src/cpu/x86/vm/macroAssembler_x86.cpp

Tue, 02 Jul 2013 20:42:12 -0400

author
drchase
date
Tue, 02 Jul 2013 20:42:12 -0400
changeset 5353
b800986664f4
parent 4873
e961c11b85fe
child 5528
740e263c80c6
permissions
-rw-r--r--

7088419: Use x86 Hardware CRC32 Instruction with java.util.zip.CRC32
Summary: add intrinsics using new instruction to interpreter, C1, C2, for suitable x86; add test
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/biasedLocking.hpp"
    35 #include "runtime/interfaceSupport.hpp"
    36 #include "runtime/objectMonitor.hpp"
    37 #include "runtime/os.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/macros.hpp"
    41 #if INCLUDE_ALL_GCS
    42 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    44 #include "gc_implementation/g1/heapRegion.hpp"
    45 #endif // INCLUDE_ALL_GCS
    47 #ifdef PRODUCT
    48 #define BLOCK_COMMENT(str) /* nothing */
    49 #define STOP(error) stop(error)
    50 #else
    51 #define BLOCK_COMMENT(str) block_comment(str)
    52 #define STOP(error) block_comment(error); stop(error)
    53 #endif
    55 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    58 #ifdef ASSERT
    59 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    60 #endif
    62 static Assembler::Condition reverse[] = {
    63     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    64     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    65     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    66     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    67     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    68     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    69     Assembler::above          /* belowEqual    = 0x6 */ ,
    70     Assembler::belowEqual     /* above         = 0x7 */ ,
    71     Assembler::positive       /* negative      = 0x8 */ ,
    72     Assembler::negative       /* positive      = 0x9 */ ,
    73     Assembler::noParity       /* parity        = 0xa */ ,
    74     Assembler::parity         /* noParity      = 0xb */ ,
    75     Assembler::greaterEqual   /* less          = 0xc */ ,
    76     Assembler::less           /* greaterEqual  = 0xd */ ,
    77     Assembler::greater        /* lessEqual     = 0xe */ ,
    78     Assembler::lessEqual      /* greater       = 0xf, */
    80 };
    83 // Implementation of MacroAssembler
    85 // First all the versions that have distinct versions depending on 32/64 bit
    86 // Unless the difference is trivial (1 line or so).
    88 #ifndef _LP64
    90 // 32bit versions
    92 Address MacroAssembler::as_Address(AddressLiteral adr) {
    93   return Address(adr.target(), adr.rspec());
    94 }
    96 Address MacroAssembler::as_Address(ArrayAddress adr) {
    97   return Address::make_array(adr);
    98 }
   100 int MacroAssembler::biased_locking_enter(Register lock_reg,
   101                                          Register obj_reg,
   102                                          Register swap_reg,
   103                                          Register tmp_reg,
   104                                          bool swap_reg_contains_mark,
   105                                          Label& done,
   106                                          Label* slow_case,
   107                                          BiasedLockingCounters* counters) {
   108   assert(UseBiasedLocking, "why call this otherwise?");
   109   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
   110   assert_different_registers(lock_reg, obj_reg, swap_reg);
   112   if (PrintBiasedLockingStatistics && counters == NULL)
   113     counters = BiasedLocking::counters();
   115   bool need_tmp_reg = false;
   116   if (tmp_reg == noreg) {
   117     need_tmp_reg = true;
   118     tmp_reg = lock_reg;
   119   } else {
   120     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   121   }
   122   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   123   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   124   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
   125   Address saved_mark_addr(lock_reg, 0);
   127   // Biased locking
   128   // See whether the lock is currently biased toward our thread and
   129   // whether the epoch is still valid
   130   // Note that the runtime guarantees sufficient alignment of JavaThread
   131   // pointers to allow age to be placed into low bits
   132   // First check to see whether biasing is even enabled for this object
   133   Label cas_label;
   134   int null_check_offset = -1;
   135   if (!swap_reg_contains_mark) {
   136     null_check_offset = offset();
   137     movl(swap_reg, mark_addr);
   138   }
   139   if (need_tmp_reg) {
   140     push(tmp_reg);
   141   }
   142   movl(tmp_reg, swap_reg);
   143   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   144   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
   145   if (need_tmp_reg) {
   146     pop(tmp_reg);
   147   }
   148   jcc(Assembler::notEqual, cas_label);
   149   // The bias pattern is present in the object's header. Need to check
   150   // whether the bias owner and the epoch are both still current.
   151   // Note that because there is no current thread register on x86 we
   152   // need to store off the mark word we read out of the object to
   153   // avoid reloading it and needing to recheck invariants below. This
   154   // store is unfortunate but it makes the overall code shorter and
   155   // simpler.
   156   movl(saved_mark_addr, swap_reg);
   157   if (need_tmp_reg) {
   158     push(tmp_reg);
   159   }
   160   get_thread(tmp_reg);
   161   xorl(swap_reg, tmp_reg);
   162   if (swap_reg_contains_mark) {
   163     null_check_offset = offset();
   164   }
   165   movl(tmp_reg, klass_addr);
   166   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   167   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
   168   if (need_tmp_reg) {
   169     pop(tmp_reg);
   170   }
   171   if (counters != NULL) {
   172     cond_inc32(Assembler::zero,
   173                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
   174   }
   175   jcc(Assembler::equal, done);
   177   Label try_revoke_bias;
   178   Label try_rebias;
   180   // At this point we know that the header has the bias pattern and
   181   // that we are not the bias owner in the current epoch. We need to
   182   // figure out more details about the state of the header in order to
   183   // know what operations can be legally performed on the object's
   184   // header.
   186   // If the low three bits in the xor result aren't clear, that means
   187   // the prototype header is no longer biased and we have to revoke
   188   // the bias on this object.
   189   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
   190   jcc(Assembler::notZero, try_revoke_bias);
   192   // Biasing is still enabled for this data type. See whether the
   193   // epoch of the current bias is still valid, meaning that the epoch
   194   // bits of the mark word are equal to the epoch bits of the
   195   // prototype header. (Note that the prototype header's epoch bits
   196   // only change at a safepoint.) If not, attempt to rebias the object
   197   // toward the current thread. Note that we must be absolutely sure
   198   // that the current epoch is invalid in order to do this because
   199   // otherwise the manipulations it performs on the mark word are
   200   // illegal.
   201   testl(swap_reg, markOopDesc::epoch_mask_in_place);
   202   jcc(Assembler::notZero, try_rebias);
   204   // The epoch of the current bias is still valid but we know nothing
   205   // about the owner; it might be set or it might be clear. Try to
   206   // acquire the bias of the object using an atomic operation. If this
   207   // fails we will go in to the runtime to revoke the object's bias.
   208   // Note that we first construct the presumed unbiased header so we
   209   // don't accidentally blow away another thread's valid bias.
   210   movl(swap_reg, saved_mark_addr);
   211   andl(swap_reg,
   212        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   213   if (need_tmp_reg) {
   214     push(tmp_reg);
   215   }
   216   get_thread(tmp_reg);
   217   orl(tmp_reg, swap_reg);
   218   if (os::is_MP()) {
   219     lock();
   220   }
   221   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   222   if (need_tmp_reg) {
   223     pop(tmp_reg);
   224   }
   225   // If the biasing toward our thread failed, this means that
   226   // another thread succeeded in biasing it toward itself and we
   227   // need to revoke that bias. The revocation will occur in the
   228   // interpreter runtime in the slow case.
   229   if (counters != NULL) {
   230     cond_inc32(Assembler::zero,
   231                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
   232   }
   233   if (slow_case != NULL) {
   234     jcc(Assembler::notZero, *slow_case);
   235   }
   236   jmp(done);
   238   bind(try_rebias);
   239   // At this point we know the epoch has expired, meaning that the
   240   // current "bias owner", if any, is actually invalid. Under these
   241   // circumstances _only_, we are allowed to use the current header's
   242   // value as the comparison value when doing the cas to acquire the
   243   // bias in the current epoch. In other words, we allow transfer of
   244   // the bias from one thread to another directly in this situation.
   245   //
   246   // FIXME: due to a lack of registers we currently blow away the age
   247   // bits in this situation. Should attempt to preserve them.
   248   if (need_tmp_reg) {
   249     push(tmp_reg);
   250   }
   251   get_thread(tmp_reg);
   252   movl(swap_reg, klass_addr);
   253   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
   254   movl(swap_reg, saved_mark_addr);
   255   if (os::is_MP()) {
   256     lock();
   257   }
   258   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   259   if (need_tmp_reg) {
   260     pop(tmp_reg);
   261   }
   262   // If the biasing toward our thread failed, then another thread
   263   // succeeded in biasing it toward itself and we need to revoke that
   264   // bias. The revocation will occur in the runtime in the slow case.
   265   if (counters != NULL) {
   266     cond_inc32(Assembler::zero,
   267                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
   268   }
   269   if (slow_case != NULL) {
   270     jcc(Assembler::notZero, *slow_case);
   271   }
   272   jmp(done);
   274   bind(try_revoke_bias);
   275   // The prototype mark in the klass doesn't have the bias bit set any
   276   // more, indicating that objects of this data type are not supposed
   277   // to be biased any more. We are going to try to reset the mark of
   278   // this object to the prototype value and fall through to the
   279   // CAS-based locking scheme. Note that if our CAS fails, it means
   280   // that another thread raced us for the privilege of revoking the
   281   // bias of this particular object, so it's okay to continue in the
   282   // normal locking code.
   283   //
   284   // FIXME: due to a lack of registers we currently blow away the age
   285   // bits in this situation. Should attempt to preserve them.
   286   movl(swap_reg, saved_mark_addr);
   287   if (need_tmp_reg) {
   288     push(tmp_reg);
   289   }
   290   movl(tmp_reg, klass_addr);
   291   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   292   if (os::is_MP()) {
   293     lock();
   294   }
   295   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   296   if (need_tmp_reg) {
   297     pop(tmp_reg);
   298   }
   299   // Fall through to the normal CAS-based lock, because no matter what
   300   // the result of the above CAS, some thread must have succeeded in
   301   // removing the bias bit from the object's header.
   302   if (counters != NULL) {
   303     cond_inc32(Assembler::zero,
   304                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
   305   }
   307   bind(cas_label);
   309   return null_check_offset;
   310 }
   311 void MacroAssembler::call_VM_leaf_base(address entry_point,
   312                                        int number_of_arguments) {
   313   call(RuntimeAddress(entry_point));
   314   increment(rsp, number_of_arguments * wordSize);
   315 }
   317 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   318   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   319 }
   321 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   322   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   323 }
   325 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   326   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   327 }
   329 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   330   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   331 }
   333 void MacroAssembler::extend_sign(Register hi, Register lo) {
   334   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   335   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   336     cdql();
   337   } else {
   338     movl(hi, lo);
   339     sarl(hi, 31);
   340   }
   341 }
   343 void MacroAssembler::jC2(Register tmp, Label& L) {
   344   // set parity bit if FPU flag C2 is set (via rax)
   345   save_rax(tmp);
   346   fwait(); fnstsw_ax();
   347   sahf();
   348   restore_rax(tmp);
   349   // branch
   350   jcc(Assembler::parity, L);
   351 }
   353 void MacroAssembler::jnC2(Register tmp, Label& L) {
   354   // set parity bit if FPU flag C2 is set (via rax)
   355   save_rax(tmp);
   356   fwait(); fnstsw_ax();
   357   sahf();
   358   restore_rax(tmp);
   359   // branch
   360   jcc(Assembler::noParity, L);
   361 }
   363 // 32bit can do a case table jump in one instruction but we no longer allow the base
   364 // to be installed in the Address class
   365 void MacroAssembler::jump(ArrayAddress entry) {
   366   jmp(as_Address(entry));
   367 }
   369 // Note: y_lo will be destroyed
   370 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   371   // Long compare for Java (semantics as described in JVM spec.)
   372   Label high, low, done;
   374   cmpl(x_hi, y_hi);
   375   jcc(Assembler::less, low);
   376   jcc(Assembler::greater, high);
   377   // x_hi is the return register
   378   xorl(x_hi, x_hi);
   379   cmpl(x_lo, y_lo);
   380   jcc(Assembler::below, low);
   381   jcc(Assembler::equal, done);
   383   bind(high);
   384   xorl(x_hi, x_hi);
   385   increment(x_hi);
   386   jmp(done);
   388   bind(low);
   389   xorl(x_hi, x_hi);
   390   decrementl(x_hi);
   392   bind(done);
   393 }
   395 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   396     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   397 }
   399 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   400   // leal(dst, as_Address(adr));
   401   // see note in movl as to why we must use a move
   402   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   403 }
   405 void MacroAssembler::leave() {
   406   mov(rsp, rbp);
   407   pop(rbp);
   408 }
   410 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   411   // Multiplication of two Java long values stored on the stack
   412   // as illustrated below. Result is in rdx:rax.
   413   //
   414   // rsp ---> [  ??  ] \               \
   415   //            ....    | y_rsp_offset  |
   416   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   417   //          [ y_hi ]                  | (in bytes)
   418   //            ....                    |
   419   //          [ x_lo ]                 /
   420   //          [ x_hi ]
   421   //            ....
   422   //
   423   // Basic idea: lo(result) = lo(x_lo * y_lo)
   424   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   425   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   426   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   427   Label quick;
   428   // load x_hi, y_hi and check if quick
   429   // multiplication is possible
   430   movl(rbx, x_hi);
   431   movl(rcx, y_hi);
   432   movl(rax, rbx);
   433   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   434   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   435   // do full multiplication
   436   // 1st step
   437   mull(y_lo);                                    // x_hi * y_lo
   438   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   439   // 2nd step
   440   movl(rax, x_lo);
   441   mull(rcx);                                     // x_lo * y_hi
   442   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   443   // 3rd step
   444   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   445   movl(rax, x_lo);
   446   mull(y_lo);                                    // x_lo * y_lo
   447   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   448 }
   450 void MacroAssembler::lneg(Register hi, Register lo) {
   451   negl(lo);
   452   adcl(hi, 0);
   453   negl(hi);
   454 }
   456 void MacroAssembler::lshl(Register hi, Register lo) {
   457   // Java shift left long support (semantics as described in JVM spec., p.305)
   458   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   459   // shift value is in rcx !
   460   assert(hi != rcx, "must not use rcx");
   461   assert(lo != rcx, "must not use rcx");
   462   const Register s = rcx;                        // shift count
   463   const int      n = BitsPerWord;
   464   Label L;
   465   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   466   cmpl(s, n);                                    // if (s < n)
   467   jcc(Assembler::less, L);                       // else (s >= n)
   468   movl(hi, lo);                                  // x := x << n
   469   xorl(lo, lo);
   470   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   471   bind(L);                                       // s (mod n) < n
   472   shldl(hi, lo);                                 // x := x << s
   473   shll(lo);
   474 }
   477 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   478   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   479   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   480   assert(hi != rcx, "must not use rcx");
   481   assert(lo != rcx, "must not use rcx");
   482   const Register s = rcx;                        // shift count
   483   const int      n = BitsPerWord;
   484   Label L;
   485   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   486   cmpl(s, n);                                    // if (s < n)
   487   jcc(Assembler::less, L);                       // else (s >= n)
   488   movl(lo, hi);                                  // x := x >> n
   489   if (sign_extension) sarl(hi, 31);
   490   else                xorl(hi, hi);
   491   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   492   bind(L);                                       // s (mod n) < n
   493   shrdl(lo, hi);                                 // x := x >> s
   494   if (sign_extension) sarl(hi);
   495   else                shrl(hi);
   496 }
   498 void MacroAssembler::movoop(Register dst, jobject obj) {
   499   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   500 }
   502 void MacroAssembler::movoop(Address dst, jobject obj) {
   503   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   504 }
   506 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   507   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   508 }
   510 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   511   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   512 }
   514 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
   515   if (src.is_lval()) {
   516     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   517   } else {
   518     movl(dst, as_Address(src));
   519   }
   520 }
   522 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   523   movl(as_Address(dst), src);
   524 }
   526 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   527   movl(dst, as_Address(src));
   528 }
   530 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   531 void MacroAssembler::movptr(Address dst, intptr_t src) {
   532   movl(dst, src);
   533 }
   536 void MacroAssembler::pop_callee_saved_registers() {
   537   pop(rcx);
   538   pop(rdx);
   539   pop(rdi);
   540   pop(rsi);
   541 }
   543 void MacroAssembler::pop_fTOS() {
   544   fld_d(Address(rsp, 0));
   545   addl(rsp, 2 * wordSize);
   546 }
   548 void MacroAssembler::push_callee_saved_registers() {
   549   push(rsi);
   550   push(rdi);
   551   push(rdx);
   552   push(rcx);
   553 }
   555 void MacroAssembler::push_fTOS() {
   556   subl(rsp, 2 * wordSize);
   557   fstp_d(Address(rsp, 0));
   558 }
   561 void MacroAssembler::pushoop(jobject obj) {
   562   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   563 }
   565 void MacroAssembler::pushklass(Metadata* obj) {
   566   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   567 }
   569 void MacroAssembler::pushptr(AddressLiteral src) {
   570   if (src.is_lval()) {
   571     push_literal32((int32_t)src.target(), src.rspec());
   572   } else {
   573     pushl(as_Address(src));
   574   }
   575 }
   577 void MacroAssembler::set_word_if_not_zero(Register dst) {
   578   xorl(dst, dst);
   579   set_byte_if_not_zero(dst);
   580 }
   582 static void pass_arg0(MacroAssembler* masm, Register arg) {
   583   masm->push(arg);
   584 }
   586 static void pass_arg1(MacroAssembler* masm, Register arg) {
   587   masm->push(arg);
   588 }
   590 static void pass_arg2(MacroAssembler* masm, Register arg) {
   591   masm->push(arg);
   592 }
   594 static void pass_arg3(MacroAssembler* masm, Register arg) {
   595   masm->push(arg);
   596 }
   598 #ifndef PRODUCT
   599 extern "C" void findpc(intptr_t x);
   600 #endif
   602 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   603   // In order to get locks to work, we need to fake a in_VM state
   604   JavaThread* thread = JavaThread::current();
   605   JavaThreadState saved_state = thread->thread_state();
   606   thread->set_thread_state(_thread_in_vm);
   607   if (ShowMessageBoxOnError) {
   608     JavaThread* thread = JavaThread::current();
   609     JavaThreadState saved_state = thread->thread_state();
   610     thread->set_thread_state(_thread_in_vm);
   611     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   612       ttyLocker ttyl;
   613       BytecodeCounter::print();
   614     }
   615     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   616     // This is the value of eip which points to where verify_oop will return.
   617     if (os::message_box(msg, "Execution stopped, print registers?")) {
   618       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   619       BREAKPOINT;
   620     }
   621   } else {
   622     ttyLocker ttyl;
   623     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   624   }
   625   // Don't assert holding the ttyLock
   626     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   627   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   628 }
   630 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   631   ttyLocker ttyl;
   632   FlagSetting fs(Debugging, true);
   633   tty->print_cr("eip = 0x%08x", eip);
   634 #ifndef PRODUCT
   635   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   636     tty->cr();
   637     findpc(eip);
   638     tty->cr();
   639   }
   640 #endif
   641 #define PRINT_REG(rax) \
   642   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   643   PRINT_REG(rax);
   644   PRINT_REG(rbx);
   645   PRINT_REG(rcx);
   646   PRINT_REG(rdx);
   647   PRINT_REG(rdi);
   648   PRINT_REG(rsi);
   649   PRINT_REG(rbp);
   650   PRINT_REG(rsp);
   651 #undef PRINT_REG
   652   // Print some words near top of staack.
   653   int* dump_sp = (int*) rsp;
   654   for (int col1 = 0; col1 < 8; col1++) {
   655     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   656     os::print_location(tty, *dump_sp++);
   657   }
   658   for (int row = 0; row < 16; row++) {
   659     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   660     for (int col = 0; col < 8; col++) {
   661       tty->print(" 0x%08x", *dump_sp++);
   662     }
   663     tty->cr();
   664   }
   665   // Print some instructions around pc:
   666   Disassembler::decode((address)eip-64, (address)eip);
   667   tty->print_cr("--------");
   668   Disassembler::decode((address)eip, (address)eip+32);
   669 }
   671 void MacroAssembler::stop(const char* msg) {
   672   ExternalAddress message((address)msg);
   673   // push address of message
   674   pushptr(message.addr());
   675   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   676   pusha();                                            // push registers
   677   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   678   hlt();
   679 }
   681 void MacroAssembler::warn(const char* msg) {
   682   push_CPU_state();
   684   ExternalAddress message((address) msg);
   685   // push address of message
   686   pushptr(message.addr());
   688   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   689   addl(rsp, wordSize);       // discard argument
   690   pop_CPU_state();
   691 }
   693 void MacroAssembler::print_state() {
   694   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   695   pusha();                                            // push registers
   697   push_CPU_state();
   698   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   699   pop_CPU_state();
   701   popa();
   702   addl(rsp, wordSize);
   703 }
   705 #else // _LP64
   707 // 64 bit versions
   709 Address MacroAssembler::as_Address(AddressLiteral adr) {
   710   // amd64 always does this as a pc-rel
   711   // we can be absolute or disp based on the instruction type
   712   // jmp/call are displacements others are absolute
   713   assert(!adr.is_lval(), "must be rval");
   714   assert(reachable(adr), "must be");
   715   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   717 }
   719 Address MacroAssembler::as_Address(ArrayAddress adr) {
   720   AddressLiteral base = adr.base();
   721   lea(rscratch1, base);
   722   Address index = adr.index();
   723   assert(index._disp == 0, "must not have disp"); // maybe it can?
   724   Address array(rscratch1, index._index, index._scale, index._disp);
   725   return array;
   726 }
   728 int MacroAssembler::biased_locking_enter(Register lock_reg,
   729                                          Register obj_reg,
   730                                          Register swap_reg,
   731                                          Register tmp_reg,
   732                                          bool swap_reg_contains_mark,
   733                                          Label& done,
   734                                          Label* slow_case,
   735                                          BiasedLockingCounters* counters) {
   736   assert(UseBiasedLocking, "why call this otherwise?");
   737   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
   738   assert(tmp_reg != noreg, "tmp_reg must be supplied");
   739   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   740   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   741   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   742   Address saved_mark_addr(lock_reg, 0);
   744   if (PrintBiasedLockingStatistics && counters == NULL)
   745     counters = BiasedLocking::counters();
   747   // Biased locking
   748   // See whether the lock is currently biased toward our thread and
   749   // whether the epoch is still valid
   750   // Note that the runtime guarantees sufficient alignment of JavaThread
   751   // pointers to allow age to be placed into low bits
   752   // First check to see whether biasing is even enabled for this object
   753   Label cas_label;
   754   int null_check_offset = -1;
   755   if (!swap_reg_contains_mark) {
   756     null_check_offset = offset();
   757     movq(swap_reg, mark_addr);
   758   }
   759   movq(tmp_reg, swap_reg);
   760   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   761   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
   762   jcc(Assembler::notEqual, cas_label);
   763   // The bias pattern is present in the object's header. Need to check
   764   // whether the bias owner and the epoch are both still current.
   765   load_prototype_header(tmp_reg, obj_reg);
   766   orq(tmp_reg, r15_thread);
   767   xorq(tmp_reg, swap_reg);
   768   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
   769   if (counters != NULL) {
   770     cond_inc32(Assembler::zero,
   771                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   772   }
   773   jcc(Assembler::equal, done);
   775   Label try_revoke_bias;
   776   Label try_rebias;
   778   // At this point we know that the header has the bias pattern and
   779   // that we are not the bias owner in the current epoch. We need to
   780   // figure out more details about the state of the header in order to
   781   // know what operations can be legally performed on the object's
   782   // header.
   784   // If the low three bits in the xor result aren't clear, that means
   785   // the prototype header is no longer biased and we have to revoke
   786   // the bias on this object.
   787   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   788   jcc(Assembler::notZero, try_revoke_bias);
   790   // Biasing is still enabled for this data type. See whether the
   791   // epoch of the current bias is still valid, meaning that the epoch
   792   // bits of the mark word are equal to the epoch bits of the
   793   // prototype header. (Note that the prototype header's epoch bits
   794   // only change at a safepoint.) If not, attempt to rebias the object
   795   // toward the current thread. Note that we must be absolutely sure
   796   // that the current epoch is invalid in order to do this because
   797   // otherwise the manipulations it performs on the mark word are
   798   // illegal.
   799   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
   800   jcc(Assembler::notZero, try_rebias);
   802   // The epoch of the current bias is still valid but we know nothing
   803   // about the owner; it might be set or it might be clear. Try to
   804   // acquire the bias of the object using an atomic operation. If this
   805   // fails we will go in to the runtime to revoke the object's bias.
   806   // Note that we first construct the presumed unbiased header so we
   807   // don't accidentally blow away another thread's valid bias.
   808   andq(swap_reg,
   809        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   810   movq(tmp_reg, swap_reg);
   811   orq(tmp_reg, r15_thread);
   812   if (os::is_MP()) {
   813     lock();
   814   }
   815   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   816   // If the biasing toward our thread failed, this means that
   817   // another thread succeeded in biasing it toward itself and we
   818   // need to revoke that bias. The revocation will occur in the
   819   // interpreter runtime in the slow case.
   820   if (counters != NULL) {
   821     cond_inc32(Assembler::zero,
   822                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   823   }
   824   if (slow_case != NULL) {
   825     jcc(Assembler::notZero, *slow_case);
   826   }
   827   jmp(done);
   829   bind(try_rebias);
   830   // At this point we know the epoch has expired, meaning that the
   831   // current "bias owner", if any, is actually invalid. Under these
   832   // circumstances _only_, we are allowed to use the current header's
   833   // value as the comparison value when doing the cas to acquire the
   834   // bias in the current epoch. In other words, we allow transfer of
   835   // the bias from one thread to another directly in this situation.
   836   //
   837   // FIXME: due to a lack of registers we currently blow away the age
   838   // bits in this situation. Should attempt to preserve them.
   839   load_prototype_header(tmp_reg, obj_reg);
   840   orq(tmp_reg, r15_thread);
   841   if (os::is_MP()) {
   842     lock();
   843   }
   844   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   845   // If the biasing toward our thread failed, then another thread
   846   // succeeded in biasing it toward itself and we need to revoke that
   847   // bias. The revocation will occur in the runtime in the slow case.
   848   if (counters != NULL) {
   849     cond_inc32(Assembler::zero,
   850                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
   851   }
   852   if (slow_case != NULL) {
   853     jcc(Assembler::notZero, *slow_case);
   854   }
   855   jmp(done);
   857   bind(try_revoke_bias);
   858   // The prototype mark in the klass doesn't have the bias bit set any
   859   // more, indicating that objects of this data type are not supposed
   860   // to be biased any more. We are going to try to reset the mark of
   861   // this object to the prototype value and fall through to the
   862   // CAS-based locking scheme. Note that if our CAS fails, it means
   863   // that another thread raced us for the privilege of revoking the
   864   // bias of this particular object, so it's okay to continue in the
   865   // normal locking code.
   866   //
   867   // FIXME: due to a lack of registers we currently blow away the age
   868   // bits in this situation. Should attempt to preserve them.
   869   load_prototype_header(tmp_reg, obj_reg);
   870   if (os::is_MP()) {
   871     lock();
   872   }
   873   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   874   // Fall through to the normal CAS-based lock, because no matter what
   875   // the result of the above CAS, some thread must have succeeded in
   876   // removing the bias bit from the object's header.
   877   if (counters != NULL) {
   878     cond_inc32(Assembler::zero,
   879                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
   880   }
   882   bind(cas_label);
   884   return null_check_offset;
   885 }
   887 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   888   Label L, E;
   890 #ifdef _WIN64
   891   // Windows always allocates space for it's register args
   892   assert(num_args <= 4, "only register arguments supported");
   893   subq(rsp,  frame::arg_reg_save_area_bytes);
   894 #endif
   896   // Align stack if necessary
   897   testl(rsp, 15);
   898   jcc(Assembler::zero, L);
   900   subq(rsp, 8);
   901   {
   902     call(RuntimeAddress(entry_point));
   903   }
   904   addq(rsp, 8);
   905   jmp(E);
   907   bind(L);
   908   {
   909     call(RuntimeAddress(entry_point));
   910   }
   912   bind(E);
   914 #ifdef _WIN64
   915   // restore stack pointer
   916   addq(rsp, frame::arg_reg_save_area_bytes);
   917 #endif
   919 }
   921 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   922   assert(!src2.is_lval(), "should use cmpptr");
   924   if (reachable(src2)) {
   925     cmpq(src1, as_Address(src2));
   926   } else {
   927     lea(rscratch1, src2);
   928     Assembler::cmpq(src1, Address(rscratch1, 0));
   929   }
   930 }
   932 int MacroAssembler::corrected_idivq(Register reg) {
   933   // Full implementation of Java ldiv and lrem; checks for special
   934   // case as described in JVM spec., p.243 & p.271.  The function
   935   // returns the (pc) offset of the idivl instruction - may be needed
   936   // for implicit exceptions.
   937   //
   938   //         normal case                           special case
   939   //
   940   // input : rax: dividend                         min_long
   941   //         reg: divisor   (may not be eax/edx)   -1
   942   //
   943   // output: rax: quotient  (= rax idiv reg)       min_long
   944   //         rdx: remainder (= rax irem reg)       0
   945   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   946   static const int64_t min_long = 0x8000000000000000;
   947   Label normal_case, special_case;
   949   // check for special case
   950   cmp64(rax, ExternalAddress((address) &min_long));
   951   jcc(Assembler::notEqual, normal_case);
   952   xorl(rdx, rdx); // prepare rdx for possible special case (where
   953                   // remainder = 0)
   954   cmpq(reg, -1);
   955   jcc(Assembler::equal, special_case);
   957   // handle normal case
   958   bind(normal_case);
   959   cdqq();
   960   int idivq_offset = offset();
   961   idivq(reg);
   963   // normal and special case exit
   964   bind(special_case);
   966   return idivq_offset;
   967 }
   969 void MacroAssembler::decrementq(Register reg, int value) {
   970   if (value == min_jint) { subq(reg, value); return; }
   971   if (value <  0) { incrementq(reg, -value); return; }
   972   if (value == 0) {                        ; return; }
   973   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   974   /* else */      { subq(reg, value)       ; return; }
   975 }
   977 void MacroAssembler::decrementq(Address dst, int value) {
   978   if (value == min_jint) { subq(dst, value); return; }
   979   if (value <  0) { incrementq(dst, -value); return; }
   980   if (value == 0) {                        ; return; }
   981   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   982   /* else */      { subq(dst, value)       ; return; }
   983 }
   985 void MacroAssembler::incrementq(Register reg, int value) {
   986   if (value == min_jint) { addq(reg, value); return; }
   987   if (value <  0) { decrementq(reg, -value); return; }
   988   if (value == 0) {                        ; return; }
   989   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   990   /* else */      { addq(reg, value)       ; return; }
   991 }
   993 void MacroAssembler::incrementq(Address dst, int value) {
   994   if (value == min_jint) { addq(dst, value); return; }
   995   if (value <  0) { decrementq(dst, -value); return; }
   996   if (value == 0) {                        ; return; }
   997   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   998   /* else */      { addq(dst, value)       ; return; }
   999 }
  1001 // 32bit can do a case table jump in one instruction but we no longer allow the base
  1002 // to be installed in the Address class
  1003 void MacroAssembler::jump(ArrayAddress entry) {
  1004   lea(rscratch1, entry.base());
  1005   Address dispatch = entry.index();
  1006   assert(dispatch._base == noreg, "must be");
  1007   dispatch._base = rscratch1;
  1008   jmp(dispatch);
  1011 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  1012   ShouldNotReachHere(); // 64bit doesn't use two regs
  1013   cmpq(x_lo, y_lo);
  1016 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  1017     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1020 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  1021   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  1022   movptr(dst, rscratch1);
  1025 void MacroAssembler::leave() {
  1026   // %%% is this really better? Why not on 32bit too?
  1027   emit_int8((unsigned char)0xC9); // LEAVE
  1030 void MacroAssembler::lneg(Register hi, Register lo) {
  1031   ShouldNotReachHere(); // 64bit doesn't use two regs
  1032   negq(lo);
  1035 void MacroAssembler::movoop(Register dst, jobject obj) {
  1036   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1039 void MacroAssembler::movoop(Address dst, jobject obj) {
  1040   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1041   movq(dst, rscratch1);
  1044 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  1045   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1048 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  1049   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1050   movq(dst, rscratch1);
  1053 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  1054   if (src.is_lval()) {
  1055     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1056   } else {
  1057     if (reachable(src)) {
  1058       movq(dst, as_Address(src));
  1059     } else {
  1060       lea(rscratch1, src);
  1061       movq(dst, Address(rscratch1,0));
  1066 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  1067   movq(as_Address(dst), src);
  1070 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  1071   movq(dst, as_Address(src));
  1074 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  1075 void MacroAssembler::movptr(Address dst, intptr_t src) {
  1076   mov64(rscratch1, src);
  1077   movq(dst, rscratch1);
  1080 // These are mostly for initializing NULL
  1081 void MacroAssembler::movptr(Address dst, int32_t src) {
  1082   movslq(dst, src);
  1085 void MacroAssembler::movptr(Register dst, int32_t src) {
  1086   mov64(dst, (intptr_t)src);
  1089 void MacroAssembler::pushoop(jobject obj) {
  1090   movoop(rscratch1, obj);
  1091   push(rscratch1);
  1094 void MacroAssembler::pushklass(Metadata* obj) {
  1095   mov_metadata(rscratch1, obj);
  1096   push(rscratch1);
  1099 void MacroAssembler::pushptr(AddressLiteral src) {
  1100   lea(rscratch1, src);
  1101   if (src.is_lval()) {
  1102     push(rscratch1);
  1103   } else {
  1104     pushq(Address(rscratch1, 0));
  1108 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1109                                            bool clear_pc) {
  1110   // we must set sp to zero to clear frame
  1111   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  1112   // must clear fp, so that compiled frames are not confused; it is
  1113   // possible that we need it only for debugging
  1114   if (clear_fp) {
  1115     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  1118   if (clear_pc) {
  1119     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  1123 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1124                                          Register last_java_fp,
  1125                                          address  last_java_pc) {
  1126   // determine last_java_sp register
  1127   if (!last_java_sp->is_valid()) {
  1128     last_java_sp = rsp;
  1131   // last_java_fp is optional
  1132   if (last_java_fp->is_valid()) {
  1133     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  1134            last_java_fp);
  1137   // last_java_pc is optional
  1138   if (last_java_pc != NULL) {
  1139     Address java_pc(r15_thread,
  1140                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1141     lea(rscratch1, InternalAddress(last_java_pc));
  1142     movptr(java_pc, rscratch1);
  1145   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  1148 static void pass_arg0(MacroAssembler* masm, Register arg) {
  1149   if (c_rarg0 != arg ) {
  1150     masm->mov(c_rarg0, arg);
  1154 static void pass_arg1(MacroAssembler* masm, Register arg) {
  1155   if (c_rarg1 != arg ) {
  1156     masm->mov(c_rarg1, arg);
  1160 static void pass_arg2(MacroAssembler* masm, Register arg) {
  1161   if (c_rarg2 != arg ) {
  1162     masm->mov(c_rarg2, arg);
  1166 static void pass_arg3(MacroAssembler* masm, Register arg) {
  1167   if (c_rarg3 != arg ) {
  1168     masm->mov(c_rarg3, arg);
  1172 void MacroAssembler::stop(const char* msg) {
  1173   address rip = pc();
  1174   pusha(); // get regs on stack
  1175   lea(c_rarg0, ExternalAddress((address) msg));
  1176   lea(c_rarg1, InternalAddress(rip));
  1177   movq(c_rarg2, rsp); // pass pointer to regs array
  1178   andq(rsp, -16); // align stack as required by ABI
  1179   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1180   hlt();
  1183 void MacroAssembler::warn(const char* msg) {
  1184   push(rbp);
  1185   movq(rbp, rsp);
  1186   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1187   push_CPU_state();   // keeps alignment at 16 bytes
  1188   lea(c_rarg0, ExternalAddress((address) msg));
  1189   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  1190   pop_CPU_state();
  1191   mov(rsp, rbp);
  1192   pop(rbp);
  1195 void MacroAssembler::print_state() {
  1196   address rip = pc();
  1197   pusha();            // get regs on stack
  1198   push(rbp);
  1199   movq(rbp, rsp);
  1200   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1201   push_CPU_state();   // keeps alignment at 16 bytes
  1203   lea(c_rarg0, InternalAddress(rip));
  1204   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  1205   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  1207   pop_CPU_state();
  1208   mov(rsp, rbp);
  1209   pop(rbp);
  1210   popa();
  1213 #ifndef PRODUCT
  1214 extern "C" void findpc(intptr_t x);
  1215 #endif
  1217 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  1218   // In order to get locks to work, we need to fake a in_VM state
  1219   if (ShowMessageBoxOnError) {
  1220     JavaThread* thread = JavaThread::current();
  1221     JavaThreadState saved_state = thread->thread_state();
  1222     thread->set_thread_state(_thread_in_vm);
  1223 #ifndef PRODUCT
  1224     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1225       ttyLocker ttyl;
  1226       BytecodeCounter::print();
  1228 #endif
  1229     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  1230     // XXX correct this offset for amd64
  1231     // This is the value of eip which points to where verify_oop will return.
  1232     if (os::message_box(msg, "Execution stopped, print registers?")) {
  1233       print_state64(pc, regs);
  1234       BREAKPOINT;
  1235       assert(false, "start up GDB");
  1237     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  1238   } else {
  1239     ttyLocker ttyl;
  1240     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  1241                     msg);
  1242     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  1246 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  1247   ttyLocker ttyl;
  1248   FlagSetting fs(Debugging, true);
  1249   tty->print_cr("rip = 0x%016lx", pc);
  1250 #ifndef PRODUCT
  1251   tty->cr();
  1252   findpc(pc);
  1253   tty->cr();
  1254 #endif
  1255 #define PRINT_REG(rax, value) \
  1256   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  1257   PRINT_REG(rax, regs[15]);
  1258   PRINT_REG(rbx, regs[12]);
  1259   PRINT_REG(rcx, regs[14]);
  1260   PRINT_REG(rdx, regs[13]);
  1261   PRINT_REG(rdi, regs[8]);
  1262   PRINT_REG(rsi, regs[9]);
  1263   PRINT_REG(rbp, regs[10]);
  1264   PRINT_REG(rsp, regs[11]);
  1265   PRINT_REG(r8 , regs[7]);
  1266   PRINT_REG(r9 , regs[6]);
  1267   PRINT_REG(r10, regs[5]);
  1268   PRINT_REG(r11, regs[4]);
  1269   PRINT_REG(r12, regs[3]);
  1270   PRINT_REG(r13, regs[2]);
  1271   PRINT_REG(r14, regs[1]);
  1272   PRINT_REG(r15, regs[0]);
  1273 #undef PRINT_REG
  1274   // Print some words near top of staack.
  1275   int64_t* rsp = (int64_t*) regs[11];
  1276   int64_t* dump_sp = rsp;
  1277   for (int col1 = 0; col1 < 8; col1++) {
  1278     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1279     os::print_location(tty, *dump_sp++);
  1281   for (int row = 0; row < 25; row++) {
  1282     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1283     for (int col = 0; col < 4; col++) {
  1284       tty->print(" 0x%016lx", *dump_sp++);
  1286     tty->cr();
  1288   // Print some instructions around pc:
  1289   Disassembler::decode((address)pc-64, (address)pc);
  1290   tty->print_cr("--------");
  1291   Disassembler::decode((address)pc, (address)pc+32);
  1294 #endif // _LP64
  1296 // Now versions that are common to 32/64 bit
  1298 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  1299   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  1302 void MacroAssembler::addptr(Register dst, Register src) {
  1303   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1306 void MacroAssembler::addptr(Address dst, Register src) {
  1307   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1310 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  1311   if (reachable(src)) {
  1312     Assembler::addsd(dst, as_Address(src));
  1313   } else {
  1314     lea(rscratch1, src);
  1315     Assembler::addsd(dst, Address(rscratch1, 0));
  1319 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  1320   if (reachable(src)) {
  1321     addss(dst, as_Address(src));
  1322   } else {
  1323     lea(rscratch1, src);
  1324     addss(dst, Address(rscratch1, 0));
  1328 void MacroAssembler::align(int modulus) {
  1329   if (offset() % modulus != 0) {
  1330     nop(modulus - (offset() % modulus));
  1334 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  1335   // Used in sign-masking with aligned address.
  1336   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1337   if (reachable(src)) {
  1338     Assembler::andpd(dst, as_Address(src));
  1339   } else {
  1340     lea(rscratch1, src);
  1341     Assembler::andpd(dst, Address(rscratch1, 0));
  1345 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  1346   // Used in sign-masking with aligned address.
  1347   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1348   if (reachable(src)) {
  1349     Assembler::andps(dst, as_Address(src));
  1350   } else {
  1351     lea(rscratch1, src);
  1352     Assembler::andps(dst, Address(rscratch1, 0));
  1356 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  1357   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  1360 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  1361   pushf();
  1362   if (os::is_MP())
  1363     lock();
  1364   incrementl(counter_addr);
  1365   popf();
  1368 // Writes to stack successive pages until offset reached to check for
  1369 // stack overflow + shadow pages.  This clobbers tmp.
  1370 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1371   movptr(tmp, rsp);
  1372   // Bang stack for total size given plus shadow page size.
  1373   // Bang one page at a time because large size can bang beyond yellow and
  1374   // red zones.
  1375   Label loop;
  1376   bind(loop);
  1377   movl(Address(tmp, (-os::vm_page_size())), size );
  1378   subptr(tmp, os::vm_page_size());
  1379   subl(size, os::vm_page_size());
  1380   jcc(Assembler::greater, loop);
  1382   // Bang down shadow pages too.
  1383   // The -1 because we already subtracted 1 page.
  1384   for (int i = 0; i< StackShadowPages-1; i++) {
  1385     // this could be any sized move but this is can be a debugging crumb
  1386     // so the bigger the better.
  1387     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1391 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1392   assert(UseBiasedLocking, "why call this otherwise?");
  1394   // Check for biased locking unlock case, which is a no-op
  1395   // Note: we do not have to check the thread ID for two reasons.
  1396   // First, the interpreter checks for IllegalMonitorStateException at
  1397   // a higher level. Second, if the bias was revoked while we held the
  1398   // lock, the object could not be rebiased toward another thread, so
  1399   // the bias bit would be clear.
  1400   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1401   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1402   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1403   jcc(Assembler::equal, done);
  1406 void MacroAssembler::c2bool(Register x) {
  1407   // implements x == 0 ? 0 : 1
  1408   // note: must only look at least-significant byte of x
  1409   //       since C-style booleans are stored in one byte
  1410   //       only! (was bug)
  1411   andl(x, 0xFF);
  1412   setb(Assembler::notZero, x);
  1415 // Wouldn't need if AddressLiteral version had new name
  1416 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  1417   Assembler::call(L, rtype);
  1420 void MacroAssembler::call(Register entry) {
  1421   Assembler::call(entry);
  1424 void MacroAssembler::call(AddressLiteral entry) {
  1425   if (reachable(entry)) {
  1426     Assembler::call_literal(entry.target(), entry.rspec());
  1427   } else {
  1428     lea(rscratch1, entry);
  1429     Assembler::call(rscratch1);
  1433 void MacroAssembler::ic_call(address entry) {
  1434   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  1435   movptr(rax, (intptr_t)Universe::non_oop_word());
  1436   call(AddressLiteral(entry, rh));
  1439 // Implementation of call_VM versions
  1441 void MacroAssembler::call_VM(Register oop_result,
  1442                              address entry_point,
  1443                              bool check_exceptions) {
  1444   Label C, E;
  1445   call(C, relocInfo::none);
  1446   jmp(E);
  1448   bind(C);
  1449   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1450   ret(0);
  1452   bind(E);
  1455 void MacroAssembler::call_VM(Register oop_result,
  1456                              address entry_point,
  1457                              Register arg_1,
  1458                              bool check_exceptions) {
  1459   Label C, E;
  1460   call(C, relocInfo::none);
  1461   jmp(E);
  1463   bind(C);
  1464   pass_arg1(this, arg_1);
  1465   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1466   ret(0);
  1468   bind(E);
  1471 void MacroAssembler::call_VM(Register oop_result,
  1472                              address entry_point,
  1473                              Register arg_1,
  1474                              Register arg_2,
  1475                              bool check_exceptions) {
  1476   Label C, E;
  1477   call(C, relocInfo::none);
  1478   jmp(E);
  1480   bind(C);
  1482   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1484   pass_arg2(this, arg_2);
  1485   pass_arg1(this, arg_1);
  1486   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1487   ret(0);
  1489   bind(E);
  1492 void MacroAssembler::call_VM(Register oop_result,
  1493                              address entry_point,
  1494                              Register arg_1,
  1495                              Register arg_2,
  1496                              Register arg_3,
  1497                              bool check_exceptions) {
  1498   Label C, E;
  1499   call(C, relocInfo::none);
  1500   jmp(E);
  1502   bind(C);
  1504   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1505   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1506   pass_arg3(this, arg_3);
  1508   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1509   pass_arg2(this, arg_2);
  1511   pass_arg1(this, arg_1);
  1512   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1513   ret(0);
  1515   bind(E);
  1518 void MacroAssembler::call_VM(Register oop_result,
  1519                              Register last_java_sp,
  1520                              address entry_point,
  1521                              int number_of_arguments,
  1522                              bool check_exceptions) {
  1523   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1524   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1527 void MacroAssembler::call_VM(Register oop_result,
  1528                              Register last_java_sp,
  1529                              address entry_point,
  1530                              Register arg_1,
  1531                              bool check_exceptions) {
  1532   pass_arg1(this, arg_1);
  1533   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1536 void MacroAssembler::call_VM(Register oop_result,
  1537                              Register last_java_sp,
  1538                              address entry_point,
  1539                              Register arg_1,
  1540                              Register arg_2,
  1541                              bool check_exceptions) {
  1543   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1544   pass_arg2(this, arg_2);
  1545   pass_arg1(this, arg_1);
  1546   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1549 void MacroAssembler::call_VM(Register oop_result,
  1550                              Register last_java_sp,
  1551                              address entry_point,
  1552                              Register arg_1,
  1553                              Register arg_2,
  1554                              Register arg_3,
  1555                              bool check_exceptions) {
  1556   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1557   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1558   pass_arg3(this, arg_3);
  1559   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1560   pass_arg2(this, arg_2);
  1561   pass_arg1(this, arg_1);
  1562   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1565 void MacroAssembler::super_call_VM(Register oop_result,
  1566                                    Register last_java_sp,
  1567                                    address entry_point,
  1568                                    int number_of_arguments,
  1569                                    bool check_exceptions) {
  1570   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1571   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1574 void MacroAssembler::super_call_VM(Register oop_result,
  1575                                    Register last_java_sp,
  1576                                    address entry_point,
  1577                                    Register arg_1,
  1578                                    bool check_exceptions) {
  1579   pass_arg1(this, arg_1);
  1580   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1583 void MacroAssembler::super_call_VM(Register oop_result,
  1584                                    Register last_java_sp,
  1585                                    address entry_point,
  1586                                    Register arg_1,
  1587                                    Register arg_2,
  1588                                    bool check_exceptions) {
  1590   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1591   pass_arg2(this, arg_2);
  1592   pass_arg1(this, arg_1);
  1593   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1596 void MacroAssembler::super_call_VM(Register oop_result,
  1597                                    Register last_java_sp,
  1598                                    address entry_point,
  1599                                    Register arg_1,
  1600                                    Register arg_2,
  1601                                    Register arg_3,
  1602                                    bool check_exceptions) {
  1603   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1604   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1605   pass_arg3(this, arg_3);
  1606   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1607   pass_arg2(this, arg_2);
  1608   pass_arg1(this, arg_1);
  1609   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1612 void MacroAssembler::call_VM_base(Register oop_result,
  1613                                   Register java_thread,
  1614                                   Register last_java_sp,
  1615                                   address  entry_point,
  1616                                   int      number_of_arguments,
  1617                                   bool     check_exceptions) {
  1618   // determine java_thread register
  1619   if (!java_thread->is_valid()) {
  1620 #ifdef _LP64
  1621     java_thread = r15_thread;
  1622 #else
  1623     java_thread = rdi;
  1624     get_thread(java_thread);
  1625 #endif // LP64
  1627   // determine last_java_sp register
  1628   if (!last_java_sp->is_valid()) {
  1629     last_java_sp = rsp;
  1631   // debugging support
  1632   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1633   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  1634 #ifdef ASSERT
  1635   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  1636   // r12 is the heapbase.
  1637   LP64_ONLY(if ((UseCompressedOops || UseCompressedKlassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  1638 #endif // ASSERT
  1640   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1641   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1643   // push java thread (becomes first argument of C function)
  1645   NOT_LP64(push(java_thread); number_of_arguments++);
  1646   LP64_ONLY(mov(c_rarg0, r15_thread));
  1648   // set last Java frame before call
  1649   assert(last_java_sp != rbp, "can't use ebp/rbp");
  1651   // Only interpreter should have to set fp
  1652   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  1654   // do the call, remove parameters
  1655   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  1657   // restore the thread (cannot use the pushed argument since arguments
  1658   // may be overwritten by C code generated by an optimizing compiler);
  1659   // however can use the register value directly if it is callee saved.
  1660   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  1661     // rdi & rsi (also r15) are callee saved -> nothing to do
  1662 #ifdef ASSERT
  1663     guarantee(java_thread != rax, "change this code");
  1664     push(rax);
  1665     { Label L;
  1666       get_thread(rax);
  1667       cmpptr(java_thread, rax);
  1668       jcc(Assembler::equal, L);
  1669       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  1670       bind(L);
  1672     pop(rax);
  1673 #endif
  1674   } else {
  1675     get_thread(java_thread);
  1677   // reset last Java frame
  1678   // Only interpreter should have to clear fp
  1679   reset_last_Java_frame(java_thread, true, false);
  1681 #ifndef CC_INTERP
  1682    // C++ interp handles this in the interpreter
  1683   check_and_handle_popframe(java_thread);
  1684   check_and_handle_earlyret(java_thread);
  1685 #endif /* CC_INTERP */
  1687   if (check_exceptions) {
  1688     // check for pending exceptions (java_thread is set upon return)
  1689     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1690 #ifndef _LP64
  1691     jump_cc(Assembler::notEqual,
  1692             RuntimeAddress(StubRoutines::forward_exception_entry()));
  1693 #else
  1694     // This used to conditionally jump to forward_exception however it is
  1695     // possible if we relocate that the branch will not reach. So we must jump
  1696     // around so we can always reach
  1698     Label ok;
  1699     jcc(Assembler::equal, ok);
  1700     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1701     bind(ok);
  1702 #endif // LP64
  1705   // get oop result if there is one and reset the value in the thread
  1706   if (oop_result->is_valid()) {
  1707     get_vm_result(oop_result, java_thread);
  1711 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1713   // Calculate the value for last_Java_sp
  1714   // somewhat subtle. call_VM does an intermediate call
  1715   // which places a return address on the stack just under the
  1716   // stack pointer as the user finsihed with it. This allows
  1717   // use to retrieve last_Java_pc from last_Java_sp[-1].
  1718   // On 32bit we then have to push additional args on the stack to accomplish
  1719   // the actual requested call. On 64bit call_VM only can use register args
  1720   // so the only extra space is the return address that call_VM created.
  1721   // This hopefully explains the calculations here.
  1723 #ifdef _LP64
  1724   // We've pushed one address, correct last_Java_sp
  1725   lea(rax, Address(rsp, wordSize));
  1726 #else
  1727   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  1728 #endif // LP64
  1730   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  1734 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1735   call_VM_leaf_base(entry_point, number_of_arguments);
  1738 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1739   pass_arg0(this, arg_0);
  1740   call_VM_leaf(entry_point, 1);
  1743 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1745   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1746   pass_arg1(this, arg_1);
  1747   pass_arg0(this, arg_0);
  1748   call_VM_leaf(entry_point, 2);
  1751 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1752   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1753   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1754   pass_arg2(this, arg_2);
  1755   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1756   pass_arg1(this, arg_1);
  1757   pass_arg0(this, arg_0);
  1758   call_VM_leaf(entry_point, 3);
  1761 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  1762   pass_arg0(this, arg_0);
  1763   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1766 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1768   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1769   pass_arg1(this, arg_1);
  1770   pass_arg0(this, arg_0);
  1771   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1774 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1775   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1776   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1777   pass_arg2(this, arg_2);
  1778   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1779   pass_arg1(this, arg_1);
  1780   pass_arg0(this, arg_0);
  1781   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1784 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  1785   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  1786   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1787   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1788   pass_arg3(this, arg_3);
  1789   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1790   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1791   pass_arg2(this, arg_2);
  1792   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1793   pass_arg1(this, arg_1);
  1794   pass_arg0(this, arg_0);
  1795   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  1798 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  1799   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  1800   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  1801   verify_oop(oop_result, "broken oop in call_VM_base");
  1804 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  1805   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  1806   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  1809 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1812 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1815 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  1816   if (reachable(src1)) {
  1817     cmpl(as_Address(src1), imm);
  1818   } else {
  1819     lea(rscratch1, src1);
  1820     cmpl(Address(rscratch1, 0), imm);
  1824 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  1825   assert(!src2.is_lval(), "use cmpptr");
  1826   if (reachable(src2)) {
  1827     cmpl(src1, as_Address(src2));
  1828   } else {
  1829     lea(rscratch1, src2);
  1830     cmpl(src1, Address(rscratch1, 0));
  1834 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  1835   Assembler::cmpl(src1, imm);
  1838 void MacroAssembler::cmp32(Register src1, Address src2) {
  1839   Assembler::cmpl(src1, src2);
  1842 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1843   ucomisd(opr1, opr2);
  1845   Label L;
  1846   if (unordered_is_less) {
  1847     movl(dst, -1);
  1848     jcc(Assembler::parity, L);
  1849     jcc(Assembler::below , L);
  1850     movl(dst, 0);
  1851     jcc(Assembler::equal , L);
  1852     increment(dst);
  1853   } else { // unordered is greater
  1854     movl(dst, 1);
  1855     jcc(Assembler::parity, L);
  1856     jcc(Assembler::above , L);
  1857     movl(dst, 0);
  1858     jcc(Assembler::equal , L);
  1859     decrementl(dst);
  1861   bind(L);
  1864 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1865   ucomiss(opr1, opr2);
  1867   Label L;
  1868   if (unordered_is_less) {
  1869     movl(dst, -1);
  1870     jcc(Assembler::parity, L);
  1871     jcc(Assembler::below , L);
  1872     movl(dst, 0);
  1873     jcc(Assembler::equal , L);
  1874     increment(dst);
  1875   } else { // unordered is greater
  1876     movl(dst, 1);
  1877     jcc(Assembler::parity, L);
  1878     jcc(Assembler::above , L);
  1879     movl(dst, 0);
  1880     jcc(Assembler::equal , L);
  1881     decrementl(dst);
  1883   bind(L);
  1887 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  1888   if (reachable(src1)) {
  1889     cmpb(as_Address(src1), imm);
  1890   } else {
  1891     lea(rscratch1, src1);
  1892     cmpb(Address(rscratch1, 0), imm);
  1896 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  1897 #ifdef _LP64
  1898   if (src2.is_lval()) {
  1899     movptr(rscratch1, src2);
  1900     Assembler::cmpq(src1, rscratch1);
  1901   } else if (reachable(src2)) {
  1902     cmpq(src1, as_Address(src2));
  1903   } else {
  1904     lea(rscratch1, src2);
  1905     Assembler::cmpq(src1, Address(rscratch1, 0));
  1907 #else
  1908   if (src2.is_lval()) {
  1909     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1910   } else {
  1911     cmpl(src1, as_Address(src2));
  1913 #endif // _LP64
  1916 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  1917   assert(src2.is_lval(), "not a mem-mem compare");
  1918 #ifdef _LP64
  1919   // moves src2's literal address
  1920   movptr(rscratch1, src2);
  1921   Assembler::cmpq(src1, rscratch1);
  1922 #else
  1923   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1924 #endif // _LP64
  1927 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  1928   if (reachable(adr)) {
  1929     if (os::is_MP())
  1930       lock();
  1931     cmpxchgptr(reg, as_Address(adr));
  1932   } else {
  1933     lea(rscratch1, adr);
  1934     if (os::is_MP())
  1935       lock();
  1936     cmpxchgptr(reg, Address(rscratch1, 0));
  1940 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  1941   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  1944 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  1945   if (reachable(src)) {
  1946     Assembler::comisd(dst, as_Address(src));
  1947   } else {
  1948     lea(rscratch1, src);
  1949     Assembler::comisd(dst, Address(rscratch1, 0));
  1953 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  1954   if (reachable(src)) {
  1955     Assembler::comiss(dst, as_Address(src));
  1956   } else {
  1957     lea(rscratch1, src);
  1958     Assembler::comiss(dst, Address(rscratch1, 0));
  1963 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  1964   Condition negated_cond = negate_condition(cond);
  1965   Label L;
  1966   jcc(negated_cond, L);
  1967   atomic_incl(counter_addr);
  1968   bind(L);
  1971 int MacroAssembler::corrected_idivl(Register reg) {
  1972   // Full implementation of Java idiv and irem; checks for
  1973   // special case as described in JVM spec., p.243 & p.271.
  1974   // The function returns the (pc) offset of the idivl
  1975   // instruction - may be needed for implicit exceptions.
  1976   //
  1977   //         normal case                           special case
  1978   //
  1979   // input : rax,: dividend                         min_int
  1980   //         reg: divisor   (may not be rax,/rdx)   -1
  1981   //
  1982   // output: rax,: quotient  (= rax, idiv reg)       min_int
  1983   //         rdx: remainder (= rax, irem reg)       0
  1984   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  1985   const int min_int = 0x80000000;
  1986   Label normal_case, special_case;
  1988   // check for special case
  1989   cmpl(rax, min_int);
  1990   jcc(Assembler::notEqual, normal_case);
  1991   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  1992   cmpl(reg, -1);
  1993   jcc(Assembler::equal, special_case);
  1995   // handle normal case
  1996   bind(normal_case);
  1997   cdql();
  1998   int idivl_offset = offset();
  1999   idivl(reg);
  2001   // normal and special case exit
  2002   bind(special_case);
  2004   return idivl_offset;
  2009 void MacroAssembler::decrementl(Register reg, int value) {
  2010   if (value == min_jint) {subl(reg, value) ; return; }
  2011   if (value <  0) { incrementl(reg, -value); return; }
  2012   if (value == 0) {                        ; return; }
  2013   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2014   /* else */      { subl(reg, value)       ; return; }
  2017 void MacroAssembler::decrementl(Address dst, int value) {
  2018   if (value == min_jint) {subl(dst, value) ; return; }
  2019   if (value <  0) { incrementl(dst, -value); return; }
  2020   if (value == 0) {                        ; return; }
  2021   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2022   /* else */      { subl(dst, value)       ; return; }
  2025 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2026   assert (shift_value > 0, "illegal shift value");
  2027   Label _is_positive;
  2028   testl (reg, reg);
  2029   jcc (Assembler::positive, _is_positive);
  2030   int offset = (1 << shift_value) - 1 ;
  2032   if (offset == 1) {
  2033     incrementl(reg);
  2034   } else {
  2035     addl(reg, offset);
  2038   bind (_is_positive);
  2039   sarl(reg, shift_value);
  2042 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2043   if (reachable(src)) {
  2044     Assembler::divsd(dst, as_Address(src));
  2045   } else {
  2046     lea(rscratch1, src);
  2047     Assembler::divsd(dst, Address(rscratch1, 0));
  2051 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2052   if (reachable(src)) {
  2053     Assembler::divss(dst, as_Address(src));
  2054   } else {
  2055     lea(rscratch1, src);
  2056     Assembler::divss(dst, Address(rscratch1, 0));
  2060 // !defined(COMPILER2) is because of stupid core builds
  2061 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2062 void MacroAssembler::empty_FPU_stack() {
  2063   if (VM_Version::supports_mmx()) {
  2064     emms();
  2065   } else {
  2066     for (int i = 8; i-- > 0; ) ffree(i);
  2069 #endif // !LP64 || C1 || !C2
  2072 // Defines obj, preserves var_size_in_bytes
  2073 void MacroAssembler::eden_allocate(Register obj,
  2074                                    Register var_size_in_bytes,
  2075                                    int con_size_in_bytes,
  2076                                    Register t1,
  2077                                    Label& slow_case) {
  2078   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2079   assert_different_registers(obj, var_size_in_bytes, t1);
  2080   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2081     jmp(slow_case);
  2082   } else {
  2083     Register end = t1;
  2084     Label retry;
  2085     bind(retry);
  2086     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2087     movptr(obj, heap_top);
  2088     if (var_size_in_bytes == noreg) {
  2089       lea(end, Address(obj, con_size_in_bytes));
  2090     } else {
  2091       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2093     // if end < obj then we wrapped around => object too long => slow case
  2094     cmpptr(end, obj);
  2095     jcc(Assembler::below, slow_case);
  2096     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2097     jcc(Assembler::above, slow_case);
  2098     // Compare obj with the top addr, and if still equal, store the new top addr in
  2099     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2100     // it otherwise. Use lock prefix for atomicity on MPs.
  2101     locked_cmpxchgptr(end, heap_top);
  2102     jcc(Assembler::notEqual, retry);
  2106 void MacroAssembler::enter() {
  2107   push(rbp);
  2108   mov(rbp, rsp);
  2111 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2112 void MacroAssembler::fat_nop() {
  2113   if (UseAddressNop) {
  2114     addr_nop_5();
  2115   } else {
  2116     emit_int8(0x26); // es:
  2117     emit_int8(0x2e); // cs:
  2118     emit_int8(0x64); // fs:
  2119     emit_int8(0x65); // gs:
  2120     emit_int8((unsigned char)0x90);
  2124 void MacroAssembler::fcmp(Register tmp) {
  2125   fcmp(tmp, 1, true, true);
  2128 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  2129   assert(!pop_right || pop_left, "usage error");
  2130   if (VM_Version::supports_cmov()) {
  2131     assert(tmp == noreg, "unneeded temp");
  2132     if (pop_left) {
  2133       fucomip(index);
  2134     } else {
  2135       fucomi(index);
  2137     if (pop_right) {
  2138       fpop();
  2140   } else {
  2141     assert(tmp != noreg, "need temp");
  2142     if (pop_left) {
  2143       if (pop_right) {
  2144         fcompp();
  2145       } else {
  2146         fcomp(index);
  2148     } else {
  2149       fcom(index);
  2151     // convert FPU condition into eflags condition via rax,
  2152     save_rax(tmp);
  2153     fwait(); fnstsw_ax();
  2154     sahf();
  2155     restore_rax(tmp);
  2157   // condition codes set as follows:
  2158   //
  2159   // CF (corresponds to C0) if x < y
  2160   // PF (corresponds to C2) if unordered
  2161   // ZF (corresponds to C3) if x = y
  2164 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  2165   fcmp2int(dst, unordered_is_less, 1, true, true);
  2168 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  2169   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  2170   Label L;
  2171   if (unordered_is_less) {
  2172     movl(dst, -1);
  2173     jcc(Assembler::parity, L);
  2174     jcc(Assembler::below , L);
  2175     movl(dst, 0);
  2176     jcc(Assembler::equal , L);
  2177     increment(dst);
  2178   } else { // unordered is greater
  2179     movl(dst, 1);
  2180     jcc(Assembler::parity, L);
  2181     jcc(Assembler::above , L);
  2182     movl(dst, 0);
  2183     jcc(Assembler::equal , L);
  2184     decrementl(dst);
  2186   bind(L);
  2189 void MacroAssembler::fld_d(AddressLiteral src) {
  2190   fld_d(as_Address(src));
  2193 void MacroAssembler::fld_s(AddressLiteral src) {
  2194   fld_s(as_Address(src));
  2197 void MacroAssembler::fld_x(AddressLiteral src) {
  2198   Assembler::fld_x(as_Address(src));
  2201 void MacroAssembler::fldcw(AddressLiteral src) {
  2202   Assembler::fldcw(as_Address(src));
  2205 void MacroAssembler::pow_exp_core_encoding() {
  2206   // kills rax, rcx, rdx
  2207   subptr(rsp,sizeof(jdouble));
  2208   // computes 2^X. Stack: X ...
  2209   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  2210   // keep it on the thread's stack to compute 2^int(X) later
  2211   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  2212   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  2213   fld_s(0);                 // Stack: X X ...
  2214   frndint();                // Stack: int(X) X ...
  2215   fsuba(1);                 // Stack: int(X) X-int(X) ...
  2216   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  2217   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  2218   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  2219   faddp(1);                 // Stack: 2^(X-int(X))
  2220   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  2221   // shift int(X)+1023 to exponent position.
  2222   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  2223   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  2224   // values so detect them and set result to NaN.
  2225   movl(rax,Address(rsp,0));
  2226   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  2227   addl(rax, 1023);
  2228   movl(rdx,rax);
  2229   shll(rax,20);
  2230   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  2231   addl(rdx,1);
  2232   // Check that 1 < int(X)+1023+1 < 2048
  2233   // in 3 steps:
  2234   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  2235   // 2- (int(X)+1023+1)&-2048 != 0
  2236   // 3- (int(X)+1023+1)&-2048 != 1
  2237   // Do 2- first because addl just updated the flags.
  2238   cmov32(Assembler::equal,rax,rcx);
  2239   cmpl(rdx,1);
  2240   cmov32(Assembler::equal,rax,rcx);
  2241   testl(rdx,rcx);
  2242   cmov32(Assembler::notEqual,rax,rcx);
  2243   movl(Address(rsp,4),rax);
  2244   movl(Address(rsp,0),0);
  2245   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  2246   addptr(rsp,sizeof(jdouble));
  2249 void MacroAssembler::increase_precision() {
  2250   subptr(rsp, BytesPerWord);
  2251   fnstcw(Address(rsp, 0));
  2252   movl(rax, Address(rsp, 0));
  2253   orl(rax, 0x300);
  2254   push(rax);
  2255   fldcw(Address(rsp, 0));
  2256   pop(rax);
  2259 void MacroAssembler::restore_precision() {
  2260   fldcw(Address(rsp, 0));
  2261   addptr(rsp, BytesPerWord);
  2264 void MacroAssembler::fast_pow() {
  2265   // computes X^Y = 2^(Y * log2(X))
  2266   // if fast computation is not possible, result is NaN. Requires
  2267   // fallback from user of this macro.
  2268   // increase precision for intermediate steps of the computation
  2269   increase_precision();
  2270   fyl2x();                 // Stack: (Y*log2(X)) ...
  2271   pow_exp_core_encoding(); // Stack: exp(X) ...
  2272   restore_precision();
  2275 void MacroAssembler::fast_exp() {
  2276   // computes exp(X) = 2^(X * log2(e))
  2277   // if fast computation is not possible, result is NaN. Requires
  2278   // fallback from user of this macro.
  2279   // increase precision for intermediate steps of the computation
  2280   increase_precision();
  2281   fldl2e();                // Stack: log2(e) X ...
  2282   fmulp(1);                // Stack: (X*log2(e)) ...
  2283   pow_exp_core_encoding(); // Stack: exp(X) ...
  2284   restore_precision();
  2287 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  2288   // kills rax, rcx, rdx
  2289   // pow and exp needs 2 extra registers on the fpu stack.
  2290   Label slow_case, done;
  2291   Register tmp = noreg;
  2292   if (!VM_Version::supports_cmov()) {
  2293     // fcmp needs a temporary so preserve rdx,
  2294     tmp = rdx;
  2296   Register tmp2 = rax;
  2297   Register tmp3 = rcx;
  2299   if (is_exp) {
  2300     // Stack: X
  2301     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  2302     fast_exp();                 // Stack: exp(X) X
  2303     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  2304     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  2305     jcc(Assembler::parity, slow_case);
  2306     // get rid of duplicate argument. Stack: exp(X)
  2307     if (num_fpu_regs_in_use > 0) {
  2308       fxch();
  2309       fpop();
  2310     } else {
  2311       ffree(1);
  2313     jmp(done);
  2314   } else {
  2315     // Stack: X Y
  2316     Label x_negative, y_odd;
  2318     fldz();                     // Stack: 0 X Y
  2319     fcmp(tmp, 1, true, false);  // Stack: X Y
  2320     jcc(Assembler::above, x_negative);
  2322     // X >= 0
  2324     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2325     fld_s(1);                   // Stack: X Y X Y
  2326     fast_pow();                 // Stack: X^Y X Y
  2327     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  2328     // X^Y not equal to itself: X^Y is NaN go to slow case.
  2329     jcc(Assembler::parity, slow_case);
  2330     // get rid of duplicate arguments. Stack: X^Y
  2331     if (num_fpu_regs_in_use > 0) {
  2332       fxch(); fpop();
  2333       fxch(); fpop();
  2334     } else {
  2335       ffree(2);
  2336       ffree(1);
  2338     jmp(done);
  2340     // X <= 0
  2341     bind(x_negative);
  2343     fld_s(1);                   // Stack: Y X Y
  2344     frndint();                  // Stack: int(Y) X Y
  2345     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  2346     jcc(Assembler::notEqual, slow_case);
  2348     subptr(rsp, 8);
  2350     // For X^Y, when X < 0, Y has to be an integer and the final
  2351     // result depends on whether it's odd or even. We just checked
  2352     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  2353     // integer to test its parity. If int(Y) is huge and doesn't fit
  2354     // in the 64 bit integer range, the integer indefinite value will
  2355     // end up in the gp registers. Huge numbers are all even, the
  2356     // integer indefinite number is even so it's fine.
  2358 #ifdef ASSERT
  2359     // Let's check we don't end up with an integer indefinite number
  2360     // when not expected. First test for huge numbers: check whether
  2361     // int(Y)+1 == int(Y) which is true for very large numbers and
  2362     // those are all even. A 64 bit integer is guaranteed to not
  2363     // overflow for numbers where y+1 != y (when precision is set to
  2364     // double precision).
  2365     Label y_not_huge;
  2367     fld1();                     // Stack: 1 int(Y) X Y
  2368     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  2370 #ifdef _LP64
  2371     // trip to memory to force the precision down from double extended
  2372     // precision
  2373     fstp_d(Address(rsp, 0));
  2374     fld_d(Address(rsp, 0));
  2375 #endif
  2377     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  2378 #endif
  2380     // move int(Y) as 64 bit integer to thread's stack
  2381     fistp_d(Address(rsp,0));    // Stack: X Y
  2383 #ifdef ASSERT
  2384     jcc(Assembler::notEqual, y_not_huge);
  2386     // Y is huge so we know it's even. It may not fit in a 64 bit
  2387     // integer and we don't want the debug code below to see the
  2388     // integer indefinite value so overwrite int(Y) on the thread's
  2389     // stack with 0.
  2390     movl(Address(rsp, 0), 0);
  2391     movl(Address(rsp, 4), 0);
  2393     bind(y_not_huge);
  2394 #endif
  2396     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2397     fld_s(1);                   // Stack: X Y X Y
  2398     fabs();                     // Stack: abs(X) Y X Y
  2399     fast_pow();                 // Stack: abs(X)^Y X Y
  2400     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  2401     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  2403     pop(tmp2);
  2404     NOT_LP64(pop(tmp3));
  2405     jcc(Assembler::parity, slow_case);
  2407 #ifdef ASSERT
  2408     // Check that int(Y) is not integer indefinite value (int
  2409     // overflow). Shouldn't happen because for values that would
  2410     // overflow, 1+int(Y)==Y which was tested earlier.
  2411 #ifndef _LP64
  2413       Label integer;
  2414       testl(tmp2, tmp2);
  2415       jcc(Assembler::notZero, integer);
  2416       cmpl(tmp3, 0x80000000);
  2417       jcc(Assembler::notZero, integer);
  2418       STOP("integer indefinite value shouldn't be seen here");
  2419       bind(integer);
  2421 #else
  2423       Label integer;
  2424       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  2425       shlq(tmp3, 1);
  2426       jcc(Assembler::carryClear, integer);
  2427       jcc(Assembler::notZero, integer);
  2428       STOP("integer indefinite value shouldn't be seen here");
  2429       bind(integer);
  2431 #endif
  2432 #endif
  2434     // get rid of duplicate arguments. Stack: X^Y
  2435     if (num_fpu_regs_in_use > 0) {
  2436       fxch(); fpop();
  2437       fxch(); fpop();
  2438     } else {
  2439       ffree(2);
  2440       ffree(1);
  2443     testl(tmp2, 1);
  2444     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  2445     // X <= 0, Y even: X^Y = -abs(X)^Y
  2447     fchs();                     // Stack: -abs(X)^Y Y
  2448     jmp(done);
  2451   // slow case: runtime call
  2452   bind(slow_case);
  2454   fpop();                       // pop incorrect result or int(Y)
  2456   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  2457                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  2459   // Come here with result in F-TOS
  2460   bind(done);
  2463 void MacroAssembler::fpop() {
  2464   ffree();
  2465   fincstp();
  2468 void MacroAssembler::fremr(Register tmp) {
  2469   save_rax(tmp);
  2470   { Label L;
  2471     bind(L);
  2472     fprem();
  2473     fwait(); fnstsw_ax();
  2474 #ifdef _LP64
  2475     testl(rax, 0x400);
  2476     jcc(Assembler::notEqual, L);
  2477 #else
  2478     sahf();
  2479     jcc(Assembler::parity, L);
  2480 #endif // _LP64
  2482   restore_rax(tmp);
  2483   // Result is in ST0.
  2484   // Note: fxch & fpop to get rid of ST1
  2485   // (otherwise FPU stack could overflow eventually)
  2486   fxch(1);
  2487   fpop();
  2491 void MacroAssembler::incrementl(AddressLiteral dst) {
  2492   if (reachable(dst)) {
  2493     incrementl(as_Address(dst));
  2494   } else {
  2495     lea(rscratch1, dst);
  2496     incrementl(Address(rscratch1, 0));
  2500 void MacroAssembler::incrementl(ArrayAddress dst) {
  2501   incrementl(as_Address(dst));
  2504 void MacroAssembler::incrementl(Register reg, int value) {
  2505   if (value == min_jint) {addl(reg, value) ; return; }
  2506   if (value <  0) { decrementl(reg, -value); return; }
  2507   if (value == 0) {                        ; return; }
  2508   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  2509   /* else */      { addl(reg, value)       ; return; }
  2512 void MacroAssembler::incrementl(Address dst, int value) {
  2513   if (value == min_jint) {addl(dst, value) ; return; }
  2514   if (value <  0) { decrementl(dst, -value); return; }
  2515   if (value == 0) {                        ; return; }
  2516   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  2517   /* else */      { addl(dst, value)       ; return; }
  2520 void MacroAssembler::jump(AddressLiteral dst) {
  2521   if (reachable(dst)) {
  2522     jmp_literal(dst.target(), dst.rspec());
  2523   } else {
  2524     lea(rscratch1, dst);
  2525     jmp(rscratch1);
  2529 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  2530   if (reachable(dst)) {
  2531     InstructionMark im(this);
  2532     relocate(dst.reloc());
  2533     const int short_size = 2;
  2534     const int long_size = 6;
  2535     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  2536     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  2537       // 0111 tttn #8-bit disp
  2538       emit_int8(0x70 | cc);
  2539       emit_int8((offs - short_size) & 0xFF);
  2540     } else {
  2541       // 0000 1111 1000 tttn #32-bit disp
  2542       emit_int8(0x0F);
  2543       emit_int8((unsigned char)(0x80 | cc));
  2544       emit_int32(offs - long_size);
  2546   } else {
  2547 #ifdef ASSERT
  2548     warning("reversing conditional branch");
  2549 #endif /* ASSERT */
  2550     Label skip;
  2551     jccb(reverse[cc], skip);
  2552     lea(rscratch1, dst);
  2553     Assembler::jmp(rscratch1);
  2554     bind(skip);
  2558 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  2559   if (reachable(src)) {
  2560     Assembler::ldmxcsr(as_Address(src));
  2561   } else {
  2562     lea(rscratch1, src);
  2563     Assembler::ldmxcsr(Address(rscratch1, 0));
  2567 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  2568   int off;
  2569   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2570     off = offset();
  2571     movsbl(dst, src); // movsxb
  2572   } else {
  2573     off = load_unsigned_byte(dst, src);
  2574     shll(dst, 24);
  2575     sarl(dst, 24);
  2577   return off;
  2580 // Note: load_signed_short used to be called load_signed_word.
  2581 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  2582 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  2583 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  2584 int MacroAssembler::load_signed_short(Register dst, Address src) {
  2585   int off;
  2586   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2587     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  2588     // version but this is what 64bit has always done. This seems to imply
  2589     // that users are only using 32bits worth.
  2590     off = offset();
  2591     movswl(dst, src); // movsxw
  2592   } else {
  2593     off = load_unsigned_short(dst, src);
  2594     shll(dst, 16);
  2595     sarl(dst, 16);
  2597   return off;
  2600 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  2601   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2602   // and "3.9 Partial Register Penalties", p. 22).
  2603   int off;
  2604   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  2605     off = offset();
  2606     movzbl(dst, src); // movzxb
  2607   } else {
  2608     xorl(dst, dst);
  2609     off = offset();
  2610     movb(dst, src);
  2612   return off;
  2615 // Note: load_unsigned_short used to be called load_unsigned_word.
  2616 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  2617   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2618   // and "3.9 Partial Register Penalties", p. 22).
  2619   int off;
  2620   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  2621     off = offset();
  2622     movzwl(dst, src); // movzxw
  2623   } else {
  2624     xorl(dst, dst);
  2625     off = offset();
  2626     movw(dst, src);
  2628   return off;
  2631 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  2632   switch (size_in_bytes) {
  2633 #ifndef _LP64
  2634   case  8:
  2635     assert(dst2 != noreg, "second dest register required");
  2636     movl(dst,  src);
  2637     movl(dst2, src.plus_disp(BytesPerInt));
  2638     break;
  2639 #else
  2640   case  8:  movq(dst, src); break;
  2641 #endif
  2642   case  4:  movl(dst, src); break;
  2643   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  2644   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  2645   default:  ShouldNotReachHere();
  2649 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  2650   switch (size_in_bytes) {
  2651 #ifndef _LP64
  2652   case  8:
  2653     assert(src2 != noreg, "second source register required");
  2654     movl(dst,                        src);
  2655     movl(dst.plus_disp(BytesPerInt), src2);
  2656     break;
  2657 #else
  2658   case  8:  movq(dst, src); break;
  2659 #endif
  2660   case  4:  movl(dst, src); break;
  2661   case  2:  movw(dst, src); break;
  2662   case  1:  movb(dst, src); break;
  2663   default:  ShouldNotReachHere();
  2667 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  2668   if (reachable(dst)) {
  2669     movl(as_Address(dst), src);
  2670   } else {
  2671     lea(rscratch1, dst);
  2672     movl(Address(rscratch1, 0), src);
  2676 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  2677   if (reachable(src)) {
  2678     movl(dst, as_Address(src));
  2679   } else {
  2680     lea(rscratch1, src);
  2681     movl(dst, Address(rscratch1, 0));
  2685 // C++ bool manipulation
  2687 void MacroAssembler::movbool(Register dst, Address src) {
  2688   if(sizeof(bool) == 1)
  2689     movb(dst, src);
  2690   else if(sizeof(bool) == 2)
  2691     movw(dst, src);
  2692   else if(sizeof(bool) == 4)
  2693     movl(dst, src);
  2694   else
  2695     // unsupported
  2696     ShouldNotReachHere();
  2699 void MacroAssembler::movbool(Address dst, bool boolconst) {
  2700   if(sizeof(bool) == 1)
  2701     movb(dst, (int) boolconst);
  2702   else if(sizeof(bool) == 2)
  2703     movw(dst, (int) boolconst);
  2704   else if(sizeof(bool) == 4)
  2705     movl(dst, (int) boolconst);
  2706   else
  2707     // unsupported
  2708     ShouldNotReachHere();
  2711 void MacroAssembler::movbool(Address dst, Register src) {
  2712   if(sizeof(bool) == 1)
  2713     movb(dst, src);
  2714   else if(sizeof(bool) == 2)
  2715     movw(dst, src);
  2716   else if(sizeof(bool) == 4)
  2717     movl(dst, src);
  2718   else
  2719     // unsupported
  2720     ShouldNotReachHere();
  2723 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  2724   movb(as_Address(dst), src);
  2727 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  2728   if (reachable(src)) {
  2729     movdl(dst, as_Address(src));
  2730   } else {
  2731     lea(rscratch1, src);
  2732     movdl(dst, Address(rscratch1, 0));
  2736 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  2737   if (reachable(src)) {
  2738     movq(dst, as_Address(src));
  2739   } else {
  2740     lea(rscratch1, src);
  2741     movq(dst, Address(rscratch1, 0));
  2745 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  2746   if (reachable(src)) {
  2747     if (UseXmmLoadAndClearUpper) {
  2748       movsd (dst, as_Address(src));
  2749     } else {
  2750       movlpd(dst, as_Address(src));
  2752   } else {
  2753     lea(rscratch1, src);
  2754     if (UseXmmLoadAndClearUpper) {
  2755       movsd (dst, Address(rscratch1, 0));
  2756     } else {
  2757       movlpd(dst, Address(rscratch1, 0));
  2762 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  2763   if (reachable(src)) {
  2764     movss(dst, as_Address(src));
  2765   } else {
  2766     lea(rscratch1, src);
  2767     movss(dst, Address(rscratch1, 0));
  2771 void MacroAssembler::movptr(Register dst, Register src) {
  2772   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2775 void MacroAssembler::movptr(Register dst, Address src) {
  2776   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2779 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  2780 void MacroAssembler::movptr(Register dst, intptr_t src) {
  2781   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  2784 void MacroAssembler::movptr(Address dst, Register src) {
  2785   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2788 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  2789   if (reachable(src)) {
  2790     Assembler::movdqu(dst, as_Address(src));
  2791   } else {
  2792     lea(rscratch1, src);
  2793     Assembler::movdqu(dst, Address(rscratch1, 0));
  2797 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  2798   if (reachable(src)) {
  2799     Assembler::movdqa(dst, as_Address(src));
  2800   } else {
  2801     lea(rscratch1, src);
  2802     Assembler::movdqa(dst, Address(rscratch1, 0));
  2806 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  2807   if (reachable(src)) {
  2808     Assembler::movsd(dst, as_Address(src));
  2809   } else {
  2810     lea(rscratch1, src);
  2811     Assembler::movsd(dst, Address(rscratch1, 0));
  2815 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  2816   if (reachable(src)) {
  2817     Assembler::movss(dst, as_Address(src));
  2818   } else {
  2819     lea(rscratch1, src);
  2820     Assembler::movss(dst, Address(rscratch1, 0));
  2824 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  2825   if (reachable(src)) {
  2826     Assembler::mulsd(dst, as_Address(src));
  2827   } else {
  2828     lea(rscratch1, src);
  2829     Assembler::mulsd(dst, Address(rscratch1, 0));
  2833 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  2834   if (reachable(src)) {
  2835     Assembler::mulss(dst, as_Address(src));
  2836   } else {
  2837     lea(rscratch1, src);
  2838     Assembler::mulss(dst, Address(rscratch1, 0));
  2842 void MacroAssembler::null_check(Register reg, int offset) {
  2843   if (needs_explicit_null_check(offset)) {
  2844     // provoke OS NULL exception if reg = NULL by
  2845     // accessing M[reg] w/o changing any (non-CC) registers
  2846     // NOTE: cmpl is plenty here to provoke a segv
  2847     cmpptr(rax, Address(reg, 0));
  2848     // Note: should probably use testl(rax, Address(reg, 0));
  2849     //       may be shorter code (however, this version of
  2850     //       testl needs to be implemented first)
  2851   } else {
  2852     // nothing to do, (later) access of M[reg + offset]
  2853     // will provoke OS NULL exception if reg = NULL
  2857 void MacroAssembler::os_breakpoint() {
  2858   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  2859   // (e.g., MSVC can't call ps() otherwise)
  2860   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  2863 void MacroAssembler::pop_CPU_state() {
  2864   pop_FPU_state();
  2865   pop_IU_state();
  2868 void MacroAssembler::pop_FPU_state() {
  2869   NOT_LP64(frstor(Address(rsp, 0));)
  2870   LP64_ONLY(fxrstor(Address(rsp, 0));)
  2871   addptr(rsp, FPUStateSizeInWords * wordSize);
  2874 void MacroAssembler::pop_IU_state() {
  2875   popa();
  2876   LP64_ONLY(addq(rsp, 8));
  2877   popf();
  2880 // Save Integer and Float state
  2881 // Warning: Stack must be 16 byte aligned (64bit)
  2882 void MacroAssembler::push_CPU_state() {
  2883   push_IU_state();
  2884   push_FPU_state();
  2887 void MacroAssembler::push_FPU_state() {
  2888   subptr(rsp, FPUStateSizeInWords * wordSize);
  2889 #ifndef _LP64
  2890   fnsave(Address(rsp, 0));
  2891   fwait();
  2892 #else
  2893   fxsave(Address(rsp, 0));
  2894 #endif // LP64
  2897 void MacroAssembler::push_IU_state() {
  2898   // Push flags first because pusha kills them
  2899   pushf();
  2900   // Make sure rsp stays 16-byte aligned
  2901   LP64_ONLY(subq(rsp, 8));
  2902   pusha();
  2905 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  2906   // determine java_thread register
  2907   if (!java_thread->is_valid()) {
  2908     java_thread = rdi;
  2909     get_thread(java_thread);
  2911   // we must set sp to zero to clear frame
  2912   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  2913   if (clear_fp) {
  2914     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  2917   if (clear_pc)
  2918     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  2922 void MacroAssembler::restore_rax(Register tmp) {
  2923   if (tmp == noreg) pop(rax);
  2924   else if (tmp != rax) mov(rax, tmp);
  2927 void MacroAssembler::round_to(Register reg, int modulus) {
  2928   addptr(reg, modulus - 1);
  2929   andptr(reg, -modulus);
  2932 void MacroAssembler::save_rax(Register tmp) {
  2933   if (tmp == noreg) push(rax);
  2934   else if (tmp != rax) mov(tmp, rax);
  2937 // Write serialization page so VM thread can do a pseudo remote membar.
  2938 // We use the current thread pointer to calculate a thread specific
  2939 // offset to write to within the page. This minimizes bus traffic
  2940 // due to cache line collision.
  2941 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  2942   movl(tmp, thread);
  2943   shrl(tmp, os::get_serialize_page_shift_count());
  2944   andl(tmp, (os::vm_page_size() - sizeof(int)));
  2946   Address index(noreg, tmp, Address::times_1);
  2947   ExternalAddress page(os::get_memory_serialize_page());
  2949   // Size of store must match masking code above
  2950   movl(as_Address(ArrayAddress(page, index)), tmp);
  2953 // Calls to C land
  2954 //
  2955 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  2956 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  2957 // has to be reset to 0. This is required to allow proper stack traversal.
  2958 void MacroAssembler::set_last_Java_frame(Register java_thread,
  2959                                          Register last_java_sp,
  2960                                          Register last_java_fp,
  2961                                          address  last_java_pc) {
  2962   // determine java_thread register
  2963   if (!java_thread->is_valid()) {
  2964     java_thread = rdi;
  2965     get_thread(java_thread);
  2967   // determine last_java_sp register
  2968   if (!last_java_sp->is_valid()) {
  2969     last_java_sp = rsp;
  2972   // last_java_fp is optional
  2974   if (last_java_fp->is_valid()) {
  2975     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  2978   // last_java_pc is optional
  2980   if (last_java_pc != NULL) {
  2981     lea(Address(java_thread,
  2982                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  2983         InternalAddress(last_java_pc));
  2986   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  2989 void MacroAssembler::shlptr(Register dst, int imm8) {
  2990   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  2993 void MacroAssembler::shrptr(Register dst, int imm8) {
  2994   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  2997 void MacroAssembler::sign_extend_byte(Register reg) {
  2998   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  2999     movsbl(reg, reg); // movsxb
  3000   } else {
  3001     shll(reg, 24);
  3002     sarl(reg, 24);
  3006 void MacroAssembler::sign_extend_short(Register reg) {
  3007   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3008     movswl(reg, reg); // movsxw
  3009   } else {
  3010     shll(reg, 16);
  3011     sarl(reg, 16);
  3015 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3016   assert(reachable(src), "Address should be reachable");
  3017   testl(dst, as_Address(src));
  3020 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3021   if (reachable(src)) {
  3022     Assembler::sqrtsd(dst, as_Address(src));
  3023   } else {
  3024     lea(rscratch1, src);
  3025     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3029 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3030   if (reachable(src)) {
  3031     Assembler::sqrtss(dst, as_Address(src));
  3032   } else {
  3033     lea(rscratch1, src);
  3034     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3038 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3039   if (reachable(src)) {
  3040     Assembler::subsd(dst, as_Address(src));
  3041   } else {
  3042     lea(rscratch1, src);
  3043     Assembler::subsd(dst, Address(rscratch1, 0));
  3047 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3048   if (reachable(src)) {
  3049     Assembler::subss(dst, as_Address(src));
  3050   } else {
  3051     lea(rscratch1, src);
  3052     Assembler::subss(dst, Address(rscratch1, 0));
  3056 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3057   if (reachable(src)) {
  3058     Assembler::ucomisd(dst, as_Address(src));
  3059   } else {
  3060     lea(rscratch1, src);
  3061     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3065 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3066   if (reachable(src)) {
  3067     Assembler::ucomiss(dst, as_Address(src));
  3068   } else {
  3069     lea(rscratch1, src);
  3070     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3074 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3075   // Used in sign-bit flipping with aligned address.
  3076   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3077   if (reachable(src)) {
  3078     Assembler::xorpd(dst, as_Address(src));
  3079   } else {
  3080     lea(rscratch1, src);
  3081     Assembler::xorpd(dst, Address(rscratch1, 0));
  3085 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3086   // Used in sign-bit flipping with aligned address.
  3087   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3088   if (reachable(src)) {
  3089     Assembler::xorps(dst, as_Address(src));
  3090   } else {
  3091     lea(rscratch1, src);
  3092     Assembler::xorps(dst, Address(rscratch1, 0));
  3096 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  3097   // Used in sign-bit flipping with aligned address.
  3098   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  3099   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
  3100   if (reachable(src)) {
  3101     Assembler::pshufb(dst, as_Address(src));
  3102   } else {
  3103     lea(rscratch1, src);
  3104     Assembler::pshufb(dst, Address(rscratch1, 0));
  3108 // AVX 3-operands instructions
  3110 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3111   if (reachable(src)) {
  3112     vaddsd(dst, nds, as_Address(src));
  3113   } else {
  3114     lea(rscratch1, src);
  3115     vaddsd(dst, nds, Address(rscratch1, 0));
  3119 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3120   if (reachable(src)) {
  3121     vaddss(dst, nds, as_Address(src));
  3122   } else {
  3123     lea(rscratch1, src);
  3124     vaddss(dst, nds, Address(rscratch1, 0));
  3128 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3129   if (reachable(src)) {
  3130     vandpd(dst, nds, as_Address(src), vector256);
  3131   } else {
  3132     lea(rscratch1, src);
  3133     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  3137 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3138   if (reachable(src)) {
  3139     vandps(dst, nds, as_Address(src), vector256);
  3140   } else {
  3141     lea(rscratch1, src);
  3142     vandps(dst, nds, Address(rscratch1, 0), vector256);
  3146 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3147   if (reachable(src)) {
  3148     vdivsd(dst, nds, as_Address(src));
  3149   } else {
  3150     lea(rscratch1, src);
  3151     vdivsd(dst, nds, Address(rscratch1, 0));
  3155 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3156   if (reachable(src)) {
  3157     vdivss(dst, nds, as_Address(src));
  3158   } else {
  3159     lea(rscratch1, src);
  3160     vdivss(dst, nds, Address(rscratch1, 0));
  3164 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3165   if (reachable(src)) {
  3166     vmulsd(dst, nds, as_Address(src));
  3167   } else {
  3168     lea(rscratch1, src);
  3169     vmulsd(dst, nds, Address(rscratch1, 0));
  3173 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3174   if (reachable(src)) {
  3175     vmulss(dst, nds, as_Address(src));
  3176   } else {
  3177     lea(rscratch1, src);
  3178     vmulss(dst, nds, Address(rscratch1, 0));
  3182 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3183   if (reachable(src)) {
  3184     vsubsd(dst, nds, as_Address(src));
  3185   } else {
  3186     lea(rscratch1, src);
  3187     vsubsd(dst, nds, Address(rscratch1, 0));
  3191 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3192   if (reachable(src)) {
  3193     vsubss(dst, nds, as_Address(src));
  3194   } else {
  3195     lea(rscratch1, src);
  3196     vsubss(dst, nds, Address(rscratch1, 0));
  3200 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3201   if (reachable(src)) {
  3202     vxorpd(dst, nds, as_Address(src), vector256);
  3203   } else {
  3204     lea(rscratch1, src);
  3205     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  3209 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3210   if (reachable(src)) {
  3211     vxorps(dst, nds, as_Address(src), vector256);
  3212   } else {
  3213     lea(rscratch1, src);
  3214     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  3219 //////////////////////////////////////////////////////////////////////////////////
  3220 #if INCLUDE_ALL_GCS
  3222 void MacroAssembler::g1_write_barrier_pre(Register obj,
  3223                                           Register pre_val,
  3224                                           Register thread,
  3225                                           Register tmp,
  3226                                           bool tosca_live,
  3227                                           bool expand_call) {
  3229   // If expand_call is true then we expand the call_VM_leaf macro
  3230   // directly to skip generating the check by
  3231   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  3233 #ifdef _LP64
  3234   assert(thread == r15_thread, "must be");
  3235 #endif // _LP64
  3237   Label done;
  3238   Label runtime;
  3240   assert(pre_val != noreg, "check this code");
  3242   if (obj != noreg) {
  3243     assert_different_registers(obj, pre_val, tmp);
  3244     assert(pre_val != rax, "check this code");
  3247   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3248                                        PtrQueue::byte_offset_of_active()));
  3249   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3250                                        PtrQueue::byte_offset_of_index()));
  3251   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3252                                        PtrQueue::byte_offset_of_buf()));
  3255   // Is marking active?
  3256   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3257     cmpl(in_progress, 0);
  3258   } else {
  3259     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  3260     cmpb(in_progress, 0);
  3262   jcc(Assembler::equal, done);
  3264   // Do we need to load the previous value?
  3265   if (obj != noreg) {
  3266     load_heap_oop(pre_val, Address(obj, 0));
  3269   // Is the previous value null?
  3270   cmpptr(pre_val, (int32_t) NULL_WORD);
  3271   jcc(Assembler::equal, done);
  3273   // Can we store original value in the thread's buffer?
  3274   // Is index == 0?
  3275   // (The index field is typed as size_t.)
  3277   movptr(tmp, index);                   // tmp := *index_adr
  3278   cmpptr(tmp, 0);                       // tmp == 0?
  3279   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  3281   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  3282   movptr(index, tmp);                   // *index_adr := tmp
  3283   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  3285   // Record the previous value
  3286   movptr(Address(tmp, 0), pre_val);
  3287   jmp(done);
  3289   bind(runtime);
  3290   // save the live input values
  3291   if(tosca_live) push(rax);
  3293   if (obj != noreg && obj != rax)
  3294     push(obj);
  3296   if (pre_val != rax)
  3297     push(pre_val);
  3299   // Calling the runtime using the regular call_VM_leaf mechanism generates
  3300   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  3301   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  3302   //
  3303   // If we care generating the pre-barrier without a frame (e.g. in the
  3304   // intrinsified Reference.get() routine) then ebp might be pointing to
  3305   // the caller frame and so this check will most likely fail at runtime.
  3306   //
  3307   // Expanding the call directly bypasses the generation of the check.
  3308   // So when we do not have have a full interpreter frame on the stack
  3309   // expand_call should be passed true.
  3311   NOT_LP64( push(thread); )
  3313   if (expand_call) {
  3314     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  3315     pass_arg1(this, thread);
  3316     pass_arg0(this, pre_val);
  3317     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  3318   } else {
  3319     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  3322   NOT_LP64( pop(thread); )
  3324   // save the live input values
  3325   if (pre_val != rax)
  3326     pop(pre_val);
  3328   if (obj != noreg && obj != rax)
  3329     pop(obj);
  3331   if(tosca_live) pop(rax);
  3333   bind(done);
  3336 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  3337                                            Register new_val,
  3338                                            Register thread,
  3339                                            Register tmp,
  3340                                            Register tmp2) {
  3341 #ifdef _LP64
  3342   assert(thread == r15_thread, "must be");
  3343 #endif // _LP64
  3345   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3346                                        PtrQueue::byte_offset_of_index()));
  3347   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3348                                        PtrQueue::byte_offset_of_buf()));
  3350   BarrierSet* bs = Universe::heap()->barrier_set();
  3351   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3352   Label done;
  3353   Label runtime;
  3355   // Does store cross heap regions?
  3357   movptr(tmp, store_addr);
  3358   xorptr(tmp, new_val);
  3359   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  3360   jcc(Assembler::equal, done);
  3362   // crosses regions, storing NULL?
  3364   cmpptr(new_val, (int32_t) NULL_WORD);
  3365   jcc(Assembler::equal, done);
  3367   // storing region crossing non-NULL, is card already dirty?
  3369   ExternalAddress cardtable((address) ct->byte_map_base);
  3370   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3371 #ifdef _LP64
  3372   const Register card_addr = tmp;
  3374   movq(card_addr, store_addr);
  3375   shrq(card_addr, CardTableModRefBS::card_shift);
  3377   lea(tmp2, cardtable);
  3379   // get the address of the card
  3380   addq(card_addr, tmp2);
  3381 #else
  3382   const Register card_index = tmp;
  3384   movl(card_index, store_addr);
  3385   shrl(card_index, CardTableModRefBS::card_shift);
  3387   Address index(noreg, card_index, Address::times_1);
  3388   const Register card_addr = tmp;
  3389   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  3390 #endif
  3391   cmpb(Address(card_addr, 0), 0);
  3392   jcc(Assembler::equal, done);
  3394   // storing a region crossing, non-NULL oop, card is clean.
  3395   // dirty card and log.
  3397   movb(Address(card_addr, 0), 0);
  3399   cmpl(queue_index, 0);
  3400   jcc(Assembler::equal, runtime);
  3401   subl(queue_index, wordSize);
  3402   movptr(tmp2, buffer);
  3403 #ifdef _LP64
  3404   movslq(rscratch1, queue_index);
  3405   addq(tmp2, rscratch1);
  3406   movq(Address(tmp2, 0), card_addr);
  3407 #else
  3408   addl(tmp2, queue_index);
  3409   movl(Address(tmp2, 0), card_index);
  3410 #endif
  3411   jmp(done);
  3413   bind(runtime);
  3414   // save the live input values
  3415   push(store_addr);
  3416   push(new_val);
  3417 #ifdef _LP64
  3418   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  3419 #else
  3420   push(thread);
  3421   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  3422   pop(thread);
  3423 #endif
  3424   pop(new_val);
  3425   pop(store_addr);
  3427   bind(done);
  3430 #endif // INCLUDE_ALL_GCS
  3431 //////////////////////////////////////////////////////////////////////////////////
  3434 void MacroAssembler::store_check(Register obj) {
  3435   // Does a store check for the oop in register obj. The content of
  3436   // register obj is destroyed afterwards.
  3437   store_check_part_1(obj);
  3438   store_check_part_2(obj);
  3441 void MacroAssembler::store_check(Register obj, Address dst) {
  3442   store_check(obj);
  3446 // split the store check operation so that other instructions can be scheduled inbetween
  3447 void MacroAssembler::store_check_part_1(Register obj) {
  3448   BarrierSet* bs = Universe::heap()->barrier_set();
  3449   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3450   shrptr(obj, CardTableModRefBS::card_shift);
  3453 void MacroAssembler::store_check_part_2(Register obj) {
  3454   BarrierSet* bs = Universe::heap()->barrier_set();
  3455   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3456   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3457   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3459   // The calculation for byte_map_base is as follows:
  3460   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  3461   // So this essentially converts an address to a displacement and
  3462   // it will never need to be relocated. On 64bit however the value may be too
  3463   // large for a 32bit displacement
  3465   intptr_t disp = (intptr_t) ct->byte_map_base;
  3466   if (is_simm32(disp)) {
  3467     Address cardtable(noreg, obj, Address::times_1, disp);
  3468     movb(cardtable, 0);
  3469   } else {
  3470     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  3471     // displacement and done in a single instruction given favorable mapping and
  3472     // a smarter version of as_Address. Worst case it is two instructions which
  3473     // is no worse off then loading disp into a register and doing as a simple
  3474     // Address() as above.
  3475     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  3476     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  3477     // in some cases we'll get a single instruction version.
  3479     ExternalAddress cardtable((address)disp);
  3480     Address index(noreg, obj, Address::times_1);
  3481     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  3485 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  3486   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  3489 // Force generation of a 4 byte immediate value even if it fits into 8bit
  3490 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  3491   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  3494 void MacroAssembler::subptr(Register dst, Register src) {
  3495   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  3498 // C++ bool manipulation
  3499 void MacroAssembler::testbool(Register dst) {
  3500   if(sizeof(bool) == 1)
  3501     testb(dst, 0xff);
  3502   else if(sizeof(bool) == 2) {
  3503     // testw implementation needed for two byte bools
  3504     ShouldNotReachHere();
  3505   } else if(sizeof(bool) == 4)
  3506     testl(dst, dst);
  3507   else
  3508     // unsupported
  3509     ShouldNotReachHere();
  3512 void MacroAssembler::testptr(Register dst, Register src) {
  3513   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  3516 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  3517 void MacroAssembler::tlab_allocate(Register obj,
  3518                                    Register var_size_in_bytes,
  3519                                    int con_size_in_bytes,
  3520                                    Register t1,
  3521                                    Register t2,
  3522                                    Label& slow_case) {
  3523   assert_different_registers(obj, t1, t2);
  3524   assert_different_registers(obj, var_size_in_bytes, t1);
  3525   Register end = t2;
  3526   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  3528   verify_tlab();
  3530   NOT_LP64(get_thread(thread));
  3532   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  3533   if (var_size_in_bytes == noreg) {
  3534     lea(end, Address(obj, con_size_in_bytes));
  3535   } else {
  3536     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  3538   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  3539   jcc(Assembler::above, slow_case);
  3541   // update the tlab top pointer
  3542   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  3544   // recover var_size_in_bytes if necessary
  3545   if (var_size_in_bytes == end) {
  3546     subptr(var_size_in_bytes, obj);
  3548   verify_tlab();
  3551 // Preserves rbx, and rdx.
  3552 Register MacroAssembler::tlab_refill(Label& retry,
  3553                                      Label& try_eden,
  3554                                      Label& slow_case) {
  3555   Register top = rax;
  3556   Register t1  = rcx;
  3557   Register t2  = rsi;
  3558   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  3559   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  3560   Label do_refill, discard_tlab;
  3562   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3563     // No allocation in the shared eden.
  3564     jmp(slow_case);
  3567   NOT_LP64(get_thread(thread_reg));
  3569   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  3570   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  3572   // calculate amount of free space
  3573   subptr(t1, top);
  3574   shrptr(t1, LogHeapWordSize);
  3576   // Retain tlab and allocate object in shared space if
  3577   // the amount free in the tlab is too large to discard.
  3578   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  3579   jcc(Assembler::lessEqual, discard_tlab);
  3581   // Retain
  3582   // %%% yuck as movptr...
  3583   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  3584   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  3585   if (TLABStats) {
  3586     // increment number of slow_allocations
  3587     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  3589   jmp(try_eden);
  3591   bind(discard_tlab);
  3592   if (TLABStats) {
  3593     // increment number of refills
  3594     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  3595     // accumulate wastage -- t1 is amount free in tlab
  3596     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  3599   // if tlab is currently allocated (top or end != null) then
  3600   // fill [top, end + alignment_reserve) with array object
  3601   testptr(top, top);
  3602   jcc(Assembler::zero, do_refill);
  3604   // set up the mark word
  3605   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  3606   // set the length to the remaining space
  3607   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  3608   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  3609   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  3610   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  3611   // set klass to intArrayKlass
  3612   // dubious reloc why not an oop reloc?
  3613   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  3614   // store klass last.  concurrent gcs assumes klass length is valid if
  3615   // klass field is not null.
  3616   store_klass(top, t1);
  3618   movptr(t1, top);
  3619   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  3620   incr_allocated_bytes(thread_reg, t1, 0);
  3622   // refill the tlab with an eden allocation
  3623   bind(do_refill);
  3624   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3625   shlptr(t1, LogHeapWordSize);
  3626   // allocate new tlab, address returned in top
  3627   eden_allocate(top, t1, 0, t2, slow_case);
  3629   // Check that t1 was preserved in eden_allocate.
  3630 #ifdef ASSERT
  3631   if (UseTLAB) {
  3632     Label ok;
  3633     Register tsize = rsi;
  3634     assert_different_registers(tsize, thread_reg, t1);
  3635     push(tsize);
  3636     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3637     shlptr(tsize, LogHeapWordSize);
  3638     cmpptr(t1, tsize);
  3639     jcc(Assembler::equal, ok);
  3640     STOP("assert(t1 != tlab size)");
  3641     should_not_reach_here();
  3643     bind(ok);
  3644     pop(tsize);
  3646 #endif
  3647   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  3648   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  3649   addptr(top, t1);
  3650   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  3651   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  3652   verify_tlab();
  3653   jmp(retry);
  3655   return thread_reg; // for use by caller
  3658 void MacroAssembler::incr_allocated_bytes(Register thread,
  3659                                           Register var_size_in_bytes,
  3660                                           int con_size_in_bytes,
  3661                                           Register t1) {
  3662   if (!thread->is_valid()) {
  3663 #ifdef _LP64
  3664     thread = r15_thread;
  3665 #else
  3666     assert(t1->is_valid(), "need temp reg");
  3667     thread = t1;
  3668     get_thread(thread);
  3669 #endif
  3672 #ifdef _LP64
  3673   if (var_size_in_bytes->is_valid()) {
  3674     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3675   } else {
  3676     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3678 #else
  3679   if (var_size_in_bytes->is_valid()) {
  3680     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3681   } else {
  3682     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3684   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  3685 #endif
  3688 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  3689   pusha();
  3691   // if we are coming from c1, xmm registers may be live
  3692   int off = 0;
  3693   if (UseSSE == 1)  {
  3694     subptr(rsp, sizeof(jdouble)*8);
  3695     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  3696     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  3697     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  3698     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  3699     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  3700     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  3701     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  3702     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  3703   } else if (UseSSE >= 2)  {
  3704 #ifdef COMPILER2
  3705     if (MaxVectorSize > 16) {
  3706       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  3707       // Save upper half of YMM registes
  3708       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3709       vextractf128h(Address(rsp,  0),xmm0);
  3710       vextractf128h(Address(rsp, 16),xmm1);
  3711       vextractf128h(Address(rsp, 32),xmm2);
  3712       vextractf128h(Address(rsp, 48),xmm3);
  3713       vextractf128h(Address(rsp, 64),xmm4);
  3714       vextractf128h(Address(rsp, 80),xmm5);
  3715       vextractf128h(Address(rsp, 96),xmm6);
  3716       vextractf128h(Address(rsp,112),xmm7);
  3717 #ifdef _LP64
  3718       vextractf128h(Address(rsp,128),xmm8);
  3719       vextractf128h(Address(rsp,144),xmm9);
  3720       vextractf128h(Address(rsp,160),xmm10);
  3721       vextractf128h(Address(rsp,176),xmm11);
  3722       vextractf128h(Address(rsp,192),xmm12);
  3723       vextractf128h(Address(rsp,208),xmm13);
  3724       vextractf128h(Address(rsp,224),xmm14);
  3725       vextractf128h(Address(rsp,240),xmm15);
  3726 #endif
  3728 #endif
  3729     // Save whole 128bit (16 bytes) XMM regiters
  3730     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3731     movdqu(Address(rsp,off++*16),xmm0);
  3732     movdqu(Address(rsp,off++*16),xmm1);
  3733     movdqu(Address(rsp,off++*16),xmm2);
  3734     movdqu(Address(rsp,off++*16),xmm3);
  3735     movdqu(Address(rsp,off++*16),xmm4);
  3736     movdqu(Address(rsp,off++*16),xmm5);
  3737     movdqu(Address(rsp,off++*16),xmm6);
  3738     movdqu(Address(rsp,off++*16),xmm7);
  3739 #ifdef _LP64
  3740     movdqu(Address(rsp,off++*16),xmm8);
  3741     movdqu(Address(rsp,off++*16),xmm9);
  3742     movdqu(Address(rsp,off++*16),xmm10);
  3743     movdqu(Address(rsp,off++*16),xmm11);
  3744     movdqu(Address(rsp,off++*16),xmm12);
  3745     movdqu(Address(rsp,off++*16),xmm13);
  3746     movdqu(Address(rsp,off++*16),xmm14);
  3747     movdqu(Address(rsp,off++*16),xmm15);
  3748 #endif
  3751   // Preserve registers across runtime call
  3752   int incoming_argument_and_return_value_offset = -1;
  3753   if (num_fpu_regs_in_use > 1) {
  3754     // Must preserve all other FPU regs (could alternatively convert
  3755     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  3756     // FPU state, but can not trust C compiler)
  3757     NEEDS_CLEANUP;
  3758     // NOTE that in this case we also push the incoming argument(s) to
  3759     // the stack and restore it later; we also use this stack slot to
  3760     // hold the return value from dsin, dcos etc.
  3761     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  3762       subptr(rsp, sizeof(jdouble));
  3763       fstp_d(Address(rsp, 0));
  3765     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  3766     for (int i = nb_args-1; i >= 0; i--) {
  3767       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  3771   subptr(rsp, nb_args*sizeof(jdouble));
  3772   for (int i = 0; i < nb_args; i++) {
  3773     fstp_d(Address(rsp, i*sizeof(jdouble)));
  3776 #ifdef _LP64
  3777   if (nb_args > 0) {
  3778     movdbl(xmm0, Address(rsp, 0));
  3780   if (nb_args > 1) {
  3781     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  3783   assert(nb_args <= 2, "unsupported number of args");
  3784 #endif // _LP64
  3786   // NOTE: we must not use call_VM_leaf here because that requires a
  3787   // complete interpreter frame in debug mode -- same bug as 4387334
  3788   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  3789   // do proper 64bit abi
  3791   NEEDS_CLEANUP;
  3792   // Need to add stack banging before this runtime call if it needs to
  3793   // be taken; however, there is no generic stack banging routine at
  3794   // the MacroAssembler level
  3796   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  3798 #ifdef _LP64
  3799   movsd(Address(rsp, 0), xmm0);
  3800   fld_d(Address(rsp, 0));
  3801 #endif // _LP64
  3802   addptr(rsp, sizeof(jdouble) * nb_args);
  3803   if (num_fpu_regs_in_use > 1) {
  3804     // Must save return value to stack and then restore entire FPU
  3805     // stack except incoming arguments
  3806     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  3807     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  3808       fld_d(Address(rsp, 0));
  3809       addptr(rsp, sizeof(jdouble));
  3811     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  3812     addptr(rsp, sizeof(jdouble) * nb_args);
  3815   off = 0;
  3816   if (UseSSE == 1)  {
  3817     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  3818     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  3819     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  3820     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  3821     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  3822     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  3823     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  3824     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  3825     addptr(rsp, sizeof(jdouble)*8);
  3826   } else if (UseSSE >= 2)  {
  3827     // Restore whole 128bit (16 bytes) XMM regiters
  3828     movdqu(xmm0, Address(rsp,off++*16));
  3829     movdqu(xmm1, Address(rsp,off++*16));
  3830     movdqu(xmm2, Address(rsp,off++*16));
  3831     movdqu(xmm3, Address(rsp,off++*16));
  3832     movdqu(xmm4, Address(rsp,off++*16));
  3833     movdqu(xmm5, Address(rsp,off++*16));
  3834     movdqu(xmm6, Address(rsp,off++*16));
  3835     movdqu(xmm7, Address(rsp,off++*16));
  3836 #ifdef _LP64
  3837     movdqu(xmm8, Address(rsp,off++*16));
  3838     movdqu(xmm9, Address(rsp,off++*16));
  3839     movdqu(xmm10, Address(rsp,off++*16));
  3840     movdqu(xmm11, Address(rsp,off++*16));
  3841     movdqu(xmm12, Address(rsp,off++*16));
  3842     movdqu(xmm13, Address(rsp,off++*16));
  3843     movdqu(xmm14, Address(rsp,off++*16));
  3844     movdqu(xmm15, Address(rsp,off++*16));
  3845 #endif
  3846     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3847 #ifdef COMPILER2
  3848     if (MaxVectorSize > 16) {
  3849       // Restore upper half of YMM registes.
  3850       vinsertf128h(xmm0, Address(rsp,  0));
  3851       vinsertf128h(xmm1, Address(rsp, 16));
  3852       vinsertf128h(xmm2, Address(rsp, 32));
  3853       vinsertf128h(xmm3, Address(rsp, 48));
  3854       vinsertf128h(xmm4, Address(rsp, 64));
  3855       vinsertf128h(xmm5, Address(rsp, 80));
  3856       vinsertf128h(xmm6, Address(rsp, 96));
  3857       vinsertf128h(xmm7, Address(rsp,112));
  3858 #ifdef _LP64
  3859       vinsertf128h(xmm8, Address(rsp,128));
  3860       vinsertf128h(xmm9, Address(rsp,144));
  3861       vinsertf128h(xmm10, Address(rsp,160));
  3862       vinsertf128h(xmm11, Address(rsp,176));
  3863       vinsertf128h(xmm12, Address(rsp,192));
  3864       vinsertf128h(xmm13, Address(rsp,208));
  3865       vinsertf128h(xmm14, Address(rsp,224));
  3866       vinsertf128h(xmm15, Address(rsp,240));
  3867 #endif
  3868       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3870 #endif
  3872   popa();
  3875 static const double     pi_4 =  0.7853981633974483;
  3877 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  3878   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  3879   // was attempted in this code; unfortunately it appears that the
  3880   // switch to 80-bit precision and back causes this to be
  3881   // unprofitable compared with simply performing a runtime call if
  3882   // the argument is out of the (-pi/4, pi/4) range.
  3884   Register tmp = noreg;
  3885   if (!VM_Version::supports_cmov()) {
  3886     // fcmp needs a temporary so preserve rbx,
  3887     tmp = rbx;
  3888     push(tmp);
  3891   Label slow_case, done;
  3893   ExternalAddress pi4_adr = (address)&pi_4;
  3894   if (reachable(pi4_adr)) {
  3895     // x ?<= pi/4
  3896     fld_d(pi4_adr);
  3897     fld_s(1);                // Stack:  X  PI/4  X
  3898     fabs();                  // Stack: |X| PI/4  X
  3899     fcmp(tmp);
  3900     jcc(Assembler::above, slow_case);
  3902     // fastest case: -pi/4 <= x <= pi/4
  3903     switch(trig) {
  3904     case 's':
  3905       fsin();
  3906       break;
  3907     case 'c':
  3908       fcos();
  3909       break;
  3910     case 't':
  3911       ftan();
  3912       break;
  3913     default:
  3914       assert(false, "bad intrinsic");
  3915       break;
  3917     jmp(done);
  3920   // slow case: runtime call
  3921   bind(slow_case);
  3923   switch(trig) {
  3924   case 's':
  3926       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  3928     break;
  3929   case 'c':
  3931       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  3933     break;
  3934   case 't':
  3936       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  3938     break;
  3939   default:
  3940     assert(false, "bad intrinsic");
  3941     break;
  3944   // Come here with result in F-TOS
  3945   bind(done);
  3947   if (tmp != noreg) {
  3948     pop(tmp);
  3953 // Look up the method for a megamorphic invokeinterface call.
  3954 // The target method is determined by <intf_klass, itable_index>.
  3955 // The receiver klass is in recv_klass.
  3956 // On success, the result will be in method_result, and execution falls through.
  3957 // On failure, execution transfers to the given label.
  3958 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3959                                              Register intf_klass,
  3960                                              RegisterOrConstant itable_index,
  3961                                              Register method_result,
  3962                                              Register scan_temp,
  3963                                              Label& L_no_such_interface) {
  3964   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3965   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3966          "caller must use same register for non-constant itable index as for method");
  3968   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3969   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3970   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3971   int scan_step   = itableOffsetEntry::size() * wordSize;
  3972   int vte_size    = vtableEntry::size() * wordSize;
  3973   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3974   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3976   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3978   // %%% Could store the aligned, prescaled offset in the klassoop.
  3979   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  3980   if (HeapWordsPerLong > 1) {
  3981     // Round up to align_object_offset boundary
  3982     // see code for InstanceKlass::start_of_itable!
  3983     round_to(scan_temp, BytesPerLong);
  3986   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3987   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3988   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  3990   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  3991   //   if (scan->interface() == intf) {
  3992   //     result = (klass + scan->offset() + itable_index);
  3993   //   }
  3994   // }
  3995   Label search, found_method;
  3997   for (int peel = 1; peel >= 0; peel--) {
  3998     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  3999     cmpptr(intf_klass, method_result);
  4001     if (peel) {
  4002       jccb(Assembler::equal, found_method);
  4003     } else {
  4004       jccb(Assembler::notEqual, search);
  4005       // (invert the test to fall through to found_method...)
  4008     if (!peel)  break;
  4010     bind(search);
  4012     // Check that the previous entry is non-null.  A null entry means that
  4013     // the receiver class doesn't implement the interface, and wasn't the
  4014     // same as when the caller was compiled.
  4015     testptr(method_result, method_result);
  4016     jcc(Assembler::zero, L_no_such_interface);
  4017     addptr(scan_temp, scan_step);
  4020   bind(found_method);
  4022   // Got a hit.
  4023   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4024   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4028 // virtual method calling
  4029 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4030                                            RegisterOrConstant vtable_index,
  4031                                            Register method_result) {
  4032   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4033   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4034   Address vtable_entry_addr(recv_klass,
  4035                             vtable_index, Address::times_ptr,
  4036                             base + vtableEntry::method_offset_in_bytes());
  4037   movptr(method_result, vtable_entry_addr);
  4041 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4042                            Register super_klass,
  4043                            Register temp_reg,
  4044                            Label& L_success) {
  4045   Label L_failure;
  4046   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4047   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4048   bind(L_failure);
  4052 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4053                                                    Register super_klass,
  4054                                                    Register temp_reg,
  4055                                                    Label* L_success,
  4056                                                    Label* L_failure,
  4057                                                    Label* L_slow_path,
  4058                                         RegisterOrConstant super_check_offset) {
  4059   assert_different_registers(sub_klass, super_klass, temp_reg);
  4060   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4061   if (super_check_offset.is_register()) {
  4062     assert_different_registers(sub_klass, super_klass,
  4063                                super_check_offset.as_register());
  4064   } else if (must_load_sco) {
  4065     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4068   Label L_fallthrough;
  4069   int label_nulls = 0;
  4070   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4071   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4072   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4073   assert(label_nulls <= 1, "at most one NULL in the batch");
  4075   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4076   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4077   Address super_check_offset_addr(super_klass, sco_offset);
  4079   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4080   // range of a jccb.  If this routine grows larger, reconsider at
  4081   // least some of these.
  4082 #define local_jcc(assembler_cond, label)                                \
  4083   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4084   else                             jcc( assembler_cond, label) /*omit semi*/
  4086   // Hacked jmp, which may only be used just before L_fallthrough.
  4087 #define final_jmp(label)                                                \
  4088   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4089   else                            jmp(label)                /*omit semi*/
  4091   // If the pointers are equal, we are done (e.g., String[] elements).
  4092   // This self-check enables sharing of secondary supertype arrays among
  4093   // non-primary types such as array-of-interface.  Otherwise, each such
  4094   // type would need its own customized SSA.
  4095   // We move this check to the front of the fast path because many
  4096   // type checks are in fact trivially successful in this manner,
  4097   // so we get a nicely predicted branch right at the start of the check.
  4098   cmpptr(sub_klass, super_klass);
  4099   local_jcc(Assembler::equal, *L_success);
  4101   // Check the supertype display:
  4102   if (must_load_sco) {
  4103     // Positive movl does right thing on LP64.
  4104     movl(temp_reg, super_check_offset_addr);
  4105     super_check_offset = RegisterOrConstant(temp_reg);
  4107   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  4108   cmpptr(super_klass, super_check_addr); // load displayed supertype
  4110   // This check has worked decisively for primary supers.
  4111   // Secondary supers are sought in the super_cache ('super_cache_addr').
  4112   // (Secondary supers are interfaces and very deeply nested subtypes.)
  4113   // This works in the same check above because of a tricky aliasing
  4114   // between the super_cache and the primary super display elements.
  4115   // (The 'super_check_addr' can address either, as the case requires.)
  4116   // Note that the cache is updated below if it does not help us find
  4117   // what we need immediately.
  4118   // So if it was a primary super, we can just fail immediately.
  4119   // Otherwise, it's the slow path for us (no success at this point).
  4121   if (super_check_offset.is_register()) {
  4122     local_jcc(Assembler::equal, *L_success);
  4123     cmpl(super_check_offset.as_register(), sc_offset);
  4124     if (L_failure == &L_fallthrough) {
  4125       local_jcc(Assembler::equal, *L_slow_path);
  4126     } else {
  4127       local_jcc(Assembler::notEqual, *L_failure);
  4128       final_jmp(*L_slow_path);
  4130   } else if (super_check_offset.as_constant() == sc_offset) {
  4131     // Need a slow path; fast failure is impossible.
  4132     if (L_slow_path == &L_fallthrough) {
  4133       local_jcc(Assembler::equal, *L_success);
  4134     } else {
  4135       local_jcc(Assembler::notEqual, *L_slow_path);
  4136       final_jmp(*L_success);
  4138   } else {
  4139     // No slow path; it's a fast decision.
  4140     if (L_failure == &L_fallthrough) {
  4141       local_jcc(Assembler::equal, *L_success);
  4142     } else {
  4143       local_jcc(Assembler::notEqual, *L_failure);
  4144       final_jmp(*L_success);
  4148   bind(L_fallthrough);
  4150 #undef local_jcc
  4151 #undef final_jmp
  4155 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  4156                                                    Register super_klass,
  4157                                                    Register temp_reg,
  4158                                                    Register temp2_reg,
  4159                                                    Label* L_success,
  4160                                                    Label* L_failure,
  4161                                                    bool set_cond_codes) {
  4162   assert_different_registers(sub_klass, super_klass, temp_reg);
  4163   if (temp2_reg != noreg)
  4164     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  4165 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  4167   Label L_fallthrough;
  4168   int label_nulls = 0;
  4169   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4170   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4171   assert(label_nulls <= 1, "at most one NULL in the batch");
  4173   // a couple of useful fields in sub_klass:
  4174   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  4175   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4176   Address secondary_supers_addr(sub_klass, ss_offset);
  4177   Address super_cache_addr(     sub_klass, sc_offset);
  4179   // Do a linear scan of the secondary super-klass chain.
  4180   // This code is rarely used, so simplicity is a virtue here.
  4181   // The repne_scan instruction uses fixed registers, which we must spill.
  4182   // Don't worry too much about pre-existing connections with the input regs.
  4184   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  4185   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  4187   // Get super_klass value into rax (even if it was in rdi or rcx).
  4188   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  4189   if (super_klass != rax || UseCompressedOops) {
  4190     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  4191     mov(rax, super_klass);
  4193   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  4194   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  4196 #ifndef PRODUCT
  4197   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  4198   ExternalAddress pst_counter_addr((address) pst_counter);
  4199   NOT_LP64(  incrementl(pst_counter_addr) );
  4200   LP64_ONLY( lea(rcx, pst_counter_addr) );
  4201   LP64_ONLY( incrementl(Address(rcx, 0)) );
  4202 #endif //PRODUCT
  4204   // We will consult the secondary-super array.
  4205   movptr(rdi, secondary_supers_addr);
  4206   // Load the array length.  (Positive movl does right thing on LP64.)
  4207   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  4208   // Skip to start of data.
  4209   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  4211   // Scan RCX words at [RDI] for an occurrence of RAX.
  4212   // Set NZ/Z based on last compare.
  4213   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  4214   // not change flags (only scas instruction which is repeated sets flags).
  4215   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  4217     testptr(rax,rax); // Set Z = 0
  4218     repne_scan();
  4220   // Unspill the temp. registers:
  4221   if (pushed_rdi)  pop(rdi);
  4222   if (pushed_rcx)  pop(rcx);
  4223   if (pushed_rax)  pop(rax);
  4225   if (set_cond_codes) {
  4226     // Special hack for the AD files:  rdi is guaranteed non-zero.
  4227     assert(!pushed_rdi, "rdi must be left non-NULL");
  4228     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  4231   if (L_failure == &L_fallthrough)
  4232         jccb(Assembler::notEqual, *L_failure);
  4233   else  jcc(Assembler::notEqual, *L_failure);
  4235   // Success.  Cache the super we found and proceed in triumph.
