src/cpu/sparc/vm/c1_LIRGenerator_sparc.cpp

Tue, 02 Jul 2013 20:42:12 -0400

author
drchase
date
Tue, 02 Jul 2013 20:42:12 -0400
changeset 5353
b800986664f4
parent 4860
46f6f063b272
child 6696
273a462437e9
permissions
-rw-r--r--

7088419: Use x86 Hardware CRC32 Instruction with java.util.zip.CRC32
Summary: add intrinsics using new instruction to interpreter, C1, C2, for suitable x86; add test
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArray.hpp"
    34 #include "ci/ciObjArrayKlass.hpp"
    35 #include "ci/ciTypeArrayKlass.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "vmreg_sparc.inline.hpp"
    40 #ifdef ASSERT
    41 #define __ gen()->lir(__FILE__, __LINE__)->
    42 #else
    43 #define __ gen()->lir()->
    44 #endif
    46 void LIRItem::load_byte_item() {
    47   // byte loads use same registers as other loads
    48   load_item();
    49 }
    52 void LIRItem::load_nonconstant() {
    53   LIR_Opr r = value()->operand();
    54   if (_gen->can_inline_as_constant(value())) {
    55     if (!r->is_constant()) {
    56       r = LIR_OprFact::value_type(value()->type());
    57     }
    58     _result = r;
    59   } else {
    60     load_item();
    61   }
    62 }
    65 //--------------------------------------------------------------
    66 //               LIRGenerator
    67 //--------------------------------------------------------------
    69 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
    70 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
    71 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
    72 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_INT); }
    74 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    75   LIR_Opr opr;
    76   switch (type->tag()) {
    77   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
    78   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
    79   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
    80   case floatTag:   opr = FrameMap::F0_opr;                                        break;
    81   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
    83   case addressTag:
    84   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    85   }
    87   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
    88   return opr;
    89 }
    91 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
    92   LIR_Opr reg = new_register(type);
    93   set_vreg_flag(reg, callee_saved);
    94   return reg;
    95 }
    98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
    99   return new_register(T_INT);
   100 }
   106 //--------- loading items into registers --------------------------------
   108 // SPARC cannot inline all constants
   109 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   110   if (v->type()->as_IntConstant() != NULL) {
   111     return v->type()->as_IntConstant()->value() == 0;
   112   } else if (v->type()->as_LongConstant() != NULL) {
   113     return v->type()->as_LongConstant()->value() == 0L;
   114   } else if (v->type()->as_ObjectConstant() != NULL) {
   115     return v->type()->as_ObjectConstant()->value()->is_null_object();
   116   } else {
   117     return false;
   118   }
   119 }
   122 // only simm13 constants can be inlined
   123 bool LIRGenerator:: can_inline_as_constant(Value i) const {
   124   if (i->type()->as_IntConstant() != NULL) {
   125     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
   126   } else {
   127     return can_store_as_constant(i, as_BasicType(i->type()));
   128   }
   129 }
   132 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
   133   if (c->type() == T_INT) {
   134     return Assembler::is_simm13(c->as_jint());
   135   }
   136   return false;
   137 }
   140 LIR_Opr LIRGenerator::safepoint_poll_register() {
   141   return new_register(T_INT);
   142 }
   146 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   147                                             int shift, int disp, BasicType type) {
   148   assert(base->is_register(), "must be");
   150   // accumulate fixed displacements
   151   if (index->is_constant()) {
   152     disp += index->as_constant_ptr()->as_jint() << shift;
   153     index = LIR_OprFact::illegalOpr;
   154   }
   156   if (index->is_register()) {
   157     // apply the shift and accumulate the displacement
   158     if (shift > 0) {
   159       LIR_Opr tmp = new_pointer_register();
   160       __ shift_left(index, shift, tmp);
   161       index = tmp;
   162     }
   163     if (disp != 0) {
   164       LIR_Opr tmp = new_pointer_register();
   165       if (Assembler::is_simm13(disp)) {
   166         __ add(tmp, LIR_OprFact::intptrConst(disp), tmp);
   167         index = tmp;
   168       } else {
   169         __ move(LIR_OprFact::intptrConst(disp), tmp);
   170         __ add(tmp, index, tmp);
   171         index = tmp;
   172       }
   173       disp = 0;
   174     }
   175   } else if (disp != 0 && !Assembler::is_simm13(disp)) {
   176     // index is illegal so replace it with the displacement loaded into a register
   177     index = new_pointer_register();
   178     __ move(LIR_OprFact::intptrConst(disp), index);
   179     disp = 0;
   180   }
   182   // at this point we either have base + index or base + displacement
   183   if (disp == 0) {
   184     return new LIR_Address(base, index, type);
   185   } else {
   186     assert(Assembler::is_simm13(disp), "must be");
   187     return new LIR_Address(base, disp, type);
   188   }
   189 }
   192 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   193                                               BasicType type, bool needs_card_mark) {
   194   int elem_size = type2aelembytes(type);
   195   int shift = exact_log2(elem_size);
   197   LIR_Opr base_opr;
   198   int offset = arrayOopDesc::base_offset_in_bytes(type);
   200   if (index_opr->is_constant()) {
   201     int i = index_opr->as_constant_ptr()->as_jint();
   202     int array_offset = i * elem_size;
   203     if (Assembler::is_simm13(array_offset + offset)) {
   204       base_opr = array_opr;
   205       offset = array_offset + offset;
   206     } else {
   207       base_opr = new_pointer_register();
   208       if (Assembler::is_simm13(array_offset)) {
   209         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
   210       } else {
   211         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
   212         __ add(base_opr, array_opr, base_opr);
   213       }
   214     }
   215   } else {
   216 #ifdef _LP64
   217     if (index_opr->type() == T_INT) {
   218       LIR_Opr tmp = new_register(T_LONG);
   219       __ convert(Bytecodes::_i2l, index_opr, tmp);
   220       index_opr = tmp;
   221     }
   222 #endif
   224     base_opr = new_pointer_register();
   225     assert (index_opr->is_register(), "Must be register");
   226     if (shift > 0) {
   227       __ shift_left(index_opr, shift, base_opr);
   228       __ add(base_opr, array_opr, base_opr);
   229     } else {
   230       __ add(index_opr, array_opr, base_opr);
   231     }
   232   }
   233   if (needs_card_mark) {
   234     LIR_Opr ptr = new_pointer_register();
   235     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
   236     return new LIR_Address(ptr, type);
   237   } else {
   238     return new LIR_Address(base_opr, offset, type);
   239   }
   240 }
   242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
   243   LIR_Opr r;
   244   if (type == T_LONG) {
   245     r = LIR_OprFact::longConst(x);
   246   } else if (type == T_INT) {
   247     r = LIR_OprFact::intConst(x);
   248   } else {
   249     ShouldNotReachHere();
   250   }
   251   if (!Assembler::is_simm13(x)) {
   252     LIR_Opr tmp = new_register(type);
   253     __ move(r, tmp);
   254     return tmp;
   255   }
   256   return r;
   257 }
   259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
   260   LIR_Opr pointer = new_pointer_register();
   261   __ move(LIR_OprFact::intptrConst(counter), pointer);
   262   LIR_Address* addr = new LIR_Address(pointer, type);
   263   increment_counter(addr, step);
   264 }
   266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   267   LIR_Opr temp = new_register(addr->type());
   268   __ move(addr, temp);
   269   __ add(temp, load_immediate(step, addr->type()), temp);
   270   __ move(temp, addr);
   271 }
   273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   274   LIR_Opr o7opr = FrameMap::O7_opr;
   275   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
   276   __ cmp(condition, o7opr, c);
   277 }
   280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   281   LIR_Opr o7opr = FrameMap::O7_opr;
   282   __ load(new LIR_Address(base, disp, type), o7opr, info);
   283   __ cmp(condition, reg, o7opr);
   284 }
   287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   288   LIR_Opr o7opr = FrameMap::O7_opr;
   289   __ load(new LIR_Address(base, disp, type), o7opr, info);
   290   __ cmp(condition, reg, o7opr);
   291 }
   294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   295   assert(left != result, "should be different registers");
   296   if (is_power_of_2(c + 1)) {
   297     __ shift_left(left, log2_intptr(c + 1), result);
   298     __ sub(result, left, result);
   299     return true;
   300   } else if (is_power_of_2(c - 1)) {
   301     __ shift_left(left, log2_intptr(c - 1), result);
   302     __ add(result, left, result);
   303     return true;
   304   }
   305   return false;
   306 }
   309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   310   BasicType t = item->type();
   311   LIR_Opr sp_opr = FrameMap::SP_opr;
   312   if ((t == T_LONG || t == T_DOUBLE) &&
   313       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
   314     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
   315   } else {
   316     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
   317   }
   318 }
   320 //----------------------------------------------------------------------
   321 //             visitor functions
   322 //----------------------------------------------------------------------
   325 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   326   assert(x->is_pinned(),"");
   327   bool needs_range_check = x->compute_needs_range_check();
   328   bool use_length = x->length() != NULL;
   329   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   330   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   331                                          !get_jobject_constant(x->value())->is_null_object() ||
   332                                          x->should_profile());
   334   LIRItem array(x->array(), this);
   335   LIRItem index(x->index(), this);
   336   LIRItem value(x->value(), this);
   337   LIRItem length(this);
   339   array.load_item();
   340   index.load_nonconstant();
   342   if (use_length && needs_range_check) {
   343     length.set_instruction(x->length());
   344     length.load_item();
   345   }
   346   if (needs_store_check) {
   347     value.load_item();
   348   } else {
   349     value.load_for_store(x->elt_type());
   350   }
   352   set_no_result(x);
   354   // the CodeEmitInfo must be duplicated for each different
   355   // LIR-instruction because spilling can occur anywhere between two
