src/share/vm/opto/output.cpp

Thu, 06 Mar 2008 10:30:17 -0800

author
kvn
date
Thu, 06 Mar 2008 10:30:17 -0800
changeset 473
b789bcaf2dd9
parent 463
67914967a4b5
child 498
eac007780a58
permissions
-rw-r--r--

6667610: (Escape Analysis) retry compilation without EA if it fails
Summary: During split unique types EA could exceed nodes limit and fail the method compilation.
Reviewed-by: rasbold

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_output.cpp.incl"
    28 extern uint size_java_to_interp();
    29 extern uint reloc_java_to_interp();
    30 extern uint size_exception_handler();
    31 extern uint size_deopt_handler();
    33 #ifndef PRODUCT
    34 #define DEBUG_ARG(x) , x
    35 #else
    36 #define DEBUG_ARG(x)
    37 #endif
    39 extern int emit_exception_handler(CodeBuffer &cbuf);
    40 extern int emit_deopt_handler(CodeBuffer &cbuf);
    42 //------------------------------Output-----------------------------------------
    43 // Convert Nodes to instruction bits and pass off to the VM
    44 void Compile::Output() {
    45   // RootNode goes
    46   assert( _cfg->_broot->_nodes.size() == 0, "" );
    48   // Initialize the space for the BufferBlob used to find and verify
    49   // instruction size in MachNode::emit_size()
    50   init_scratch_buffer_blob();
    52   // Make sure I can find the Start Node
    53   Block_Array& bbs = _cfg->_bbs;
    54   Block *entry = _cfg->_blocks[1];
    55   Block *broot = _cfg->_broot;
    57   const StartNode *start = entry->_nodes[0]->as_Start();
    59   // Replace StartNode with prolog
    60   MachPrologNode *prolog = new (this) MachPrologNode();
    61   entry->_nodes.map( 0, prolog );
    62   bbs.map( prolog->_idx, entry );
    63   bbs.map( start->_idx, NULL ); // start is no longer in any block
    65   // Virtual methods need an unverified entry point
    67   if( is_osr_compilation() ) {
    68     if( PoisonOSREntry ) {
    69       // TODO: Should use a ShouldNotReachHereNode...
    70       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    71     }
    72   } else {
    73     if( _method && !_method->flags().is_static() ) {
    74       // Insert unvalidated entry point
    75       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    76     }
    78   }
    81   // Break before main entry point
    82   if( (_method && _method->break_at_execute())
    83 #ifndef PRODUCT
    84     ||(OptoBreakpoint && is_method_compilation())
    85     ||(OptoBreakpointOSR && is_osr_compilation())
    86     ||(OptoBreakpointC2R && !_method)
    87 #endif
    88     ) {
    89     // checking for _method means that OptoBreakpoint does not apply to
    90     // runtime stubs or frame converters
    91     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
    92   }
    94   // Insert epilogs before every return
    95   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
    96     Block *b = _cfg->_blocks[i];
    97     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
    98       Node *m = b->end();
    99       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   100         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   101         b->add_inst( epilog );
   102         bbs.map(epilog->_idx, b);
   103         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   104       }
   105     }
   106   }
   108 # ifdef ENABLE_ZAP_DEAD_LOCALS
   109   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   110 # endif
   112   ScheduleAndBundle();
   114 #ifndef PRODUCT
   115   if (trace_opto_output()) {
   116     tty->print("\n---- After ScheduleAndBundle ----\n");
   117     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   118       tty->print("\nBB#%03d:\n", i);
   119       Block *bb = _cfg->_blocks[i];
   120       for (uint j = 0; j < bb->_nodes.size(); j++) {
   121         Node *n = bb->_nodes[j];
   122         OptoReg::Name reg = _regalloc->get_reg_first(n);
   123         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   124         n->dump();
   125       }
   126     }
   127   }
   128 #endif
   130   if (failing())  return;
   132   BuildOopMaps();
   134   if (failing())  return;
   136   Fill_buffer();
   137 }
   139 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   140   // Determine if we need to generate a stack overflow check.
   141   // Do it if the method is not a stub function and
   142   // has java calls or has frame size > vm_page_size/8.
   143   return (stub_function() == NULL &&
   144           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   145 }
   147 bool Compile::need_register_stack_bang() const {
   148   // Determine if we need to generate a register stack overflow check.
   149   // This is only used on architectures which have split register
   150   // and memory stacks (ie. IA64).
   151   // Bang if the method is not a stub function and has java calls
   152   return (stub_function() == NULL && has_java_calls());
   153 }
   155 # ifdef ENABLE_ZAP_DEAD_LOCALS
   158 // In order to catch compiler oop-map bugs, we have implemented
   159 // a debugging mode called ZapDeadCompilerLocals.
   160 // This mode causes the compiler to insert a call to a runtime routine,
   161 // "zap_dead_locals", right before each place in compiled code
   162 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   163 // The runtime routine checks that locations mapped as oops are really
   164 // oops, that locations mapped as values do not look like oops,
   165 // and that locations mapped as dead are not used later
   166 // (by zapping them to an invalid address).
   168 int Compile::_CompiledZap_count = 0;
   170 void Compile::Insert_zap_nodes() {
   171   bool skip = false;
   174   // Dink with static counts because code code without the extra
   175   // runtime calls is MUCH faster for debugging purposes
   177        if ( CompileZapFirst  ==  0  ) ; // nothing special
   178   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   179   else if ( CompileZapFirst  == CompiledZap_count() )
   180     warning("starting zap compilation after skipping");
   182        if ( CompileZapLast  ==  -1  ) ; // nothing special
   183   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   184   else if ( CompileZapLast  ==  CompiledZap_count() )
   185     warning("about to compile last zap");
   187   ++_CompiledZap_count; // counts skipped zaps, too
   189   if ( skip )  return;
   192   if ( _method == NULL )
   193     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   195   // Insert call to zap runtime stub before every node with an oop map
   196   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   197     Block *b = _cfg->_blocks[i];
   198     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   199       Node *n = b->_nodes[j];
   201       // Determining if we should insert a zap-a-lot node in output.
   202       // We do that for all nodes that has oopmap info, except for calls
   203       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   204       // and expect the C code to reset it.  Hence, there can be no safepoints between
   205       // the inlined-allocation and the call to new_Java, etc.
   206       // We also cannot zap monitor calls, as they must hold the microlock
   207       // during the call to Zap, which also wants to grab the microlock.
   208       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   209       if ( insert ) { // it is MachSafePoint
   210         if ( !n->is_MachCall() ) {
   211           insert = false;
   212         } else if ( n->is_MachCall() ) {
   213           MachCallNode* call = n->as_MachCall();
   214           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   215               call->entry_point() == OptoRuntime::new_array_Java() ||
   216               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   217               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   218               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   219               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   220               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   221               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   222               ) {
   223             insert = false;
   224           }
   225         }
   226         if (insert) {
   227           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   228           b->_nodes.insert( j, zap );
   229           _cfg->_bbs.map( zap->_idx, b );
   230           ++j;
   231         }
   232       }
   233     }
   234   }
   235 }
   238 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   239   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   240   CallStaticJavaNode* ideal_node =
   241     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   242          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   243                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   244   // We need to copy the OopMap from the site we're zapping at.
   245   // We have to make a copy, because the zap site might not be
   246   // a call site, and zap_dead is a call site.
   247   OopMap* clone = node_to_check->oop_map()->deep_copy();
   249   // Add the cloned OopMap to the zap node
   250   ideal_node->set_oop_map(clone);
   251   return _matcher->match_sfpt(ideal_node);
   252 }
   254 //------------------------------is_node_getting_a_safepoint--------------------
   255 bool Compile::is_node_getting_a_safepoint( Node* n) {
   256   // This code duplicates the logic prior to the call of add_safepoint
   257   // below in this file.
   258   if( n->is_MachSafePoint() ) return true;
   259   return false;
   260 }
   262 # endif // ENABLE_ZAP_DEAD_LOCALS
   264 //------------------------------compute_loop_first_inst_sizes------------------
   265 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   266 // of a loop. When aligning a loop we need to provide enough instructions
   267 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   268 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   269 // By default, the size is set to 999999 by Block's constructor so that
   270 // a loop will be aligned if the size is not reset here.
   271 //
   272 // Note: Mach instructions could contain several HW instructions
   273 // so the size is estimated only.
   274 //
   275 void Compile::compute_loop_first_inst_sizes() {
   276   // The next condition is used to gate the loop alignment optimization.
   277   // Don't aligned a loop if there are enough instructions at the head of a loop
   278   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   279   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   280   // equal to 11 bytes which is the largest address NOP instruction.
   281   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   282     uint last_block = _cfg->_num_blocks-1;
   283     for( uint i=1; i <= last_block; i++ ) {
   284       Block *b = _cfg->_blocks[i];
   285       // Check the first loop's block which requires an alignment.
   286       if( b->head()->is_Loop() &&
   287           b->code_alignment() > (uint)relocInfo::addr_unit() ) {
   288         uint sum_size = 0;
   289         uint inst_cnt = NumberOfLoopInstrToAlign;
   290         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
   291                                               _regalloc);
   292         // Check the next fallthrough block if first loop's block does not have
   293         // enough instructions.
   294         if( inst_cnt > 0 && i < last_block ) {
   295           // First, check if the first loop's block contains whole loop.
   296           // LoopNode::LoopBackControl == 2.
   297           Block *bx = _cfg->_bbs[b->pred(2)->_idx];
   298           // Skip connector blocks (with limit in case of irreducible loops).
   299           int search_limit = 16;
   300           while( bx->is_connector() && search_limit-- > 0) {
   301             bx = _cfg->_bbs[bx->pred(1)->_idx];
   302           }
   303           if( bx != b ) { // loop body is in several blocks.
   304             Block *nb = NULL;
   305             while( inst_cnt > 0 && i < last_block && nb != bx &&
   306                   !_cfg->_blocks[i+1]->head()->is_Loop() ) {
   307               i++;
   308               nb = _cfg->_blocks[i];
   309               inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt,
   310                                                       _regalloc);
   311             } // while( inst_cnt > 0 && i < last_block  )
   312           } // if( bx != b )
   313         } // if( inst_cnt > 0 && i < last_block )
   314         b->set_first_inst_size(sum_size);
   315       } // f( b->head()->is_Loop() )
   316     } // for( i <= last_block )
   317   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   318 }
   320 //----------------------Shorten_branches---------------------------------------
   321 // The architecture description provides short branch variants for some long
   322 // branch instructions. Replace eligible long branches with short branches.