  4236   movptr(super_cache_addr, super_klass);
  4238   if (L_success != &L_fallthrough) {
  4239     jmp(*L_success);
  4242 #undef IS_A_TEMP
  4244   bind(L_fallthrough);
  4248 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  4249   if (VM_Version::supports_cmov()) {
  4250     cmovl(cc, dst, src);
  4251   } else {
  4252     Label L;
  4253     jccb(negate_condition(cc), L);
  4254     movl(dst, src);
  4255     bind(L);
  4259 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  4260   if (VM_Version::supports_cmov()) {
  4261     cmovl(cc, dst, src);
  4262   } else {
  4263     Label L;
  4264     jccb(negate_condition(cc), L);
  4265     movl(dst, src);
  4266     bind(L);
  4270 void MacroAssembler::verify_oop(Register reg, const char* s) {
  4271   if (!VerifyOops) return;
  4273   // Pass register number to verify_oop_subroutine
  4274   const char* b = NULL;
  4276     ResourceMark rm;
  4277     stringStream ss;
  4278     ss.print("verify_oop: %s: %s", reg->name(), s);
  4279     b = code_string(ss.as_string());
  4281   BLOCK_COMMENT("verify_oop {");
  4282 #ifdef _LP64
  4283   push(rscratch1);                    // save r10, trashed by movptr()
  4284 #endif
  4285   push(rax);                          // save rax,
  4286   push(reg);                          // pass register argument
  4287   ExternalAddress buffer((address) b);
  4288   // avoid using pushptr, as it modifies scratch registers
  4289   // and our contract is not to modify anything
  4290   movptr(rax, buffer.addr());
  4291   push(rax);
  4292   // call indirectly to solve generation ordering problem
  4293   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4294   call(rax);
  4295   // Caller pops the arguments (oop, message) and restores rax, r10
  4296   BLOCK_COMMENT("} verify_oop");
  4300 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  4301                                                       Register tmp,
  4302                                                       int offset) {
  4303   intptr_t value = *delayed_value_addr;
  4304   if (value != 0)
  4305     return RegisterOrConstant(value + offset);
  4307   // load indirectly to solve generation ordering problem
  4308   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  4310 #ifdef ASSERT
  4311   { Label L;
  4312     testptr(tmp, tmp);
  4313     if (WizardMode) {
  4314       const char* buf = NULL;
  4316         ResourceMark rm;
  4317         stringStream ss;
  4318         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  4319         buf = code_string(ss.as_string());
  4321       jcc(Assembler::notZero, L);
  4322       STOP(buf);
  4323     } else {
  4324       jccb(Assembler::notZero, L);
  4325       hlt();
  4327     bind(L);
  4329 #endif
  4331   if (offset != 0)
  4332     addptr(tmp, offset);
  4334   return RegisterOrConstant(tmp);
  4338 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  4339                                          int extra_slot_offset) {
  4340   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  4341   int stackElementSize = Interpreter::stackElementSize;
  4342   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  4343 #ifdef ASSERT
  4344   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  4345   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  4346 #endif
  4347   Register             scale_reg    = noreg;
  4348   Address::ScaleFactor scale_factor = Address::no_scale;
  4349   if (arg_slot.is_constant()) {
  4350     offset += arg_slot.as_constant() * stackElementSize;
  4351   } else {
  4352     scale_reg    = arg_slot.as_register();
  4353     scale_factor = Address::times(stackElementSize);
  4355   offset += wordSize;           // return PC is on stack
  4356   return Address(rsp, scale_reg, scale_factor, offset);
  4360 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  4361   if (!VerifyOops) return;
  4363   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  4364   // Pass register number to verify_oop_subroutine
  4365   const char* b = NULL;
  4367     ResourceMark rm;
  4368     stringStream ss;
  4369     ss.print("verify_oop_addr: %s", s);
  4370     b = code_string(ss.as_string());
  4372 #ifdef _LP64
  4373   push(rscratch1);                    // save r10, trashed by movptr()
  4374 #endif
  4375   push(rax);                          // save rax,
  4376   // addr may contain rsp so we will have to adjust it based on the push
  4377   // we just did (and on 64 bit we do two pushes)
  4378   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  4379   // stores rax into addr which is backwards of what was intended.
  4380   if (addr.uses(rsp)) {
  4381     lea(rax, addr);
  4382     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  4383   } else {
  4384     pushptr(addr);
  4387   ExternalAddress buffer((address) b);
  4388   // pass msg argument
  4389   // avoid using pushptr, as it modifies scratch registers
  4390   // and our contract is not to modify anything
  4391   movptr(rax, buffer.addr());
  4392   push(rax);
  4394   // call indirectly to solve generation ordering problem
  4395   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4396   call(rax);
  4397   // Caller pops the arguments (addr, message) and restores rax, r10.
  4400 void MacroAssembler::verify_tlab() {
  4401 #ifdef ASSERT
  4402   if (UseTLAB && VerifyOops) {
  4403     Label next, ok;
  4404     Register t1 = rsi;
  4405     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  4407     push(t1);
  4408     NOT_LP64(push(thread_reg));
  4409     NOT_LP64(get_thread(thread_reg));
  4411     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4412     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4413     jcc(Assembler::aboveEqual, next);
  4414     STOP("assert(top >= start)");
  4415     should_not_reach_here();
  4417     bind(next);
  4418     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4419     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4420     jcc(Assembler::aboveEqual, ok);
  4421     STOP("assert(top <= end)");
  4422     should_not_reach_here();
  4424     bind(ok);
  4425     NOT_LP64(pop(thread_reg));
  4426     pop(t1);
  4428 #endif
  4431 class ControlWord {
  4432  public:
  4433   int32_t _value;
  4435   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  4436   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  4437   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4438   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4439   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4440   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4441   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4442   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4444   void print() const {
  4445     // rounding control
  4446     const char* rc;
  4447     switch (rounding_control()) {
  4448       case 0: rc = "round near"; break;
  4449       case 1: rc = "round down"; break;
  4450       case 2: rc = "round up  "; break;
  4451       case 3: rc = "chop      "; break;
  4452     };
  4453     // precision control
  4454     const char* pc;
  4455     switch (precision_control()) {
  4456       case 0: pc = "24 bits "; break;
  4457       case 1: pc = "reserved"; break;
  4458       case 2: pc = "53 bits "; break;
  4459       case 3: pc = "64 bits "; break;
  4460     };
  4461     // flags
  4462     char f[9];
  4463     f[0] = ' ';
  4464     f[1] = ' ';
  4465     f[2] = (precision   ()) ? 'P' : 'p';
  4466     f[3] = (underflow   ()) ? 'U' : 'u';
  4467     f[4] = (overflow    ()) ? 'O' : 'o';
  4468     f[5] = (zero_divide ()) ? 'Z' : 'z';
  4469     f[6] = (denormalized()) ? 'D' : 'd';
  4470     f[7] = (invalid     ()) ? 'I' : 'i';
  4471     f[8] = '\x0';
  4472     // output
  4473     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  4476 };
  4478 class StatusWord {
  4479  public:
  4480   int32_t _value;
  4482   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  4483   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  4484   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  4485   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  4486   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  4487   int  top() const                     { return  (_value >> 11) & 7      ; }
  4488   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  4489   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  4490   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4491   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4492   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4493   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4494   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4495   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4497   void print() const {
  4498     // condition codes
  4499     char c[5];
  4500     c[0] = (C3()) ? '3' : '-';
  4501     c[1] = (C2()) ? '2' : '-';
  4502     c[2] = (C1()) ? '1' : '-';
  4503     c[3] = (C0()) ? '0' : '-';
  4504     c[4] = '\x0';
  4505     // flags
  4506     char f[9];
  4507     f[0] = (error_status()) ? 'E' : '-';
  4508     f[1] = (stack_fault ()) ? 'S' : '-';
  4509     f[2] = (precision   ()) ? 'P' : '-';
  4510     f[3] = (underflow   ()) ? 'U' : '-';
  4511     f[4] = (overflow    ()) ? 'O' : '-';
  4512     f[5] = (zero_divide ()) ? 'Z' : '-';
  4513     f[6] = (denormalized()) ? 'D' : '-';
  4514     f[7] = (invalid     ()) ? 'I' : '-';
  4515     f[8] = '\x0';
  4516     // output
  4517     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  4520 };
  4522 class TagWord {
  4523  public:
  4524   int32_t _value;
  4526   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  4528   void print() const {
  4529     printf("%04x", _value & 0xFFFF);
  4532 };
  4534 class FPU_Register {
  4535  public:
  4536   int32_t _m0;
  4537   int32_t _m1;
  4538   int16_t _ex;
  4540   bool is_indefinite() const           {
  4541     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  4544   void print() const {
  4545     char  sign = (_ex < 0) ? '-' : '+';
  4546     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  4547     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  4548   };
  4550 };
  4552 class FPU_State {
  4553  public:
  4554   enum {
  4555     register_size       = 10,
  4556     number_of_registers =  8,
  4557     register_mask       =  7
  4558   };
  4560   ControlWord  _control_word;
  4561   StatusWord   _status_word;
  4562   TagWord      _tag_word;
  4563   int32_t      _error_offset;
  4564   int32_t      _error_selector;
  4565   int32_t      _data_offset;
  4566   int32_t      _data_selector;
  4567   int8_t       _register[register_size * number_of_registers];
  4569   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  4570   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  4572   const char* tag_as_string(int tag) const {
  4573     switch (tag) {
  4574       case 0: return "valid";
  4575       case 1: return "zero";
  4576       case 2: return "special";
  4577       case 3: return "empty";
  4579     ShouldNotReachHere();
  4580     return NULL;
  4583   void print() const {
  4584     // print computation registers
  4585     { int t = _status_word.top();
  4586       for (int i = 0; i < number_of_registers; i++) {
  4587         int j = (i - t) & register_mask;
  4588         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  4589         st(j)->print();
  4590         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  4593     printf("\n");
  4594     // print control registers
  4595     printf("ctrl = "); _control_word.print(); printf("\n");
  4596     printf("stat = "); _status_word .print(); printf("\n");
  4597     printf("tags = "); _tag_word    .print(); printf("\n");
  4600 };
  4602 class Flag_Register {
  4603  public:
  4604   int32_t _value;
  4606   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  4607   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  4608   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  4609   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  4610   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  4611   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  4612   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  4614   void print() const {
  4615     // flags
  4616     char f[8];
  4617     f[0] = (overflow       ()) ? 'O' : '-';
  4618     f[1] = (direction      ()) ? 'D' : '-';
  4619     f[2] = (sign           ()) ? 'S' : '-';
  4620     f[3] = (zero           ()) ? 'Z' : '-';
  4621     f[4] = (auxiliary_carry()) ? 'A' : '-';
  4622     f[5] = (parity         ()) ? 'P' : '-';
  4623     f[6] = (carry          ()) ? 'C' : '-';
  4624     f[7] = '\x0';
  4625     // output
  4626     printf("%08x  flags = %s", _value, f);
  4629 };
  4631 class IU_Register {
  4632  public:
  4633   int32_t _value;
  4635   void print() const {
  4636     printf("%08x  %11d", _value, _value);
  4639 };
  4641 class IU_State {
  4642  public:
  4643   Flag_Register _eflags;
  4644   IU_Register   _rdi;
  4645   IU_Register   _rsi;
  4646   IU_Register   _rbp;
  4647   IU_Register   _rsp;
  4648   IU_Register   _rbx;
  4649   IU_Register   _rdx;
  4650   IU_Register   _rcx;
  4651   IU_Register   _rax;
  4653   void print() const {
  4654     // computation registers
  4655     printf("rax,  = "); _rax.print(); printf("\n");
  4656     printf("rbx,  = "); _rbx.print(); printf("\n");
  4657     printf("rcx  = "); _rcx.print(); printf("\n");
  4658     printf("rdx  = "); _rdx.print(); printf("\n");
  4659     printf("rdi  = "); _rdi.print(); printf("\n");
  4660     printf("rsi  = "); _rsi.print(); printf("\n");
  4661     printf("rbp,  = "); _rbp.print(); printf("\n");
  4662     printf("rsp  = "); _rsp.print(); printf("\n");
  4663     printf("\n");
  4664     // control registers
  4665     printf("flgs = "); _eflags.print(); printf("\n");
  4667 };
  4670 class CPU_State {
  4671  public:
  4672   FPU_State _fpu_state;
  4673   IU_State  _iu_state;
  4675   void print() const {
  4676     printf("--------------------------------------------------\n");
  4677     _iu_state .print();
  4678     printf("\n");
  4679     _fpu_state.print();
  4680     printf("--------------------------------------------------\n");
  4683 };
  4686 static void _print_CPU_state(CPU_State* state) {
  4687   state->print();
  4688 };
  4691 void MacroAssembler::print_CPU_state() {
  4692   push_CPU_state();
  4693   push(rsp);                // pass CPU state
  4694   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  4695   addptr(rsp, wordSize);       // discard argument
  4696   pop_CPU_state();
  4700 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  4701   static int counter = 0;
  4702   FPU_State* fs = &state->_fpu_state;
  4703   counter++;
  4704   // For leaf calls, only verify that the top few elements remain empty.
  4705   // We only need 1 empty at the top for C2 code.
  4706   if( stack_depth < 0 ) {
  4707     if( fs->tag_for_st(7) != 3 ) {
  4708       printf("FPR7 not empty\n");
  4709       state->print();
  4710       assert(false, "error");
  4711       return false;
  4713     return true;                // All other stack states do not matter
  4716   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  4717          "bad FPU control word");
  4719   // compute stack depth
  4720   int i = 0;
  4721   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  4722   int d = i;
  4723   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  4724   // verify findings
  4725   if (i != FPU_State::number_of_registers) {
  4726     // stack not contiguous
  4727     printf("%s: stack not contiguous at ST%d\n", s, i);
  4728     state->print();
  4729     assert(false, "error");
  4730     return false;
  4732   // check if computed stack depth corresponds to expected stack depth
  4733   if (stack_depth < 0) {
  4734     // expected stack depth is -stack_depth or less
  4735     if (d > -stack_depth) {
  4736       // too many elements on the stack
  4737       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  4738       state->print();
  4739       assert(false, "error");
  4740       return false;
  4742   } else {
  4743     // expected stack depth is stack_depth
  4744     if (d != stack_depth) {
  4745       // wrong stack depth
  4746       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  4747       state->print();
  4748       assert(false, "error");
  4749       return false;
  4752   // everything is cool
  4753   return true;
  4757 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  4758   if (!VerifyFPU) return;
  4759   push_CPU_state();
  4760   push(rsp);                // pass CPU state
  4761   ExternalAddress msg((address) s);
  4762   // pass message string s
  4763   pushptr(msg.addr());
  4764   push(stack_depth);        // pass stack depth
  4765   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  4766   addptr(rsp, 3 * wordSize);   // discard arguments
  4767   // check for error
  4768   { Label L;
  4769     testl(rax, rax);
  4770     jcc(Assembler::notZero, L);
  4771     int3();                  // break if error condition
  4772     bind(L);
  4774   pop_CPU_state();
  4777 void MacroAssembler::restore_cpu_control_state_after_jni() {
  4778   // Either restore the MXCSR register after returning from the JNI Call
  4779   // or verify that it wasn't changed (with -Xcheck:jni flag).
  4780   if (VM_Version::supports_sse()) {
  4781     if (RestoreMXCSROnJNICalls) {
  4782       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  4783     } else if (CheckJNICalls) {
  4784       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  4787   if (VM_Version::supports_avx()) {
  4788     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
  4789     vzeroupper();
  4792 #ifndef _LP64
  4793   // Either restore the x87 floating pointer control word after returning
  4794   // from the JNI call or verify that it wasn't changed.
  4795   if (CheckJNICalls) {
  4796     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  4798 #endif // _LP64
  4802 void MacroAssembler::load_klass(Register dst, Register src) {
  4803 #ifdef _LP64
  4804   if (UseCompressedKlassPointers) {
  4805     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4806     decode_klass_not_null(dst);
  4807   } else
  4808 #endif
  4809     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4812 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  4813 #ifdef _LP64
  4814   if (UseCompressedKlassPointers) {
  4815     assert (Universe::heap() != NULL, "java heap should be initialized");
  4816     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4817     if (Universe::narrow_klass_shift() != 0) {
  4818       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4819       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  4820       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  4821     } else {
  4822       movq(dst, Address(dst, Klass::prototype_header_offset()));
  4824   } else
  4825 #endif
  4827     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4828     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  4832 void MacroAssembler::store_klass(Register dst, Register src) {
  4833 #ifdef _LP64
  4834   if (UseCompressedKlassPointers) {
  4835     encode_klass_not_null(src);
  4836     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4837   } else
  4838 #endif
  4839     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4842 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  4843 #ifdef _LP64
  4844   // FIXME: Must change all places where we try to load the klass.
  4845   if (UseCompressedOops) {
  4846     movl(dst, src);
  4847     decode_heap_oop(dst);
  4848   } else
  4849 #endif
  4850     movptr(dst, src);
  4853 // Doesn't do verfication, generates fixed size code
  4854 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  4855 #ifdef _LP64
  4856   if (UseCompressedOops) {
  4857     movl(dst, src);
  4858     decode_heap_oop_not_null(dst);
  4859   } else
  4860 #endif
  4861     movptr(dst, src);
  4864 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  4865 #ifdef _LP64
  4866   if (UseCompressedOops) {
  4867     assert(!dst.uses(src), "not enough registers");
  4868     encode_heap_oop(src);
  4869     movl(dst, src);
  4870   } else
  4871 #endif
  4872     movptr(dst, src);
  4875 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  4876   assert_different_registers(src1, tmp);
  4877 #ifdef _LP64
  4878   if (UseCompressedOops) {
  4879     bool did_push = false;
  4880     if (tmp == noreg) {
  4881       tmp = rax;
  4882       push(tmp);
  4883       did_push = true;
  4884       assert(!src2.uses(rsp), "can't push");
  4886     load_heap_oop(tmp, src2);
  4887     cmpptr(src1, tmp);
  4888     if (did_push)  pop(tmp);
  4889   } else
  4890 #endif
  4891     cmpptr(src1, src2);
  4894 // Used for storing NULLs.
  4895 void MacroAssembler::store_heap_oop_null(Address dst) {
  4896 #ifdef _LP64
  4897   if (UseCompressedOops) {
  4898     movl(dst, (int32_t)NULL_WORD);
  4899   } else {
  4900     movslq(dst, (int32_t)NULL_WORD);
  4902 #else
  4903   movl(dst, (int32_t)NULL_WORD);
  4904 #endif
  4907 #ifdef _LP64
  4908 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  4909   if (UseCompressedKlassPointers) {
  4910     // Store to klass gap in destination
  4911     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  4915 #ifdef ASSERT
  4916 void MacroAssembler::verify_heapbase(const char* msg) {
  4917   assert (UseCompressedOops || UseCompressedKlassPointers, "should be compressed");
  4918   assert (Universe::heap() != NULL, "java heap should be initialized");
  4919   if (CheckCompressedOops) {
  4920     Label ok;
  4921     push(rscratch1); // cmpptr trashes rscratch1
  4922     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  4923     jcc(Assembler::equal, ok);
  4924     STOP(msg);
  4925     bind(ok);
  4926     pop(rscratch1);
  4929 #endif
  4931 // Algorithm must match oop.inline.hpp encode_heap_oop.
  4932 void MacroAssembler::encode_heap_oop(Register r) {
  4933 #ifdef ASSERT
  4934   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  4935 #endif
  4936   verify_oop(r, "broken oop in encode_heap_oop");
  4937   if (Universe::narrow_oop_base() == NULL) {
  4938     if (Universe::narrow_oop_shift() != 0) {
  4939       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4940       shrq(r, LogMinObjAlignmentInBytes);
  4942     return;
  4944   testq(r, r);
  4945   cmovq(Assembler::equal, r, r12_heapbase);
  4946   subq(r, r12_heapbase);
  4947   shrq(r, LogMinObjAlignmentInBytes);
  4950 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4951 #ifdef ASSERT
  4952   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  4953   if (CheckCompressedOops) {
  4954     Label ok;
  4955     testq(r, r);
  4956     jcc(Assembler::notEqual, ok);
  4957     STOP("null oop passed to encode_heap_oop_not_null");
  4958     bind(ok);
  4960 #endif
  4961   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  4962   if (Universe::narrow_oop_base() != NULL) {
  4963     subq(r, r12_heapbase);
  4965   if (Universe::narrow_oop_shift() != 0) {
  4966     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4967     shrq(r, LogMinObjAlignmentInBytes);
  4971 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  4972 #ifdef ASSERT
  4973   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  4974   if (CheckCompressedOops) {
  4975     Label ok;
  4976     testq(src, src);
  4977     jcc(Assembler::notEqual, ok);
  4978     STOP("null oop passed to encode_heap_oop_not_null2");
  4979     bind(ok);
  4981 #endif
  4982   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  4983   if (dst != src) {
  4984     movq(dst, src);
  4986   if (Universe::narrow_oop_base() != NULL) {
  4987     subq(dst, r12_heapbase);
  4989   if (Universe::narrow_oop_shift() != 0) {
  4990     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4991     shrq(dst, LogMinObjAlignmentInBytes);
  4995 void  MacroAssembler::decode_heap_oop(Register r) {
  4996 #ifdef ASSERT
  4997   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  4998 #endif
  4999   if (Universe::narrow_oop_base() == NULL) {
  5000     if (Universe::narrow_oop_shift() != 0) {
  5001       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5002       shlq(r, LogMinObjAlignmentInBytes);
  5004   } else {
  5005     Label done;
  5006     shlq(r, LogMinObjAlignmentInBytes);
  5007     jccb(Assembler::equal, done);
  5008     addq(r, r12_heapbase);
  5009     bind(done);
  5011   verify_oop(r, "broken oop in decode_heap_oop");
  5014 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5015   // Note: it will change flags
  5016   assert (UseCompressedOops, "should only be used for compressed headers");
  5017   assert (Universe::heap() != NULL, "java heap should be initialized");
  5018   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5019   // vtableStubs also counts instructions in pd_code_size_limit.
  5020   // Also do not verify_oop as this is called by verify_oop.
  5021   if (Universe::narrow_oop_shift() != 0) {
  5022     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5023     shlq(r, LogMinObjAlignmentInBytes);
  5024     if (Universe::narrow_oop_base() != NULL) {
  5025       addq(r, r12_heapbase);
  5027   } else {
  5028     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5032 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5033   // Note: it will change flags
  5034   assert (UseCompressedOops, "should only be used for compressed headers");
  5035   assert (Universe::heap() != NULL, "java heap should be initialized");
  5036   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5037   // vtableStubs also counts instructions in pd_code_size_limit.
  5038   // Also do not verify_oop as this is called by verify_oop.
  5039   if (Universe::narrow_oop_shift() != 0) {
  5040     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5041     if (LogMinObjAlignmentInBytes == Address::times_8) {
  5042       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5043     } else {
  5044       if (dst != src) {
  5045         movq(dst, src);
  5047       shlq(dst, LogMinObjAlignmentInBytes);
  5048       if (Universe::narrow_oop_base() != NULL) {
  5049         addq(dst, r12_heapbase);
  5052   } else {
  5053     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5054     if (dst != src) {
  5055       movq(dst, src);
  5060 void MacroAssembler::encode_klass_not_null(Register r) {
  5061   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5062 #ifdef ASSERT
  5063   verify_heapbase("MacroAssembler::encode_klass_not_null: heap base corrupted?");
  5064 #endif
  5065   if (Universe::narrow_klass_base() != NULL) {
  5066     subq(r, r12_heapbase);
  5068   if (Universe::narrow_klass_shift() != 0) {
  5069     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5070     shrq(r, LogKlassAlignmentInBytes);
  5074 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5075   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5076 #ifdef ASSERT
  5077   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
  5078 #endif
  5079   if (dst != src) {
  5080     movq(dst, src);
  5082   if (Universe::narrow_klass_base() != NULL) {
  5083     subq(dst, r12_heapbase);
  5085   if (Universe::narrow_klass_shift() != 0) {
  5086     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5087     shrq(dst, LogKlassAlignmentInBytes);
  5091 void  MacroAssembler::decode_klass_not_null(Register r) {
  5092   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5093   // Note: it will change flags
  5094   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5095   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5096   // vtableStubs also counts instructions in pd_code_size_limit.
  5097   // Also do not verify_oop as this is called by verify_oop.
  5098   if (Universe::narrow_klass_shift() != 0) {
  5099     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5100     shlq(r, LogKlassAlignmentInBytes);
  5101     if (Universe::narrow_klass_base() != NULL) {
  5102       addq(r, r12_heapbase);
  5104   } else {
  5105     assert (Universe::narrow_klass_base() == NULL, "sanity");
  5109 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  5110   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5111   // Note: it will change flags
  5112   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5113   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5114   // vtableStubs also counts instructions in pd_code_size_limit.
  5115   // Also do not verify_oop as this is called by verify_oop.
