  1204   // time with C1. It is used to determine if method is trivial.
  1205   short             _num_loops;
  1206   short             _num_blocks;
  1207   // Highest compile level this method has ever seen.
  1208   u1                _highest_comp_level;
  1209   // Same for OSR level
  1210   u1                _highest_osr_comp_level;
  1211   // Does this method contain anything worth profiling?
  1212   bool              _would_profile;
  1214   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1215   int _data_size;
  1217   // Beginning of the data entries
  1218   intptr_t _data[1];
  1220   // Helper for size computation
  1221   static int compute_data_size(BytecodeStream* stream);
  1222   static int bytecode_cell_count(Bytecodes::Code code);
  1223   enum { no_profile_data = -1, variable_cell_count = -2 };
  1225   // Helper for initialization
  1226   DataLayout* data_layout_at(int data_index) const {
  1227     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1228     return (DataLayout*) (((address)_data) + data_index);
  1231   // Initialize an individual data segment.  Returns the size of
  1232   // the segment in bytes.
  1233   int initialize_data(BytecodeStream* stream, int data_index);
  1235   // Helper for data_at
  1236   DataLayout* limit_data_position() const {
  1237     return (DataLayout*)((address)data_base() + _data_size);
  1239   bool out_of_bounds(int data_index) const {
  1240     return data_index >= data_size();
  1243   // Give each of the data entries a chance to perform specific
  1244   // data initialization.
  1245   void post_initialize(BytecodeStream* stream);
  1247   // hint accessors
  1248   int      hint_di() const  { return _hint_di; }
  1249   void set_hint_di(int di)  {
  1250     assert(!out_of_bounds(di), "hint_di out of bounds");
  1251     _hint_di = di;
  1253   ProfileData* data_before(int bci) {
  1254     // avoid SEGV on this edge case
  1255     if (data_size() == 0)
  1256       return NULL;
  1257     int hint = hint_di();
  1258     if (data_layout_at(hint)->bci() <= bci)
  1259       return data_at(hint);
  1260     return first_data();
  1263   // What is the index of the first data entry?
  1264   int first_di() const { return 0; }
  1266   // Find or create an extra ProfileData:
  1267   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1269   // return the argument info cell
  1270   ArgInfoData *arg_info();
  1272 public:
  1273   static int header_size() {
  1274     return sizeof(MethodData)/wordSize;
  1277   // Compute the size of a MethodData* before it is created.
  1278   static int compute_allocation_size_in_bytes(methodHandle method);
  1279   static int compute_allocation_size_in_words(methodHandle method);
  1280   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1282   // Determine if a given bytecode can have profile information.
  1283   static bool bytecode_has_profile(Bytecodes::Code code) {
  1284     return bytecode_cell_count(code) != no_profile_data;
  1287   // reset into original state
  1288   void init();
  1290   // My size
  1291   int size_in_bytes() const { return _size; }
  1292   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1293 #if INCLUDE_SERVICES
  1294   void collect_statistics(KlassSizeStats *sz) const;
  1295 #endif
  1297   int      creation_mileage() const  { return _creation_mileage; }
  1298   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1300   int invocation_count() {
  1301     if (invocation_counter()->carry()) {
  1302       return InvocationCounter::count_limit;
  1304     return invocation_counter()->count();
  1306   int backedge_count() {
  1307     if (backedge_counter()->carry()) {
  1308       return InvocationCounter::count_limit;
  1310     return backedge_counter()->count();
  1313   int invocation_count_start() {
  1314     if (invocation_counter()->carry()) {
  1315       return 0;
  1317     return _invocation_counter_start;
  1320   int backedge_count_start() {
  1321     if (backedge_counter()->carry()) {
  1322       return 0;
  1324     return _backedge_counter_start;
  1327   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1328   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1330   void reset_start_counters() {
  1331     _invocation_counter_start = invocation_count();
  1332     _backedge_counter_start = backedge_count();
  1335   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1336   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1338   void set_would_profile(bool p)              { _would_profile = p;    }
  1339   bool would_profile() const                  { return _would_profile; }
  1341   int highest_comp_level()                    { return _highest_comp_level;      }
  1342   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1343   int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
  1344   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1346   int num_loops() const                       { return _num_loops;  }
  1347   void set_num_loops(int n)                   { _num_loops = n;     }
  1348   int num_blocks() const                      { return _num_blocks; }
  1349   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1351   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1352   static int mileage_of(Method* m);
  1354   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1355   enum EscapeFlag {
  1356     estimated    = 1 << 0,
  1357     return_local = 1 << 1,
  1358     return_allocated = 1 << 2,
  1359     allocated_escapes = 1 << 3,
  1360     unknown_modified = 1 << 4
  1361   };
  1363   intx eflags()                                  { return _eflags; }
  1364   intx arg_local()                               { return _arg_local; }
  1365   intx arg_stack()                               { return _arg_stack; }
  1366   intx arg_returned()                            { return _arg_returned; }
  1367   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1368                                                    assert(aid != NULL, "arg_info must be not null");
  1369                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1370                                                    return aid->arg_modified(a); }
  1372   void set_eflags(intx v)                        { _eflags = v; }
  1373   void set_arg_local(intx v)                     { _arg_local = v; }
  1374   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1375   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1376   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1377                                                    assert(aid != NULL, "arg_info must be not null");
  1378                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1379                                                    aid->set_arg_modified(a, v); }
  1381   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1383   // Location and size of data area
  1384   address data_base() const {
  1385     return (address) _data;
  1387   int data_size() const {
  1388     return _data_size;
  1391   // Accessors
  1392   Method* method() const { return _method; }
  1394   // Get the data at an arbitrary (sort of) data index.