   356   // instructions and so the debug information must be different
   357   CodeEmitInfo* range_check_info = state_for(x);
   358   CodeEmitInfo* null_check_info = NULL;
   359   if (x->needs_null_check()) {
   360     null_check_info = new CodeEmitInfo(range_check_info);
   361   }
   363   // emit array address setup early so it schedules better
   364   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   366   if (GenerateRangeChecks && needs_range_check) {
   367     if (use_length) {
   368       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   369       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   370     } else {
   371       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   372       // range_check also does the null check
   373       null_check_info = NULL;
   374     }
   375   }
   377   if (GenerateArrayStoreCheck && needs_store_check) {
   378     LIR_Opr tmp1 = FrameMap::G1_opr;
   379     LIR_Opr tmp2 = FrameMap::G3_opr;
   380     LIR_Opr tmp3 = FrameMap::G5_opr;
   382     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   383     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
   384   }
   386   if (obj_store) {
   387     // Needs GC write barriers.
   388     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
   389                 true /* do_load */, false /* patch */, NULL);
   390   }
   391   __ move(value.result(), array_addr, null_check_info);
   392   if (obj_store) {
   393     // Precise card mark
   394     post_barrier(LIR_OprFact::address(array_addr), value.result());
   395   }
   396 }
   399 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   400   assert(x->is_pinned(),"");
   401   LIRItem obj(x->obj(), this);
   402   obj.load_item();
   404   set_no_result(x);
   406   LIR_Opr lock    = FrameMap::G1_opr;
   407   LIR_Opr scratch = FrameMap::G3_opr;
   408   LIR_Opr hdr     = FrameMap::G4_opr;
   410   CodeEmitInfo* info_for_exception = NULL;
   411   if (x->needs_null_check()) {
   412     info_for_exception = state_for(x);
   413   }
   415   // this CodeEmitInfo must not have the xhandlers because here the
   416   // object is already locked (xhandlers expects object to be unlocked)
   417   CodeEmitInfo* info = state_for(x, x->state(), true);
   418   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
   419 }
   422 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   423   assert(x->is_pinned(),"");
   424   LIRItem obj(x->obj(), this);
   425   obj.dont_load_item();
   427   set_no_result(x);
   428   LIR_Opr lock      = FrameMap::G1_opr;
   429   LIR_Opr hdr       = FrameMap::G3_opr;
   430   LIR_Opr obj_temp  = FrameMap::G4_opr;
   431   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
   432 }
   435 // _ineg, _lneg, _fneg, _dneg
   436 void LIRGenerator::do_NegateOp(NegateOp* x) {
   437   LIRItem value(x->x(), this);
   438   value.load_item();
   439   LIR_Opr reg = rlock_result(x);
   440   __ negate(value.result(), reg);
   441 }
   445 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   446 //      _dadd, _dmul, _dsub, _ddiv, _drem
   447 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   448   switch (x->op()) {
   449   case Bytecodes::_fadd:
   450   case Bytecodes::_fmul:
   451   case Bytecodes::_fsub:
   452   case Bytecodes::_fdiv:
   453   case Bytecodes::_dadd:
   454   case Bytecodes::_dmul:
   455   case Bytecodes::_dsub:
   456   case Bytecodes::_ddiv: {
   457     LIRItem left(x->x(), this);
   458     LIRItem right(x->y(), this);
   459     left.load_item();
   460     right.load_item();
   461     rlock_result(x);
   462     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
   463   }
   464   break;
   466   case Bytecodes::_frem:
   467   case Bytecodes::_drem: {
   468     address entry;
   469     switch (x->op()) {
   470     case Bytecodes::_frem:
   471       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
   472       break;
   473     case Bytecodes::_drem:
   474       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
   475       break;
   476     default:
   477       ShouldNotReachHere();
   478     }
   479     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
   480     set_result(x, result);
   481   }
   482   break;
   484   default: ShouldNotReachHere();
   485   }
   486 }
   489 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   490 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   491   switch (x->op()) {
   492   case Bytecodes::_lrem:
   493   case Bytecodes::_lmul:
   494   case Bytecodes::_ldiv: {
   496     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
   497       LIRItem right(x->y(), this);
   498       right.load_item();
   500       CodeEmitInfo* info = state_for(x);
   501       LIR_Opr item = right.result();
   502       assert(item->is_register(), "must be");
   503       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
   504       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   505     }
   507     address entry;
   508     switch (x->op()) {
   509     case Bytecodes::_lrem:
   510       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   511       break; // check if dividend is 0 is done elsewhere
   512     case Bytecodes::_ldiv:
   513       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   514       break; // check if dividend is 0 is done elsewhere
   515     case Bytecodes::_lmul:
   516       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   517       break;
   518     default:
   519       ShouldNotReachHere();
   520     }
   522     // order of arguments to runtime call is reversed.
   523     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
   524     set_result(x, result);
   525     break;
   526   }
   527   case Bytecodes::_ladd:
   528   case Bytecodes::_lsub: {
   529     LIRItem left(x->x(), this);
   530     LIRItem right(x->y(), this);
   531     left.load_item();
   532     right.load_item();
   533     rlock_result(x);
   535     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   536     break;
   537   }
   538   default: ShouldNotReachHere();
   539   }
   540 }
   543 // Returns if item is an int constant that can be represented by a simm13
   544 static bool is_simm13(LIR_Opr item) {
   545   if (item->is_constant() && item->type() == T_INT) {
   546     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
   547   } else {
   548     return false;
   549   }
   550 }
   553 // for: _iadd, _imul, _isub, _idiv, _irem
   554 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   555   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
   556   LIRItem left(x->x(), this);
   557   LIRItem right(x->y(), this);
   558   // missing test if instr is commutative and if we should swap
   559   right.load_nonconstant();
   560   assert(right.is_constant() || right.is_register(), "wrong state of right");
   561   left.load_item();
   562   rlock_result(x);
   563   if (is_div_rem) {
   564     CodeEmitInfo* info = state_for(x);
   565     LIR_Opr tmp = FrameMap::G1_opr;
   566     if (x->op() == Bytecodes::_irem) {
   567       __ irem(left.result(), right.result(), x->operand(), tmp, info);
   568     } else if (x->op() == Bytecodes::_idiv) {
   569       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
   570     }
   571   } else {
   572     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
   573   }
   574 }
   577 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   578   ValueTag tag = x->type()->tag();
   579   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   580   switch (tag) {
   581     case floatTag:
   582     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   583     case longTag:    do_ArithmeticOp_Long(x); return;
   584     case intTag:     do_ArithmeticOp_Int(x);  return;
   585   }
   586   ShouldNotReachHere();
   587 }
   590 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   591 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   592   LIRItem value(x->x(), this);
   593   LIRItem count(x->y(), this);
   594   // Long shift destroys count register
   595   if (value.type()->is_long()) {
   596     count.set_destroys_register();
   597   }
   598   value.load_item();
   599   // the old backend doesn't support this
   600   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
   601     jint c = count.get_jint_constant() & 0x1f;
   602     assert(c >= 0 && c < 32, "should be small");
   603     count.dont_load_item();
   604   } else {
   605     count.load_item();
   606   }
   607   LIR_Opr reg = rlock_result(x);
   608   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   609 }
   612 // _iand, _land, _ior, _lor, _ixor, _lxor
   613 void LIRGenerator::do_LogicOp(LogicOp* x) {
   614   LIRItem left(x->x(), this);
   615   LIRItem right(x->y(), this);
   617   left.load_item();
   618   right.load_nonconstant();
   619   LIR_Opr reg = rlock_result(x);
   621   logic_op(x->op(), reg, left.result(), right.result());
   622 }
   626 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   627 void LIRGenerator::do_CompareOp(CompareOp* x) {
   628   LIRItem left(x->x(), this);
   629   LIRItem right(x->y(), this);
   630   left.load_item();
   631   right.load_item();
   632   LIR_Opr reg = rlock_result(x);
   633   if (x->x()->type()->is_float_kind()) {
   634     Bytecodes::Code code = x->op();
   635     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   636   } else if (x->x()->type()->tag() == longTag) {
   637     __ lcmp2int(left.result(), right.result(), reg);
   638   } else {
   639     Unimplemented();
   640   }
   641 }
   644 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   645   assert(x->number_of_arguments() == 4, "wrong type");
   646   LIRItem obj   (x->argument_at(0), this);  // object
   647   LIRItem offset(x->argument_at(1), this);  // offset of field
   648   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   649   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   651   // Use temps to avoid kills
   652   LIR_Opr t1 = FrameMap::G1_opr;
   653   LIR_Opr t2 = FrameMap::G3_opr;
   654   LIR_Opr addr = new_pointer_register();
   656   // get address of field
   657   obj.load_item();
   658   offset.load_item();
   659   cmp.load_item();
   660   val.load_item();
   662   __ add(obj.result(), offset.result(), addr);
   664   if (type == objectType) {  // Write-barrier needed for Object fields.
