src/share/vm/c1/c1_IR.cpp

Fri, 04 Jun 2010 11:18:04 -0700

author
iveresov
date
Fri, 04 Jun 2010 11:18:04 -0700
changeset 1939
b812ff5abc73
parent 1934
e9ff18c4ace7
child 2138
d5d065957597
permissions
-rw-r--r--

6958292: C1: Enable parallel compilation
Summary: Enable parallel compilation in C1
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_IR.cpp.incl"
    29 // Implementation of XHandlers
    30 //
    31 // Note: This code could eventually go away if we are
    32 //       just using the ciExceptionHandlerStream.
    34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    35   ciExceptionHandlerStream s(method);
    36   while (!s.is_done()) {
    37     _list.append(new XHandler(s.handler()));
    38     s.next();
    39   }
    40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    41 }
    43 // deep copy of all XHandler contained in list
    44 XHandlers::XHandlers(XHandlers* other) :
    45   _list(other->length())
    46 {
    47   for (int i = 0; i < other->length(); i++) {
    48     _list.append(new XHandler(other->handler_at(i)));
    49   }
    50 }
    52 // Returns whether a particular exception type can be caught.  Also
    53 // returns true if klass is unloaded or any exception handler
    54 // classes are unloaded.  type_is_exact indicates whether the throw
    55 // is known to be exactly that class or it might throw a subtype.
    56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    57   // the type is unknown so be conservative
    58   if (!klass->is_loaded()) {
    59     return true;
    60   }
    62   for (int i = 0; i < length(); i++) {
    63     XHandler* handler = handler_at(i);
    64     if (handler->is_catch_all()) {
    65       // catch of ANY
    66       return true;
    67     }
    68     ciInstanceKlass* handler_klass = handler->catch_klass();
    69     // if it's unknown it might be catchable
    70     if (!handler_klass->is_loaded()) {
    71       return true;
    72     }
    73     // if the throw type is definitely a subtype of the catch type
    74     // then it can be caught.
    75     if (klass->is_subtype_of(handler_klass)) {
    76       return true;
    77     }
    78     if (!type_is_exact) {
    79       // If the type isn't exactly known then it can also be caught by
    80       // catch statements where the inexact type is a subtype of the
    81       // catch type.
    82       // given: foo extends bar extends Exception
    83       // throw bar can be caught by catch foo, catch bar, and catch
    84       // Exception, however it can't be caught by any handlers without
    85       // bar in its type hierarchy.
    86       if (handler_klass->is_subtype_of(klass)) {
    87         return true;
    88       }
    89     }
    90   }
    92   return false;
    93 }
    96 bool XHandlers::equals(XHandlers* others) const {
    97   if (others == NULL) return false;
    98   if (length() != others->length()) return false;
   100   for (int i = 0; i < length(); i++) {
   101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   102   }
   103   return true;
   104 }
   106 bool XHandler::equals(XHandler* other) const {
   107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   109   if (entry_pco() != other->entry_pco()) return false;
   110   if (scope_count() != other->scope_count()) return false;
   111   if (_desc != other->_desc) return false;
   113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   114   return true;
   115 }
   118 // Implementation of IRScope
   120 BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
   121   if (entry == NULL) return NULL;
   122   assert(entry->is_set(f), "entry/flag mismatch");
   123   // create header block
   124   BlockBegin* h = new BlockBegin(entry->bci());
   125   BlockEnd* g = new Goto(entry, false);
   126   h->set_next(g, entry->bci());
   127   h->set_end(g);
   128   h->set(f);
   129   // setup header block end state
   130   ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
   131   assert(s->stack_is_empty(), "must have empty stack at entry point");
   132   g->set_state(s);
   133   return h;
   134 }
   137 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   138   GraphBuilder gm(compilation, this);
   139   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   140   if (compilation->bailed_out()) return NULL;
   141   return gm.start();
   142 }
   145 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   146 : _callees(2)
   147 , _compilation(compilation)
   148 , _lock_stack_size(-1)
   149 , _requires_phi_function(method->max_locals())
   150 {
   151   _caller             = caller;
   152   _caller_bci         = caller == NULL ? -1 : caller_bci;
   153   _caller_state       = NULL; // Must be set later if needed
   154   _level              = caller == NULL ?  0 : caller->level() + 1;