  1395   ProfileData* data_at(int data_index) const;
  1397   // Walk through the data in order.
  1398   ProfileData* first_data() const { return data_at(first_di()); }
  1399   ProfileData* next_data(ProfileData* current) const;
  1400   bool is_valid(ProfileData* current) const { return current != NULL; }
  1402   // Convert a dp (data pointer) to a di (data index).
  1403   int dp_to_di(address dp) const {
  1404     return dp - ((address)_data);
  1407   address di_to_dp(int di) {
  1408     return (address)data_layout_at(di);
  1411   // bci to di/dp conversion.
  1412   address bci_to_dp(int bci);
  1413   int bci_to_di(int bci) {
  1414     return dp_to_di(bci_to_dp(bci));
  1417   // Get the data at an arbitrary bci, or NULL if there is none.
  1418   ProfileData* bci_to_data(int bci);
  1420   // Same, but try to create an extra_data record if one is needed:
  1421   ProfileData* allocate_bci_to_data(int bci) {
  1422     ProfileData* data = bci_to_data(bci);
  1423     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1426   // Add a handful of extra data records, for trap tracking.
  1427   DataLayout* extra_data_base() const { return limit_data_position(); }
  1428   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  1429   int extra_data_size() const { return (address)extra_data_limit()
  1430                                - (address)extra_data_base(); }
  1431   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1433   // Return (uint)-1 for overflow.
  1434   uint trap_count(int reason) const {
  1435     assert((uint)reason < _trap_hist_limit, "oob");
  1436     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1438   // For loops:
  1439   static uint trap_reason_limit() { return _trap_hist_limit; }
  1440   static uint trap_count_limit()  { return _trap_hist_mask; }
  1441   uint inc_trap_count(int reason) {
  1442     // Count another trap, anywhere in this method.
  1443     assert(reason >= 0, "must be single trap");
  1444     if ((uint)reason < _trap_hist_limit) {
  1445       uint cnt1 = 1 + _trap_hist._array[reason];
  1446       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1447         _trap_hist._array[reason] = cnt1;
  1448         return cnt1;
  1449       } else {
  1450         return _trap_hist_mask + (++_nof_overflow_traps);
  1452     } else {
  1453       // Could not represent the count in the histogram.
  1454       return (++_nof_overflow_traps);
  1458   uint overflow_trap_count() const {
  1459     return _nof_overflow_traps;
  1461   uint overflow_recompile_count() const {
  1462     return _nof_overflow_recompiles;
  1464   void inc_overflow_recompile_count() {
  1465     _nof_overflow_recompiles += 1;
  1467   uint decompile_count() const {
  1468     return _nof_decompiles;
  1470   void inc_decompile_count() {
  1471     _nof_decompiles += 1;
  1472     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1473       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  1477   // Support for code generation
  1478   static ByteSize data_offset() {
  1479     return byte_offset_of(MethodData, _data[0]);
  1482   static ByteSize invocation_counter_offset() {
  1483     return byte_offset_of(MethodData, _invocation_counter);
  1485   static ByteSize backedge_counter_offset() {
  1486     return byte_offset_of(MethodData, _backedge_counter);
  1489   // Deallocation support - no pointer fields to deallocate
  1490   void deallocate_contents(ClassLoaderData* loader_data) {}
  1492   // GC support
  1493   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1495   // Printing
  1496 #ifndef PRODUCT
  1497   void print_on      (outputStream* st) const;
  1498 #endif
  1499   void print_value_on(outputStream* st) const;
  1501 #ifndef PRODUCT
  1502   // printing support for method data
  1503   void print_data_on(outputStream* st) const;
  1504 #endif
  1506   const char* internal_name() const { return "{method data}"; }
  1508   // verification
  1509   void verify_on(outputStream* st);
  1510   void verify_data_on(outputStream* st);
  1511 };
  1513 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial