src/share/vm/opto/type.hpp

Tue, 25 Feb 2014 18:16:24 +0100

author
roland
date
Tue, 25 Feb 2014 18:16:24 +0100
changeset 6377
b8413a9cbb84
parent 6375
085b304a1cc5
child 6380
62825ea7e51f
permissions
-rw-r--r--

8031752: Failed speculative optimizations should be reattempted when root of compilation is different
Summary: support for speculative traps that keep track of the root of the compilation in which a trap occurs.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowPtr;
    52 class     TypeNarrowOop;
    53 class     TypeNarrowKlass;
    54 class   TypeAry;
    55 class   TypeTuple;
    56 class   TypeVect;
    57 class     TypeVectS;
    58 class     TypeVectD;
    59 class     TypeVectX;
    60 class     TypeVectY;
    61 class   TypePtr;
    62 class     TypeRawPtr;
    63 class     TypeOopPtr;
    64 class       TypeInstPtr;
    65 class       TypeAryPtr;
    66 class     TypeKlassPtr;
    67 class     TypeMetadataPtr;
    69 //------------------------------Type-------------------------------------------
    70 // Basic Type object, represents a set of primitive Values.
    71 // Types are hash-cons'd into a private class dictionary, so only one of each
    72 // different kind of Type exists.  Types are never modified after creation, so
    73 // all their interesting fields are constant.
    74 class Type {
    75   friend class VMStructs;
    77 public:
    78   enum TYPES {
    79     Bad=0,                      // Type check
    80     Control,                    // Control of code (not in lattice)
    81     Top,                        // Top of the lattice
    82     Int,                        // Integer range (lo-hi)
    83     Long,                       // Long integer range (lo-hi)
    84     Half,                       // Placeholder half of doubleword
    85     NarrowOop,                  // Compressed oop pointer
    86     NarrowKlass,                // Compressed klass pointer
    88     Tuple,                      // Method signature or object layout
    89     Array,                      // Array types
    90     VectorS,                    //  32bit Vector types
    91     VectorD,                    //  64bit Vector types
    92     VectorX,                    // 128bit Vector types
    93     VectorY,                    // 256bit Vector types
    95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    96     RawPtr,                     // Raw (non-oop) pointers
    97     OopPtr,                     // Any and all Java heap entities
    98     InstPtr,                    // Instance pointers (non-array objects)
    99     AryPtr,                     // Array pointers
   100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
   102     MetadataPtr,                // Generic metadata
   103     KlassPtr,                   // Klass pointers
   105     Function,                   // Function signature
   106     Abio,                       // Abstract I/O
   107     Return_Address,             // Subroutine return address
   108     Memory,                     // Abstract store
   109     FloatTop,                   // No float value
   110     FloatCon,                   // Floating point constant
   111     FloatBot,                   // Any float value
   112     DoubleTop,                  // No double value
   113     DoubleCon,                  // Double precision constant
   114     DoubleBot,                  // Any double value
   115     Bottom,                     // Bottom of lattice
   116     lastype                     // Bogus ending type (not in lattice)
   117   };
   119   // Signal values for offsets from a base pointer
   120   enum OFFSET_SIGNALS {
   121     OffsetTop = -2000000000,    // undefined offset
   122     OffsetBot = -2000000001     // any possible offset
   123   };
   125   // Min and max WIDEN values.
   126   enum WIDEN {
   127     WidenMin = 0,
   128     WidenMax = 3
   129   };
   131 private:
   132   typedef struct {
   133     const TYPES                dual_type;
   134     const BasicType            basic_type;
   135     const char*                msg;
   136     const bool                 isa_oop;
   137     const int                  ideal_reg;
   138     const relocInfo::relocType reloc;
   139   } TypeInfo;
   141   // Dictionary of types shared among compilations.
   142   static Dict* _shared_type_dict;
   143   static TypeInfo _type_info[];
   145   static int uhash( const Type *const t );
   146   // Structural equality check.  Assumes that cmp() has already compared
   147   // the _base types and thus knows it can cast 't' appropriately.
   148   virtual bool eq( const Type *t ) const;
   150   // Top-level hash-table of types
   151   static Dict *type_dict() {
   152     return Compile::current()->type_dict();
   153   }
   155   // DUAL operation: reflect around lattice centerline.  Used instead of
   156   // join to ensure my lattice is symmetric up and down.  Dual is computed
   157   // lazily, on demand, and cached in _dual.
   158   const Type *_dual;            // Cached dual value
   159   // Table for efficient dualing of base types
   160   static const TYPES dual_type[lastype];
   162 #ifdef ASSERT
   163   // One type is interface, the other is oop
   164   virtual bool interface_vs_oop_helper(const Type *t) const;
   165 #endif
   167   const Type *meet_helper(const Type *t, bool include_speculative) const;
   169 protected:
   170   // Each class of type is also identified by its base.
   171   const TYPES _base;            // Enum of Types type
   173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   174   // ~Type();                   // Use fast deallocation
   175   const Type *hashcons();       // Hash-cons the type
   176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   177   const Type *join_helper(const Type *t, bool include_speculative) const {
   178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
   179   }
   181 public:
   183   inline void* operator new( size_t x ) throw() {
   184     Compile* compile = Compile::current();
   185     compile->set_type_last_size(x);
   186     void *temp = compile->type_arena()->Amalloc_D(x);
   187     compile->set_type_hwm(temp);
   188     return temp;
   189   }
   190   inline void operator delete( void* ptr ) {
   191     Compile* compile = Compile::current();
   192     compile->type_arena()->Afree(ptr,compile->type_last_size());
   193   }
   195   // Initialize the type system for a particular compilation.
   196   static void Initialize(Compile* compile);
   198   // Initialize the types shared by all compilations.
   199   static void Initialize_shared(Compile* compile);
   201   TYPES base() const {
   202     assert(_base > Bad && _base < lastype, "sanity");
   203     return _base;
   204   }
   206   // Create a new hash-consd type
   207   static const Type *make(enum TYPES);
   208   // Test for equivalence of types
   209   static int cmp( const Type *const t1, const Type *const t2 );
   210   // Test for higher or equal in lattice
   211   // Variant that drops the speculative part of the types
   212   int higher_equal(const Type *t) const {
   213     return !cmp(meet(t),t->remove_speculative());
   214   }
   215   // Variant that keeps the speculative part of the types
   216   int higher_equal_speculative(const Type *t) const {
   217     return !cmp(meet_speculative(t),t);
   218   }
   220   // MEET operation; lower in lattice.
   221   // Variant that drops the speculative part of the types
   222   const Type *meet(const Type *t) const {
   223     return meet_helper(t, false);
   224   }
   225   // Variant that keeps the speculative part of the types
   226   const Type *meet_speculative(const Type *t) const {
   227     return meet_helper(t, true);
   228   }
   229   // WIDEN: 'widens' for Ints and other range types
   230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   231   // NARROW: complement for widen, used by pessimistic phases
   232   virtual const Type *narrow( const Type *old ) const { return this; }
   234   // DUAL operation: reflect around lattice centerline.  Used instead of
   235   // join to ensure my lattice is symmetric up and down.