   155   _method             = method;
   156   _xhandlers          = new XHandlers(method);
   157   _number_of_locks    = 0;
   158   _monitor_pairing_ok = method->has_balanced_monitors();
   159   _start              = NULL;
   161   if (osr_bci == -1) {
   162     _requires_phi_function.clear();
   163   } else {
   164         // selective creation of phi functions is not possibel in osr-methods
   165     _requires_phi_function.set_range(0, method->max_locals());
   166   }
   168   assert(method->holder()->is_loaded() , "method holder must be loaded");
   170   // build graph if monitor pairing is ok
   171   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   172 }
   175 int IRScope::max_stack() const {
   176   int my_max = method()->max_stack();
   177   int callee_max = 0;
   178   for (int i = 0; i < number_of_callees(); i++) {
   179     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   180   }
   181   return my_max + callee_max;
   182 }
   185 void IRScope::compute_lock_stack_size() {
   186   if (!InlineMethodsWithExceptionHandlers) {
   187     _lock_stack_size = 0;
   188     return;
   189   }
   191   // Figure out whether we have to preserve expression stack elements
   192   // for parent scopes, and if so, how many
   193   IRScope* cur_scope = this;
   194   while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
   195     cur_scope = cur_scope->caller();
   196   }
   197   _lock_stack_size = (cur_scope == NULL ? 0 :
   198                       (cur_scope->caller_state() == NULL ? 0 :
   199                        cur_scope->caller_state()->stack_size()));
   200 }
   202 int IRScope::top_scope_bci() const {
   203   assert(!is_top_scope(), "no correct answer for top scope possible");
   204   const IRScope* scope = this;
   205   while (!scope->caller()->is_top_scope()) {
   206     scope = scope->caller();
   207   }
   208   return scope->caller_bci();
   209 }
   211 bool IRScopeDebugInfo::should_reexecute() {
   212   ciMethod* cur_method = scope()->method();
   213   int       cur_bci    = bci();
   214   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   215     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   216     return Interpreter::bytecode_should_reexecute(code);
   217   } else
   218     return false;
   219 }
   222 // Implementation of CodeEmitInfo
   224 // Stack must be NON-null
   225 CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
   226   : _scope(stack->scope())
   227   , _bci(bci)
   228   , _scope_debug_info(NULL)
   229   , _oop_map(NULL)
   230   , _stack(stack)
   231   , _exception_handlers(exception_handlers)
   232   , _next(NULL)
   233   , _id(-1)
   234   , _is_method_handle_invoke(false) {
   235   assert(_stack != NULL, "must be non null");
   236   assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
   237 }
   240 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
   241   : _scope(info->_scope)
   242   , _exception_handlers(NULL)
   243   , _bci(info->_bci)
   244   , _scope_debug_info(NULL)
   245   , _oop_map(NULL)
   246   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
   247   if (lock_stack_only) {
   248     if (info->_stack != NULL) {
   249       _stack = info->_stack->copy_locks();
   250     } else {
   251       _stack = NULL;
   252     }
   253   } else {
   254     _stack = info->_stack;
   255   }
   257   // deep copy of exception handlers
   258   if (info->_exception_handlers != NULL) {
   259     _exception_handlers = new XHandlers(info->_exception_handlers);
   260   }
   261 }
   264 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   265   // record the safepoint before recording the debug info for enclosing scopes
   266   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   267   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
   268   recorder->end_safepoint(pc_offset);
   269 }
   272 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   273   assert(_oop_map != NULL, "oop map must already exist");
   274   assert(opr->is_single_cpu(), "should not call otherwise");
   276   int frame_size = frame_map()->framesize();
   277   int arg_count = frame_map()->oop_map_arg_count();
   278   VMReg name = frame_map()->regname(opr);
   279   _oop_map->set_oop(name);
   280 }
   285 // Implementation of IR
   287 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   288     _locals_size(in_WordSize(-1))
   289   , _num_loops(0) {
   290   // setup IR fields
   291   _compilation = compilation;
   292   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   293   _code        = NULL;
   294 }
   297 void IR::optimize() {
   298   Optimizer opt(this);
   299   if (DoCEE) {
   300     opt.eliminate_conditional_expressions();
   301 #ifndef PRODUCT
   302     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   303     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   304 #endif
   305   }
   306   if (EliminateBlocks) {
   307     opt.eliminate_blocks();
   308 #ifndef PRODUCT
   309     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   310     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   311 #endif
   312   }
   313   if (EliminateNullChecks) {
   314     opt.eliminate_null_checks();
   315 #ifndef PRODUCT
   316     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   317     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   318 #endif
   319   }
   320 }
   323 static int sort_pairs(BlockPair** a, BlockPair** b) {
   324   if ((*a)->from() == (*b)->from()) {
   325     return (*a)->to()->block_id() - (*b)->to()->block_id();
   326   } else {
   327     return (*a)->from()->block_id() - (*b)->from()->block_id();
   328   }
   329 }
   332 class CriticalEdgeFinder: public BlockClosure {
   333   BlockPairList blocks;
   334   IR*       _ir;
   336  public:
   337   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   338   void block_do(BlockBegin* bb) {
   339     BlockEnd* be = bb->end();
   340     int nos = be->number_of_sux();
   341     if (nos >= 2) {
   342       for (int i = 0; i < nos; i++) {
   343         BlockBegin* sux = be->sux_at(i);
   344         if (sux->number_of_preds() >= 2) {
   345           blocks.append(new BlockPair(bb, sux));
   346         }
   347       }
   348     }
   349   }
   351   void split_edges() {
   352     BlockPair* last_pair = NULL;
   353     blocks.sort(sort_pairs);
   354     for (int i = 0; i < blocks.length(); i++) {
   355       BlockPair* pair = blocks.at(i);
   356       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   357       BlockBegin* from = pair->from();
   358       BlockBegin* to = pair->to();
   359       BlockBegin* split = from->insert_block_between(to);
   360 #ifndef PRODUCT
   361       if ((PrintIR || PrintIR1) && Verbose) {
   362         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   363                       from->block_id(), to->block_id(), split->block_id());
   364       }
   365 #endif
   366       last_pair = pair;
   367     }
   368   }
   369 };
   371 void IR::split_critical_edges() {
   372   CriticalEdgeFinder cef(this);
   374   iterate_preorder(&cef);
   375   cef.split_edges();
   376 }
   379 class UseCountComputer: public ValueVisitor, BlockClosure {
   380  private:
   381   void visit(Value* n) {
   382     // Local instructions and Phis for expression stack values at the
   383     // start of basic blocks are not added to the instruction list
   384     if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
   385         (*n)->as_Phi() == NULL) {
   386       assert(false, "a node was not appended to the graph");
   387       Compilation::current()->bailout("a node was not appended to the graph");
   388     }
   389     // use n's input if not visited before
   390     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   391       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   392       //       b) if the instruction has uses, it was touched before
   393       //       => in both cases we don't need to update n's values
   394       uses_do(n);
   395     }
   396     // use n
   397     (*n)->_use_count++;
   398   }
   400   Values* worklist;
   401   int depth;
   402   enum {
   403     max_recurse_depth = 20
   404   };
   406   void uses_do(Value* n) {
   407     depth++;
   408     if (depth > max_recurse_depth) {
   409       // don't allow the traversal to recurse too deeply
   410       worklist->push(*n);
   411     } else {
   412       (*n)->input_values_do(this);
   413       // special handling for some instructions
   414       if ((*n)->as_BlockEnd() != NULL) {
   415         // note on BlockEnd:
   416         //   must 'use' the stack only if the method doesn't
   417         //   terminate, however, in those cases stack is empty
   418         (*n)->state_values_do(this);
   419       }
   420     }
   421     depth--;
   422   }
   424   void block_do(BlockBegin* b) {
   425     depth = 0;
   426     // process all pinned nodes as the roots of expression trees
   427     for (Instruction* n = b; n != NULL; n = n->next()) {
   428       if (n->is_pinned()) uses_do(&n);
   429     }
   430     assert(depth == 0, "should have counted back down");
   432     // now process any unpinned nodes which recursed too deeply
   433     while (worklist->length() > 0) {
   434       Value t = worklist->pop();
   435       if (!t->is_pinned()) {
   436         // compute the use count
   437         uses_do(&t);
   439         // pin the instruction so that LIRGenerator doesn't recurse
   440         // too deeply during it's evaluation.
   441         t->pin();
   442       }
   443     }
   444     assert(depth == 0, "should have counted back down");
   445   }
   447   UseCountComputer() {
   448     worklist = new Values();
   449     depth = 0;
   450   }
   452  public:
   453   static void compute(BlockList* blocks) {
   454     UseCountComputer ucc;
   455     blocks->iterate_backward(&ucc);
   456   }
   457 };
   460 // helper macro for short definition of trace-output inside code
   461 #ifndef PRODUCT
   462   #define TRACE_LINEAR_SCAN(level, code)       \
   463     if (TraceLinearScanLevel >= level) {       \
   464       code;                                    \
   465     }
   466 #else
   467   #define TRACE_LINEAR_SCAN(level, code)
   468 #endif
   470 class ComputeLinearScanOrder : public StackObj {
   471  private:
   472   int        _max_block_id;        // the highest block_id of a block
   473   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   474   int        _num_loops;           // total number of loops
   475   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   477   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   479   BitMap     _visited_blocks;      // used for recursive processing of blocks
   480   BitMap     _active_blocks;       // used for recursive processing of blocks
   481   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   482   intArray   _forward_branches;    // number of incoming forward branches for each block
   483   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   484   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   485   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   487   // accessors for _visited_blocks and _active_blocks
   488   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   489   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   490   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   491   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   492   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   493   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   495   // accessors for _forward_branches
   496   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   497   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   499   // accessors for _loop_map
   500   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   501   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   502   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   504   // count edges between blocks
   505   void count_edges(BlockBegin* cur, BlockBegin* parent);
   507   // loop detection
   508   void mark_loops();
   509   void clear_non_natural_loops(BlockBegin* start_block);
   510   void assign_loop_depth(BlockBegin* start_block);
   512   // computation of final block order
   513   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   514   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   515   int  compute_weight(BlockBegin* cur);
   516   bool ready_for_processing(BlockBegin* cur);
   517   void sort_into_work_list(BlockBegin* b);
   518   void append_block(BlockBegin* cur);
   519   void compute_order(BlockBegin* start_block);
   521   // fixup of dominators for non-natural loops
   522   bool compute_dominators_iter();
   523   void compute_dominators();
   525   // debug functions
   526   NOT_PRODUCT(void print_blocks();)
   527   DEBUG_ONLY(void verify();)
   529  public:
   530   ComputeLinearScanOrder(BlockBegin* start_block);
   532   // accessors for final result
   533   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   534   int        num_loops() const            { return _num_loops; }
   535 };
   538 ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
   539   _max_block_id(BlockBegin::number_of_blocks()),
   540   _num_blocks(0),
   541   _num_loops(0),
   542   _iterative_dominators(false),
   543   _visited_blocks(_max_block_id),
   544   _active_blocks(_max_block_id),
   545   _dominator_blocks(_max_block_id),
   546   _forward_branches(_max_block_id, 0),
   547   _loop_end_blocks(8),
   548   _work_list(8),
   549   _linear_scan_order(NULL), // initialized later with correct size
   550   _loop_map(0, 0)           // initialized later with correct size
   551 {
   552   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   554   init_visited();
   555   count_edges(start_block, NULL);
   557   if (_num_loops > 0) {
   558     mark_loops();
   559     clear_non_natural_loops(start_block);
   560     assign_loop_depth(start_block);
   561   }
   563   compute_order(start_block);
   564   compute_dominators();
   566   NOT_PRODUCT(print_blocks());
   567   DEBUG_ONLY(verify());
   568 }
   571 // Traverse the CFG:
   572 // * count total number of blocks
   573 // * count all incoming edges and backward incoming edges
   574 // * number loop header blocks
   575 // * create a list with all loop end blocks
   576 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   577   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   578   assert(cur->dominator() == NULL, "dominator already initialized");
   580   if (is_active(cur)) {
   581     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   582     assert(is_visited(cur), "block must be visisted when block is active");
   583     assert(parent != NULL, "must have parent");
   585     cur->set(BlockBegin::linear_scan_loop_header_flag);
   586     cur->set(BlockBegin::backward_branch_target_flag);
   588     parent->set(BlockBegin::linear_scan_loop_end_flag);
   590     // When a loop header is also the start of an exception handler, then the backward branch is
   591     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   592     // loop must be excluded here from processing.
   593     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   594       // Make sure that dominators are correct in this weird situation
   595       _iterative_dominators = true;
   596       return;
   597     }
   598     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   599            "loop end blocks must have one successor (critical edges are split)");
   601     _loop_end_blocks.append(parent);
   602     return;
   603   }
   605   // increment number of incoming forward branches
   606   inc_forward_branches(cur);
   608   if (is_visited(cur)) {
   609     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   610     return;
   611   }
   613   _num_blocks++;
   614   set_visited(cur);
   615   set_active(cur);
   617   // recursive call for all successors
   618   int i;
   619   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   620     count_edges(cur->sux_at(i), cur);
   621   }
   622   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   623     count_edges(cur->exception_handler_at(i), cur);
   624   }
   626   clear_active(cur);
   628   // Each loop has a unique number.
   629   // When multiple loops are nested, assign_loop_depth assumes that the
   630   // innermost loop has the lowest number. This is guaranteed by setting
   631   // the loop number after the recursive calls for the successors above
   632   // have returned.
   633   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   634     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   635     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   637     cur->set_loop_index(_num_loops);
   638     _num_loops++;
   639   }
   641   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   642 }
   645 void ComputeLinearScanOrder::mark_loops() {
   646   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   648   _loop_map = BitMap2D(_num_loops, _max_block_id);
   649   _loop_map.clear();
   651   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   652     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   653     BlockBegin* loop_start = loop_end->sux_at(0);
   654     int         loop_idx   = loop_start->loop_index();
   656     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   657     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   658     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   659     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   660     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   661     assert(_work_list.is_empty(), "work list must be empty before processing");
   663     // add the end-block of the loop to the working list
   664     _work_list.push(loop_end);
   665     set_block_in_loop(loop_idx, loop_end);
   666     do {
   667       BlockBegin* cur = _work_list.pop();
   669       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   670       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   672       // recursive processing of all predecessors ends when start block of loop is reached
   673       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   674         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   675           BlockBegin* pred = cur->pred_at(j);
   677           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   678             // this predecessor has not been processed yet, so add it to work list
   679             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   680             _work_list.push(pred);
   681             set_block_in_loop(loop_idx, pred);
   682           }
   683         }
   684       }
   685     } while (!_work_list.is_empty());
   686   }
   687 }
   690 // check for non-natural loops (loops where the loop header does not dominate
   691 // all other loop blocks = loops with mulitple entries).
   692 // such loops are ignored
   693 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   694   for (int i = _num_loops - 1; i >= 0; i--) {
   695     if (is_block_in_loop(i, start_block)) {
   696       // loop i contains the entry block of the method
   697       // -> this is not a natural loop, so ignore it
   698       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   700       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   701         clear_block_in_loop(i, block_id);
   702       }
   703       _iterative_dominators = true;
   704     }
   705   }
   706 }
   708 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   709   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   710   init_visited();
   712   assert(_work_list.is_empty(), "work list must be empty before processing");
   713   _work_list.append(start_block);
   715   do {
   716     BlockBegin* cur = _work_list.pop();
   718     if (!is_visited(cur)) {
   719       set_visited(cur);
   720       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   722       // compute loop-depth and loop-index for the block
   723       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   724       int i;
   725       int loop_depth = 0;
   726       int min_loop_idx = -1;
   727       for (i = _num_loops - 1; i >= 0; i--) {
   728         if (is_block_in_loop(i, cur)) {
   729           loop_depth++;
   730           min_loop_idx = i;
   731         }
   732       }
   733       cur->set_loop_depth(loop_depth);
   734       cur->set_loop_index(min_loop_idx);
   736       // append all unvisited successors to work list
   737       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   738         _work_list.append(cur->sux_at(i));
   739       }
   740       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   741         _work_list.append(cur->exception_handler_at(i));
   742       }
   743     }
   744   } while (!_work_list.is_empty());
   745 }
   748 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   749   assert(a != NULL && b != NULL, "must have input blocks");
   751   _dominator_blocks.clear();
   752   while (a != NULL) {
   753     _dominator_blocks.set_bit(a->block_id());
   754     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   755     a = a->dominator();
   756   }
   757   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   758     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   759     b = b->dominator();
   760   }
   762   assert(b != NULL, "could not find dominator");
   763   return b;
   764 }
   766 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   767   if (cur->dominator() == NULL) {
   768     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   769     cur->set_dominator(parent);
   771   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   772     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   773     assert(cur->number_of_preds() > 1, "");
   774     cur->set_dominator(common_dominator(cur->dominator(), parent));
   775   }
   776 }
   779 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   780   BlockBegin* single_sux = NULL;
   781   if (cur->number_of_sux() == 1) {
   782     single_sux = cur->sux_at(0);
   783   }
   785   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   786   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   788   // general macro for short definition of weight flags
   789   // the first instance of INC_WEIGHT_IF has the highest priority
   790   int cur_bit = 15;
   791   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   793   // this is necessery for the (very rare) case that two successing blocks have
   794   // the same loop depth, but a different loop index (can happen for endless loops
   795   // with exception handlers)
   796   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   798   // loop end blocks (blocks that end with a backward branch) are added
   799   // after all other blocks of the loop.
   800   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   802   // critical edge split blocks are prefered because than they have a bigger
   803   // proability to be completely empty
   804   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   806   // exceptions should not be thrown in normal control flow, so these blocks
   807   // are added as late as possible
   808   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   809   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   811   // exceptions handlers are added as late as possible
   812   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   814   // guarantee that weight is > 0
   815   weight |= 1;
   817   #undef INC_WEIGHT_IF
   818   assert(cur_bit >= 0, "too many flags");
   819   assert(weight > 0, "weight cannot become negative");
   821   return weight;
   822 }
   824 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   825   // Discount the edge just traveled.
   826   // When the number drops to zero, all forward branches were processed
   827   if (dec_forward_branches(cur) != 0) {
   828     return false;
   829   }
   831   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   832   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   833   return true;
   834 }
   836 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   837   assert(_work_list.index_of(cur) == -1, "block already in work list");
   839   int cur_weight = compute_weight(cur);
   841   // the linear_scan_number is used to cache the weight of a block
   842   cur->set_linear_scan_number(cur_weight);
   844 #ifndef PRODUCT
   845   if (StressLinearScan) {
   846     _work_list.insert_before(0, cur);
   847     return;
   848   }
   849 #endif
   851   _work_list.append(NULL); // provide space for new element
   853   int insert_idx = _work_list.length() - 1;
   854   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   855     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   856     insert_idx--;
   857   }
   858   _work_list.at_put(insert_idx, cur);
   860   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   861   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   863 #ifdef ASSERT
   864   for (int i = 0; i < _work_list.length(); i++) {
   865     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   866     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   867   }
   868 #endif
   869 }
   871 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   872   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   873   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   875   // currently, the linear scan order and code emit order are equal.
   876   // therefore the linear_scan_number and the weight of a block must also
   877   // be equal.
   878   cur->set_linear_scan_number(_linear_scan_order->length());
   879   _linear_scan_order->append(cur);
   880 }
   882 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   883   TRACE_LINEAR_SCAN(3, "----- computing final block order");
   885   // the start block is always the first block in the linear scan order
   886   _linear_scan_order = new BlockList(_num_blocks);
   887   append_block(start_block);
   889   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   890   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   891   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   893   BlockBegin* sux_of_osr_entry = NULL;
   894   if (osr_entry != NULL) {
   895     // special handling for osr entry:
   896     // ignore the edge between the osr entry and its successor for processing
   897     // the osr entry block is added manually below
   898     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   899     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   901     sux_of_osr_entry = osr_entry->sux_at(0);
   902     dec_forward_branches(sux_of_osr_entry);
   904     compute_dominator(osr_entry, start_block);
   905     _iterative_dominators = true;
   906   }
   907   compute_dominator(std_entry, start_block);
   909   // start processing with standard entry block
   910   assert(_work_list.is_empty(), "list must be empty before processing");
   912   if (ready_for_processing(std_entry)) {
   913     sort_into_work_list(std_entry);
   914   } else {
   915     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   916   }
   918   do {
   919     BlockBegin* cur = _work_list.pop();
   921     if (cur == sux_of_osr_entry) {
   922       // the osr entry block is ignored in normal processing, it is never added to the
   923       // work list. Instead, it is added as late as possible manually here.
   924       append_block(osr_entry);
   925       compute_dominator(cur, osr_entry);
   926     }
   927     append_block(cur);
   929     int i;
   930     int num_sux = cur->number_of_sux();
   931     // changed loop order to get "intuitive" order of if- and else-blocks
   932     for (i = 0; i < num_sux; i++) {
   933       BlockBegin* sux = cur->sux_at(i);
   934       compute_dominator(sux, cur);
   935       if (ready_for_processing(sux)) {
   936         sort_into_work_list(sux);
   937       }
   938     }
   939     num_sux = cur->number_of_exception_handlers();
   940     for (i = 0; i < num_sux; i++) {
   941       BlockBegin* sux = cur->exception_handler_at(i);
   942       compute_dominator(sux, cur);
   943       if (ready_for_processing(sux)) {
   944         sort_into_work_list(sux);
   945       }
   946     }
   947   } while (_work_list.length() > 0);
   948 }
   951 bool ComputeLinearScanOrder::compute_dominators_iter() {
   952   bool changed = false;
   953   int num_blocks = _linear_scan_order->length();
   955   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   956   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   957   for (int i = 1; i < num_blocks; i++) {
   958     BlockBegin* block = _linear_scan_order->at(i);
   960     BlockBegin* dominator = block->pred_at(0);
   961     int num_preds = block->number_of_preds();
   962     for (int i = 1; i < num_preds; i++) {
   963       dominator = common_dominator(dominator, block->pred_at(i));
   964     }
   966     if (dominator != block->dominator()) {
   967       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   969       block->set_dominator(dominator);
   970       changed = true;
   971     }
   972   }
   973   return changed;
   974 }
   976 void ComputeLinearScanOrder::compute_dominators() {
   977   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   979   // iterative computation of dominators is only required for methods with non-natural loops
   980   // and OSR-methods. For all other methods, the dominators computed when generating the
   981   // linear scan block order are correct.
   982   if (_iterative_dominators) {
   983     do {
   984       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   985     } while (compute_dominators_iter());
   986   }
   988   // check that dominators are correct
   989   assert(!compute_dominators_iter(), "fix point not reached");
   990 }
   993 #ifndef PRODUCT
   994 void ComputeLinearScanOrder::print_blocks() {
   995   if (TraceLinearScanLevel >= 2) {
   996     tty->print_cr("----- loop information:");
   997     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   998       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1000       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
  1001       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1002         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
  1004       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
  1008   if (TraceLinearScanLevel >= 1) {
  1009     tty->print_cr("----- linear-scan block order:");
  1010     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1011       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1012       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
  1014       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
  1015       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
  1016       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
  1017       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
  1019       if (cur->dominator() != NULL) {
  1020         tty->print("    dom: B%d ", cur->dominator()->block_id());
  1021       } else {
  1022         tty->print("    dom: NULL ");
  1025       if (cur->number_of_preds() > 0) {
  1026         tty->print("    preds: ");
  1027         for (int j = 0; j < cur->number_of_preds(); j++) {
  1028           BlockBegin* pred = cur->pred_at(j);
  1029           tty->print("B%d ", pred->block_id());
  1032       if (cur->number_of_sux() > 0) {
  1033         tty->print("    sux: ");
  1034         for (int j = 0; j < cur->number_of_sux(); j++) {
  1035           BlockBegin* sux = cur->sux_at(j);
  1036           tty->print("B%d ", sux->block_id());
  1039       if (cur->number_of_exception_handlers() > 0) {
  1040         tty->print("    ex: ");
  1041         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1042           BlockBegin* ex = cur->exception_handler_at(j);
  1043           tty->print("B%d ", ex->block_id());
  1046       tty->cr();
  1050 #endif
  1052 #ifdef ASSERT
  1053 void ComputeLinearScanOrder::verify() {
  1054   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1056   if (StressLinearScan) {
  1057     // blocks are scrambled when StressLinearScan is used
  1058     return;
  1061   // check that all successors of a block have a higher linear-scan-number
  1062   // and that all predecessors of a block have a lower linear-scan-number
  1063   // (only backward branches of loops are ignored)
  1064   int i;
  1065   for (i = 0; i < _linear_scan_order->length(); i++) {
  1066     BlockBegin* cur = _linear_scan_order->at(i);
  1068     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1069     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1071     int j;
  1072     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1073       BlockBegin* sux = cur->sux_at(j);
  1075       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1076       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1077         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1079       if (cur->loop_depth() == sux->loop_depth()) {
  1080         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1084     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1085       BlockBegin* pred = cur->pred_at(j);
  1087       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1088       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1089         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1091       if (cur->loop_depth() == pred->loop_depth()) {
  1092         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1095       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1098     // check dominator
  1099     if (i == 0) {
  1100       assert(cur->dominator() == NULL, "first block has no dominator");
  1101     } else {
  1102       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1104     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1107   // check that all loops are continuous
  1108   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1109     int block_idx = 0;
  1110     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1112     // skip blocks before the loop
  1113     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1114       block_idx++;
  1116     // skip blocks of loop
  1117     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1118       block_idx++;
  1120     // after the first non-loop block, there must not be another loop-block
  1121     while (block_idx < _num_blocks) {
  1122       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1123       block_idx++;
  1127 #endif
  1130 void IR::compute_code() {
  1131   assert(is_valid(), "IR must be valid");
  1133   ComputeLinearScanOrder compute_order(start());
  1134   _num_loops = compute_order.num_loops();
  1135   _code = compute_order.linear_scan_order();
  1139 void IR::compute_use_counts() {
  1140   // make sure all values coming out of this block get evaluated.
  1141   int num_blocks = _code->length();
  1142   for (int i = 0; i < num_blocks; i++) {
  1143     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1146   // compute use counts
  1147   UseCountComputer::compute(_code);
  1151 void IR::iterate_preorder(BlockClosure* closure) {
  1152   assert(is_valid(), "IR must be valid");
  1153   start()->iterate_preorder(closure);
  1157 void IR::iterate_postorder(BlockClosure* closure) {
  1158   assert(is_valid(), "IR must be valid");
  1159   start()->iterate_postorder(closure);
  1162 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1163   linear_scan_order()->iterate_forward(closure);
  1167 #ifndef PRODUCT
  1168 class BlockPrinter: public BlockClosure {
  1169  private:
  1170   InstructionPrinter* _ip;
  1171   bool                _cfg_only;
  1172   bool                _live_only;
  1174  public:
  1175   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1176     _ip       = ip;
  1177     _cfg_only = cfg_only;
  1178     _live_only = live_only;
  1181   virtual void block_do(BlockBegin* block) {
  1182     if (_cfg_only) {
  1183       _ip->print_instr(block); tty->cr();
  1184     } else {
  1185       block->print_block(*_ip, _live_only);
  1188 };
  1191 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1192   ttyLocker ttyl;
  1193   InstructionPrinter ip(!cfg_only);
  1194   BlockPrinter bp(&ip, cfg_only, live_only);
  1195   start->iterate_preorder(&bp);
  1196   tty->cr();
  1199 void IR::print(bool cfg_only, bool live_only) {
  1200   if (is_valid()) {
  1201     print(start(), cfg_only, live_only);
  1202   } else {
  1203     tty->print_cr("invalid IR");
  1208 define_array(BlockListArray, BlockList*)
  1209 define_stack(BlockListList, BlockListArray)
  1211 class PredecessorValidator : public BlockClosure {
  1212  private:
  1213   BlockListList* _predecessors;
  1214   BlockList*     _blocks;
  1216   static int cmp(BlockBegin** a, BlockBegin** b) {
  1217     return (*a)->block_id() - (*b)->block_id();
  1220  public:
  1221   PredecessorValidator(IR* hir) {
  1222     ResourceMark rm;
  1223     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1224     _blocks = new BlockList();
  1226     int i;
  1227     hir->start()->iterate_preorder(this);
  1228     if (hir->code() != NULL) {
  1229       assert(hir->code()->length() == _blocks->length(), "must match");
  1230       for (i = 0; i < _blocks->length(); i++) {
  1231         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1235     for (i = 0; i < _blocks->length(); i++) {
  1236       BlockBegin* block = _blocks->at(i);
  1237       BlockList* preds = _predecessors->at(block->block_id());
  1238       if (preds == NULL) {
  1239         assert(block->number_of_preds() == 0, "should be the same");
  1240         continue;
  1243       // clone the pred list so we can mutate it
  1244       BlockList* pred_copy = new BlockList();
  1245       int j;
  1246       for (j = 0; j < block->number_of_preds(); j++) {
  1247         pred_copy->append(block->pred_at(j));
  1249       // sort them in the same order
  1250       preds->sort(cmp);
  1251       pred_copy->sort(cmp);
  1252       int length = MIN2(preds->length(), block->number_of_preds());
  1253       for (j = 0; j < block->number_of_preds(); j++) {
  1254         assert(preds->at(j) == pred_copy->at(j), "must match");
  1257       assert(preds->length() == block->number_of_preds(), "should be the same");
  1261   virtual void block_do(BlockBegin* block) {
  1262     _blocks->append(block);
  1263     BlockEnd* be = block->end();
  1264     int n = be->number_of_sux();
  1265     int i;
  1266     for (i = 0; i < n; i++) {
  1267       BlockBegin* sux = be->sux_at(i);
  1268       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1270       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1271       if (preds == NULL) {
  1272         preds = new BlockList();
  1273         _predecessors->at_put(sux->block_id(), preds);
  1275       preds->append(block);
  1278     n = block->number_of_exception_handlers();
  1279     for (i = 0; i < n; i++) {
  1280       BlockBegin* sux = block->exception_handler_at(i);
  1281       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1283       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1284       if (preds == NULL) {
  1285         preds = new BlockList();
  1286         _predecessors->at_put(sux->block_id(), preds);
  1288       preds->append(block);
  1291 };
  1293 void IR::verify() {
  1294 #ifdef ASSERT
  1295   PredecessorValidator pv(this);
  1296 #endif
  1299 #endif // PRODUCT
  1301 void SubstitutionResolver::visit(Value* v) {
  1302   Value v0 = *v;
  1303   if (v0) {
  1304     Value vs = v0->subst();
  1305     if (vs != v0) {
  1306       *v = v0->subst();
  1311 #ifdef ASSERT
  1312 class SubstitutionChecker: public ValueVisitor {
  1313   void visit(Value* v) {
  1314     Value v0 = *v;
  1315     if (v0) {
  1316       Value vs = v0->subst();
  1317       assert(vs == v0, "missed substitution");
  1320 };
  1321 #endif
  1324 void SubstitutionResolver::block_do(BlockBegin* block) {
  1325   Instruction* last = NULL;
  1326   for (Instruction* n = block; n != NULL;) {
  1327     n->values_do(this);
  1328     // need to remove this instruction from the instruction stream
  1329     if (n->subst() != n) {
  1330       assert(last != NULL, "must have last");
  1331       last->set_next(n->next(), n->next()->bci());
  1332     } else {
  1333       last = n;
  1335     n = last->next();
  1338 #ifdef ASSERT
  1339   SubstitutionChecker check_substitute;
  1340   if (block->state()) block->state()->values_do(&check_substitute);
  1341   block->block_values_do(&check_substitute);
  1342   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
  1343 #endif

mercurial