   665     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
   666                 true /* do_load */, false /* patch */, NULL);
   667   }
   669   if (type == objectType)
   670     __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
   671   else if (type == intType)
   672     __ cas_int(addr, cmp.result(), val.result(), t1, t2);
   673   else if (type == longType)
   674     __ cas_long(addr, cmp.result(), val.result(), t1, t2);
   675   else {
   676     ShouldNotReachHere();
   677   }
   678   // generate conditional move of boolean result
   679   LIR_Opr result = rlock_result(x);
   680   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
   681            result, as_BasicType(type));
   682   if (type == objectType) {  // Write-barrier needed for Object fields.
   683     // Precise card mark since could either be object or array
   684     post_barrier(addr, val.result());
   685   }
   686 }
   689 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   690   switch (x->id()) {
   691     case vmIntrinsics::_dabs:
   692     case vmIntrinsics::_dsqrt: {
   693       assert(x->number_of_arguments() == 1, "wrong type");
   694       LIRItem value(x->argument_at(0), this);
   695       value.load_item();
   696       LIR_Opr dst = rlock_result(x);
   698       switch (x->id()) {
   699       case vmIntrinsics::_dsqrt: {
   700         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
   701         break;
   702       }
   703       case vmIntrinsics::_dabs: {
   704         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
   705         break;
   706       }
   707       }
   708       break;
   709     }
   710     case vmIntrinsics::_dlog10: // fall through
   711     case vmIntrinsics::_dlog: // fall through
   712     case vmIntrinsics::_dsin: // fall through
   713     case vmIntrinsics::_dtan: // fall through
   714     case vmIntrinsics::_dcos: // fall through
   715     case vmIntrinsics::_dexp: {
   716       assert(x->number_of_arguments() == 1, "wrong type");
   718       address runtime_entry = NULL;
   719       switch (x->id()) {
   720       case vmIntrinsics::_dsin:
   721         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
   722         break;
   723       case vmIntrinsics::_dcos:
   724         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
   725         break;
   726       case vmIntrinsics::_dtan:
   727         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
   728         break;
   729       case vmIntrinsics::_dlog:
   730         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
   731         break;
   732       case vmIntrinsics::_dlog10:
   733         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
   734         break;
   735       case vmIntrinsics::_dexp:
   736         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
   737         break;
   738       default:
   739         ShouldNotReachHere();
   740       }
   742       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
   743       set_result(x, result);
   744       break;
   745     }
   746     case vmIntrinsics::_dpow: {
   747       assert(x->number_of_arguments() == 2, "wrong type");
   748       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
   749       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
   750       set_result(x, result);
   751       break;
   752     }
   753   }
   754 }
   757 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   758   assert(x->number_of_arguments() == 5, "wrong type");
   760   // Make all state_for calls early since they can emit code
   761   CodeEmitInfo* info = state_for(x, x->state());
   763   // Note: spill caller save before setting the item
   764   LIRItem src     (x->argument_at(0), this);
   765   LIRItem src_pos (x->argument_at(1), this);
   766   LIRItem dst     (x->argument_at(2), this);
   767   LIRItem dst_pos (x->argument_at(3), this);
   768   LIRItem length  (x->argument_at(4), this);
   769   // load all values in callee_save_registers, as this makes the
   770   // parameter passing to the fast case simpler
   771   src.load_item_force     (rlock_callee_saved(T_OBJECT));
   772   src_pos.load_item_force (rlock_callee_saved(T_INT));
   773   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
   774   dst_pos.load_item_force (rlock_callee_saved(T_INT));
   775   length.load_item_force  (rlock_callee_saved(T_INT));
   777   int flags;
   778   ciArrayKlass* expected_type;
   779   arraycopy_helper(x, &flags, &expected_type);
   781   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
   782                length.result(), rlock_callee_saved(T_INT),
   783                expected_type, flags, info);
   784   set_no_result(x);
   785 }
   787 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
   788   fatal("CRC32 intrinsic is not implemented on this platform");
   789 }
   791 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   792 // _i2b, _i2c, _i2s
   793 void LIRGenerator::do_Convert(Convert* x) {
   795   switch (x->op()) {
   796     case Bytecodes::_f2l:
   797     case Bytecodes::_d2l:
   798     case Bytecodes::_d2i:
   799     case Bytecodes::_l2f:
   800     case Bytecodes::_l2d: {
   802       address entry;
   803       switch (x->op()) {
   804       case Bytecodes::_l2f:
   805         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
   806         break;
   807       case Bytecodes::_l2d:
   808         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
   809         break;
   810       case Bytecodes::_f2l:
   811         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
   812         break;
   813       case Bytecodes::_d2l:
   814         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