   236   const Type *dual() const { return _dual; }
   238   // Compute meet dependent on base type
   239   virtual const Type *xmeet( const Type *t ) const;
   240   virtual const Type *xdual() const;    // Compute dual right now.
   242   // JOIN operation; higher in lattice.  Done by finding the dual of the
   243   // meet of the dual of the 2 inputs.
   244   // Variant that drops the speculative part of the types
   245   const Type *join(const Type *t) const {
   246     return join_helper(t, false);
   247   }
   248   // Variant that keeps the speculative part of the types
   249   const Type *join_speculative(const Type *t) const {
   250     return join_helper(t, true);
   251   }
   253   // Modified version of JOIN adapted to the needs Node::Value.
   254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   255   // Currently, it also works around limitations involving interface types.
   256   // Variant that drops the speculative part of the types
   257   const Type *filter(const Type *kills) const {
   258     return filter_helper(kills, false);
   259   }
   260   // Variant that keeps the speculative part of the types
   261   const Type *filter_speculative(const Type *kills) const {
   262     return filter_helper(kills, true);
   263   }
   265 #ifdef ASSERT
   266   // One type is interface, the other is oop
   267   virtual bool interface_vs_oop(const Type *t) const;
   268 #endif
   270   // Returns true if this pointer points at memory which contains a
   271   // compressed oop references.
   272   bool is_ptr_to_narrowoop() const;
   273   bool is_ptr_to_narrowklass() const;
   275   bool is_ptr_to_boxing_obj() const;
   278   // Convenience access
   279   float getf() const;
   280   double getd() const;
   282   const TypeInt    *is_int() const;
   283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   284   const TypeLong   *is_long() const;
   285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
   287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
   290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   294   const TypeVect   *is_vect() const;             // Vector
   295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
   303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
   304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   307   const TypeInstPtr  *is_instptr() const;        // Instance
   308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   309   const TypeAryPtr   *is_aryptr() const;         // Array oop
   311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
   312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
   313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
   314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
   316   virtual bool      is_finite() const;           // Has a finite value
   317   virtual bool      is_nan()    const;           // Is not a number (NaN)
   319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   320   const TypePtr* make_ptr() const;
   322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   323   // Asserts if the underlying type is not an oopptr or narrowoop.
   324   const TypeOopPtr* make_oopptr() const;
   326   // Returns this compressed pointer or the equivalent compressed version
   327   // of this pointer type.
   328   const TypeNarrowOop* make_narrowoop() const;
   330   // Returns this compressed klass pointer or the equivalent
   331   // compressed version of this pointer type.
   332   const TypeNarrowKlass* make_narrowklass() const;
   334   // Special test for register pressure heuristic
   335   bool is_floatingpoint() const;        // True if Float or Double base type
   337   // Do you have memory, directly or through a tuple?
   338   bool has_memory( ) const;
   340   // TRUE if type is a singleton
   341   virtual bool singleton(void) const;
   343   // TRUE if type is above the lattice centerline, and is therefore vacuous
   344   virtual bool empty(void) const;
   346   // Return a hash for this type.  The hash function is public so ConNode
   347   // (constants) can hash on their constant, which is represented by a Type.
   348   virtual int hash() const;
   350   // Map ideal registers (machine types) to ideal types
   351   static const Type *mreg2type[];
   353   // Printing, statistics
   354 #ifndef PRODUCT
   355   void         dump_on(outputStream *st) const;
   356   void         dump() const {
   357     dump_on(tty);
   358   }
   359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   360   static  void dump_stats();
   361 #endif
   362   void typerr(const Type *t) const; // Mixing types error
   364   // Create basic type
   365   static const Type* get_const_basic_type(BasicType type) {
   366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   367     return _const_basic_type[type];
   368   }
   370   // Mapping to the array element's basic type.
   371   BasicType array_element_basic_type() const;
   373   // Create standard type for a ciType:
   374   static const Type* get_const_type(ciType* type);
   376   // Create standard zero value:
   377   static const Type* get_zero_type(BasicType type) {
   378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   379     return _zero_type[type];
   380   }
   382   // Report if this is a zero value (not top).
   383   bool is_zero_type() const {
   384     BasicType type = basic_type();
   385     if (type == T_VOID || type >= T_CONFLICT)
   386       return false;
   387     else
   388       return (this == _zero_type[type]);
   389   }
   391   // Convenience common pre-built types.
   392   static const Type *ABIO;
   393   static const Type *BOTTOM;
   394   static const Type *CONTROL;
   395   static const Type *DOUBLE;
   396   static const Type *FLOAT;
   397   static const Type *HALF;
   398   static const Type *MEMORY;
   399   static const Type *MULTI;
   400   static const Type *RETURN_ADDRESS;
   401   static const Type *TOP;
   403   // Mapping from compiler type to VM BasicType
   404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
   405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
   406   const char* msg() const            { return _type_info[_base].msg; }
   407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
   408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
   410   // Mapping from CI type system to compiler type:
   411   static const Type* get_typeflow_type(ciType* type);
   413   static const Type* make_from_constant(ciConstant constant,
   414                                         bool require_constant = false,
   415                                         bool is_autobox_cache = false);
   417   // Speculative type. See TypeInstPtr
   418   virtual ciKlass* speculative_type() const { return NULL; }
   419   const Type* maybe_remove_speculative(bool include_speculative) const;
   420   virtual const Type* remove_speculative() const { return this; }
   422 private:
   423   // support arrays
   424   static const BasicType _basic_type[];
   425   static const Type*        _zero_type[T_CONFLICT+1];
   426   static const Type* _const_basic_type[T_CONFLICT+1];
   427 };
   429 //------------------------------TypeF------------------------------------------
   430 // Class of Float-Constant Types.
   431 class TypeF : public Type {
   432   TypeF( float f ) : Type(FloatCon), _f(f) {};
   433 public:
   434   virtual bool eq( const Type *t ) const;
   435   virtual int  hash() const;             // Type specific hashing
   436   virtual bool singleton(void) const;    // TRUE if type is a singleton
   437   virtual bool empty(void) const;        // TRUE if type is vacuous
   438 public:
   439   const float _f;               // Float constant
   441   static const TypeF *make(float f);
   443   virtual bool        is_finite() const;  // Has a finite value
   444   virtual bool        is_nan()    const;  // Is not a number (NaN)
   446   virtual const Type *xmeet( const Type *t ) const;
   447   virtual const Type *xdual() const;    // Compute dual right now.
   448   // Convenience common pre-built types.
   449   static const TypeF *ZERO; // positive zero only
   450   static const TypeF *ONE;
   451 #ifndef PRODUCT
   452   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   453 #endif
   454 };
   456 //------------------------------TypeD------------------------------------------
   457 // Class of Double-Constant Types.
   458 class TypeD : public Type {
   459   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   460 public:
   461   virtual bool eq( const Type *t ) const;
   462   virtual int  hash() const;             // Type specific hashing
   463   virtual bool singleton(void) const;    // TRUE if type is a singleton
   464   virtual bool empty(void) const;        // TRUE if type is vacuous
   465 public:
   466   const double _d;              // Double constant
   468   static const TypeD *make(double d);
   470   virtual bool        is_finite() const;  // Has a finite value
   471   virtual bool        is_nan()    const;  // Is not a number (NaN)
   473   virtual const Type *xmeet( const Type *t ) const;
   474   virtual const Type *xdual() const;    // Compute dual right now.
   475   // Convenience common pre-built types.
   476   static const TypeD *ZERO; // positive zero only
   477   static const TypeD *ONE;
   478 #ifndef PRODUCT
   479   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   480 #endif
   481 };
   483 //------------------------------TypeInt----------------------------------------
   484 // Class of integer ranges, the set of integers between a lower bound and an
   485 // upper bound, inclusive.
   486 class TypeInt : public Type {
   487   TypeInt( jint lo, jint hi, int w );
   488 protected:
   489   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   491 public:
   492   typedef jint NativeType;
   493   virtual bool eq( const Type *t ) const;
   494   virtual int  hash() const;             // Type specific hashing
   495   virtual bool singleton(void) const;    // TRUE if type is a singleton
   496   virtual bool empty(void) const;        // TRUE if type is vacuous
   497   const jint _lo, _hi;          // Lower bound, upper bound
   498   const short _widen;           // Limit on times we widen this sucker
   500   static const TypeInt *make(jint lo);
   501   // must always specify w
   502   static const TypeInt *make(jint lo, jint hi, int w);
   504   // Check for single integer
   505   int is_con() const { return _lo==_hi; }
   506   bool is_con(int i) const { return is_con() && _lo == i; }
   507   jint get_con() const { assert( is_con(), "" );  return _lo; }
   509   virtual bool        is_finite() const;  // Has a finite value
   511   virtual const Type *xmeet( const Type *t ) const;
   512   virtual const Type *xdual() const;    // Compute dual right now.
   513   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   514   virtual const Type *narrow( const Type *t ) const;
   515   // Do not kill _widen bits.
   516   // Convenience common pre-built types.
   517   static const TypeInt *MINUS_1;
   518   static const TypeInt *ZERO;
   519   static const TypeInt *ONE;
   520   static const TypeInt *BOOL;
   521   static const TypeInt *CC;
   522   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   523   static const TypeInt *CC_GT;  // [1]   == ONE
   524   static const TypeInt *CC_EQ;  // [0]   == ZERO
   525   static const TypeInt *CC_LE;  // [-1,0]
   526   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   527   static const TypeInt *BYTE;
   528   static const TypeInt *UBYTE;
   529   static const TypeInt *CHAR;
   530   static const TypeInt *SHORT;
   531   static const TypeInt *POS;
   532   static const TypeInt *POS1;
   533   static const TypeInt *INT;
   534   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   535   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
   537   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
   538 #ifndef PRODUCT
   539   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   540 #endif
   541 };
   544 //------------------------------TypeLong---------------------------------------
   545 // Class of long integer ranges, the set of integers between a lower bound and
   546 // an upper bound, inclusive.
   547 class TypeLong : public Type {
   548   TypeLong( jlong lo, jlong hi, int w );
   549 protected:
   550   // Do not kill _widen bits.
   551   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   552 public:
   553   typedef jlong NativeType;
   554   virtual bool eq( const Type *t ) const;
   555   virtual int  hash() const;             // Type specific hashing
   556   virtual bool singleton(void) const;    // TRUE if type is a singleton
   557   virtual bool empty(void) const;        // TRUE if type is vacuous
   558 public:
   559   const jlong _lo, _hi;         // Lower bound, upper bound
   560   const short _widen;           // Limit on times we widen this sucker
   562   static const TypeLong *make(jlong lo);
   563   // must always specify w
   564   static const TypeLong *make(jlong lo, jlong hi, int w);
   566   // Check for single integer
   567   int is_con() const { return _lo==_hi; }
   568   bool is_con(int i) const { return is_con() && _lo == i; }
   569   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   571   virtual bool        is_finite() const;  // Has a finite value
   574   virtual const Type *xmeet( const Type *t ) const;
   575   virtual const Type *xdual() const;    // Compute dual right now.
   576   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   577   virtual const Type *narrow( const Type *t ) const;
   578   // Convenience common pre-built types.
   579   static const TypeLong *MINUS_1;
   580   static const TypeLong *ZERO;
   581   static const TypeLong *ONE;
   582   static const TypeLong *POS;
   583   static const TypeLong *LONG;
   584   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   585   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   586   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
   588   // static convenience methods.
   589   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
   591 #ifndef PRODUCT
   592   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   593 #endif
   594 };
   596 //------------------------------TypeTuple--------------------------------------
   597 // Class of Tuple Types, essentially type collections for function signatures
   598 // and class layouts.  It happens to also be a fast cache for the HotSpot
   599 // signature types.
   600 class TypeTuple : public Type {
   601   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   602 public:
   603   virtual bool eq( const Type *t ) const;
   604   virtual int  hash() const;             // Type specific hashing
   605   virtual bool singleton(void) const;    // TRUE if type is a singleton
   606   virtual bool empty(void) const;        // TRUE if type is vacuous
   608 public:
   609   const uint          _cnt;              // Count of fields
   610   const Type ** const _fields;           // Array of field types
   612   // Accessors:
   613   uint cnt() const { return _cnt; }
   614   const Type* field_at(uint i) const {
   615     assert(i < _cnt, "oob");
   616     return _fields[i];
   617   }
   618   void set_field_at(uint i, const Type* t) {
   619     assert(i < _cnt, "oob");
   620     _fields[i] = t;
   621   }
   623   static const TypeTuple *make( uint cnt, const Type **fields );
   624   static const TypeTuple *make_range(ciSignature *sig);
   625   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   627   // Subroutine call type with space allocated for argument types
   628   static const Type **fields( uint arg_cnt );
   630   virtual const Type *xmeet( const Type *t ) const;
   631   virtual const Type *xdual() const;    // Compute dual right now.
   632   // Convenience common pre-built types.