  5116   if (Universe::narrow_klass_shift() != 0) {
  5117     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5118     assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  5119     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5120   } else {
  5121     assert (Universe::narrow_klass_base() == NULL, "sanity");
  5122     if (dst != src) {
  5123       movq(dst, src);
  5128 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  5129   assert (UseCompressedOops, "should only be used for compressed headers");
  5130   assert (Universe::heap() != NULL, "java heap should be initialized");
  5131   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5132   int oop_index = oop_recorder()->find_index(obj);
  5133   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5134   mov_narrow_oop(dst, oop_index, rspec);
  5137 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  5138   assert (UseCompressedOops, "should only be used for compressed headers");
  5139   assert (Universe::heap() != NULL, "java heap should be initialized");
  5140   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5141   int oop_index = oop_recorder()->find_index(obj);
  5142   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5143   mov_narrow_oop(dst, oop_index, rspec);
  5146 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  5147   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5148   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5149   int klass_index = oop_recorder()->find_index(k);
  5150   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5151   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5154 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  5155   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5156   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5157   int klass_index = oop_recorder()->find_index(k);
  5158   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5159   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5162 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  5163   assert (UseCompressedOops, "should only be used for compressed headers");
  5164   assert (Universe::heap() != NULL, "java heap should be initialized");
  5165   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5166   int oop_index = oop_recorder()->find_index(obj);
  5167   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5168   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5171 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  5172   assert (UseCompressedOops, "should only be used for compressed headers");
  5173   assert (Universe::heap() != NULL, "java heap should be initialized");
  5174   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5175   int oop_index = oop_recorder()->find_index(obj);
  5176   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5177   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5180 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  5181   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5182   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5183   int klass_index = oop_recorder()->find_index(k);
  5184   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5185   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5188 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  5189   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5190   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5191   int klass_index = oop_recorder()->find_index(k);
  5192   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5193   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5196 void MacroAssembler::reinit_heapbase() {
  5197   if (UseCompressedOops || UseCompressedKlassPointers) {
  5198     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5201 #endif // _LP64
  5204 // C2 compiled method's prolog code.
  5205 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  5207   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  5208   // NativeJump::patch_verified_entry will be able to patch out the entry
  5209   // code safely. The push to verify stack depth is ok at 5 bytes,
  5210   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  5211   // stack bang then we must use the 6 byte frame allocation even if
  5212   // we have no frame. :-(
  5214   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  5215   // Remove word for return addr
  5216   framesize -= wordSize;
  5218   // Calls to C2R adapters often do not accept exceptional returns.
  5219   // We require that their callers must bang for them.  But be careful, because
  5220   // some VM calls (such as call site linkage) can use several kilobytes of
  5221   // stack.  But the stack safety zone should account for that.
  5222   // See bugs 4446381, 4468289, 4497237.
  5223   if (stack_bang) {
  5224     generate_stack_overflow_check(framesize);
  5226     // We always push rbp, so that on return to interpreter rbp, will be
  5227     // restored correctly and we can correct the stack.
  5228     push(rbp);
  5229     // Remove word for ebp
  5230     framesize -= wordSize;
  5232     // Create frame
  5233     if (framesize) {
  5234       subptr(rsp, framesize);
  5236   } else {
  5237     // Create frame (force generation of a 4 byte immediate value)
  5238     subptr_imm32(rsp, framesize);
  5240     // Save RBP register now.
  5241     framesize -= wordSize;
  5242     movptr(Address(rsp, framesize), rbp);
  5245   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  5246     framesize -= wordSize;
  5247     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  5250 #ifndef _LP64
  5251   // If method sets FPU control word do it now
  5252   if (fp_mode_24b) {
  5253     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  5255   if (UseSSE >= 2 && VerifyFPU) {
  5256     verify_FPU(0, "FPU stack must be clean on entry");
  5258 #endif
  5260 #ifdef ASSERT
  5261   if (VerifyStackAtCalls) {
  5262     Label L;
  5263     push(rax);
  5264     mov(rax, rsp);
  5265     andptr(rax, StackAlignmentInBytes-1);
  5266     cmpptr(rax, StackAlignmentInBytes-wordSize);
  5267     pop(rax);
  5268     jcc(Assembler::equal, L);
  5269     STOP("Stack is not properly aligned!");
  5270     bind(L);
  5272 #endif
  5276 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  5277   // cnt - number of qwords (8-byte words).
  5278   // base - start address, qword aligned.
  5279   assert(base==rdi, "base register must be edi for rep stos");
  5280   assert(tmp==rax,   "tmp register must be eax for rep stos");
  5281   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
  5283   xorptr(tmp, tmp);
  5284   if (UseFastStosb) {
  5285     shlptr(cnt,3); // convert to number of bytes
  5286     rep_stosb();
  5287   } else {
  5288     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
  5289     rep_stos();
  5293 // IndexOf for constant substrings with size >= 8 chars
  5294 // which don't need to be loaded through stack.
  5295 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  5296                                       Register cnt1, Register cnt2,
  5297                                       int int_cnt2,  Register result,
  5298                                       XMMRegister vec, Register tmp) {
  5299   ShortBranchVerifier sbv(this);
  5300   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5302   // This method uses pcmpestri inxtruction with bound registers
  5303   //   inputs:
  5304   //     xmm - substring
  5305   //     rax - substring length (elements count)
  5306   //     mem - scanned string
  5307   //     rdx - string length (elements count)
  5308   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5309   //   outputs:
  5310   //     rcx - matched index in string
  5311   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5313   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  5314         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  5315         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  5317   // Note, inline_string_indexOf() generates checks:
  5318   // if (substr.count > string.count) return -1;
  5319   // if (substr.count == 0) return 0;
  5320   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  5322   // Load substring.
  5323   movdqu(vec, Address(str2, 0));
  5324   movl(cnt2, int_cnt2);
  5325   movptr(result, str1); // string addr
  5327   if (int_cnt2 > 8) {
  5328     jmpb(SCAN_TO_SUBSTR);
  5330     // Reload substr for rescan, this code
  5331     // is executed only for large substrings (> 8 chars)
  5332     bind(RELOAD_SUBSTR);
  5333     movdqu(vec, Address(str2, 0));
  5334     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  5336     bind(RELOAD_STR);
  5337     // We came here after the beginning of the substring was
  5338     // matched but the rest of it was not so we need to search
  5339     // again. Start from the next element after the previous match.
  5341     // cnt2 is number of substring reminding elements and
  5342     // cnt1 is number of string reminding elements when cmp failed.
  5343     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  5344     subl(cnt1, cnt2);
  5345     addl(cnt1, int_cnt2);
  5346     movl(cnt2, int_cnt2); // Now restore cnt2
  5348     decrementl(cnt1);     // Shift to next element
  5349     cmpl(cnt1, cnt2);
  5350     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5352     addptr(result, 2);
  5354   } // (int_cnt2 > 8)
  5356   // Scan string for start of substr in 16-byte vectors
  5357   bind(SCAN_TO_SUBSTR);
  5358   pcmpestri(vec, Address(result, 0), 0x0d);
  5359   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5360   subl(cnt1, 8);
  5361   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5362   cmpl(cnt1, cnt2);
  5363   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5364   addptr(result, 16);
  5365   jmpb(SCAN_TO_SUBSTR);
  5367   // Found a potential substr
  5368   bind(FOUND_CANDIDATE);
  5369   // Matched whole vector if first element matched (tmp(rcx) == 0).
  5370   if (int_cnt2 == 8) {
  5371     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  5372   } else { // int_cnt2 > 8
  5373     jccb(Assembler::overflow, FOUND_SUBSTR);
  5375   // After pcmpestri tmp(rcx) contains matched element index
  5376   // Compute start addr of substr
  5377   lea(result, Address(result, tmp, Address::times_2));
  5379   // Make sure string is still long enough
  5380   subl(cnt1, tmp);
  5381   cmpl(cnt1, cnt2);
  5382   if (int_cnt2 == 8) {
  5383     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5384   } else { // int_cnt2 > 8
  5385     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  5387   // Left less then substring.
  5389   bind(RET_NOT_FOUND);
  5390   movl(result, -1);
  5391   jmpb(EXIT);
  5393   if (int_cnt2 > 8) {
  5394     // This code is optimized for the case when whole substring
  5395     // is matched if its head is matched.
  5396     bind(MATCH_SUBSTR_HEAD);
  5397     pcmpestri(vec, Address(result, 0), 0x0d);
  5398     // Reload only string if does not match
  5399     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  5401     Label CONT_SCAN_SUBSTR;
  5402     // Compare the rest of substring (> 8 chars).
  5403     bind(FOUND_SUBSTR);
  5404     // First 8 chars are already matched.
  5405     negptr(cnt2);
  5406     addptr(cnt2, 8);
  5408     bind(SCAN_SUBSTR);
  5409     subl(cnt1, 8);
  5410     cmpl(cnt2, -8); // Do not read beyond substring
  5411     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  5412     // Back-up strings to avoid reading beyond substring:
  5413     // cnt1 = cnt1 - cnt2 + 8
  5414     addl(cnt1, cnt2); // cnt2 is negative
  5415     addl(cnt1, 8);
  5416     movl(cnt2, 8); negptr(cnt2);
  5417     bind(CONT_SCAN_SUBSTR);
  5418     if (int_cnt2 < (int)G) {
  5419       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  5420       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  5421     } else {
  5422       // calculate index in register to avoid integer overflow (int_cnt2*2)
  5423       movl(tmp, int_cnt2);
  5424       addptr(tmp, cnt2);
  5425       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  5426       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  5428     // Need to reload strings pointers if not matched whole vector
  5429     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5430     addptr(cnt2, 8);
  5431     jcc(Assembler::negative, SCAN_SUBSTR);
  5432     // Fall through if found full substring
  5434   } // (int_cnt2 > 8)
  5436   bind(RET_FOUND);
  5437   // Found result if we matched full small substring.
  5438   // Compute substr offset
  5439   subptr(result, str1);
  5440   shrl(result, 1); // index
  5441   bind(EXIT);
  5443 } // string_indexofC8
  5445 // Small strings are loaded through stack if they cross page boundary.
  5446 void MacroAssembler::string_indexof(Register str1, Register str2,
  5447                                     Register cnt1, Register cnt2,
  5448                                     int int_cnt2,  Register result,
  5449                                     XMMRegister vec, Register tmp) {
  5450   ShortBranchVerifier sbv(this);
  5451   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5452   //
  5453   // int_cnt2 is length of small (< 8 chars) constant substring
  5454   // or (-1) for non constant substring in which case its length
  5455   // is in cnt2 register.
  5456   //
  5457   // Note, inline_string_indexOf() generates checks:
  5458   // if (substr.count > string.count) return -1;
  5459   // if (substr.count == 0) return 0;
  5460   //
  5461   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  5463   // This method uses pcmpestri inxtruction with bound registers
  5464   //   inputs:
  5465   //     xmm - substring
  5466   //     rax - substring length (elements count)
  5467   //     mem - scanned string
  5468   //     rdx - string length (elements count)
  5469   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5470   //   outputs:
  5471   //     rcx - matched index in string
  5472   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5474   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  5475         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  5476         FOUND_CANDIDATE;
  5478   { //========================================================
  5479     // We don't know where these strings are located
  5480     // and we can't read beyond them. Load them through stack.
  5481     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  5483     movptr(tmp, rsp); // save old SP
  5485     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  5486       if (int_cnt2 == 1) {  // One char
  5487         load_unsigned_short(result, Address(str2, 0));
  5488         movdl(vec, result); // move 32 bits
  5489       } else if (int_cnt2 == 2) { // Two chars
  5490         movdl(vec, Address(str2, 0)); // move 32 bits
  5491       } else if (int_cnt2 == 4) { // Four chars
  5492         movq(vec, Address(str2, 0));  // move 64 bits
  5493       } else { // cnt2 = { 3, 5, 6, 7 }
  5494         // Array header size is 12 bytes in 32-bit VM
  5495         // + 6 bytes for 3 chars == 18 bytes,
  5496         // enough space to load vec and shift.
  5497         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  5498         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  5499         psrldq(vec, 16-(int_cnt2*2));
  5501     } else { // not constant substring
  5502       cmpl(cnt2, 8);
  5503       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  5505       // We can read beyond string if srt+16 does not cross page boundary
  5506       // since heaps are aligned and mapped by pages.
  5507       assert(os::vm_page_size() < (int)G, "default page should be small");
  5508       movl(result, str2); // We need only low 32 bits
  5509       andl(result, (os::vm_page_size()-1));
  5510       cmpl(result, (os::vm_page_size()-16));
  5511       jccb(Assembler::belowEqual, CHECK_STR);
  5513       // Move small strings to stack to allow load 16 bytes into vec.
  5514       subptr(rsp, 16);
  5515       int stk_offset = wordSize-2;
  5516       push(cnt2);
  5518       bind(COPY_SUBSTR);
  5519       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  5520       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5521       decrement(cnt2);
  5522       jccb(Assembler::notZero, COPY_SUBSTR);
  5524       pop(cnt2);
  5525       movptr(str2, rsp);  // New substring address
  5526     } // non constant
  5528     bind(CHECK_STR);
  5529     cmpl(cnt1, 8);
  5530     jccb(Assembler::aboveEqual, BIG_STRINGS);
  5532     // Check cross page boundary.
  5533     movl(result, str1); // We need only low 32 bits
  5534     andl(result, (os::vm_page_size()-1));
  5535     cmpl(result, (os::vm_page_size()-16));
  5536     jccb(Assembler::belowEqual, BIG_STRINGS);
  5538     subptr(rsp, 16);
  5539     int stk_offset = -2;
  5540     if (int_cnt2 < 0) { // not constant
  5541       push(cnt2);
  5542       stk_offset += wordSize;
  5544     movl(cnt2, cnt1);
  5546     bind(COPY_STR);
  5547     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  5548     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5549     decrement(cnt2);
  5550     jccb(Assembler::notZero, COPY_STR);
  5552     if (int_cnt2 < 0) { // not constant
  5553       pop(cnt2);
  5555     movptr(str1, rsp);  // New string address
  5557     bind(BIG_STRINGS);
  5558     // Load substring.
  5559     if (int_cnt2 < 0) { // -1
  5560       movdqu(vec, Address(str2, 0));
  5561       push(cnt2);       // substr count
  5562       push(str2);       // substr addr
  5563       push(str1);       // string addr
  5564     } else {
  5565       // Small (< 8 chars) constant substrings are loaded already.
  5566       movl(cnt2, int_cnt2);
  5568     push(tmp);  // original SP
  5570   } // Finished loading
  5572   //========================================================
  5573   // Start search
  5574   //
  5576   movptr(result, str1); // string addr
  5578   if (int_cnt2  < 0) {  // Only for non constant substring
  5579     jmpb(SCAN_TO_SUBSTR);
  5581     // SP saved at sp+0
  5582     // String saved at sp+1*wordSize
  5583     // Substr saved at sp+2*wordSize
  5584     // Substr count saved at sp+3*wordSize
  5586     // Reload substr for rescan, this code
  5587     // is executed only for large substrings (> 8 chars)
  5588     bind(RELOAD_SUBSTR);
  5589     movptr(str2, Address(rsp, 2*wordSize));
  5590     movl(cnt2, Address(rsp, 3*wordSize));
  5591     movdqu(vec, Address(str2, 0));
  5592     // We came here after the beginning of the substring was
  5593     // matched but the rest of it was not so we need to search
  5594     // again. Start from the next element after the previous match.
  5595     subptr(str1, result); // Restore counter
  5596     shrl(str1, 1);
  5597     addl(cnt1, str1);
  5598     decrementl(cnt1);   // Shift to next element
  5599     cmpl(cnt1, cnt2);
  5600     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5602     addptr(result, 2);
  5603   } // non constant
  5605   // Scan string for start of substr in 16-byte vectors
  5606   bind(SCAN_TO_SUBSTR);
  5607   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5608   pcmpestri(vec, Address(result, 0), 0x0d);
  5609   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5610   subl(cnt1, 8);
  5611   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5612   cmpl(cnt1, cnt2);
  5613   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5614   addptr(result, 16);
  5616   bind(ADJUST_STR);
  5617   cmpl(cnt1, 8); // Do not read beyond string
  5618   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5619   // Back-up string to avoid reading beyond string.
  5620   lea(result, Address(result, cnt1, Address::times_2, -16));
  5621   movl(cnt1, 8);
  5622   jmpb(SCAN_TO_SUBSTR);
  5624   // Found a potential substr
  5625   bind(FOUND_CANDIDATE);
  5626   // After pcmpestri tmp(rcx) contains matched element index
  5628   // Make sure string is still long enough
  5629   subl(cnt1, tmp);
  5630   cmpl(cnt1, cnt2);
  5631   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  5632   // Left less then substring.
  5634   bind(RET_NOT_FOUND);
  5635   movl(result, -1);
  5636   jmpb(CLEANUP);
  5638   bind(FOUND_SUBSTR);
  5639   // Compute start addr of substr
  5640   lea(result, Address(result, tmp, Address::times_2));
  5642   if (int_cnt2 > 0) { // Constant substring
  5643     // Repeat search for small substring (< 8 chars)
  5644     // from new point without reloading substring.
  5645     // Have to check that we don't read beyond string.
  5646     cmpl(tmp, 8-int_cnt2);
  5647     jccb(Assembler::greater, ADJUST_STR);
  5648     // Fall through if matched whole substring.
  5649   } else { // non constant
  5650     assert(int_cnt2 == -1, "should be != 0");
  5652     addl(tmp, cnt2);
  5653     // Found result if we matched whole substring.
  5654     cmpl(tmp, 8);
  5655     jccb(Assembler::lessEqual, RET_FOUND);
  5657     // Repeat search for small substring (<= 8 chars)
  5658     // from new point 'str1' without reloading substring.
  5659     cmpl(cnt2, 8);
  5660     // Have to check that we don't read beyond string.
  5661     jccb(Assembler::lessEqual, ADJUST_STR);
  5663     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  5664     // Compare the rest of substring (> 8 chars).
  5665     movptr(str1, result);
  5667     cmpl(tmp, cnt2);
  5668     // First 8 chars are already matched.
  5669     jccb(Assembler::equal, CHECK_NEXT);
  5671     bind(SCAN_SUBSTR);
  5672     pcmpestri(vec, Address(str1, 0), 0x0d);
  5673     // Need to reload strings pointers if not matched whole vector
  5674     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5676     bind(CHECK_NEXT);
  5677     subl(cnt2, 8);
  5678     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  5679     addptr(str1, 16);
  5680     addptr(str2, 16);
  5681     subl(cnt1, 8);
  5682     cmpl(cnt2, 8); // Do not read beyond substring
  5683     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  5684     // Back-up strings to avoid reading beyond substring.
  5685     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  5686     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  5687     subl(cnt1, cnt2);
  5688     movl(cnt2, 8);
  5689     addl(cnt1, 8);
  5690     bind(CONT_SCAN_SUBSTR);
  5691     movdqu(vec, Address(str2, 0));
  5692     jmpb(SCAN_SUBSTR);
  5694     bind(RET_FOUND_LONG);
  5695     movptr(str1, Address(rsp, wordSize));
  5696   } // non constant
  5698   bind(RET_FOUND);
  5699   // Compute substr offset
  5700   subptr(result, str1);
  5701   shrl(result, 1); // index
  5703   bind(CLEANUP);
  5704   pop(rsp); // restore SP
  5706 } // string_indexof
  5708 // Compare strings.
  5709 void MacroAssembler::string_compare(Register str1, Register str2,
  5710                                     Register cnt1, Register cnt2, Register result,
  5711                                     XMMRegister vec1) {
  5712   ShortBranchVerifier sbv(this);
  5713   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  5715   // Compute the minimum of the string lengths and the
  5716   // difference of the string lengths (stack).
  5717   // Do the conditional move stuff
  5718   movl(result, cnt1);
  5719   subl(cnt1, cnt2);
  5720   push(cnt1);
  5721   cmov32(Assembler::lessEqual, cnt2, result);
  5723   // Is the minimum length zero?
  5724   testl(cnt2, cnt2);
  5725   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  5727   // Compare first characters
  5728   load_unsigned_short(result, Address(str1, 0));
  5729   load_unsigned_short(cnt1, Address(str2, 0));
  5730   subl(result, cnt1);
  5731   jcc(Assembler::notZero,  POP_LABEL);
  5732   cmpl(cnt2, 1);
  5733   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  5735   // Check if the strings start at the same location.
  5736   cmpptr(str1, str2);
  5737   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  5739   Address::ScaleFactor scale = Address::times_2;
  5740   int stride = 8;
  5742   if (UseAVX >= 2 && UseSSE42Intrinsics) {
  5743     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
  5744     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
  5745     Label COMPARE_TAIL_LONG;
  5746     int pcmpmask = 0x19;
  5748     // Setup to compare 16-chars (32-bytes) vectors,
  5749     // start from first character again because it has aligned address.
  5750     int stride2 = 16;
  5751     int adr_stride  = stride  << scale;
  5752     int adr_stride2 = stride2 << scale;
  5754     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5755     // rax and rdx are used by pcmpestri as elements counters
  5756     movl(result, cnt2);
  5757     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
  5758     jcc(Assembler::zero, COMPARE_TAIL_LONG);
  5760     // fast path : compare first 2 8-char vectors.
  5761     bind(COMPARE_16_CHARS);
  5762     movdqu(vec1, Address(str1, 0));
  5763     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  5764     jccb(Assembler::below, COMPARE_INDEX_CHAR);
  5766     movdqu(vec1, Address(str1, adr_stride));
  5767     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
  5768     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
  5769     addl(cnt1, stride);
  5771     // Compare the characters at index in cnt1
  5772     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
  5773     load_unsigned_short(result, Address(str1, cnt1, scale));
  5774     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  5775     subl(result, cnt2);
  5776     jmp(POP_LABEL);
  5778     // Setup the registers to start vector comparison loop
  5779     bind(COMPARE_WIDE_VECTORS);
  5780     lea(str1, Address(str1, result, scale));
  5781     lea(str2, Address(str2, result, scale));
  5782     subl(result, stride2);
  5783     subl(cnt2, stride2);
  5784     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
  5785     negptr(result);
  5787     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
  5788     bind(COMPARE_WIDE_VECTORS_LOOP);
  5789     vmovdqu(vec1, Address(str1, result, scale));
  5790     vpxor(vec1, Address(str2, result, scale));
  5791     vptest(vec1, vec1);
  5792     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  5793     addptr(result, stride2);
  5794     subl(cnt2, stride2);
  5795     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
  5796     // clean upper bits of YMM registers
  5797     vzeroupper();
  5799     // compare wide vectors tail
  5800     bind(COMPARE_WIDE_TAIL);
  5801     testptr(result, result);
  5802     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5804     movl(result, stride2);
  5805     movl(cnt2, result);
  5806     negptr(result);
  5807     jmpb(COMPARE_WIDE_VECTORS_LOOP);
  5809     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
  5810     bind(VECTOR_NOT_EQUAL);
  5811     // clean upper bits of YMM registers
  5812     vzeroupper();
  5813     lea(str1, Address(str1, result, scale));
  5814     lea(str2, Address(str2, result, scale));
  5815     jmp(COMPARE_16_CHARS);
  5817     // Compare tail chars, length between 1 to 15 chars
  5818     bind(COMPARE_TAIL_LONG);
  5819     movl(cnt2, result);
  5820     cmpl(cnt2, stride);
  5821     jccb(Assembler::less, COMPARE_SMALL_STR);
  5823     movdqu(vec1, Address(str1, 0));
  5824     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  5825     jcc(Assembler::below, COMPARE_INDEX_CHAR);
  5826     subptr(cnt2, stride);
  5827     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5828     lea(str1, Address(str1, result, scale));
  5829     lea(str2, Address(str2, result, scale));
  5830     negptr(cnt2);
  5831     jmpb(WHILE_HEAD_LABEL);
  5833     bind(COMPARE_SMALL_STR);
  5834   } else if (UseSSE42Intrinsics) {
  5835     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  5836     int pcmpmask = 0x19;
  5837     // Setup to compare 8-char (16-byte) vectors,
  5838     // start from first character again because it has aligned address.
  5839     movl(result, cnt2);
  5840     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  5841     jccb(Assembler::zero, COMPARE_TAIL);
  5843     lea(str1, Address(str1, result, scale));
  5844     lea(str2, Address(str2, result, scale));
  5845     negptr(result);
  5847     // pcmpestri
  5848     //   inputs:
  5849     //     vec1- substring
  5850     //     rax - negative string length (elements count)
  5851     //     mem - scaned string
  5852     //     rdx - string length (elements count)
  5853     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  5854     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  5855     //   outputs:
  5856     //     rcx - first mismatched element index
  5857     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5859     bind(COMPARE_WIDE_VECTORS);
  5860     movdqu(vec1, Address(str1, result, scale));
  5861     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5862     // After pcmpestri cnt1(rcx) contains mismatched element index
  5864     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  5865     addptr(result, stride);
  5866     subptr(cnt2, stride);
  5867     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  5869     // compare wide vectors tail
  5870     testptr(result, result);
  5871     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5873     movl(cnt2, stride);
  5874     movl(result, stride);
  5875     negptr(result);
  5876     movdqu(vec1, Address(str1, result, scale));
  5877     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5878     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  5880     // Mismatched characters in the vectors
  5881     bind(VECTOR_NOT_EQUAL);
  5882     addptr(cnt1, result);
  5883     load_unsigned_short(result, Address(str1, cnt1, scale));
  5884     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  5885     subl(result, cnt2);
  5886     jmpb(POP_LABEL);
  5888     bind(COMPARE_TAIL); // limit is zero
  5889     movl(cnt2, result);
  5890     // Fallthru to tail compare
  5892   // Shift str2 and str1 to the end of the arrays, negate min
  5893   lea(str1, Address(str1, cnt2, scale));
  5894   lea(str2, Address(str2, cnt2, scale));
  5895   decrementl(cnt2);  // first character was compared already
  5896   negptr(cnt2);
  5898   // Compare the rest of the elements
  5899   bind(WHILE_HEAD_LABEL);
  5900   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  5901   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  5902   subl(result, cnt1);
  5903   jccb(Assembler::notZero, POP_LABEL);
  5904   increment(cnt2);
  5905   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  5907   // Strings are equal up to min length.  Return the length difference.