   815         break;
   816       case Bytecodes::_d2i:
   817         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
   818         break;
   819       default:
   820         ShouldNotReachHere();
   821       }
   822       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
   823       set_result(x, result);
   824       break;
   825     }
   827     case Bytecodes::_i2f:
   828     case Bytecodes::_i2d: {
   829       LIRItem value(x->value(), this);
   831       LIR_Opr reg = rlock_result(x);
   832       // To convert an int to double, we need to load the 32-bit int
   833       // from memory into a single precision floating point register
   834       // (even numbered). Then the sparc fitod instruction takes care
   835       // of the conversion. This is a bit ugly, but is the best way to
   836       // get the int value in a single precision floating point register
   837       value.load_item();
   838       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
   839       __ convert(x->op(), tmp, reg);
   840       break;
   841     }
   842     break;
   844     case Bytecodes::_i2l:
   845     case Bytecodes::_i2b:
   846     case Bytecodes::_i2c:
   847     case Bytecodes::_i2s:
   848     case Bytecodes::_l2i:
   849     case Bytecodes::_f2d:
   850     case Bytecodes::_d2f: { // inline code
   851       LIRItem value(x->value(), this);
   853       value.load_item();
   854       LIR_Opr reg = rlock_result(x);
   855       __ convert(x->op(), value.result(), reg, false);
   856     }
   857     break;
   859     case Bytecodes::_f2i: {
   860       LIRItem value (x->value(), this);
   861       value.set_destroys_register();
   862       value.load_item();
   863       LIR_Opr reg = rlock_result(x);
   864       set_vreg_flag(reg, must_start_in_memory);
   865       __ convert(x->op(), value.result(), reg, false);
   866     }
   867     break;
   869     default: ShouldNotReachHere();
   870   }
   871 }
   874 void LIRGenerator::do_NewInstance(NewInstance* x) {
   875   // This instruction can be deoptimized in the slow path : use
   876   // O0 as result register.
   877   const LIR_Opr reg = result_register_for(x->type());
   878 #ifndef PRODUCT
   879   if (PrintNotLoaded && !x->klass()->is_loaded()) {
   880     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
   881   }
   882 #endif
   883   CodeEmitInfo* info = state_for(x, x->state());
   884   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
   885   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
   886   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
   887   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
   888   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
   889   new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
   890   LIR_Opr result = rlock_result(x);
   891   __ move(reg, result);
   892 }
   895 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
   896   // Evaluate state_for early since it may emit code
   897   CodeEmitInfo* info = state_for(x, x->state());
   899   LIRItem length(x->length(), this);
   900   length.load_item();
   902   LIR_Opr reg = result_register_for(x->type());
   903   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
   904   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
   905   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
   906   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
   907   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
   908   LIR_Opr len = length.result();
   909   BasicType elem_type = x->elt_type();
   911   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
   913   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
   914   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
   916   LIR_Opr result = rlock_result(x);
   917   __ move(reg, result);
   918 }
   921 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
   922   // Evaluate state_for early since it may emit code.
   923   CodeEmitInfo* info = state_for(x, x->state());
   924   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
   925   // and therefore provide the state before the parameters have been consumed
   926   CodeEmitInfo* patching_info = NULL;
   927   if (!x->klass()->is_loaded() || PatchALot) {
   928     patching_info = state_for(x, x->state_before());
   929   }
   931   LIRItem length(x->length(), this);
   932   length.load_item();
   934   const LIR_Opr reg = result_register_for(x->type());
   935   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
   936   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
   937   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
   938   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
   939   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
   940   LIR_Opr len = length.result();
   942   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
   943   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
   944   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
   945     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
   946   }
   947   klass2reg_with_patching(klass_reg, obj, patching_info);
   948   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
   950   LIR_Opr result = rlock_result(x);
   951   __ move(reg, result);
   952 }
   955 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
   956   Values* dims = x->dims();
   957   int i = dims->length();
   958   LIRItemList* items = new LIRItemList(dims->length(), NULL);
   959   while (i-- > 0) {
   960     LIRItem* size = new LIRItem(dims->at(i), this);
   961     items->at_put(i, size);
   962   }
   964   // Evaluate state_for early since it may emit code.