   633   static const TypeTuple *IFBOTH;
   634   static const TypeTuple *IFFALSE;
   635   static const TypeTuple *IFTRUE;
   636   static const TypeTuple *IFNEITHER;
   637   static const TypeTuple *LOOPBODY;
   638   static const TypeTuple *MEMBAR;
   639   static const TypeTuple *STORECONDITIONAL;
   640   static const TypeTuple *START_I2C;
   641   static const TypeTuple *INT_PAIR;
   642   static const TypeTuple *LONG_PAIR;
   643   static const TypeTuple *INT_CC_PAIR;
   644   static const TypeTuple *LONG_CC_PAIR;
   645 #ifndef PRODUCT
   646   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   647 #endif
   648 };
   650 //------------------------------TypeAry----------------------------------------
   651 // Class of Array Types
   652 class TypeAry : public Type {
   653   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
   654       _elem(elem), _size(size), _stable(stable) {}
   655 public:
   656   virtual bool eq( const Type *t ) const;
   657   virtual int  hash() const;             // Type specific hashing
   658   virtual bool singleton(void) const;    // TRUE if type is a singleton
   659   virtual bool empty(void) const;        // TRUE if type is vacuous
   661 private:
   662   const Type *_elem;            // Element type of array
   663   const TypeInt *_size;         // Elements in array
   664   const bool _stable;           // Are elements @Stable?
   665   friend class TypeAryPtr;
   667 public:
   668   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
   670   virtual const Type *xmeet( const Type *t ) const;
   671   virtual const Type *xdual() const;    // Compute dual right now.
   672   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   673   virtual const Type* remove_speculative() const;
   674 #ifdef ASSERT
   675   // One type is interface, the other is oop
   676   virtual bool interface_vs_oop(const Type *t) const;
   677 #endif
   678 #ifndef PRODUCT
   679   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   680 #endif
   681 };
   683 //------------------------------TypeVect---------------------------------------
   684 // Class of Vector Types
   685 class TypeVect : public Type {
   686   const Type*   _elem;  // Vector's element type
   687   const uint  _length;  // Elements in vector (power of 2)
   689 protected:
   690   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   691     _elem(elem), _length(length) {}
   693 public:
   694   const Type* element_type() const { return _elem; }
   695   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   696   uint length() const { return _length; }
   697   uint length_in_bytes() const {
   698    return _length * type2aelembytes(element_basic_type());
   699   }
   701   virtual bool eq(const Type *t) const;
   702   virtual int  hash() const;             // Type specific hashing
   703   virtual bool singleton(void) const;    // TRUE if type is a singleton
   704   virtual bool empty(void) const;        // TRUE if type is vacuous
   706   static const TypeVect *make(const BasicType elem_bt, uint length) {
   707     // Use bottom primitive type.
   708     return make(get_const_basic_type(elem_bt), length);
   709   }
   710   // Used directly by Replicate nodes to construct singleton vector.
   711   static const TypeVect *make(const Type* elem, uint length);
   713   virtual const Type *xmeet( const Type *t) const;
   714   virtual const Type *xdual() const;     // Compute dual right now.
   716   static const TypeVect *VECTS;
   717   static const TypeVect *VECTD;
   718   static const TypeVect *VECTX;
   719   static const TypeVect *VECTY;
   721 #ifndef PRODUCT
   722   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   723 #endif
   724 };
   726 class TypeVectS : public TypeVect {
   727   friend class TypeVect;
   728   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   729 };
   731 class TypeVectD : public TypeVect {
   732   friend class TypeVect;
   733   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   734 };
   736 class TypeVectX : public TypeVect {
   737   friend class TypeVect;
   738   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   739 };
   741 class TypeVectY : public TypeVect {
   742   friend class TypeVect;
   743   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   744 };
   746 //------------------------------TypePtr----------------------------------------
   747 // Class of machine Pointer Types: raw data, instances or arrays.
   748 // If the _base enum is AnyPtr, then this refers to all of the above.
   749 // Otherwise the _base will indicate which subset of pointers is affected,
   750 // and the class will be inherited from.
   751 class TypePtr : public Type {
   752   friend class TypeNarrowPtr;
   753 public:
   754   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   755 protected:
   756   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   757   virtual bool eq( const Type *t ) const;
   758   virtual int  hash() const;             // Type specific hashing
   759   static const PTR ptr_meet[lastPTR][lastPTR];
   760   static const PTR ptr_dual[lastPTR];
   761   static const char * const ptr_msg[lastPTR];
   763 public:
   764   const int _offset;            // Offset into oop, with TOP & BOT
   765   const PTR _ptr;               // Pointer equivalence class
   767   const int offset() const { return _offset; }
   768   const PTR ptr()    const { return _ptr; }
   770   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   772   // Return a 'ptr' version of this type
   773   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   775   virtual intptr_t get_con() const;
   777   int xadd_offset( intptr_t offset ) const;
   778   virtual const TypePtr *add_offset( intptr_t offset ) const;
   780   virtual bool singleton(void) const;    // TRUE if type is a singleton
   781   virtual bool empty(void) const;        // TRUE if type is vacuous
   782   virtual const Type *xmeet( const Type *t ) const;
   783   int meet_offset( int offset ) const;
   784   int dual_offset( ) const;
   785   virtual const Type *xdual() const;    // Compute dual right now.
   787   // meet, dual and join over pointer equivalence sets
   788   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   789   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   791   // This is textually confusing unless one recalls that
   792   // join(t) == dual()->meet(t->dual())->dual().
   793   PTR join_ptr( const PTR in_ptr ) const {
   794     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   795   }
   797   // Tests for relation to centerline of type lattice:
   798   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   799   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   800   // Convenience common pre-built types.
   801   static const TypePtr *NULL_PTR;
   802   static const TypePtr *NOTNULL;
   803   static const TypePtr *BOTTOM;
   804 #ifndef PRODUCT
   805   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   806 #endif
   807 };
   809 //------------------------------TypeRawPtr-------------------------------------
   810 // Class of raw pointers, pointers to things other than Oops.  Examples
   811 // include the stack pointer, top of heap, card-marking area, handles, etc.
   812 class TypeRawPtr : public TypePtr {
   813 protected:
   814   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   815 public:
   816   virtual bool eq( const Type *t ) const;
   817   virtual int  hash() const;     // Type specific hashing
   819   const address _bits;          // Constant value, if applicable
   821   static const TypeRawPtr *make( PTR ptr );
   822   static const TypeRawPtr *make( address bits );
   824   // Return a 'ptr' version of this type
   825   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   827   virtual intptr_t get_con() const;
   829   virtual const TypePtr *add_offset( intptr_t offset ) const;
   831   virtual const Type *xmeet( const Type *t ) const;
   832   virtual const Type *xdual() const;    // Compute dual right now.
   833   // Convenience common pre-built types.
   834   static const TypeRawPtr *BOTTOM;
   835   static const TypeRawPtr *NOTNULL;
   836 #ifndef PRODUCT
   837   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   838 #endif
   839 };
   841 //------------------------------TypeOopPtr-------------------------------------
   842 // Some kind of oop (Java pointer), either klass or instance or array.