   323 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
   325   // fill in the nop array for bundling computations
   326   MachNode *_nop_list[Bundle::_nop_count];
   327   Bundle::initialize_nops(_nop_list, this);
   329   // ------------------
   330   // Compute size of each block, method size, and relocation information size
   331   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   332   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   333   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   334   blk_starts[0]    = 0;
   336   // Initialize the sizes to 0
   337   code_size  = 0;          // Size in bytes of generated code
   338   stub_size  = 0;          // Size in bytes of all stub entries
   339   // Size in bytes of all relocation entries, including those in local stubs.
   340   // Start with 2-bytes of reloc info for the unvalidated entry point
   341   reloc_size = 1;          // Number of relocation entries
   342   const_size = 0;          // size of fp constants in words
   344   // Make three passes.  The first computes pessimistic blk_starts,
   345   // relative jmp_end, reloc_size and const_size information.
   346   // The second performs short branch substitution using the pessimistic
   347   // sizing. The third inserts nops where needed.
   349   Node *nj; // tmp
   351   // Step one, perform a pessimistic sizing pass.
   352   uint i;
   353   uint min_offset_from_last_call = 1;  // init to a positive value
   354   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   355   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   356     Block *b = _cfg->_blocks[i];
   358     // Sum all instruction sizes to compute block size
   359     uint last_inst = b->_nodes.size();
   360     uint blk_size = 0;
   361     for( uint j = 0; j<last_inst; j++ ) {
   362       nj = b->_nodes[j];
   363       uint inst_size = nj->size(_regalloc);
   364       blk_size += inst_size;
   365       // Handle machine instruction nodes
   366       if( nj->is_Mach() ) {
   367         MachNode *mach = nj->as_Mach();
   368         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   369         reloc_size += mach->reloc();
   370         const_size += mach->const_size();
   371         if( mach->is_MachCall() ) {
   372           MachCallNode *mcall = mach->as_MachCall();
   373           // This destination address is NOT PC-relative
   375           mcall->method_set((intptr_t)mcall->entry_point());
   377           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   378             stub_size  += size_java_to_interp();
   379             reloc_size += reloc_java_to_interp();
   380           }
   381         } else if (mach->is_MachSafePoint()) {
   382           // If call/safepoint are adjacent, account for possible
   383           // nop to disambiguate the two safepoints.
   384           if (min_offset_from_last_call == 0) {
   385             blk_size += nop_size;
   386           }
   387         }
   388       }
   389       min_offset_from_last_call += inst_size;
   390       // Remember end of call offset
   391       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   392         min_offset_from_last_call = 0;
   393       }
   394     }
   396     // During short branch replacement, we store the relative (to blk_starts)
   397     // end of jump in jmp_end, rather than the absolute end of jump.  This
   398     // is so that we do not need to recompute sizes of all nodes when we compute
   399     // correct blk_starts in our next sizing pass.
   400     jmp_end[i] = blk_size;
   401     DEBUG_ONLY( jmp_target[i] = 0; )
   403     // When the next block starts a loop, we may insert pad NOP
   404     // instructions.  Since we cannot know our future alignment,
   405     // assume the worst.
   406     if( i<_cfg->_num_blocks-1 ) {
   407       Block *nb = _cfg->_blocks[i+1];
   408       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   409       if( max_loop_pad > 0 ) {
   410         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   411         blk_size += max_loop_pad;
   412       }
   413     }
   415     // Save block size; update total method size
   416     blk_starts[i+1] = blk_starts[i]+blk_size;
   417   }
   419   // Step two, replace eligible long jumps.
   421   // Note: this will only get the long branches within short branch
   422   //   range. Another pass might detect more branches that became
   423   //   candidates because the shortening in the first pass exposed
   424   //   more opportunities. Unfortunately, this would require
   425   //   recomputing the starting and ending positions for the blocks
   426   for( i=0; i<_cfg->_num_blocks; i++ ) {
   427     Block *b = _cfg->_blocks[i];
   429     int j;
   430     // Find the branch; ignore trailing NOPs.
   431     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   432       nj = b->_nodes[j];
   433       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   434         break;
   435     }
   437     if (j >= 0) {
   438       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   439         MachNode *mach = nj->as_Mach();
   440         // This requires the TRUE branch target be in succs[0]
   441         uint bnum = b->non_connector_successor(0)->_pre_order;
   442         uintptr_t target = blk_starts[bnum];
   443         if( mach->is_pc_relative() ) {
   444           int offset = target-(blk_starts[i] + jmp_end[i]);
   445           if (_matcher->is_short_branch_offset(offset)) {
   446             // We've got a winner.  Replace this branch.
   447             MachNode *replacement = mach->short_branch_version(this);
   448             b->_nodes.map(j, replacement);
   450             // Update the jmp_end size to save time in our
   451             // next pass.
   452             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   453             DEBUG_ONLY( jmp_target[i] = bnum; );
   454           }
   455         } else {
   456 #ifndef PRODUCT
   457           mach->dump(3);
   458 #endif
   459           Unimplemented();
   460         }
   461       }
   462     }
   463   }
   465   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   466   // of a loop. It is used to determine the padding for loop alignment.
   467   compute_loop_first_inst_sizes();
   469   // Step 3, compute the offsets of all the labels
   470   uint last_call_adr = max_uint;
   471   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   472     // copy the offset of the beginning to the corresponding label
   473     assert(labels[i].is_unused(), "cannot patch at this point");
   474     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   476     // insert padding for any instructions that need it
   477     Block *b = _cfg->_blocks[i];
   478     uint last_inst = b->_nodes.size();
   479     uint adr = blk_starts[i];
   480     for( uint j = 0; j<last_inst; j++ ) {
   481       nj = b->_nodes[j];
   482       if( nj->is_Mach() ) {
   483         int padding = nj->as_Mach()->compute_padding(adr);
   484         // If call/safepoint are adjacent insert a nop (5010568)
   485         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   486             adr == last_call_adr ) {
   487           padding = nop_size;
   488         }
   489         if(padding > 0) {
   490           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   491           int nops_cnt = padding / nop_size;
   492           MachNode *nop = new (this) MachNopNode(nops_cnt);
   493           b->_nodes.insert(j++, nop);
   494           _cfg->_bbs.map( nop->_idx, b );
   495           adr += padding;
   496           last_inst++;
   497         }
   498       }
   499       adr += nj->size(_regalloc);
   501       // Remember end of call offset
   502       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   503         last_call_adr = adr;
   504       }
   505     }
   507     if ( i != _cfg->_num_blocks-1) {
   508       // Get the size of the block
   509       uint blk_size = adr - blk_starts[i];
   511       // When the next block starts a loop, we may insert pad NOP
   512       // instructions.
   513       Block *nb = _cfg->_blocks[i+1];
   514       int current_offset = blk_starts[i] + blk_size;
   515       current_offset += nb->alignment_padding(current_offset);
   516       // Save block size; update total method size
   517       blk_starts[i+1] = current_offset;
   518     }
   519   }
   521 #ifdef ASSERT
   522   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   523     if( jmp_target[i] != 0 ) {
   524       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   525       if (!_matcher->is_short_branch_offset(offset)) {
   526         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   527       }
   528       assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
   529     }
   530   }
   531 #endif
   533   // ------------------
   534   // Compute size for code buffer
   535   code_size   = blk_starts[i-1] + jmp_end[i-1];
   537   // Relocation records
   538   reloc_size += 1;              // Relo entry for exception handler
   540   // Adjust reloc_size to number of record of relocation info
   541   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   542   // a relocation index.
   543   // The CodeBuffer will expand the locs array if this estimate is too low.
   544   reloc_size   *= 10 / sizeof(relocInfo);
   546   // Adjust const_size to number of bytes
   547   const_size   *= 2*jintSize; // both float and double take two words per entry
   549 }
   551 //------------------------------FillLocArray-----------------------------------
   552 // Create a bit of debug info and append it to the array.  The mapping is from
   553 // Java local or expression stack to constant, register or stack-slot.  For
   554 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   555 // entry has been taken care of and caller should skip it).
   556 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   557   // This should never have accepted Bad before
   558   assert(OptoReg::is_valid(regnum), "location must be valid");
   559   return (OptoReg::is_reg(regnum))
   560     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   561     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   562 }
   564 void Compile::FillLocArray( int idx, Node *local, GrowableArray<ScopeValue*> *array ) {
   565   assert( local, "use _top instead of null" );
   566   if (array->length() != idx) {
   567     assert(array->length() == idx + 1, "Unexpected array count");
   568     // Old functionality:
   569     //   return
   570     // New functionality:
   571     //   Assert if the local is not top. In product mode let the new node
   572     //   override the old entry.
   573     assert(local == top(), "LocArray collision");
   574     if (local == top()) {
   575       return;
   576     }
   577     array->pop();
   578   }
   579   const Type *t = local->bottom_type();
   581   // Grab the register number for the local
   582   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   583   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   584     // Record the double as two float registers.
   585     // The register mask for such a value always specifies two adjacent
   586     // float registers, with the lower register number even.
   587     // Normally, the allocation of high and low words to these registers
   588     // is irrelevant, because nearly all operations on register pairs
   589     // (e.g., StoreD) treat them as a single unit.
   590     // Here, we assume in addition that the words in these two registers
   591     // stored "naturally" (by operations like StoreD and double stores
   592     // within the interpreter) such that the lower-numbered register
   593     // is written to the lower memory address.  This may seem like
   594     // a machine dependency, but it is not--it is a requirement on
   595     // the author of the <arch>.ad file to ensure that, for every
   596     // even/odd double-register pair to which a double may be allocated,
   597     // the word in the even single-register is stored to the first
   598     // memory word.  (Note that register numbers are completely
   599     // arbitrary, and are not tied to any machine-level encodings.)
   600 #ifdef _LP64
   601     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   602       array->append(new ConstantIntValue(0));
   603       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   604     } else if ( t->base() == Type::Long ) {
   605       array->append(new ConstantIntValue(0));
   606       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   607     } else if ( t->base() == Type::RawPtr ) {
   608       // jsr/ret return address which must be restored into a the full
   609       // width 64-bit stack slot.
   610       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   611     }
   612 #else //_LP64
   613 #ifdef SPARC
   614     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   615       // For SPARC we have to swap high and low words for
   616       // long values stored in a single-register (g0-g7).
   617       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   618       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   619     } else
   620 #endif //SPARC
   621     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   622       // Repack the double/long as two jints.
   623       // The convention the interpreter uses is that the second local
   624       // holds the first raw word of the native double representation.
   625       // This is actually reasonable, since locals and stack arrays
   626       // grow downwards in all implementations.
   627       // (If, on some machine, the interpreter's Java locals or stack
   628       // were to grow upwards, the embedded doubles would be word-swapped.)