   965   CodeEmitInfo* patching_info = NULL;
   966   if (!x->klass()->is_loaded() || PatchALot) {
   967     patching_info = state_for(x, x->state_before());
   969     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
   970     // clone all handlers (NOTE: Usually this is handled transparently
   971     // by the CodeEmitInfo cloning logic in CodeStub constructors but
   972     // is done explicitly here because a stub isn't being used).
   973     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
   974   }
   975   CodeEmitInfo* info = state_for(x, x->state());
   977   i = dims->length();
   978   while (i-- > 0) {
   979     LIRItem* size = items->at(i);
   980     size->load_item();
   981     store_stack_parameter (size->result(),
   982                            in_ByteSize(STACK_BIAS +
   983                                        frame::memory_parameter_word_sp_offset * wordSize +
   984                                        i * sizeof(jint)));
   985   }
   987   // This instruction can be deoptimized in the slow path : use
   988   // O0 as result register.
   989   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
   990   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
   991   LIR_Opr rank = FrameMap::O1_opr;
   992   __ move(LIR_OprFact::intConst(x->rank()), rank);
   993   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
   994   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
   995   __ add(FrameMap::SP_opr,
   996          LIR_OprFact::intptrConst(offset_from_sp),
   997          varargs);
   998   LIR_OprList* args = new LIR_OprList(3);
   999   args->append(klass_reg);
  1000   args->append(rank);
  1001   args->append(varargs);
  1002   const LIR_Opr reg = result_register_for(x->type());
  1003   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1004                   LIR_OprFact::illegalOpr,
  1005                   reg, args, info);
  1007   LIR_Opr result = rlock_result(x);
  1008   __ move(reg, result);
  1012 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1016 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1017   LIRItem obj(x->obj(), this);
  1018   CodeEmitInfo* patching_info = NULL;
  1019   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1020     // must do this before locking the destination register as an oop register,
  1021     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
  1022     patching_info = state_for(x, x->state_before());
  1024   obj.load_item();
  1025   LIR_Opr out_reg = rlock_result(x);
  1026   CodeStub* stub;
  1027   CodeEmitInfo* info_for_exception = state_for(x);
  1029   if (x->is_incompatible_class_change_check()) {
  1030     assert(patching_info == NULL, "can't patch this");
  1031     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1032   } else {
  1033     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1035   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  1036   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  1037   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  1038   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
  1039                x->direct_compare(), info_for_exception, patching_info, stub,
  1040                x->profiled_method(), x->profiled_bci());
  1044 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1045   LIRItem obj(x->obj(), this);
  1046   CodeEmitInfo* patching_info = NULL;
  1047   if (!x->klass()->is_loaded() || PatchALot) {
  1048     patching_info = state_for(x, x->state_before());
  1050   // ensure the result register is not the input register because the result is initialized before the patching safepoint
  1051   obj.load_item();
  1052   LIR_Opr out_reg = rlock_result(x);
  1053   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
  1054   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
  1055   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
  1056   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
  1057                 x->direct_compare(), patching_info,
  1058                 x->profiled_method(), x->profiled_bci());
  1062 void LIRGenerator::do_If(If* x) {
  1063   assert(x->number_of_sux() == 2, "inconsistency");
  1064   ValueTag tag = x->x()->type()->tag();
  1065   LIRItem xitem(x->x(), this);
  1066   LIRItem yitem(x->y(), this);
  1067   LIRItem* xin = &xitem;
  1068   LIRItem* yin = &yitem;
  1069   If::Condition cond = x->cond();
  1071   if (tag == longTag) {
  1072     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1073     // mirror for other conditions
  1074     if (cond == If::gtr || cond == If::leq) {
  1075       // swap inputs
  1076       cond = Instruction::mirror(cond);
  1077       xin = &yitem;
  1078       yin = &xitem;
  1080     xin->set_destroys_register();
  1083   LIR_Opr left = LIR_OprFact::illegalOpr;
  1084   LIR_Opr right = LIR_OprFact::illegalOpr;
  1086   xin->load_item();
  1087   left = xin->result();
  1089   if (is_simm13(yin->result())) {
  1090     // inline int constants which are small enough to be immediate operands
  1091     right = LIR_OprFact::value_type(yin->value()->type());
  1092   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
  1093              (cond == If::eql || cond == If::neq)) {
  1094     // inline long zero
  1095     right = LIR_OprFact::value_type(yin->value()->type());
  1096   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
  1097     right = LIR_OprFact::value_type(yin->value()->type());
  1098   } else {
  1099     yin->load_item();
  1100     right = yin->result();
  1102   set_no_result(x);
  1104   // add safepoint before generating condition code so it can be recomputed
  1105   if (x->is_safepoint()) {
  1106     // increment backedge counter if needed
  1107     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
  1108     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
  1111   __ cmp(lir_cond(cond), left, right);
  1112   // Generate branch profiling. Profiling code doesn't kill flags.