   843 class TypeOopPtr : public TypePtr {
   844 protected:
   845   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
   846 public:
   847   virtual bool eq( const Type *t ) const;
   848   virtual int  hash() const;             // Type specific hashing
   849   virtual bool singleton(void) const;    // TRUE if type is a singleton
   850   enum {
   851    InstanceTop = -1,   // undefined instance
   852    InstanceBot = 0     // any possible instance
   853   };
   854 protected:
   856   // Oop is NULL, unless this is a constant oop.
   857   ciObject*     _const_oop;   // Constant oop
   858   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   859   ciKlass*      _klass;       // Klass object
   860   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   861   bool          _klass_is_exact;
   862   bool          _is_ptr_to_narrowoop;
   863   bool          _is_ptr_to_narrowklass;
   864   bool          _is_ptr_to_boxed_value;
   866   // If not InstanceTop or InstanceBot, indicates that this is
   867   // a particular instance of this type which is distinct.
   868   // This is the the node index of the allocation node creating this instance.
   869   int           _instance_id;
   871   // Extra type information profiling gave us. We propagate it the
   872   // same way the rest of the type info is propagated. If we want to
   873   // use it, then we have to emit a guard: this part of the type is
   874   // not something we know but something we speculate about the type.
   875   const TypeOopPtr*   _speculative;
   877   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   879   int dual_instance_id() const;
   880   int meet_instance_id(int uid) const;
   882   // utility methods to work on the speculative part of the type
   883   const TypeOopPtr* dual_speculative() const;
   884   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
   885   bool eq_speculative(const TypeOopPtr* other) const;
   886   int hash_speculative() const;
   887   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
   888 #ifndef PRODUCT
   889   void dump_speculative(outputStream *st) const;
   890 #endif
   892   // Do not allow interface-vs.-noninterface joins to collapse to top.
   893   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
   895 public:
   896   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   897   // Respects UseUniqueSubclasses.
   898   // If the klass is final, the resulting type will be exact.
   899   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   900     return make_from_klass_common(klass, true, false);
   901   }
   902   // Same as before, but will produce an exact type, even if
   903   // the klass is not final, as long as it has exactly one implementation.
   904   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   905     return make_from_klass_common(klass, true, true);
   906   }
   907   // Same as before, but does not respects UseUniqueSubclasses.
   908   // Use this only for creating array element types.
   909   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   910     return make_from_klass_common(klass, false, false);
   911   }
   912   // Creates a singleton type given an object.
   913   // If the object cannot be rendered as a constant,
   914   // may return a non-singleton type.
   915   // If require_constant, produce a NULL if a singleton is not possible.
   916   static const TypeOopPtr* make_from_constant(ciObject* o,
   917                                               bool require_constant = false,
   918                                               bool not_null_elements = false);
   920   // Make a generic (unclassed) pointer to an oop.
   921   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative);
   923   ciObject* const_oop()    const { return _const_oop; }
   924   virtual ciKlass* klass() const { return _klass;     }
   925   bool klass_is_exact()    const { return _klass_is_exact; }
   927   // Returns true if this pointer points at memory which contains a
   928   // compressed oop references.
   929   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   930   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
   931   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
   932   bool is_known_instance()       const { return _instance_id > 0; }
   933   int  instance_id()             const { return _instance_id; }
   934   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   935   const TypeOopPtr* speculative() const { return _speculative; }
   937   virtual intptr_t get_con() const;
   939   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   941   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   943   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   945   // corresponding pointer to klass, for a given instance
   946   const TypeKlassPtr* as_klass_type() const;
   948   virtual const TypePtr *add_offset( intptr_t offset ) const;
   949   // Return same type without a speculative part
   950   virtual const Type* remove_speculative() const;
   952   virtual const Type *xmeet(const Type *t) const;
   953   virtual const Type *xdual() const;    // Compute dual right now.
   954   // the core of the computation of the meet for TypeOopPtr and for its subclasses
   955   virtual const Type *xmeet_helper(const Type *t) const;
   957   // Convenience common pre-built type.
   958   static const TypeOopPtr *BOTTOM;
   959 #ifndef PRODUCT
   960   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   961 #endif
   963   // Return the speculative type if any
   964   ciKlass* speculative_type() const {
   965     if (_speculative != NULL) {
   966       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
   967       if (speculative->klass_is_exact()) {
   968        return speculative->klass();
   969       }
   970     }
   971     return NULL;
   972   }
   973 };
   975 //------------------------------TypeInstPtr------------------------------------
   976 // Class of Java object pointers, pointing either to non-array Java instances
   977 // or to a Klass* (including array klasses).
   978 class TypeInstPtr : public TypeOopPtr {
   979   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
   980   virtual bool eq( const Type *t ) const;
   981   virtual int  hash() const;             // Type specific hashing
   983   ciSymbol*  _name;        // class name
   985  public:
   986   ciSymbol* name()         const { return _name; }
   988   bool  is_loaded() const { return _klass->is_loaded(); }
   990   // Make a pointer to a constant oop.
   991   static const TypeInstPtr *make(ciObject* o) {
   992     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
   993   }
   994   // Make a pointer to a constant oop with offset.
   995   static const TypeInstPtr *make(ciObject* o, int offset) {
   996     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
   997   }
   999   // Make a pointer to some value of type klass.
  1000   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
  1001     return make(ptr, klass, false, NULL, 0, InstanceBot);
  1004   // Make a pointer to some non-polymorphic value of exactly type klass.
  1005   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
  1006     return make(ptr, klass, true, NULL, 0, InstanceBot);
  1009   // Make a pointer to some value of type klass with offset.
  1010   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
  1011     return make(ptr, klass, false, NULL, offset, InstanceBot);
  1014   // Make a pointer to an oop.
  1015   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
  1017   /** Create constant type for a constant boxed value */
  1018   const Type* get_const_boxed_value() const;
  1020   // If this is a java.lang.Class constant, return the type for it or NULL.
  1021   // Pass to Type::get_const_type to turn it to a type, which will usually
  1022   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
  1023   ciType* java_mirror_type() const;
  1025   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1027   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1029   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
  1031   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1032   // Return same type without a speculative part
  1033   virtual const Type* remove_speculative() const;
  1035   // the core of the computation of the meet of 2 types
  1036   virtual const Type *xmeet_helper(const Type *t) const;
  1037   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
  1038   virtual const Type *xdual() const;    // Compute dual right now.
  1040   // Convenience common pre-built types.