   629       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   630       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   631     }
   632 #endif //_LP64
   633     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   634                OptoReg::is_reg(regnum) ) {
   635       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
   636                                    ? Location::float_in_dbl : Location::normal ));
   637     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   638       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   639                                    ? Location::int_in_long : Location::normal ));
   640     } else {
   641       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   642     }
   643     return;
   644   }
   646   // No register.  It must be constant data.
   647   switch (t->base()) {
   648   case Type::Half:              // Second half of a double
   649     ShouldNotReachHere();       // Caller should skip 2nd halves
   650     break;
   651   case Type::AnyPtr:
   652     array->append(new ConstantOopWriteValue(NULL));
   653     break;
   654   case Type::AryPtr:
   655   case Type::InstPtr:
   656   case Type::KlassPtr:          // fall through
   657     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
   658     break;
   659   case Type::Int:
   660     array->append(new ConstantIntValue(t->is_int()->get_con()));
   661     break;
   662   case Type::RawPtr:
   663     // A return address (T_ADDRESS).
   664     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   665 #ifdef _LP64
   666     // Must be restored to the full-width 64-bit stack slot.
   667     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   668 #else
   669     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   670 #endif
   671     break;
   672   case Type::FloatCon: {
   673     float f = t->is_float_constant()->getf();
   674     array->append(new ConstantIntValue(jint_cast(f)));
   675     break;
   676   }
   677   case Type::DoubleCon: {
   678     jdouble d = t->is_double_constant()->getd();
   679 #ifdef _LP64
   680     array->append(new ConstantIntValue(0));
   681     array->append(new ConstantDoubleValue(d));
   682 #else
   683     // Repack the double as two jints.
   684     // The convention the interpreter uses is that the second local
   685     // holds the first raw word of the native double representation.
   686     // This is actually reasonable, since locals and stack arrays
   687     // grow downwards in all implementations.
   688     // (If, on some machine, the interpreter's Java locals or stack
   689     // were to grow upwards, the embedded doubles would be word-swapped.)
   690     jint   *dp = (jint*)&d;
   691     array->append(new ConstantIntValue(dp[1]));
   692     array->append(new ConstantIntValue(dp[0]));
   693 #endif
   694     break;
   695   }
   696   case Type::Long: {
   697     jlong d = t->is_long()->get_con();
   698 #ifdef _LP64
   699     array->append(new ConstantIntValue(0));
   700     array->append(new ConstantLongValue(d));
   701 #else
   702     // Repack the long as two jints.
   703     // The convention the interpreter uses is that the second local
   704     // holds the first raw word of the native double representation.
   705     // This is actually reasonable, since locals and stack arrays
   706     // grow downwards in all implementations.
   707     // (If, on some machine, the interpreter's Java locals or stack
   708     // were to grow upwards, the embedded doubles would be word-swapped.)
   709     jint *dp = (jint*)&d;
   710     array->append(new ConstantIntValue(dp[1]));
   711     array->append(new ConstantIntValue(dp[0]));
   712 #endif
   713     break;
   714   }
   715   case Type::Top:               // Add an illegal value here
   716     array->append(new LocationValue(Location()));
   717     break;
   718   default:
   719     ShouldNotReachHere();
   720     break;
   721   }
   722 }
   724 // Determine if this node starts a bundle
   725 bool Compile::starts_bundle(const Node *n) const {
   726   return (_node_bundling_limit > n->_idx &&
   727           _node_bundling_base[n->_idx].starts_bundle());
   728 }
   730 //--------------------------Process_OopMap_Node--------------------------------
   731 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   733   // Handle special safepoint nodes for synchronization
   734   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   735   MachCallNode      *mcall;
   737 #ifdef ENABLE_ZAP_DEAD_LOCALS
   738   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   739 #endif
   741   int safepoint_pc_offset = current_offset;
   743   // Add the safepoint in the DebugInfoRecorder
   744   if( !mach->is_MachCall() ) {
   745     mcall = NULL;
   746     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   747   } else {
   748     mcall = mach->as_MachCall();
   749     safepoint_pc_offset += mcall->ret_addr_offset();
   750     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   751   }
   753   // Loop over the JVMState list to add scope information
   754   // Do not skip safepoints with a NULL method, they need monitor info
   755   JVMState* youngest_jvms = sfn->jvms();
   756   int max_depth = youngest_jvms->depth();
   758   // Visit scopes from oldest to youngest.
   759   for (int depth = 1; depth <= max_depth; depth++) {
   760     JVMState* jvms = youngest_jvms->of_depth(depth);
   761     int idx;
   762     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   763     // Safepoints that do not have method() set only provide oop-map and monitor info
   764     // to support GC; these do not support deoptimization.
   765     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   766     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   767     int num_mon  = jvms->nof_monitors();
   768     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   769            "JVMS local count must match that of the method");
   771     // Add Local and Expression Stack Information
   773     // Insert locals into the locarray
   774     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   775     for( idx = 0; idx < num_locs; idx++ ) {
   776       FillLocArray( idx, sfn->local(jvms, idx), locarray );
   777     }
   779     // Insert expression stack entries into the exparray
   780     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   781     for( idx = 0; idx < num_exps; idx++ ) {
   782       FillLocArray( idx,  sfn->stack(jvms, idx), exparray );
   783     }
   785     // Add in mappings of the monitors
   786     assert( !method ||
   787             !method->is_synchronized() ||
   788             method->is_native() ||
   789             num_mon > 0 ||
   790             !GenerateSynchronizationCode,
   791             "monitors must always exist for synchronized methods");
   793     // Build the growable array of ScopeValues for exp stack
   794     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   796     // Loop over monitors and insert into array
   797     for(idx = 0; idx < num_mon; idx++) {
   798       // Grab the node that defines this monitor
   799       Node* box_node;
   800       Node* obj_node;
   801       box_node = sfn->monitor_box(jvms, idx);
   802       obj_node = sfn->monitor_obj(jvms, idx);
   804       // Create ScopeValue for object
   805       ScopeValue *scval = NULL;
   806       if( !obj_node->is_Con() ) {
   807         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   808         scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   809       } else {
   810         scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
   811       }
   813       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   814       monarray->append(new MonitorValue(scval, Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg))));
   815     }
   817     // Build first class objects to pass to scope
   818     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   819     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   820     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   822     // Make method available for all Safepoints
   823     ciMethod* scope_method = method ? method : _method;
   824     // Describe the scope here
   825     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   826     debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
   827   } // End jvms loop
   829   // Mark the end of the scope set.
   830   debug_info()->end_safepoint(safepoint_pc_offset);
   831 }
   835 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   836 class NonSafepointEmitter {
   837   Compile*  C;
   838   JVMState* _pending_jvms;
   839   int       _pending_offset;
   841   void emit_non_safepoint();
   843  public:
   844   NonSafepointEmitter(Compile* compile) {
   845     this->C = compile;
   846     _pending_jvms = NULL;
   847     _pending_offset = 0;
   848   }
   850   void observe_instruction(Node* n, int pc_offset) {
   851     if (!C->debug_info()->recording_non_safepoints())  return;
   853     Node_Notes* nn = C->node_notes_at(n->_idx);
   854     if (nn == NULL || nn->jvms() == NULL)  return;
   855     if (_pending_jvms != NULL &&
   856         _pending_jvms->same_calls_as(nn->jvms())) {
   857       // Repeated JVMS?  Stretch it up here.
   858       _pending_offset = pc_offset;
   859     } else {
   860       if (_pending_jvms != NULL &&
   861           _pending_offset < pc_offset) {
   862         emit_non_safepoint();
   863       }
   864       _pending_jvms = NULL;
   865       if (pc_offset > C->debug_info()->last_pc_offset()) {
   866         // This is the only way _pending_jvms can become non-NULL:
   867         _pending_jvms = nn->jvms();
   868         _pending_offset = pc_offset;
   869       }
   870     }
   871   }
   873   // Stay out of the way of real safepoints:
   874   void observe_safepoint(JVMState* jvms, int pc_offset) {
   875     if (_pending_jvms != NULL &&
   876         !_pending_jvms->same_calls_as(jvms) &&
   877         _pending_offset < pc_offset) {
   878       emit_non_safepoint();
   879     }
   880     _pending_jvms = NULL;
   881   }
   883   void flush_at_end() {
   884     if (_pending_jvms != NULL) {
   885       emit_non_safepoint();
   886     }
   887     _pending_jvms = NULL;
   888   }
   889 };
   891 void NonSafepointEmitter::emit_non_safepoint() {
   892   JVMState* youngest_jvms = _pending_jvms;
   893   int       pc_offset     = _pending_offset;
   895   // Clear it now:
   896   _pending_jvms = NULL;
   898   DebugInformationRecorder* debug_info = C->debug_info();
   899   assert(debug_info->recording_non_safepoints(), "sanity");
   901   debug_info->add_non_safepoint(pc_offset);
   902   int max_depth = youngest_jvms->depth();
   904   // Visit scopes from oldest to youngest.
   905   for (int depth = 1; depth <= max_depth; depth++) {
   906     JVMState* jvms = youngest_jvms->of_depth(depth);
   907     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   908     debug_info->describe_scope(pc_offset, method, jvms->bci());
   909   }
   911   // Mark the end of the scope set.
   912   debug_info->end_non_safepoint(pc_offset);
   913 }
   917 // helper for Fill_buffer bailout logic
   918 static void turn_off_compiler(Compile* C) {
   919   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
   920     // Do not turn off compilation if a single giant method has
   921     // blown the code cache size.
   922     C->record_failure("excessive request to CodeCache");
   923   } else {
   924     // Let CompilerBroker disable further compilations.
   925     C->record_failure("CodeCache is full");
   926   }
   927 }
   930 //------------------------------Fill_buffer------------------------------------
   931 void Compile::Fill_buffer() {
   933   // Set the initially allocated size
   934   int  code_req   = initial_code_capacity;
   935   int  locs_req   = initial_locs_capacity;
   936   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
   937   int  const_req  = initial_const_capacity;
   938   bool labels_not_set = true;
   940   int  pad_req    = NativeCall::instruction_size;
   941   // The extra spacing after the code is necessary on some platforms.
   942   // Sometimes we need to patch in a jump after the last instruction,
   943   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
   945   uint i;
   946   // Compute the byte offset where we can store the deopt pc.
   947   if (fixed_slots() != 0) {
   948     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
   949   }
   951   // Compute prolog code size
   952   _method_size = 0;
   953   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
   954 #ifdef IA64
   955   if (save_argument_registers()) {
   956     // 4815101: this is a stub with implicit and unknown precision fp args.