  5908   bind(LENGTH_DIFF_LABEL);
  5909   pop(result);
  5910   jmpb(DONE_LABEL);
  5912   // Discard the stored length difference
  5913   bind(POP_LABEL);
  5914   pop(cnt1);
  5916   // That's it
  5917   bind(DONE_LABEL);
  5920 // Compare char[] arrays aligned to 4 bytes or substrings.
  5921 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  5922                                         Register limit, Register result, Register chr,
  5923                                         XMMRegister vec1, XMMRegister vec2) {
  5924   ShortBranchVerifier sbv(this);
  5925   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  5927   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  5928   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  5930   // Check the input args
  5931   cmpptr(ary1, ary2);
  5932   jcc(Assembler::equal, TRUE_LABEL);
  5934   if (is_array_equ) {
  5935     // Need additional checks for arrays_equals.
  5936     testptr(ary1, ary1);
  5937     jcc(Assembler::zero, FALSE_LABEL);
  5938     testptr(ary2, ary2);
  5939     jcc(Assembler::zero, FALSE_LABEL);
  5941     // Check the lengths
  5942     movl(limit, Address(ary1, length_offset));
  5943     cmpl(limit, Address(ary2, length_offset));
  5944     jcc(Assembler::notEqual, FALSE_LABEL);
  5947   // count == 0
  5948   testl(limit, limit);
  5949   jcc(Assembler::zero, TRUE_LABEL);
  5951   if (is_array_equ) {
  5952     // Load array address
  5953     lea(ary1, Address(ary1, base_offset));
  5954     lea(ary2, Address(ary2, base_offset));
  5957   shll(limit, 1);      // byte count != 0
  5958   movl(result, limit); // copy
  5960   if (UseAVX >= 2) {
  5961     // With AVX2, use 32-byte vector compare
  5962     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  5964     // Compare 32-byte vectors
  5965     andl(result, 0x0000001e);  //   tail count (in bytes)
  5966     andl(limit, 0xffffffe0);   // vector count (in bytes)
  5967     jccb(Assembler::zero, COMPARE_TAIL);
  5969     lea(ary1, Address(ary1, limit, Address::times_1));
  5970     lea(ary2, Address(ary2, limit, Address::times_1));
  5971     negptr(limit);
  5973     bind(COMPARE_WIDE_VECTORS);
  5974     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
  5975     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
  5976     vpxor(vec1, vec2);
  5978     vptest(vec1, vec1);
  5979     jccb(Assembler::notZero, FALSE_LABEL);
  5980     addptr(limit, 32);
  5981     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  5983     testl(result, result);
  5984     jccb(Assembler::zero, TRUE_LABEL);
  5986     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
  5987     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
  5988     vpxor(vec1, vec2);
  5990     vptest(vec1, vec1);
  5991     jccb(Assembler::notZero, FALSE_LABEL);
  5992     jmpb(TRUE_LABEL);
  5994     bind(COMPARE_TAIL); // limit is zero
  5995     movl(limit, result);
  5996     // Fallthru to tail compare
  5997   } else if (UseSSE42Intrinsics) {
  5998     // With SSE4.2, use double quad vector compare
  5999     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6001     // Compare 16-byte vectors
  6002     andl(result, 0x0000000e);  //   tail count (in bytes)
  6003     andl(limit, 0xfffffff0);   // vector count (in bytes)
  6004     jccb(Assembler::zero, COMPARE_TAIL);
  6006     lea(ary1, Address(ary1, limit, Address::times_1));
  6007     lea(ary2, Address(ary2, limit, Address::times_1));
  6008     negptr(limit);
  6010     bind(COMPARE_WIDE_VECTORS);
  6011     movdqu(vec1, Address(ary1, limit, Address::times_1));
  6012     movdqu(vec2, Address(ary2, limit, Address::times_1));
  6013     pxor(vec1, vec2);
  6015     ptest(vec1, vec1);
  6016     jccb(Assembler::notZero, FALSE_LABEL);
  6017     addptr(limit, 16);
  6018     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6020     testl(result, result);
  6021     jccb(Assembler::zero, TRUE_LABEL);
  6023     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  6024     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  6025     pxor(vec1, vec2);
  6027     ptest(vec1, vec1);
  6028     jccb(Assembler::notZero, FALSE_LABEL);
  6029     jmpb(TRUE_LABEL);
  6031     bind(COMPARE_TAIL); // limit is zero
  6032     movl(limit, result);
  6033     // Fallthru to tail compare
  6036   // Compare 4-byte vectors
  6037   andl(limit, 0xfffffffc); // vector count (in bytes)
  6038   jccb(Assembler::zero, COMPARE_CHAR);
  6040   lea(ary1, Address(ary1, limit, Address::times_1));
  6041   lea(ary2, Address(ary2, limit, Address::times_1));
  6042   negptr(limit);
  6044   bind(COMPARE_VECTORS);
  6045   movl(chr, Address(ary1, limit, Address::times_1));
  6046   cmpl(chr, Address(ary2, limit, Address::times_1));
  6047   jccb(Assembler::notEqual, FALSE_LABEL);
  6048   addptr(limit, 4);
  6049   jcc(Assembler::notZero, COMPARE_VECTORS);
  6051   // Compare trailing char (final 2 bytes), if any
  6052   bind(COMPARE_CHAR);
  6053   testl(result, 0x2);   // tail  char
  6054   jccb(Assembler::zero, TRUE_LABEL);
  6055   load_unsigned_short(chr, Address(ary1, 0));
  6056   load_unsigned_short(limit, Address(ary2, 0));
  6057   cmpl(chr, limit);
  6058   jccb(Assembler::notEqual, FALSE_LABEL);
  6060   bind(TRUE_LABEL);
  6061   movl(result, 1);   // return true
  6062   jmpb(DONE);
  6064   bind(FALSE_LABEL);
  6065   xorl(result, result); // return false
  6067   // That's it
  6068   bind(DONE);
  6069   if (UseAVX >= 2) {
  6070     // clean upper bits of YMM registers
  6071     vzeroupper();
  6075 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  6076                                    Register to, Register value, Register count,
  6077                                    Register rtmp, XMMRegister xtmp) {
  6078   ShortBranchVerifier sbv(this);
  6079   assert_different_registers(to, value, count, rtmp);
  6080   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  6081   Label L_fill_2_bytes, L_fill_4_bytes;
  6083   int shift = -1;
  6084   switch (t) {
  6085     case T_BYTE:
  6086       shift = 2;
  6087       break;
  6088     case T_SHORT:
  6089       shift = 1;
  6090       break;
  6091     case T_INT:
  6092       shift = 0;
  6093       break;
  6094     default: ShouldNotReachHere();
  6097   if (t == T_BYTE) {
  6098     andl(value, 0xff);
  6099     movl(rtmp, value);
  6100     shll(rtmp, 8);
  6101     orl(value, rtmp);
  6103   if (t == T_SHORT) {
  6104     andl(value, 0xffff);
  6106   if (t == T_BYTE || t == T_SHORT) {
  6107     movl(rtmp, value);
  6108     shll(rtmp, 16);
  6109     orl(value, rtmp);
  6112   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  6113   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  6114   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  6115     // align source address at 4 bytes address boundary
  6116     if (t == T_BYTE) {
  6117       // One byte misalignment happens only for byte arrays
  6118       testptr(to, 1);
  6119       jccb(Assembler::zero, L_skip_align1);
  6120       movb(Address(to, 0), value);
  6121       increment(to);
  6122       decrement(count);
  6123       BIND(L_skip_align1);
  6125     // Two bytes misalignment happens only for byte and short (char) arrays
  6126     testptr(to, 2);
  6127     jccb(Assembler::zero, L_skip_align2);
  6128     movw(Address(to, 0), value);
  6129     addptr(to, 2);
  6130     subl(count, 1<<(shift-1));
  6131     BIND(L_skip_align2);
  6133   if (UseSSE < 2) {
  6134     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  6135     // Fill 32-byte chunks
  6136     subl(count, 8 << shift);
  6137     jcc(Assembler::less, L_check_fill_8_bytes);
  6138     align(16);
  6140     BIND(L_fill_32_bytes_loop);
  6142     for (int i = 0; i < 32; i += 4) {
  6143       movl(Address(to, i), value);
  6146     addptr(to, 32);
  6147     subl(count, 8 << shift);
  6148     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6149     BIND(L_check_fill_8_bytes);
  6150     addl(count, 8 << shift);
  6151     jccb(Assembler::zero, L_exit);
  6152     jmpb(L_fill_8_bytes);
  6154     //
  6155     // length is too short, just fill qwords
  6156     //
  6157     BIND(L_fill_8_bytes_loop);
  6158     movl(Address(to, 0), value);
  6159     movl(Address(to, 4), value);
  6160     addptr(to, 8);
  6161     BIND(L_fill_8_bytes);
  6162     subl(count, 1 << (shift + 1));
  6163     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6164     // fall through to fill 4 bytes
  6165   } else {
  6166     Label L_fill_32_bytes;
  6167     if (!UseUnalignedLoadStores) {
  6168       // align to 8 bytes, we know we are 4 byte aligned to start
  6169       testptr(to, 4);
  6170       jccb(Assembler::zero, L_fill_32_bytes);
  6171       movl(Address(to, 0), value);
  6172       addptr(to, 4);
  6173       subl(count, 1<<shift);
  6175     BIND(L_fill_32_bytes);
  6177       assert( UseSSE >= 2, "supported cpu only" );
  6178       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  6179       movdl(xtmp, value);
  6180       if (UseAVX >= 2 && UseUnalignedLoadStores) {
  6181         // Fill 64-byte chunks
  6182         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
  6183         vpbroadcastd(xtmp, xtmp);
  6185         subl(count, 16 << shift);
  6186         jcc(Assembler::less, L_check_fill_32_bytes);
  6187         align(16);
  6189         BIND(L_fill_64_bytes_loop);
  6190         vmovdqu(Address(to, 0), xtmp);
  6191         vmovdqu(Address(to, 32), xtmp);
  6192         addptr(to, 64);
  6193         subl(count, 16 << shift);
  6194         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
  6196         BIND(L_check_fill_32_bytes);
  6197         addl(count, 8 << shift);
  6198         jccb(Assembler::less, L_check_fill_8_bytes);
  6199         vmovdqu(Address(to, 0), xtmp);
  6200         addptr(to, 32);
  6201         subl(count, 8 << shift);
  6203         BIND(L_check_fill_8_bytes);
  6204         // clean upper bits of YMM registers
  6205         vzeroupper();
  6206       } else {
  6207         // Fill 32-byte chunks
  6208         pshufd(xtmp, xtmp, 0);
  6210         subl(count, 8 << shift);
  6211         jcc(Assembler::less, L_check_fill_8_bytes);
  6212         align(16);
  6214         BIND(L_fill_32_bytes_loop);
  6216         if (UseUnalignedLoadStores) {
  6217           movdqu(Address(to, 0), xtmp);
  6218           movdqu(Address(to, 16), xtmp);
  6219         } else {
  6220           movq(Address(to, 0), xtmp);
  6221           movq(Address(to, 8), xtmp);
  6222           movq(Address(to, 16), xtmp);
  6223           movq(Address(to, 24), xtmp);
  6226         addptr(to, 32);
  6227         subl(count, 8 << shift);
  6228         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6230         BIND(L_check_fill_8_bytes);
  6232       addl(count, 8 << shift);
  6233       jccb(Assembler::zero, L_exit);
  6234       jmpb(L_fill_8_bytes);
  6236       //
  6237       // length is too short, just fill qwords
  6238       //
  6239       BIND(L_fill_8_bytes_loop);
  6240       movq(Address(to, 0), xtmp);
  6241       addptr(to, 8);
  6242       BIND(L_fill_8_bytes);
  6243       subl(count, 1 << (shift + 1));
  6244       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6247   // fill trailing 4 bytes
  6248   BIND(L_fill_4_bytes);
  6249   testl(count, 1<<shift);
  6250   jccb(Assembler::zero, L_fill_2_bytes);
  6251   movl(Address(to, 0), value);
  6252   if (t == T_BYTE || t == T_SHORT) {
  6253     addptr(to, 4);
  6254     BIND(L_fill_2_bytes);
  6255     // fill trailing 2 bytes
  6256     testl(count, 1<<(shift-1));
  6257     jccb(Assembler::zero, L_fill_byte);
  6258     movw(Address(to, 0), value);
  6259     if (t == T_BYTE) {
  6260       addptr(to, 2);
  6261       BIND(L_fill_byte);
  6262       // fill trailing byte
  6263       testl(count, 1);
  6264       jccb(Assembler::zero, L_exit);
  6265       movb(Address(to, 0), value);
  6266     } else {
  6267       BIND(L_fill_byte);
  6269   } else {
  6270     BIND(L_fill_2_bytes);
  6272   BIND(L_exit);
  6275 // encode char[] to byte[] in ISO_8859_1
  6276 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
  6277                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
  6278                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
  6279                                       Register tmp5, Register result) {
  6280   // rsi: src
  6281   // rdi: dst
  6282   // rdx: len
  6283   // rcx: tmp5
  6284   // rax: result
  6285   ShortBranchVerifier sbv(this);
  6286   assert_different_registers(src, dst, len, tmp5, result);
  6287   Label L_done, L_copy_1_char, L_copy_1_char_exit;
  6289   // set result
  6290   xorl(result, result);
  6291   // check for zero length
  6292   testl(len, len);
  6293   jcc(Assembler::zero, L_done);
  6294   movl(result, len);
  6296   // Setup pointers
  6297   lea(src, Address(src, len, Address::times_2)); // char[]
  6298   lea(dst, Address(dst, len, Address::times_1)); // byte[]
  6299   negptr(len);
  6301   if (UseSSE42Intrinsics || UseAVX >= 2) {
  6302     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
  6303     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
  6305     if (UseAVX >= 2) {
  6306       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
  6307       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  6308       movdl(tmp1Reg, tmp5);
  6309       vpbroadcastd(tmp1Reg, tmp1Reg);
  6310       jmpb(L_chars_32_check);
  6312       bind(L_copy_32_chars);
  6313       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
  6314       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
  6315       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  6316       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  6317       jccb(Assembler::notZero, L_copy_32_chars_exit);
  6318       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  6319       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
  6320       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
  6322       bind(L_chars_32_check);
  6323       addptr(len, 32);
  6324       jccb(Assembler::lessEqual, L_copy_32_chars);
  6326       bind(L_copy_32_chars_exit);
  6327       subptr(len, 16);
  6328       jccb(Assembler::greater, L_copy_16_chars_exit);
  6330     } else if (UseSSE42Intrinsics) {
  6331       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  6332       movdl(tmp1Reg, tmp5);
  6333       pshufd(tmp1Reg, tmp1Reg, 0);
  6334       jmpb(L_chars_16_check);
  6337     bind(L_copy_16_chars);
  6338     if (UseAVX >= 2) {
  6339       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
  6340       vptest(tmp2Reg, tmp1Reg);
  6341       jccb(Assembler::notZero, L_copy_16_chars_exit);
  6342       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
  6343       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
  6344     } else {
  6345       if (UseAVX > 0) {
  6346         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  6347         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  6348         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
  6349       } else {
  6350         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  6351         por(tmp2Reg, tmp3Reg);
  6352         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  6353         por(tmp2Reg, tmp4Reg);
  6355       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  6356       jccb(Assembler::notZero, L_copy_16_chars_exit);
  6357       packuswb(tmp3Reg, tmp4Reg);
  6359     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
  6361     bind(L_chars_16_check);
  6362     addptr(len, 16);
  6363     jccb(Assembler::lessEqual, L_copy_16_chars);
  6365     bind(L_copy_16_chars_exit);
  6366     if (UseAVX >= 2) {
  6367       // clean upper bits of YMM registers
  6368       vzeroupper();
  6370     subptr(len, 8);
  6371     jccb(Assembler::greater, L_copy_8_chars_exit);
  6373     bind(L_copy_8_chars);
  6374     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
  6375     ptest(tmp3Reg, tmp1Reg);
  6376     jccb(Assembler::notZero, L_copy_8_chars_exit);
  6377     packuswb(tmp3Reg, tmp1Reg);
  6378     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
  6379     addptr(len, 8);
  6380     jccb(Assembler::lessEqual, L_copy_8_chars);
  6382     bind(L_copy_8_chars_exit);
  6383     subptr(len, 8);
  6384     jccb(Assembler::zero, L_done);
  6387   bind(L_copy_1_char);
  6388   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  6389   testl(tmp5, 0xff00);      // check if Unicode char
  6390   jccb(Assembler::notZero, L_copy_1_char_exit);
  6391   movb(Address(dst, len, Address::times_1, 0), tmp5);
  6392   addptr(len, 1);
  6393   jccb(Assembler::less, L_copy_1_char);
  6395   bind(L_copy_1_char_exit);
  6396   addptr(result, len); // len is negative count of not processed elements
  6397   bind(L_done);
  6400 /**
  6401  * Emits code to update CRC-32 with a byte value according to constants in table
  6403  * @param [in,out]crc   Register containing the crc.
  6404  * @param [in]val       Register containing the byte to fold into the CRC.
  6405  * @param [in]table     Register containing the table of crc constants.
  6407  * uint32_t crc;
  6408  * val = crc_table[(val ^ crc) & 0xFF];
  6409  * crc = val ^ (crc >> 8);
  6411  */
  6412 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  6413   xorl(val, crc);
  6414   andl(val, 0xFF);
  6415   shrl(crc, 8); // unsigned shift
  6416   xorl(crc, Address(table, val, Address::times_4, 0));
  6419 /**
  6420  * Fold 128-bit data chunk
  6421  */
  6422 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  6423   vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  6424   vpclmulldq(xcrc, xK, xcrc); // [63:0]
  6425   vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  6426   pxor(xcrc, xtmp);
  6429 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  6430   vpclmulhdq(xtmp, xK, xcrc);
  6431   vpclmulldq(xcrc, xK, xcrc);
  6432   pxor(xcrc, xbuf);
  6433   pxor(xcrc, xtmp);
  6436 /**
  6437  * 8-bit folds to compute 32-bit CRC
  6439  * uint64_t xcrc;
  6440  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
  6441  */
  6442 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  6443   movdl(tmp, xcrc);
  6444   andl(tmp, 0xFF);
  6445   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  6446   psrldq(xcrc, 1); // unsigned shift one byte
  6447   pxor(xcrc, xtmp);
  6450 /**
  6451  * uint32_t crc;
  6452  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
  6453  */
  6454 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  6455   movl(tmp, crc);
  6456   andl(tmp, 0xFF);
  6457   shrl(crc, 8);
  6458   xorl(crc, Address(table, tmp, Address::times_4, 0));
  6461 /**
  6462  * @param crc   register containing existing CRC (32-bit)
  6463  * @param buf   register pointing to input byte buffer (byte*)
  6464  * @param len   register containing number of bytes
  6465  * @param table register that will contain address of CRC table
  6466  * @param tmp   scratch register
  6467  */
  6468 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  6469   assert_different_registers(crc, buf, len, table, tmp, rax);
  6471   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  6472   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
  6474   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  6475   notl(crc); // ~crc
  6476   cmpl(len, 16);
  6477   jcc(Assembler::less, L_tail);
  6479   // Align buffer to 16 bytes
  6480   movl(tmp, buf);
  6481   andl(tmp, 0xF);
  6482   jccb(Assembler::zero, L_aligned);
  6483   subl(tmp,  16);
  6484   addl(len, tmp);
  6486   align(4);
  6487   BIND(L_align_loop);
  6488   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  6489   update_byte_crc32(crc, rax, table);
  6490   increment(buf);
  6491   incrementl(tmp);
  6492   jccb(Assembler::less, L_align_loop);
  6494   BIND(L_aligned);
  6495   movl(tmp, len); // save
  6496   shrl(len, 4);
  6497   jcc(Assembler::zero, L_tail_restore);
  6499   // Fold crc into first bytes of vector
  6500   movdqa(xmm1, Address(buf, 0));
  6501   movdl(rax, xmm1);
  6502   xorl(crc, rax);
  6503   pinsrd(xmm1, crc, 0);
  6504   addptr(buf, 16);
  6505   subl(len, 4); // len > 0
  6506   jcc(Assembler::less, L_fold_tail);
  6508   movdqa(xmm2, Address(buf,  0));
  6509   movdqa(xmm3, Address(buf, 16));
  6510   movdqa(xmm4, Address(buf, 32));
  6511   addptr(buf, 48);
  6512   subl(len, 3);
  6513   jcc(Assembler::lessEqual, L_fold_512b);
  6515   // Fold total 512 bits of polynomial on each iteration,
  6516   // 128 bits per each of 4 parallel streams.
  6517   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
  6519   align(32);
  6520   BIND(L_fold_512b_loop);
  6521   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  6522   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  6523   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  6524   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  6525   addptr(buf, 64);
  6526   subl(len, 4);
  6527   jcc(Assembler::greater, L_fold_512b_loop);
  6529   // Fold 512 bits to 128 bits.
  6530   BIND(L_fold_512b);
  6531   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  6532   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  6533   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  6534   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
  6536   // Fold the rest of 128 bits data chunks
  6537   BIND(L_fold_tail);
  6538   addl(len, 3);
  6539   jccb(Assembler::lessEqual, L_fold_128b);
  6540   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  6542   BIND(L_fold_tail_loop);
  6543   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  6544   addptr(buf, 16);
  6545   decrementl(len);
  6546   jccb(Assembler::greater, L_fold_tail_loop);
  6548   // Fold 128 bits in xmm1 down into 32 bits in crc register.
  6549   BIND(L_fold_128b);
  6550   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  6551   vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  6552   vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  6553   vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  6554   psrldq(xmm1, 8);
  6555   psrldq(xmm2, 4);
  6556   pxor(xmm0, xmm1);
  6557   pxor(xmm0, xmm2);
  6559   // 8 8-bit folds to compute 32-bit CRC.
  6560   for (int j = 0; j < 4; j++) {
  6561     fold_8bit_crc32(xmm0, table, xmm1, rax);
  6563   movdl(crc, xmm0); // mov 32 bits to general register
  6564   for (int j = 0; j < 4; j++) {
  6565     fold_8bit_crc32(crc, table, rax);
  6568   BIND(L_tail_restore);
  6569   movl(len, tmp); // restore
  6570   BIND(L_tail);
  6571   andl(len, 0xf);
  6572   jccb(Assembler::zero, L_exit);
  6574   // Fold the rest of bytes
  6575   align(4);
  6576   BIND(L_tail_loop);
  6577   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  6578   update_byte_crc32(crc, rax, table);
  6579   increment(buf);
  6580   decrementl(len);
  6581   jccb(Assembler::greater, L_tail_loop);
  6583   BIND(L_exit);
  6584   notl(crc); // ~c
  6587 #undef BIND
  6588 #undef BLOCK_COMMENT
  6591 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  6592   switch (cond) {
  6593     // Note some conditions are synonyms for others
  6594     case Assembler::zero:         return Assembler::notZero;
  6595     case Assembler::notZero:      return Assembler::zero;
  6596     case Assembler::less:         return Assembler::greaterEqual;
  6597     case Assembler::lessEqual:    return Assembler::greater;
  6598     case Assembler::greater:      return Assembler::lessEqual;
  6599     case Assembler::greaterEqual: return Assembler::less;
  6600     case Assembler::below:        return Assembler::aboveEqual;
  6601     case Assembler::belowEqual:   return Assembler::above;
  6602     case Assembler::above:        return Assembler::belowEqual;
  6603     case Assembler::aboveEqual:   return Assembler::below;
  6604     case Assembler::overflow:     return Assembler::noOverflow;
  6605     case Assembler::noOverflow:   return Assembler::overflow;
  6606     case Assembler::negative:     return Assembler::positive;
  6607     case Assembler::positive:     return Assembler::negative;
  6608     case Assembler::parity:       return Assembler::noParity;
  6609     case Assembler::noParity:     return Assembler::parity;
  6611   ShouldNotReachHere(); return Assembler::overflow;
  6614 SkipIfEqual::SkipIfEqual(
  6615     MacroAssembler* masm, const bool* flag_addr, bool value) {
  6616   _masm = masm;
  6617   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  6618   _masm->jcc(Assembler::equal, _label);
  6621 SkipIfEqual::~SkipIfEqual() {
  6622   _masm->bind(_label);

mercurial