  1041   static const TypeInstPtr *NOTNULL;
  1042   static const TypeInstPtr *BOTTOM;
  1043   static const TypeInstPtr *MIRROR;
  1044   static const TypeInstPtr *MARK;
  1045   static const TypeInstPtr *KLASS;
  1046 #ifndef PRODUCT
  1047   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1048 #endif
  1049 };
  1051 //------------------------------TypeAryPtr-------------------------------------
  1052 // Class of Java array pointers
  1053 class TypeAryPtr : public TypeOopPtr {
  1054   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
  1055               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative)
  1056     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative),
  1057     _ary(ary),
  1058     _is_autobox_cache(is_autobox_cache)
  1060 #ifdef ASSERT
  1061     if (k != NULL) {
  1062       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
  1063       ciKlass* ck = compute_klass(true);
  1064       if (k != ck) {
  1065         this->dump(); tty->cr();
  1066         tty->print(" k: ");
  1067         k->print(); tty->cr();
  1068         tty->print("ck: ");
  1069         if (ck != NULL) ck->print();
  1070         else tty->print("<NULL>");
  1071         tty->cr();
  1072         assert(false, "unexpected TypeAryPtr::_klass");
  1075 #endif
  1077   virtual bool eq( const Type *t ) const;
  1078   virtual int hash() const;     // Type specific hashing
  1079   const TypeAry *_ary;          // Array we point into
  1080   const bool     _is_autobox_cache;
  1082   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
  1084 public:
  1085   // Accessors
  1086   ciKlass* klass() const;
  1087   const TypeAry* ary() const  { return _ary; }
  1088   const Type*    elem() const { return _ary->_elem; }
  1089   const TypeInt* size() const { return _ary->_size; }
  1090   bool      is_stable() const { return _ary->_stable; }
  1092   bool is_autobox_cache() const { return _is_autobox_cache; }
  1094   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
  1095   // Constant pointer to array
  1096   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, bool is_autobox_cache = false);
  1098   // Return a 'ptr' version of this type
  1099   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1101   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1103   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
  1105   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
  1106   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
  1108   virtual bool empty(void) const;        // TRUE if type is vacuous
  1109   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1110   // Return same type without a speculative part
  1111   virtual const Type* remove_speculative() const;
  1113   // the core of the computation of the meet of 2 types
  1114   virtual const Type *xmeet_helper(const Type *t) const;
  1115   virtual const Type *xdual() const;    // Compute dual right now.
  1117   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
  1118   int stable_dimension() const;
  1120   // Convenience common pre-built types.
  1121   static const TypeAryPtr *RANGE;
  1122   static const TypeAryPtr *OOPS;
  1123   static const TypeAryPtr *NARROWOOPS;
  1124   static const TypeAryPtr *BYTES;
  1125   static const TypeAryPtr *SHORTS;
  1126   static const TypeAryPtr *CHARS;
  1127   static const TypeAryPtr *INTS;
  1128   static const TypeAryPtr *LONGS;
  1129   static const TypeAryPtr *FLOATS;
  1130   static const TypeAryPtr *DOUBLES;
  1131   // selects one of the above:
  1132   static const TypeAryPtr *get_array_body_type(BasicType elem) {
  1133     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
  1134     return _array_body_type[elem];
  1136   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
  1137   // sharpen the type of an int which is used as an array size
  1138 #ifdef ASSERT
  1139   // One type is interface, the other is oop
  1140   virtual bool interface_vs_oop(const Type *t) const;
  1141 #endif
  1142 #ifndef PRODUCT
  1143   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1144 #endif
  1145 };
  1147 //------------------------------TypeMetadataPtr-------------------------------------
  1148 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
  1149 class TypeMetadataPtr : public TypePtr {
  1150 protected:
  1151   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
  1152   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1153   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
  1154 public:
  1155   virtual bool eq( const Type *t ) const;
  1156   virtual int  hash() const;             // Type specific hashing
  1157   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1159 private:
  1160   ciMetadata*   _metadata;
  1162 public:
  1163   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
  1165   static const TypeMetadataPtr* make(ciMethod* m);
  1166   static const TypeMetadataPtr* make(ciMethodData* m);
  1168   ciMetadata* metadata() const { return _metadata; }
  1170   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1172   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1174   virtual const Type *xmeet( const Type *t ) const;
  1175   virtual const Type *xdual() const;    // Compute dual right now.
  1177   virtual intptr_t get_con() const;
  1179   // Convenience common pre-built types.
  1180   static const TypeMetadataPtr *BOTTOM;
  1182 #ifndef PRODUCT
  1183   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1184 #endif
  1185 };
  1187 //------------------------------TypeKlassPtr-----------------------------------
  1188 // Class of Java Klass pointers
  1189 class TypeKlassPtr : public TypePtr {
  1190   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1192 protected:
  1193   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
  1194  public:
  1195   virtual bool eq( const Type *t ) const;
  1196   virtual int hash() const;             // Type specific hashing
  1197   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1198  private:
  1200   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
  1202   ciKlass* _klass;
  1204   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
  1205   bool          _klass_is_exact;
  1207 public:
  1208   ciSymbol* name()  const { return klass()->name(); }
  1210   ciKlass* klass() const { return  _klass; }
  1211   bool klass_is_exact()    const { return _klass_is_exact; }
  1213   bool  is_loaded() const { return klass()->is_loaded(); }
  1215   // Creates a type given a klass. Correctly handles multi-dimensional arrays
  1216   // Respects UseUniqueSubclasses.
  1217   // If the klass is final, the resulting type will be exact.
  1218   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
  1219     return make_from_klass_common(klass, true, false);
  1221   // Same as before, but will produce an exact type, even if
  1222   // the klass is not final, as long as it has exactly one implementation.
  1223   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
  1224     return make_from_klass_common(klass, true, true);
  1226   // Same as before, but does not respects UseUniqueSubclasses.
  1227   // Use this only for creating array element types.
  1228   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
  1229     return make_from_klass_common(klass, false, false);
  1232   // Make a generic (unclassed) pointer to metadata.
  1233   static const TypeKlassPtr* make(PTR ptr, int offset);
  1235   // ptr to klass 'k'
  1236   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1237   // ptr to klass 'k' with offset
  1238   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1239   // ptr to klass 'k' or sub-klass
  1240   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1242   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1244   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1246   // corresponding pointer to instance, for a given class
  1247   const TypeOopPtr* as_instance_type() const;
  1249   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1250   virtual const Type    *xmeet( const Type *t ) const;
  1251   virtual const Type    *xdual() const;      // Compute dual right now.
  1253   virtual intptr_t get_con() const;
  1255   // Convenience common pre-built types.
  1256   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1257   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1258 #ifndef PRODUCT
  1259   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1260 #endif
  1261 };
  1263 class TypeNarrowPtr : public Type {
  1264 protected:
  1265   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1267   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
  1268                                                   Type(t) {
  1269     assert(ptrtype->offset() == 0 ||
  1270            ptrtype->offset() == OffsetBot ||
  1271            ptrtype->offset() == OffsetTop, "no real offsets");
  1274   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
  1275   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
  1276   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
  1277   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
  1278   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1279   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
  1280 public:
  1281   virtual bool eq( const Type *t ) const;
  1282   virtual int  hash() const;             // Type specific hashing
  1283   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1285   virtual const Type *xmeet( const Type *t ) const;
  1286   virtual const Type *xdual() const;    // Compute dual right now.