   957     // The usual spill mechanism can only generate stfd's in this case, which
   958     // doesn't work if the fp reg to spill contains a single-precision denorm.
   959     // Instead, we hack around the normal spill mechanism using stfspill's and
   960     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
   961     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
   962     //
   963     // If we ever implement 16-byte 'registers' == stack slots, we can
   964     // get rid of this hack and have SpillCopy generate stfspill/ldffill
   965     // instead of stfd/stfs/ldfd/ldfs.
   966     _frame_slots += 8*(16/BytesPerInt);
   967   }
   968 #endif
   969   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
   971   // Create an array of unused labels, one for each basic block
   972   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
   974   for( i=0; i <= _cfg->_num_blocks; i++ ) {
   975     blk_labels[i].init();
   976   }
   978   // If this machine supports different size branch offsets, then pre-compute
   979   // the length of the blocks
   980   if( _matcher->is_short_branch_offset(0) ) {
   981     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
   982     labels_not_set = false;
   983   }
   985   // nmethod and CodeBuffer count stubs & constants as part of method's code.
   986   int exception_handler_req = size_exception_handler();
   987   int deopt_handler_req = size_deopt_handler();
   988   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
   989   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
   990   stub_req += MAX_stubs_size;   // ensure per-stub margin
   991   code_req += MAX_inst_size;    // ensure per-instruction margin
   992   if (StressCodeBuffers)
   993     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
   994   int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
   995   CodeBuffer* cb = code_buffer();
   996   cb->initialize(total_req, locs_req);
   998   // Have we run out of code space?
   999   if (cb->blob() == NULL) {
  1000     turn_off_compiler(this);
  1001     return;
  1003   // Configure the code buffer.
  1004   cb->initialize_consts_size(const_req);
  1005   cb->initialize_stubs_size(stub_req);
  1006   cb->initialize_oop_recorder(env()->oop_recorder());
  1008   // fill in the nop array for bundling computations
  1009   MachNode *_nop_list[Bundle::_nop_count];
  1010   Bundle::initialize_nops(_nop_list, this);
  1012   // Create oopmap set.
  1013   _oop_map_set = new OopMapSet();
  1015   // !!!!! This preserves old handling of oopmaps for now
  1016   debug_info()->set_oopmaps(_oop_map_set);
  1018   // Count and start of implicit null check instructions
  1019   uint inct_cnt = 0;
  1020   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1022   // Count and start of calls
  1023   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1025   uint  return_offset = 0;
  1026   MachNode *nop = new (this) MachNopNode();
  1028   int previous_offset = 0;
  1029   int current_offset  = 0;
  1030   int last_call_offset = -1;
  1032   // Create an array of unused labels, one for each basic block, if printing is enabled
  1033 #ifndef PRODUCT
  1034   int *node_offsets      = NULL;
  1035   uint  node_offset_limit = unique();
  1038   if ( print_assembly() )
  1039     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1040 #endif
  1042   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1044   // ------------------
  1045   // Now fill in the code buffer
  1046   Node *delay_slot = NULL;
  1048   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1049     Block *b = _cfg->_blocks[i];
  1051     Node *head = b->head();
  1053     // If this block needs to start aligned (i.e, can be reached other
  1054     // than by falling-thru from the previous block), then force the
  1055     // start of a new bundle.
  1056     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1057       cb->flush_bundle(true);
  1059     // Define the label at the beginning of the basic block
  1060     if( labels_not_set )
  1061       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
  1063     else
  1064       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
  1065               "label position does not match code offset" );
  1067     uint last_inst = b->_nodes.size();
  1069     // Emit block normally, except for last instruction.
  1070     // Emit means "dump code bits into code buffer".
  1071     for( uint j = 0; j<last_inst; j++ ) {
  1073       // Get the node
  1074       Node* n = b->_nodes[j];
  1076       // See if delay slots are supported
  1077       if (valid_bundle_info(n) &&
  1078           node_bundling(n)->used_in_unconditional_delay()) {
  1079         assert(delay_slot == NULL, "no use of delay slot node");
  1080         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1082         delay_slot = n;
  1083         continue;
  1086       // If this starts a new instruction group, then flush the current one
  1087       // (but allow split bundles)
  1088       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1089         cb->flush_bundle(false);
  1091       // The following logic is duplicated in the code ifdeffed for
  1092       // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file.  It
  1093       // should be factored out.  Or maybe dispersed to the nodes?
  1095       // Special handling for SafePoint/Call Nodes
  1096       bool is_mcall = false;
  1097       if( n->is_Mach() ) {
  1098         MachNode *mach = n->as_Mach();
  1099         is_mcall = n->is_MachCall();
  1100         bool is_sfn = n->is_MachSafePoint();
  1102         // If this requires all previous instructions be flushed, then do so
  1103         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1104           cb->flush_bundle(true);
  1105           current_offset = cb->code_size();
  1108         // align the instruction if necessary
  1109         int nop_size = nop->size(_regalloc);
  1110         int padding = mach->compute_padding(current_offset);
  1111         // Make sure safepoint node for polling is distinct from a call's
  1112         // return by adding a nop if needed.
  1113         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1114           padding = nop_size;
  1116         assert( labels_not_set || padding == 0, "instruction should already be aligned")
  1118         if(padding > 0) {
  1119           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1120           int nops_cnt = padding / nop_size;
  1121           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1122           b->_nodes.insert(j++, nop);
  1123           last_inst++;
  1124           _cfg->_bbs.map( nop->_idx, b );
  1125           nop->emit(*cb, _regalloc);
  1126           cb->flush_bundle(true);
  1127           current_offset = cb->code_size();
  1130         // Remember the start of the last call in a basic block
  1131         if (is_mcall) {
  1132           MachCallNode *mcall = mach->as_MachCall();
  1134           // This destination address is NOT PC-relative
  1135           mcall->method_set((intptr_t)mcall->entry_point());
  1137           // Save the return address
  1138           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1140           if (!mcall->is_safepoint_node()) {
  1141             is_mcall = false;
  1142             is_sfn = false;
  1146         // sfn will be valid whenever mcall is valid now because of inheritance
  1147         if( is_sfn || is_mcall ) {
  1149           // Handle special safepoint nodes for synchronization
  1150           if( !is_mcall ) {
  1151             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1152             // !!!!! Stubs only need an oopmap right now, so bail out
  1153             if( sfn->jvms()->method() == NULL) {
  1154               // Write the oopmap directly to the code blob??!!
  1155 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1156               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1157 #             endif
  1158               continue;
  1160           } // End synchronization
  1162           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1163                                            current_offset);
  1164           Process_OopMap_Node(mach, current_offset);
  1165         } // End if safepoint
  1167         // If this is a null check, then add the start of the previous instruction to the list
  1168         else if( mach->is_MachNullCheck() ) {
  1169           inct_starts[inct_cnt++] = previous_offset;
  1172         // If this is a branch, then fill in the label with the target BB's label
  1173         else if ( mach->is_Branch() ) {
  1175           if ( mach->ideal_Opcode() == Op_Jump ) {
  1176             for (uint h = 0; h < b->_num_succs; h++ ) {
  1177               Block* succs_block = b->_succs[h];
  1178               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1179                 Node* jpn = succs_block->pred(j);
  1180                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1181                   uint block_num = succs_block->non_connector()->_pre_order;
  1182                   Label *blkLabel = &blk_labels[block_num];
  1183                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1187           } else {
  1188             // For Branchs
  1189             // This requires the TRUE branch target be in succs[0]
  1190             uint block_num = b->non_connector_successor(0)->_pre_order;
  1191             mach->label_set( blk_labels[block_num], block_num );
  1195 #ifdef ASSERT
  1196         // Check that oop-store preceeds the card-mark
  1197         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1198           uint storeCM_idx = j;
  1199           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1200           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1201           uint i4;
  1202           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1203             if( b->_nodes[i4] == oop_store ) break;
  1205           // Note: This test can provide a false failure if other precedence
  1206           // edges have been added to the storeCMNode.
  1207           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1209 #endif
  1211         else if( !n->is_Proj() ) {
  1212           // Remember the begining of the previous instruction, in case
  1213           // it's followed by a flag-kill and a null-check.  Happens on
  1214           // Intel all the time, with add-to-memory kind of opcodes.
  1215           previous_offset = current_offset;
  1219       // Verify that there is sufficient space remaining
  1220       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1221       if (cb->blob() == NULL) {
  1222         turn_off_compiler(this);
  1223         return;
  1226       // Save the offset for the listing
  1227 #ifndef PRODUCT
  1228       if( node_offsets && n->_idx < node_offset_limit )
  1229         node_offsets[n->_idx] = cb->code_size();
  1230 #endif
  1232       // "Normal" instruction case
  1233       n->emit(*cb, _regalloc);
  1234       current_offset  = cb->code_size();
  1235       non_safepoints.observe_instruction(n, current_offset);
  1237       // mcall is last "call" that can be a safepoint
  1238       // record it so we can see if a poll will directly follow it
  1239       // in which case we'll need a pad to make the PcDesc sites unique
  1240       // see  5010568. This can be slightly inaccurate but conservative
  1241       // in the case that return address is not actually at current_offset.
  1242       // This is a small price to pay.
  1244       if (is_mcall) {
  1245         last_call_offset = current_offset;
  1248       // See if this instruction has a delay slot
  1249       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1250         assert(delay_slot != NULL, "expecting delay slot node");
  1252         // Back up 1 instruction
  1253         cb->set_code_end(
  1254           cb->code_end()-Pipeline::instr_unit_size());
  1256         // Save the offset for the listing
  1257 #ifndef PRODUCT
  1258         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1259           node_offsets[delay_slot->_idx] = cb->code_size();
  1260 #endif
  1262         // Support a SafePoint in the delay slot
  1263         if( delay_slot->is_MachSafePoint() ) {
  1264           MachNode *mach = delay_slot->as_Mach();
  1265           // !!!!! Stubs only need an oopmap right now, so bail out
  1266           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1267             // Write the oopmap directly to the code blob??!!
  1268 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1269             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1270 #           endif
  1271             delay_slot = NULL;
  1272             continue;
  1275           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1276           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1277                                            adjusted_offset);
  1278           // Generate an OopMap entry
  1279           Process_OopMap_Node(mach, adjusted_offset);
  1282         // Insert the delay slot instruction
  1283         delay_slot->emit(*cb, _regalloc);
  1285         // Don't reuse it
  1286         delay_slot = NULL;
  1289     } // End for all instructions in block
  1291     // If the next block _starts_ a loop, pad this block out to align
  1292     // the loop start a little. Helps prevent pipe stalls at loop starts
  1293     int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1294     if( i<_cfg->_num_blocks-1 ) {
  1295       Block *nb = _cfg->_blocks[i+1];
  1296       uint padding = nb->alignment_padding(current_offset);
  1297       if( padding > 0 ) {
  1298         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1299         b->_nodes.insert( b->_nodes.size(), nop );
  1300         _cfg->_bbs.map( nop->_idx, b );
  1301         nop->emit(*cb, _regalloc);
  1302         current_offset = cb->code_size();
  1306   } // End of for all blocks
  1308   non_safepoints.flush_at_end();
  1310   // Offset too large?
  1311   if (failing())  return;
  1313   // Define a pseudo-label at the end of the code
  1314   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1316   // Compute the size of the first block
  1317   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1319   assert(cb->code_size() < 500000, "method is unreasonably large");
  1321   // ------------------
  1323 #ifndef PRODUCT
  1324   // Information on the size of the method, without the extraneous code
  1325   Scheduling::increment_method_size(cb->code_size());
  1326 #endif
  1328   // ------------------
  1329   // Fill in exception table entries.
  1330   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1332   // Only java methods have exception handlers and deopt handlers
  1333   if (_method) {
  1334     // Emit the exception handler code.
  1335     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1336     // Emit the deopt handler code.
  1337     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1340   // One last check for failed CodeBuffer::expand:
  1341   if (cb->blob() == NULL) {
  1342     turn_off_compiler(this);
  1343     return;
  1346 #ifndef PRODUCT
  1347   // Dump the assembly code, including basic-block numbers
  1348   if (print_assembly()) {
  1349     ttyLocker ttyl;  // keep the following output all in one block
  1350     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1351       // This output goes directly to the tty, not the compiler log.
  1352       // To enable tools to match it up with the compilation activity,
  1353       // be sure to tag this tty output with the compile ID.
  1354       if (xtty != NULL) {
  1355         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1356                    is_osr_compilation()    ? " compile_kind='osr'" :
  1357                    "");
  1359       if (method() != NULL) {
  1360         method()->print_oop();
  1361         print_codes();
  1363       dump_asm(node_offsets, node_offset_limit);
  1364       if (xtty != NULL) {
  1365         xtty->tail("opto_assembly");
  1369 #endif
  1373 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1374   _inc_table.set_size(cnt);
  1376   uint inct_cnt = 0;
  1377   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1378     Block *b = _cfg->_blocks[i];
  1379     Node *n = NULL;
  1380     int j;
  1382     // Find the branch; ignore trailing NOPs.
  1383     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1384       n = b->_nodes[j];
  1385       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1386         break;
  1389     // If we didn't find anything, continue
  1390     if( j < 0 ) continue;
  1392     // Compute ExceptionHandlerTable subtable entry and add it
  1393     // (skip empty blocks)
  1394     if( n->is_Catch() ) {
  1396       // Get the offset of the return from the call
  1397       uint call_return = call_returns[b->_pre_order];
  1398 #ifdef ASSERT
  1399       assert( call_return > 0, "no call seen for this basic block" );
  1400       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1401       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1402 #endif
  1403       // last instruction is a CatchNode, find it's CatchProjNodes
  1404       int nof_succs = b->_num_succs;
  1405       // allocate space
  1406       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1407       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1408       // iterate through all successors
  1409       for (int j = 0; j < nof_succs; j++) {
  1410         Block* s = b->_succs[j];
  1411         bool found_p = false;
  1412         for( uint k = 1; k < s->num_preds(); k++ ) {
  1413           Node *pk = s->pred(k);
  1414           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1415             const CatchProjNode* p = pk->as_CatchProj();
  1416             found_p = true;
  1417             // add the corresponding handler bci & pco information
  1418             if( p->_con != CatchProjNode::fall_through_index ) {
  1419               // p leads to an exception handler (and is not fall through)
  1420               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1421               // no duplicates, please
  1422               if( !handler_bcis.contains(p->handler_bci()) ) {
  1423                 uint block_num = s->non_connector()->_pre_order;
  1424                 handler_bcis.append(p->handler_bci());
  1425                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1430         assert(found_p, "no matching predecessor found");
  1431         // Note:  Due to empty block removal, one block may have
  1432         // several CatchProj inputs, from the same Catch.
  1435       // Set the offset of the return from the call
  1436       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1437       continue;
  1440     // Handle implicit null exception table updates
  1441     if( n->is_MachNullCheck() ) {
  1442       uint block_num = b->non_connector_successor(0)->_pre_order;
  1443       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1444       continue;
  1446   } // End of for all blocks fill in exception table entries
  1449 // Static Variables
  1450 #ifndef PRODUCT
  1451 uint Scheduling::_total_nop_size = 0;
  1452 uint Scheduling::_total_method_size = 0;
  1453 uint Scheduling::_total_branches = 0;
  1454 uint Scheduling::_total_unconditional_delays = 0;
  1455 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1456 #endif
  1458 // Initializer for class Scheduling
  1460 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1461   : _arena(arena),
  1462     _cfg(compile.cfg()),
  1463     _bbs(compile.cfg()->_bbs),
  1464     _regalloc(compile.regalloc()),
  1465     _reg_node(arena),
  1466     _bundle_instr_count(0),
  1467     _bundle_cycle_number(0),
  1468     _scheduled(arena),
  1469     _available(arena),
  1470     _next_node(NULL),
  1471     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1472     _pinch_free_list(arena)
  1473 #ifndef PRODUCT
  1474   , _branches(0)
  1475   , _unconditional_delays(0)
  1476 #endif
  1478   // Create a MachNopNode
  1479   _nop = new (&compile) MachNopNode();
  1481   // Now that the nops are in the array, save the count
  1482   // (but allow entries for the nops)
  1483   _node_bundling_limit = compile.unique();
  1484   uint node_max = _regalloc->node_regs_max_index();
  1486   compile.set_node_bundling_limit(_node_bundling_limit);
  1488   // This one is persistant within the Compile class
  1489   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1491   // Allocate space for fixed-size arrays
  1492   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1493   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1494   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1496   // Clear the arrays
  1497   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1498   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1499   memset(_uses,               0, node_max * sizeof(short));
  1500   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1502   // Clear the bundling information
  1503   memcpy(_bundle_use_elements,
  1504     Pipeline_Use::elaborated_elements,
  1505     sizeof(Pipeline_Use::elaborated_elements));
  1507   // Get the last node
  1508   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1510   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1513 #ifndef PRODUCT
  1514 // Scheduling destructor
  1515 Scheduling::~Scheduling() {
  1516   _total_branches             += _branches;
  1517   _total_unconditional_delays += _unconditional_delays;
  1519 #endif
  1521 // Step ahead "i" cycles
  1522 void Scheduling::step(uint i) {
  1524   Bundle *bundle = node_bundling(_next_node);
  1525   bundle->set_starts_bundle();
  1527   // Update the bundle record, but leave the flags information alone
  1528   if (_bundle_instr_count > 0) {
  1529     bundle->set_instr_count(_bundle_instr_count);
  1530     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1533   // Update the state information
  1534   _bundle_instr_count = 0;
  1535   _bundle_cycle_number += i;
  1536   _bundle_use.step(i);
  1539 void Scheduling::step_and_clear() {
  1540   Bundle *bundle = node_bundling(_next_node);
  1541   bundle->set_starts_bundle();
  1543   // Update the bundle record
  1544   if (_bundle_instr_count > 0) {
  1545     bundle->set_instr_count(_bundle_instr_count);
  1546     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1548     _bundle_cycle_number += 1;
  1551   // Clear the bundling information
  1552   _bundle_instr_count = 0;
  1553   _bundle_use.reset();
  1555   memcpy(_bundle_use_elements,
  1556     Pipeline_Use::elaborated_elements,
  1557     sizeof(Pipeline_Use::elaborated_elements));
  1560 //------------------------------ScheduleAndBundle------------------------------
  1561 // Perform instruction scheduling and bundling over the sequence of
  1562 // instructions in backwards order.
  1563 void Compile::ScheduleAndBundle() {
  1565   // Don't optimize this if it isn't a method
  1566   if (!_method)
  1567     return;
  1569   // Don't optimize this if scheduling is disabled
  1570   if (!do_scheduling())
  1571     return;
  1573   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1575   // Create a data structure for all the scheduling information
  1576   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1578   // Walk backwards over each basic block, computing the needed alignment
  1579   // Walk over all the basic blocks
  1580   scheduling.DoScheduling();
  1583 //------------------------------ComputeLocalLatenciesForward-------------------
  1584 // Compute the latency of all the instructions.  This is fairly simple,
  1585 // because we already have a legal ordering.  Walk over the instructions
  1586 // from first to last, and compute the latency of the instruction based
  1587 // on the latency of the preceeding instruction(s).
  1588 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1589 #ifndef PRODUCT
  1590   if (_cfg->C->trace_opto_output())
  1591     tty->print("# -> ComputeLocalLatenciesForward\n");
  1592 #endif
  1594   // Walk over all the schedulable instructions
  1595   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1597     // This is a kludge, forcing all latency calculations to start at 1.