  1113   profile_branch(x, cond);
  1114   move_to_phi(x->state());
  1115   if (x->x()->type()->is_float_kind()) {
  1116     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1117   } else {
  1118     __ branch(lir_cond(cond), right->type(), x->tsux());
  1120   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1121   __ jump(x->default_sux());
  1125 LIR_Opr LIRGenerator::getThreadPointer() {
  1126   return FrameMap::as_pointer_opr(G2);
  1130 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1131   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
  1132   LIR_OprList* args = new LIR_OprList(1);
  1133   args->append(FrameMap::O0_opr);
  1134   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1135   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
  1139 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1140                                         CodeEmitInfo* info) {
  1141 #ifdef _LP64
  1142   __ store(value, address, info);
  1143 #else
  1144   __ volatile_store_mem_reg(value, address, info);
  1145 #endif
  1148 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1149                                        CodeEmitInfo* info) {
  1150 #ifdef _LP64
  1151   __ load(address, result, info);
  1152 #else
  1153   __ volatile_load_mem_reg(address, result, info);
  1154 #endif
  1158 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1159                                      BasicType type, bool is_volatile) {
  1160   LIR_Opr base_op = src;
  1161   LIR_Opr index_op = offset;
  1163   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1164 #ifndef _LP64
  1165   if (is_volatile && type == T_LONG) {
  1166     __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
  1167   } else
  1168 #endif
  1170       if (type == T_BOOLEAN) {
  1171         type = T_BYTE;
  1173       LIR_Address* addr;
  1174       if (type == T_ARRAY || type == T_OBJECT) {
  1175         LIR_Opr tmp = new_pointer_register();
  1176         __ add(base_op, index_op, tmp);
  1177         addr = new LIR_Address(tmp, type);
  1178       } else {
  1179         addr = new LIR_Address(base_op, index_op, type);
  1182       if (is_obj) {
  1183         pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1184                     true /* do_load */, false /* patch */, NULL);
  1185         // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
  1187       __ move(data, addr);
  1188       if (is_obj) {
  1189         // This address is precise
  1190         post_barrier(LIR_OprFact::address(addr), data);
  1196 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1197                                      BasicType type, bool is_volatile) {
  1198 #ifndef _LP64
  1199   if (is_volatile && type == T_LONG) {
  1200     __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
  1201   } else
  1202 #endif
  1204     LIR_Address* addr = new LIR_Address(src, offset, type);
  1205     __ load(addr, dst);
  1209 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
  1210   BasicType type = x->basic_type();
  1211   LIRItem src(x->object(), this);
  1212   LIRItem off(x->offset(), this);
  1213   LIRItem value(x->value(), this);
  1215   src.load_item();
  1216   value.load_item();
  1217   off.load_nonconstant();
  1219   LIR_Opr dst = rlock_result(x, type);
  1220   LIR_Opr data = value.result();
  1221   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1222   LIR_Opr offset = off.result();
  1224   if (data != dst) {
  1225     __ move(data, dst);
  1226     data = dst;
  1229   assert (!x->is_add() && (type == T_INT || (is_obj LP64_ONLY(&& UseCompressedOops))), "unexpected type");
  1230   LIR_Address* addr;
  1231   if (offset->is_constant()) {
  1233 #ifdef _LP64
  1234     jlong l = offset->as_jlong();
  1235     assert((jlong)((jint)l) == l, "offset too large for constant");
  1236     jint c = (jint)l;
  1237 #else
  1238     jint c = offset->as_jint();
  1239 #endif
  1240     addr = new LIR_Address(src.result(), c, type);
  1241   } else {
  1242     addr = new LIR_Address(src.result(), offset, type);
  1245   LIR_Opr tmp = LIR_OprFact::illegalOpr;
  1246   LIR_Opr ptr = LIR_OprFact::illegalOpr;
  1248   if (is_obj) {
  1249     // Do the pre-write barrier, if any.
  1250     // barriers on sparc don't work with a base + index address
  1251     tmp = FrameMap::G3_opr;
  1252     ptr = new_pointer_register();
  1253     __ add(src.result(), off.result(), ptr);
  1254     pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
  1255                 true /* do_load */, false /* patch */, NULL);
  1257   __ xchg(LIR_OprFact::address(addr), data, dst, tmp);
  1258   if (is_obj) {
  1259     // Seems to be a precise address
  1260     post_barrier(ptr, data);

mercurial