  1288   virtual intptr_t get_con() const;
  1290   virtual bool empty(void) const;        // TRUE if type is vacuous
  1292   // returns the equivalent ptr type for this compressed pointer
  1293   const TypePtr *get_ptrtype() const {
  1294     return _ptrtype;
  1297 #ifndef PRODUCT
  1298   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1299 #endif
  1300 };
  1302 //------------------------------TypeNarrowOop----------------------------------
  1303 // A compressed reference to some kind of Oop.  This type wraps around
  1304 // a preexisting TypeOopPtr and forwards most of it's operations to
  1305 // the underlying type.  It's only real purpose is to track the
  1306 // oopness of the compressed oop value when we expose the conversion
  1307 // between the normal and the compressed form.
  1308 class TypeNarrowOop : public TypeNarrowPtr {
  1309 protected:
  1310   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
  1313   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1314     return t->isa_narrowoop();
  1317   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1318     return t->is_narrowoop();
  1321   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1322     return new TypeNarrowOop(t);
  1325   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1326     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
  1329 public:
  1331   static const TypeNarrowOop *make( const TypePtr* type);
  1333   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1334     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1337   static const TypeNarrowOop *BOTTOM;
  1338   static const TypeNarrowOop *NULL_PTR;
  1340   virtual const Type* remove_speculative() const {
  1341     return make(_ptrtype->remove_speculative()->is_ptr());
  1344 #ifndef PRODUCT
  1345   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1346 #endif
  1347 };
  1349 //------------------------------TypeNarrowKlass----------------------------------
  1350 // A compressed reference to klass pointer.  This type wraps around a
  1351 // preexisting TypeKlassPtr and forwards most of it's operations to
  1352 // the underlying type.
  1353 class TypeNarrowKlass : public TypeNarrowPtr {
  1354 protected:
  1355   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
  1358   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
  1359     return t->isa_narrowklass();
  1362   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
  1363     return t->is_narrowklass();
  1366   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
  1367     return new TypeNarrowKlass(t);
  1370   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
  1371     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
  1374 public:
  1375   static const TypeNarrowKlass *make( const TypePtr* type);
  1377   // static const TypeNarrowKlass *BOTTOM;
  1378   static const TypeNarrowKlass *NULL_PTR;
  1380 #ifndef PRODUCT
  1381   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1382 #endif
  1383 };
  1385 //------------------------------TypeFunc---------------------------------------
  1386 // Class of Array Types
  1387 class TypeFunc : public Type {
  1388   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1389   virtual bool eq( const Type *t ) const;
  1390   virtual int  hash() const;             // Type specific hashing
  1391   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1392   virtual bool empty(void) const;        // TRUE if type is vacuous
  1393 public:
  1394   // Constants are shared among ADLC and VM
  1395   enum { Control    = AdlcVMDeps::Control,
  1396          I_O        = AdlcVMDeps::I_O,
  1397          Memory     = AdlcVMDeps::Memory,
  1398          FramePtr   = AdlcVMDeps::FramePtr,
  1399          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1400          Parms      = AdlcVMDeps::Parms
  1401   };
  1403   const TypeTuple* const _domain;     // Domain of inputs
  1404   const TypeTuple* const _range;      // Range of results
  1406   // Accessors:
  1407   const TypeTuple* domain() const { return _domain; }
  1408   const TypeTuple* range()  const { return _range; }
  1410   static const TypeFunc *make(ciMethod* method);
  1411   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1412   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1414   virtual const Type *xmeet( const Type *t ) const;
  1415   virtual const Type *xdual() const;    // Compute dual right now.
  1417   BasicType return_type() const;
  1419 #ifndef PRODUCT
  1420   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1421 #endif
  1422   // Convenience common pre-built types.
  1423 };
  1425 //------------------------------accessors--------------------------------------
  1426 inline bool Type::is_ptr_to_narrowoop() const {
  1427 #ifdef _LP64
  1428   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1429 #else
  1430   return false;
  1431 #endif
  1434 inline bool Type::is_ptr_to_narrowklass() const {
  1435 #ifdef _LP64
  1436   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
  1437 #else
  1438   return false;
  1439 #endif
  1442 inline float Type::getf() const {
  1443   assert( _base == FloatCon, "Not a FloatCon" );
  1444   return ((TypeF*)this)->_f;
  1447 inline double Type::getd() const {
  1448   assert( _base == DoubleCon, "Not a DoubleCon" );
  1449   return ((TypeD*)this)->_d;
  1452 inline const TypeInt *Type::is_int() const {
  1453   assert( _base == Int, "Not an Int" );
  1454   return (TypeInt*)this;
  1457 inline const TypeInt *Type::isa_int() const {
  1458   return ( _base == Int ? (TypeInt*)this : NULL);
  1461 inline const TypeLong *Type::is_long() const {
  1462   assert( _base == Long, "Not a Long" );
  1463   return (TypeLong*)this;
  1466 inline const TypeLong *Type::isa_long() const {
  1467   return ( _base == Long ? (TypeLong*)this : NULL);
  1470 inline const TypeF *Type::isa_float() const {
  1471   return ((_base == FloatTop ||
  1472            _base == FloatCon ||
  1473            _base == FloatBot) ? (TypeF*)this : NULL);
  1476 inline const TypeF *Type::is_float_constant() const {
  1477   assert( _base == FloatCon, "Not a Float" );
  1478   return (TypeF*)this;
  1481 inline const TypeF *Type::isa_float_constant() const {
  1482   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1485 inline const TypeD *Type::isa_double() const {
  1486   return ((_base == DoubleTop ||
  1487            _base == DoubleCon ||
  1488            _base == DoubleBot) ? (TypeD*)this : NULL);
  1491 inline const TypeD *Type::is_double_constant() const {
  1492   assert( _base == DoubleCon, "Not a Double" );
  1493   return (TypeD*)this;
  1496 inline const TypeD *Type::isa_double_constant() const {
  1497   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1500 inline const TypeTuple *Type::is_tuple() const {
  1501   assert( _base == Tuple, "Not a Tuple" );
  1502   return (TypeTuple*)this;
  1505 inline const TypeAry *Type::is_ary() const {
  1506   assert( _base == Array , "Not an Array" );
  1507   return (TypeAry*)this;
  1510 inline const TypeVect *Type::is_vect() const {
  1511   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1512   return (TypeVect*)this;
  1515 inline const TypeVect *Type::isa_vect() const {
  1516   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1519 inline const TypePtr *Type::is_ptr() const {