  1598     // Used to allow latency 0 to force an instruction to the beginning
  1599     // of the bb
  1600     uint latency = 1;
  1601     Node *use = bb->_nodes[j];
  1602     uint nlen = use->len();
  1604     // Walk over all the inputs
  1605     for ( uint k=0; k < nlen; k++ ) {
  1606       Node *def = use->in(k);
  1607       if (!def)
  1608         continue;
  1610       uint l = _node_latency[def->_idx] + use->latency(k);
  1611       if (latency < l)
  1612         latency = l;
  1615     _node_latency[use->_idx] = latency;
  1617 #ifndef PRODUCT
  1618     if (_cfg->C->trace_opto_output()) {
  1619       tty->print("# latency %4d: ", latency);
  1620       use->dump();
  1622 #endif
  1625 #ifndef PRODUCT
  1626   if (_cfg->C->trace_opto_output())
  1627     tty->print("# <- ComputeLocalLatenciesForward\n");
  1628 #endif
  1630 } // end ComputeLocalLatenciesForward
  1632 // See if this node fits into the present instruction bundle
  1633 bool Scheduling::NodeFitsInBundle(Node *n) {
  1634   uint n_idx = n->_idx;
  1636   // If this is the unconditional delay instruction, then it fits
  1637   if (n == _unconditional_delay_slot) {
  1638 #ifndef PRODUCT
  1639     if (_cfg->C->trace_opto_output())
  1640       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1641 #endif
  1642     return (true);
  1645   // If the node cannot be scheduled this cycle, skip it
  1646   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1647 #ifndef PRODUCT
  1648     if (_cfg->C->trace_opto_output())
  1649       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1650         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1651 #endif
  1652     return (false);
  1655   const Pipeline *node_pipeline = n->pipeline();
  1657   uint instruction_count = node_pipeline->instructionCount();
  1658   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1659     instruction_count = 0;
  1660   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1661     instruction_count++;
  1663   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1664 #ifndef PRODUCT
  1665     if (_cfg->C->trace_opto_output())
  1666       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1667         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1668 #endif
  1669     return (false);
  1672   // Don't allow non-machine nodes to be handled this way
  1673   if (!n->is_Mach() && instruction_count == 0)
  1674     return (false);
  1676   // See if there is any overlap
  1677   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1679   if (delay > 0) {
  1680 #ifndef PRODUCT
  1681     if (_cfg->C->trace_opto_output())
  1682       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1683 #endif
  1684     return false;
  1687 #ifndef PRODUCT
  1688   if (_cfg->C->trace_opto_output())
  1689     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1690 #endif
  1692   return true;
  1695 Node * Scheduling::ChooseNodeToBundle() {
  1696   uint siz = _available.size();
  1698   if (siz == 0) {
  1700 #ifndef PRODUCT
  1701     if (_cfg->C->trace_opto_output())
  1702       tty->print("#   ChooseNodeToBundle: NULL\n");
  1703 #endif
  1704     return (NULL);
  1707   // Fast path, if only 1 instruction in the bundle
  1708   if (siz == 1) {
  1709 #ifndef PRODUCT
  1710     if (_cfg->C->trace_opto_output()) {
  1711       tty->print("#   ChooseNodeToBundle (only 1): ");
  1712       _available[0]->dump();
  1714 #endif
  1715     return (_available[0]);
  1718   // Don't bother, if the bundle is already full
  1719   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1720     for ( uint i = 0; i < siz; i++ ) {
  1721       Node *n = _available[i];
  1723       // Skip projections, we'll handle them another way
  1724       if (n->is_Proj())
  1725         continue;
  1727       // This presupposed that instructions are inserted into the
  1728       // available list in a legality order; i.e. instructions that
  1729       // must be inserted first are at the head of the list
  1730       if (NodeFitsInBundle(n)) {
  1731 #ifndef PRODUCT
  1732         if (_cfg->C->trace_opto_output()) {
  1733           tty->print("#   ChooseNodeToBundle: ");
  1734           n->dump();
  1736 #endif
  1737         return (n);
  1742   // Nothing fits in this bundle, choose the highest priority
  1743 #ifndef PRODUCT
  1744   if (_cfg->C->trace_opto_output()) {
  1745     tty->print("#   ChooseNodeToBundle: ");
  1746     _available[0]->dump();
  1748 #endif
  1750   return _available[0];
  1753 //------------------------------AddNodeToAvailableList-------------------------
  1754 void Scheduling::AddNodeToAvailableList(Node *n) {
  1755   assert( !n->is_Proj(), "projections never directly made available" );
  1756 #ifndef PRODUCT
  1757   if (_cfg->C->trace_opto_output()) {
  1758     tty->print("#   AddNodeToAvailableList: ");
  1759     n->dump();
  1761 #endif
  1763   int latency = _current_latency[n->_idx];
  1765   // Insert in latency order (insertion sort)
  1766   uint i;
  1767   for ( i=0; i < _available.size(); i++ )
  1768     if (_current_latency[_available[i]->_idx] > latency)
  1769       break;
  1771   // Special Check for compares following branches
  1772   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1773     int op = n->as_Mach()->ideal_Opcode();
  1774     Node *last = _scheduled[0];
  1775     if( last->is_MachIf() && last->in(1) == n &&
  1776         ( op == Op_CmpI ||
  1777           op == Op_CmpU ||
  1778           op == Op_CmpP ||
  1779           op == Op_CmpF ||
  1780           op == Op_CmpD ||
  1781           op == Op_CmpL ) ) {
  1783       // Recalculate position, moving to front of same latency
  1784       for ( i=0 ; i < _available.size(); i++ )
  1785         if (_current_latency[_available[i]->_idx] >= latency)
  1786           break;
  1790   // Insert the node in the available list
  1791   _available.insert(i, n);
  1793 #ifndef PRODUCT
  1794   if (_cfg->C->trace_opto_output())
  1795     dump_available();
  1796 #endif
  1799 //------------------------------DecrementUseCounts-----------------------------
  1800 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1801   for ( uint i=0; i < n->len(); i++ ) {
  1802     Node *def = n->in(i);
  1803     if (!def) continue;
  1804     if( def->is_Proj() )        // If this is a machine projection, then
  1805       def = def->in(0);         // propagate usage thru to the base instruction
  1807     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1808       continue;
  1810     // Compute the latency
  1811     uint l = _bundle_cycle_number + n->latency(i);
  1812     if (_current_latency[def->_idx] < l)
  1813       _current_latency[def->_idx] = l;
  1815     // If this does not have uses then schedule it
  1816     if ((--_uses[def->_idx]) == 0)
  1817       AddNodeToAvailableList(def);
  1821 //------------------------------AddNodeToBundle--------------------------------
  1822 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1823 #ifndef PRODUCT
  1824   if (_cfg->C->trace_opto_output()) {
  1825     tty->print("#   AddNodeToBundle: ");
  1826     n->dump();
  1828 #endif
  1830   // Remove this from the available list
  1831   uint i;
  1832   for (i = 0; i < _available.size(); i++)
  1833     if (_available[i] == n)
  1834       break;
  1835   assert(i < _available.size(), "entry in _available list not found");
  1836   _available.remove(i);
  1838   // See if this fits in the current bundle
  1839   const Pipeline *node_pipeline = n->pipeline();
  1840   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  1842   // Check for instructions to be placed in the delay slot. We
  1843   // do this before we actually schedule the current instruction,
  1844   // because the delay slot follows the current instruction.
  1845   if (Pipeline::_branch_has_delay_slot &&
  1846       node_pipeline->hasBranchDelay() &&
  1847       !_unconditional_delay_slot) {
  1849     uint siz = _available.size();
  1851     // Conditional branches can support an instruction that
  1852     // is unconditionally executed and not dependant by the
  1853     // branch, OR a conditionally executed instruction if
  1854     // the branch is taken.  In practice, this means that
  1855     // the first instruction at the branch target is
  1856     // copied to the delay slot, and the branch goes to
  1857     // the instruction after that at the branch target
  1858     if ( n->is_Mach() && n->is_Branch() ) {
  1860       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  1861       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  1863 #ifndef PRODUCT
  1864       _branches++;
  1865 #endif
  1867       // At least 1 instruction is on the available list
  1868       // that is not dependant on the branch
  1869       for (uint i = 0; i < siz; i++) {
  1870         Node *d = _available[i];
  1871         const Pipeline *avail_pipeline = d->pipeline();
  1873         // Don't allow safepoints in the branch shadow, that will
  1874         // cause a number of difficulties
  1875         if ( avail_pipeline->instructionCount() == 1 &&
  1876             !avail_pipeline->hasMultipleBundles() &&
  1877             !avail_pipeline->hasBranchDelay() &&
  1878             Pipeline::instr_has_unit_size() &&
  1879             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  1880             NodeFitsInBundle(d) &&
  1881             !node_bundling(d)->used_in_delay()) {
  1883           if (d->is_Mach() && !d->is_MachSafePoint()) {
  1884             // A node that fits in the delay slot was found, so we need to
  1885             // set the appropriate bits in the bundle pipeline information so
  1886             // that it correctly indicates resource usage.  Later, when we
  1887             // attempt to add this instruction to the bundle, we will skip
  1888             // setting the resource usage.
  1889             _unconditional_delay_slot = d;
  1890             node_bundling(n)->set_use_unconditional_delay();
  1891             node_bundling(d)->set_used_in_unconditional_delay();
  1892             _bundle_use.add_usage(avail_pipeline->resourceUse());
  1893             _current_latency[d->_idx] = _bundle_cycle_number;
  1894             _next_node = d;
  1895             ++_bundle_instr_count;
  1896 #ifndef PRODUCT
  1897             _unconditional_delays++;
  1898 #endif
  1899             break;
  1905     // No delay slot, add a nop to the usage
  1906     if (!_unconditional_delay_slot) {
  1907       // See if adding an instruction in the delay slot will overflow
  1908       // the bundle.
  1909       if (!NodeFitsInBundle(_nop)) {
  1910 #ifndef PRODUCT
  1911         if (_cfg->C->trace_opto_output())
  1912           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  1913 #endif
  1914         step(1);
  1917       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  1918       _next_node = _nop;
  1919       ++_bundle_instr_count;
  1922     // See if the instruction in the delay slot requires a
  1923     // step of the bundles
  1924     if (!NodeFitsInBundle(n)) {
  1925 #ifndef PRODUCT
  1926         if (_cfg->C->trace_opto_output())
  1927           tty->print("#  *** STEP(branch won't fit) ***\n");
  1928 #endif
  1929         // Update the state information
  1930         _bundle_instr_count = 0;
  1931         _bundle_cycle_number += 1;
  1932         _bundle_use.step(1);
  1936   // Get the number of instructions
  1937   uint instruction_count = node_pipeline->instructionCount();
  1938   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1939     instruction_count = 0;
  1941   // Compute the latency information
  1942   uint delay = 0;
  1944   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  1945     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  1946     if (relative_latency < 0)
  1947       relative_latency = 0;
  1949     delay = _bundle_use.full_latency(relative_latency, node_usage);
  1951     // Does not fit in this bundle, start a new one
  1952     if (delay > 0) {
  1953       step(delay);
  1955 #ifndef PRODUCT
  1956       if (_cfg->C->trace_opto_output())
  1957         tty->print("#  *** STEP(%d) ***\n", delay);
  1958 #endif
  1962   // If this was placed in the delay slot, ignore it
  1963   if (n != _unconditional_delay_slot) {
  1965     if (delay == 0) {
  1966       if (node_pipeline->hasMultipleBundles()) {
  1967 #ifndef PRODUCT
  1968         if (_cfg->C->trace_opto_output())
  1969           tty->print("#  *** STEP(multiple instructions) ***\n");
  1970 #endif
  1971         step(1);
  1974       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  1975 #ifndef PRODUCT
  1976         if (_cfg->C->trace_opto_output())
  1977           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  1978             instruction_count + _bundle_instr_count,
  1979             Pipeline::_max_instrs_per_cycle);
  1980 #endif
  1981         step(1);
  1985     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1986       _bundle_instr_count++;
  1988     // Set the node's latency
  1989     _current_latency[n->_idx] = _bundle_cycle_number;
  1991     // Now merge the functional unit information
  1992     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  1993       _bundle_use.add_usage(node_usage);
  1995     // Increment the number of instructions in this bundle
  1996     _bundle_instr_count += instruction_count;
  1998     // Remember this node for later
  1999     if (n->is_Mach())
  2000       _next_node = n;
  2003   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2004   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2005   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2006   // into the block.  All other scheduled nodes get put in the schedule here.
  2007   int op = n->Opcode();
  2008   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2009       (op != Op_Node &&         // Not an unused antidepedence node and
  2010        // not an unallocated boxlock
  2011        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2013     // Push any trailing projections
  2014     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2015       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2016         Node *foi = n->fast_out(i);
  2017         if( foi->is_Proj() )
  2018           _scheduled.push(foi);
  2022     // Put the instruction in the schedule list
  2023     _scheduled.push(n);
  2026 #ifndef PRODUCT
  2027   if (_cfg->C->trace_opto_output())
  2028     dump_available();
  2029 #endif
  2031   // Walk all the definitions, decrementing use counts, and
  2032   // if a definition has a 0 use count, place it in the available list.
  2033   DecrementUseCounts(n,bb);
  2036 //------------------------------ComputeUseCount--------------------------------
  2037 // This method sets the use count within a basic block.  We will ignore all
  2038 // uses outside the current basic block.  As we are doing a backwards walk,
  2039 // any node we reach that has a use count of 0 may be scheduled.  This also
  2040 // avoids the problem of cyclic references from phi nodes, as long as phi
  2041 // nodes are at the front of the basic block.  This method also initializes
  2042 // the available list to the set of instructions that have no uses within this
  2043 // basic block.
  2044 void Scheduling::ComputeUseCount(const Block *bb) {
  2045 #ifndef PRODUCT
  2046   if (_cfg->C->trace_opto_output())
  2047     tty->print("# -> ComputeUseCount\n");
  2048 #endif
  2050   // Clear the list of available and scheduled instructions, just in case
  2051   _available.clear();
  2052   _scheduled.clear();
  2054   // No delay slot specified
  2055   _unconditional_delay_slot = NULL;
  2057 #ifdef ASSERT
  2058   for( uint i=0; i < bb->_nodes.size(); i++ )
  2059     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2060 #endif
  2062   // Force the _uses count to never go to zero for unscheduable pieces
  2063   // of the block
  2064   for( uint k = 0; k < _bb_start; k++ )
  2065     _uses[bb->_nodes[k]->_idx] = 1;
  2066   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2067     _uses[bb->_nodes[l]->_idx] = 1;
  2069   // Iterate backwards over the instructions in the block.  Don't count the
  2070   // branch projections at end or the block header instructions.
  2071   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2072     Node *n = bb->_nodes[j];
  2073     if( n->is_Proj() ) continue; // Projections handled another way
  2075     // Account for all uses
  2076     for ( uint k = 0; k < n->len(); k++ ) {
  2077       Node *inp = n->in(k);
  2078       if (!inp) continue;
  2079       assert(inp != n, "no cycles allowed" );
  2080       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2081         if( inp->is_Proj() )    // Skip through Proj's
  2082           inp = inp->in(0);
  2083         ++_uses[inp->_idx];     // Count 1 block-local use
  2087     // If this instruction has a 0 use count, then it is available
  2088     if (!_uses[n->_idx]) {
  2089       _current_latency[n->_idx] = _bundle_cycle_number;
  2090       AddNodeToAvailableList(n);
  2093 #ifndef PRODUCT
  2094     if (_cfg->C->trace_opto_output()) {
  2095       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2096       n->dump();
  2098 #endif
  2101 #ifndef PRODUCT
  2102   if (_cfg->C->trace_opto_output())
  2103     tty->print("# <- ComputeUseCount\n");
  2104 #endif
  2107 // This routine performs scheduling on each basic block in reverse order,
  2108 // using instruction latencies and taking into account function unit
  2109 // availability.
  2110 void Scheduling::DoScheduling() {
  2111 #ifndef PRODUCT
  2112   if (_cfg->C->trace_opto_output())
  2113     tty->print("# -> DoScheduling\n");
  2114 #endif
  2116   Block *succ_bb = NULL;
  2117   Block *bb;
  2119   // Walk over all the basic blocks in reverse order
  2120   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2121     bb = _cfg->_blocks[i];
  2123 #ifndef PRODUCT
  2124     if (_cfg->C->trace_opto_output()) {
  2125       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2126       for (uint j = 0; j < bb->_nodes.size(); j++)
  2127         bb->_nodes[j]->dump();
  2129 #endif
  2131     // On the head node, skip processing
  2132     if( bb == _cfg->_broot )
  2133       continue;
  2135     // Skip empty, connector blocks
  2136     if (bb->is_connector())
  2137       continue;
  2139     // If the following block is not the sole successor of
  2140     // this one, then reset the pipeline information
  2141     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2142 #ifndef PRODUCT
  2143       if (_cfg->C->trace_opto_output()) {
  2144         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2145                    _next_node->_idx, _bundle_instr_count);
  2147 #endif
  2148       step_and_clear();
  2151     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2152     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2153     _bb_end = bb->_nodes.size()-1;
  2154     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2155       Node *n = bb->_nodes[_bb_start];
  2156       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2157       // Also, MachIdealNodes do not get scheduled
  2158       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2159       MachNode *mach = n->as_Mach();
  2160       int iop = mach->ideal_Opcode();
  2161       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2162       if( iop == Op_Con ) continue;      // Do not schedule Top
  2163       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2164           mach->pipeline() == MachNode::pipeline_class() &&
  2165           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2166         continue;
  2167       break;                    // Funny loop structure to be sure...
  2169     // Compute last "interesting" instruction in block - last instruction we
  2170     // might schedule.  _bb_end points just after last schedulable inst.  We
  2171     // normally schedule conditional branches (despite them being forced last
  2172     // in the block), because they have delay slots we can fill.  Calls all
  2173     // have their delay slots filled in the template expansions, so we don't
  2174     // bother scheduling them.
  2175     Node *last = bb->_nodes[_bb_end];
  2176     if( last->is_Catch() ||
  2177        (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2178       // There must be a prior call.  Skip it.
  2179       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2180         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2182     } else if( last->is_MachNullCheck() ) {
  2183       // Backup so the last null-checked memory instruction is
  2184       // outside the schedulable range. Skip over the nullcheck,
  2185       // projection, and the memory nodes.
  2186       Node *mem = last->in(1);
  2187       do {
  2188         _bb_end--;
  2189       } while (mem != bb->_nodes[_bb_end]);
  2190     } else {
  2191       // Set _bb_end to point after last schedulable inst.
  2192       _bb_end++;
  2195     assert( _bb_start <= _bb_end, "inverted block ends" );
  2197     // Compute the register antidependencies for the basic block
  2198     ComputeRegisterAntidependencies(bb);
  2199     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2201     // Compute intra-bb latencies for the nodes
  2202     ComputeLocalLatenciesForward(bb);
  2204     // Compute the usage within the block, and set the list of all nodes
  2205     // in the block that have no uses within the block.
  2206     ComputeUseCount(bb);
  2208     // Schedule the remaining instructions in the block
  2209     while ( _available.size() > 0 ) {
  2210       Node *n = ChooseNodeToBundle();
  2211       AddNodeToBundle(n,bb);
  2214     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2215 #ifdef ASSERT
  2216     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2217       Node *n = bb->_nodes[l];
  2218       uint m;
  2219       for( m = 0; m < _bb_end-_bb_start; m++ )
  2220         if( _scheduled[m] == n )
  2221           break;
  2222       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2224 #endif
  2226     // Now copy the instructions (in reverse order) back to the block
  2227     for ( uint k = _bb_start; k < _bb_end; k++ )
  2228       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2230 #ifndef PRODUCT
  2231     if (_cfg->C->trace_opto_output()) {
  2232       tty->print("#  Schedule BB#%03d (final)\n", i);
  2233       uint current = 0;
  2234       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2235         Node *n = bb->_nodes[j];
  2236         if( valid_bundle_info(n) ) {
  2237           Bundle *bundle = node_bundling(n);
  2238           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2239             tty->print("*** Bundle: ");
  2240             bundle->dump();
  2242           n->dump();
  2246 #endif
  2247 #ifdef ASSERT
  2248   verify_good_schedule(bb,"after block local scheduling");
  2249 #endif
  2252 #ifndef PRODUCT
  2253   if (_cfg->C->trace_opto_output())
  2254     tty->print("# <- DoScheduling\n");
  2255 #endif
  2257   // Record final node-bundling array location
  2258   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2260 } // end DoScheduling
  2262 //------------------------------verify_good_schedule---------------------------
  2263 // Verify that no live-range used in the block is killed in the block by a
  2264 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2266 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2267 static bool edge_from_to( Node *from, Node *to ) {
  2268   for( uint i=0; i<from->len(); i++ )
  2269     if( from->in(i) == to )
  2270       return true;
  2271   return false;
  2274 #ifdef ASSERT
  2275 //------------------------------verify_do_def----------------------------------
  2276 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2277   // Check for bad kills
  2278   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2279     Node *prior_use = _reg_node[def];
  2280     if( prior_use && !edge_from_to(prior_use,n) ) {
  2281       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2282       n->dump();
  2283       tty->print_cr("...");
  2284       prior_use->dump();
  2285       assert_msg(edge_from_to(prior_use,n),msg);
  2287     _reg_node.map(def,NULL); // Kill live USEs
  2291 //------------------------------verify_good_schedule---------------------------
  2292 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2294   // Zap to something reasonable for the verify code
  2295   _reg_node.clear();
  2297   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2298   // kill a live value (other than the one it's supposed to).  Add each
  2299   // USE to the live set.
  2300   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2301     Node *n = b->_nodes[i];
  2302     int n_op = n->Opcode();
  2303     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2304       // Fat-proj kills a slew of registers
  2305       RegMask rm = n->out_RegMask();// Make local copy
  2306       while( rm.is_NotEmpty() ) {
  2307         OptoReg::Name kill = rm.find_first_elem();
  2308         rm.Remove(kill);
  2309         verify_do_def( n, kill, msg );
  2311     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2312       // Get DEF'd registers the normal way
  2313       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2314       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2317     // Now make all USEs live
  2318     for( uint i=1; i<n->req(); i++ ) {
  2319       Node *def = n->in(i);
  2320       assert(def != 0, "input edge required");
  2321       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2322       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2323       if( OptoReg::is_valid(reg_lo) ) {
  2324         assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
  2325         _reg_node.map(reg_lo,n);
  2327       if( OptoReg::is_valid(reg_hi) ) {
  2328         assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
  2329         _reg_node.map(reg_hi,n);
  2335   // Zap to something reasonable for the Antidependence code
  2336   _reg_node.clear();
  2338 #endif
  2340 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2341 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2342   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2343     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2344     from = from->in(0);
  2346   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2347       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2348     from->add_prec(to);
  2351 //------------------------------anti_do_def------------------------------------
  2352 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2353   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2354     return;
  2356   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2357   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2358       is_def ) {    // Check for a true def (not a kill)
  2359     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2360     return;
  2363   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2364   debug_only( def = (Node*)0xdeadbeef; )
  2366   // After some number of kills there _may_ be a later def
  2367   Node *later_def = NULL;
  2369   // Finding a kill requires a real pinch-point.
  2370   // Check for not already having a pinch-point.
  2371   // Pinch points are Op_Node's.
  2372   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2373     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2374     if ( _pinch_free_list.size() > 0) {
  2375       pinch = _pinch_free_list.pop();
  2376     } else {
  2377       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2379     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2380       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2381       return;
  2383     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2384     _reg_node.map(def_reg,pinch); // Record pinch-point
  2385     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2386     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2387       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2388       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2389       later_def = NULL;           // and no later def
  2391     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2392   } else {                        // Else have valid pinch point
  2393     if( pinch->in(0) )            // If there is a later-def
  2394       later_def = pinch->in(0);   // Get it
  2397   // Add output-dependence edge from later def to kill
  2398   if( later_def )               // If there is some original def
  2399     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2401   // See if current kill is also a use, and so is forced to be the pinch-point.
  2402   if( pinch->Opcode() == Op_Node ) {
  2403     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2404     for( uint i=1; i<uses->req(); i++ ) {
  2405       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2406           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2407         // Yes, found a use/kill pinch-point
  2408         pinch->set_req(0,NULL);  //
  2409         pinch->replace_by(kill); // Move anti-dep edges up
  2410         pinch = kill;
  2411         _reg_node.map(def_reg,pinch);
  2412         return;
  2417   // Add edge from kill to pinch-point
  2418   add_prec_edge_from_to(kill,pinch);
  2421 //------------------------------anti_do_use------------------------------------
  2422 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2423   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2424     return;
  2425   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2426   // Check for no later def_reg/kill in block
  2427   if( pinch && _bbs[pinch->_idx] == b &&
  2428       // Use has to be block-local as well
  2429       _bbs[use->_idx] == b ) {
  2430     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2431         pinch->req() == 1 ) {   // pinch not yet in block?
  2432       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2433       // Insert the pinch-point in the block just after the last use
  2434       b->_nodes.insert(b->find_node(use)+1,pinch);
  2435       _bb_end++;                // Increase size scheduled region in block
  2438     add_prec_edge_from_to(pinch,use);
  2442 //------------------------------ComputeRegisterAntidependences-----------------
  2443 // We insert antidependences between the reads and following write of
  2444 // allocated registers to prevent illegal code motion. Hopefully, the
  2445 // number of added references should be fairly small, especially as we
  2446 // are only adding references within the current basic block.
  2447 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2449 #ifdef ASSERT
  2450   verify_good_schedule(b,"before block local scheduling");
  2451 #endif
  2453   // A valid schedule, for each register independently, is an endless cycle
  2454   // of: a def, then some uses (connected to the def by true dependencies),
  2455   // then some kills (defs with no uses), finally the cycle repeats with a new
  2456   // def.  The uses are allowed to float relative to each other, as are the
  2457   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2458   // antidependencies between all uses of a single def and all kills that
  2459   // follow, up to the next def.  More edges are redundant, because later defs
  2460   // & kills are already serialized with true or antidependencies.  To keep
  2461   // the edge count down, we add a 'pinch point' node if there's more than
  2462   // one use or more than one kill/def.
  2464   // We add dependencies in one bottom-up pass.
  2466   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2468   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2469   // register.  If not, we record the DEF/KILL in _reg_node, the
  2470   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2471   // "pinch point", a new Node that's in the graph but not in the block.
  2472   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2473   // We put the pinch point in _reg_node.  If there's already a pinch point
  2474   // we merely add an edge from the current DEF/KILL to the pinch point.
  2476   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2477   // put an edge from the pinch point to the USE.
  2479   // To be expedient, the _reg_node array is pre-allocated for the whole
  2480   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2481   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2482   // block.  Leftover node from some prior block is treated like a NULL (no
  2483   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2484   // it being in the current block.
  2485   bool fat_proj_seen = false;
  2486   uint last_safept = _bb_end-1;
  2487   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2488   Node* last_safept_node = end_node;
  2489   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2490     Node *n = b->_nodes[i];
  2491     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2492     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2493       // Fat-proj kills a slew of registers
  2494       // This can add edges to 'n' and obscure whether or not it was a def,
  2495       // hence the is_def flag.
  2496       fat_proj_seen = true;
  2497       RegMask rm = n->out_RegMask();// Make local copy
  2498       while( rm.is_NotEmpty() ) {
  2499         OptoReg::Name kill = rm.find_first_elem();
  2500         rm.Remove(kill);
  2501         anti_do_def( b, n, kill, is_def );
  2503     } else {
  2504       // Get DEF'd registers the normal way
  2505       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2506       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2509     // Check each register used by this instruction for a following DEF/KILL
  2510     // that must occur afterward and requires an anti-dependence edge.
  2511     for( uint j=0; j<n->req(); j++ ) {
  2512       Node *def = n->in(j);
  2513       if( def ) {
  2514         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2515         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2516         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2519     // Do not allow defs of new derived values to float above GC
  2520     // points unless the base is definitely available at the GC point.
  2522     Node *m = b->_nodes[i];
  2524     // Add precedence edge from following safepoint to use of derived pointer
  2525     if( last_safept_node != end_node &&
  2526         m != last_safept_node) {
  2527       for (uint k = 1; k < m->req(); k++) {
  2528         const Type *t = m->in(k)->bottom_type();
  2529         if( t->isa_oop_ptr() &&
  2530             t->is_ptr()->offset() != 0 ) {
  2531           last_safept_node->add_prec( m );
  2532           break;
  2537     if( n->jvms() ) {           // Precedence edge from derived to safept
  2538       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2539       if( b->_nodes[last_safept] != last_safept_node ) {
  2540         last_safept = b->find_node(last_safept_node);
  2542       for( uint j=last_safept; j > i; j-- ) {
  2543         Node *mach = b->_nodes[j];
  2544         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2545           mach->add_prec( n );
  2547       last_safept = i;
  2548       last_safept_node = m;
  2552   if (fat_proj_seen) {
  2553     // Garbage collect pinch nodes that were not consumed.
  2554     // They are usually created by a fat kill MachProj for a call.
  2555     garbage_collect_pinch_nodes();
  2559 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2561 // Garbage collect pinch nodes for reuse by other blocks.
  2562 //
  2563 // The block scheduler's insertion of anti-dependence
  2564 // edges creates many pinch nodes when the block contains
  2565 // 2 or more Calls.  A pinch node is used to prevent a
  2566 // combinatorial explosion of edges.  If a set of kills for a
  2567 // register is anti-dependent on a set of uses (or defs), rather
  2568 // than adding an edge in the graph between each pair of kill
  2569 // and use (or def), a pinch is inserted between them:
  2570 //
  2571 //            use1   use2  use3
  2572 //                \   |   /
  2573 //                 \  |  /
  2574 //                  pinch
  2575 //                 /  |  \
  2576 //                /   |   \
  2577 //            kill1 kill2 kill3
  2578 //
  2579 // One pinch node is created per register killed when
  2580 // the second call is encountered during a backwards pass
  2581 // over the block.  Most of these pinch nodes are never
  2582 // wired into the graph because the register is never
  2583 // used or def'ed in the block.
  2584 //
  2585 void Scheduling::garbage_collect_pinch_nodes() {
  2586 #ifndef PRODUCT
  2587     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2588 #endif
  2589     int trace_cnt = 0;
  2590     for (uint k = 0; k < _reg_node.Size(); k++) {
  2591       Node* pinch = _reg_node[k];
  2592       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2593           // no predecence input edges
  2594           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2595         cleanup_pinch(pinch);
  2596         _pinch_free_list.push(pinch);
  2597         _reg_node.map(k, NULL);
  2598 #ifndef PRODUCT
  2599         if (_cfg->C->trace_opto_output()) {
  2600           trace_cnt++;
  2601           if (trace_cnt > 40) {
  2602             tty->print("\n");
  2603             trace_cnt = 0;
  2605           tty->print(" %d", pinch->_idx);
  2607 #endif
  2610 #ifndef PRODUCT
  2611     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2612 #endif
  2615 // Clean up a pinch node for reuse.
  2616 void Scheduling::cleanup_pinch( Node *pinch ) {
  2617   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2619   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2620     Node* use = pinch->last_out(i);
  2621     uint uses_found = 0;
  2622     for (uint j = use->req(); j < use->len(); j++) {
  2623       if (use->in(j) == pinch) {
  2624         use->rm_prec(j);
  2625         uses_found++;
  2628     assert(uses_found > 0, "must be a precedence edge");
  2629     i -= uses_found;    // we deleted 1 or more copies of this edge
  2631   // May have a later_def entry
  2632   pinch->set_req(0, NULL);
  2635 //------------------------------print_statistics-------------------------------
  2636 #ifndef PRODUCT
  2638 void Scheduling::dump_available() const {
  2639   tty->print("#Availist  ");
  2640   for (uint i = 0; i < _available.size(); i++)
  2641     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2642   tty->cr();
  2645 // Print Scheduling Statistics
  2646 void Scheduling::print_statistics() {
  2647   // Print the size added by nops for bundling
  2648   tty->print("Nops added %d bytes to total of %d bytes",
  2649     _total_nop_size, _total_method_size);
  2650   if (_total_method_size > 0)
  2651     tty->print(", for %.2f%%",
  2652       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2653   tty->print("\n");
  2655   // Print the number of branch shadows filled
  2656   if (Pipeline::_branch_has_delay_slot) {
  2657     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2658       _total_branches, _total_unconditional_delays);
  2659     if (_total_branches > 0)
  2660       tty->print(", for %.2f%%",
  2661         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2662     tty->print("\n");
  2665   uint total_instructions = 0, total_bundles = 0;
  2667   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2668     uint bundle_count   = _total_instructions_per_bundle[i];
  2669     total_instructions += bundle_count * i;
  2670     total_bundles      += bundle_count;
  2673   if (total_bundles > 0)
  2674     tty->print("Average ILP (excluding nops) is %.2f\n",
  2675       ((double)total_instructions) / ((double)total_bundles));
  2677 #endif

mercurial