  1520   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1521   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1522   return (TypePtr*)this;
  1525 inline const TypePtr *Type::isa_ptr() const {
  1526   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1527   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1530 inline const TypeOopPtr *Type::is_oopptr() const {
  1531   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1532   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
  1533   return (TypeOopPtr*)this;
  1536 inline const TypeOopPtr *Type::isa_oopptr() const {
  1537   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1538   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
  1541 inline const TypeRawPtr *Type::isa_rawptr() const {
  1542   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1545 inline const TypeRawPtr *Type::is_rawptr() const {
  1546   assert( _base == RawPtr, "Not a raw pointer" );
  1547   return (TypeRawPtr*)this;
  1550 inline const TypeInstPtr *Type::isa_instptr() const {
  1551   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1554 inline const TypeInstPtr *Type::is_instptr() const {
  1555   assert( _base == InstPtr, "Not an object pointer" );
  1556   return (TypeInstPtr*)this;
  1559 inline const TypeAryPtr *Type::isa_aryptr() const {
  1560   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1563 inline const TypeAryPtr *Type::is_aryptr() const {
  1564   assert( _base == AryPtr, "Not an array pointer" );
  1565   return (TypeAryPtr*)this;
  1568 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1569   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1570   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1571   return (TypeNarrowOop*)this;
  1574 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1575   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1576   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1579 inline const TypeNarrowKlass *Type::is_narrowklass() const {
  1580   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
  1581   return (TypeNarrowKlass*)this;
  1584 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
  1585   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
  1588 inline const TypeMetadataPtr *Type::is_metadataptr() const {
  1589   // MetadataPtr is the first and CPCachePtr the last
  1590   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
  1591   return (TypeMetadataPtr*)this;
  1594 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
  1595   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
  1598 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1599   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1602 inline const TypeKlassPtr *Type::is_klassptr() const {
  1603   assert( _base == KlassPtr, "Not a klass pointer" );
  1604   return (TypeKlassPtr*)this;
  1607 inline const TypePtr* Type::make_ptr() const {
  1608   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1609     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
  1610      (isa_ptr() ? is_ptr() : NULL));
  1613 inline const TypeOopPtr* Type::make_oopptr() const {
  1614   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1617 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1618   return (_base == NarrowOop) ? is_narrowoop() :
  1619                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1622 inline const TypeNarrowKlass* Type::make_narrowklass() const {
  1623   return (_base == NarrowKlass) ? is_narrowklass() :
  1624                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
  1627 inline bool Type::is_floatingpoint() const {
  1628   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1629       (_base == DoubleCon) || (_base == DoubleBot) )
  1630     return true;
  1631   return false;
  1634 inline bool Type::is_ptr_to_boxing_obj() const {
  1635   const TypeInstPtr* tp = isa_instptr();
  1636   return (tp != NULL) && (tp->offset() == 0) &&
  1637          tp->klass()->is_instance_klass()  &&
  1638          tp->klass()->as_instance_klass()->is_box_klass();
  1642 // ===============================================================
  1643 // Things that need to be 64-bits in the 64-bit build but
  1644 // 32-bits in the 32-bit build.  Done this way to get full
  1645 // optimization AND strong typing.
  1646 #ifdef _LP64
  1648 // For type queries and asserts
  1649 #define is_intptr_t  is_long
  1650 #define isa_intptr_t isa_long
  1651 #define find_intptr_t_type find_long_type
  1652 #define find_intptr_t_con  find_long_con
  1653 #define TypeX        TypeLong
  1654 #define Type_X       Type::Long
  1655 #define TypeX_X      TypeLong::LONG
  1656 #define TypeX_ZERO   TypeLong::ZERO
  1657 // For 'ideal_reg' machine registers
  1658 #define Op_RegX      Op_RegL
  1659 // For phase->intcon variants
  1660 #define MakeConX     longcon
  1661 #define ConXNode     ConLNode
  1662 // For array index arithmetic
  1663 #define MulXNode     MulLNode
  1664 #define AndXNode     AndLNode
  1665 #define OrXNode      OrLNode
  1666 #define CmpXNode     CmpLNode
  1667 #define SubXNode     SubLNode
  1668 #define LShiftXNode  LShiftLNode
  1669 // For object size computation:
  1670 #define AddXNode     AddLNode
  1671 #define RShiftXNode  RShiftLNode
  1672 // For card marks and hashcodes
  1673 #define URShiftXNode URShiftLNode
  1674 // UseOptoBiasInlining
  1675 #define XorXNode     XorLNode
  1676 #define StoreXConditionalNode StoreLConditionalNode
  1677 // Opcodes
  1678 #define Op_LShiftX   Op_LShiftL
  1679 #define Op_AndX      Op_AndL
  1680 #define Op_AddX      Op_AddL
  1681 #define Op_SubX      Op_SubL
  1682 #define Op_XorX      Op_XorL
  1683 #define Op_URShiftX  Op_URShiftL
  1684 // conversions
  1685 #define ConvI2X(x)   ConvI2L(x)
  1686 #define ConvL2X(x)   (x)
  1687 #define ConvX2I(x)   ConvL2I(x)
  1688 #define ConvX2L(x)   (x)
  1690 #else
  1692 // For type queries and asserts
  1693 #define is_intptr_t  is_int
  1694 #define isa_intptr_t isa_int
  1695 #define find_intptr_t_type find_int_type
  1696 #define find_intptr_t_con  find_int_con
  1697 #define TypeX        TypeInt
  1698 #define Type_X       Type::Int
  1699 #define TypeX_X      TypeInt::INT
  1700 #define TypeX_ZERO   TypeInt::ZERO
  1701 // For 'ideal_reg' machine registers
  1702 #define Op_RegX      Op_RegI
  1703 // For phase->intcon variants
  1704 #define MakeConX     intcon
  1705 #define ConXNode     ConINode
  1706 // For array index arithmetic
  1707 #define MulXNode     MulINode
  1708 #define AndXNode     AndINode
  1709 #define OrXNode      OrINode
  1710 #define CmpXNode     CmpINode
  1711 #define SubXNode     SubINode
  1712 #define LShiftXNode  LShiftINode
  1713 // For object size computation:
  1714 #define AddXNode     AddINode
  1715 #define RShiftXNode  RShiftINode
  1716 // For card marks and hashcodes
  1717 #define URShiftXNode URShiftINode
  1718 // UseOptoBiasInlining
  1719 #define XorXNode     XorINode
  1720 #define StoreXConditionalNode StoreIConditionalNode
  1721 // Opcodes
  1722 #define Op_LShiftX   Op_LShiftI
  1723 #define Op_AndX      Op_AndI
  1724 #define Op_AddX      Op_AddI
  1725 #define Op_SubX      Op_SubI
  1726 #define Op_XorX      Op_XorI
  1727 #define Op_URShiftX  Op_URShiftI
  1728 // conversions
  1729 #define ConvI2X(x)   (x)
  1730 #define ConvL2X(x)   ConvL2I(x)
  1731 #define ConvX2I(x)   (x)
  1732 #define ConvX2L(x)   ConvI2L(x)
  1734 #endif
  1736 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial