src/share/vm/opto/callnode.hpp

Thu, 06 Mar 2008 10:30:17 -0800

author
kvn
date
Thu, 06 Mar 2008 10:30:17 -0800
changeset 473
b789bcaf2dd9
parent 468
3288958bf319
child 474
76256d272075
permissions
-rw-r--r--

6667610: (Escape Analysis) retry compilation without EA if it fails
Summary: During split unique types EA could exceed nodes limit and fail the method compilation.
Reviewed-by: rasbold

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 class Chaitin;
    30 class NamedCounter;
    31 class MultiNode;
    32 class  SafePointNode;
    33 class   CallNode;
    34 class     CallJavaNode;
    35 class       CallStaticJavaNode;
    36 class       CallDynamicJavaNode;
    37 class     CallRuntimeNode;
    38 class       CallLeafNode;
    39 class         CallLeafNoFPNode;
    40 class     AllocateNode;
    41 class       AllocateArrayNode;
    42 class     LockNode;
    43 class     UnlockNode;
    44 class JVMState;
    45 class OopMap;
    46 class State;
    47 class StartNode;
    48 class MachCallNode;
    49 class FastLockNode;
    51 //------------------------------StartNode--------------------------------------
    52 // The method start node
    53 class StartNode : public MultiNode {
    54   virtual uint cmp( const Node &n ) const;
    55   virtual uint size_of() const; // Size is bigger
    56 public:
    57   const TypeTuple *_domain;
    58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    59     init_class_id(Class_Start);
    60     init_flags(Flag_is_block_start);
    61     init_req(0,this);
    62     init_req(1,root);
    63   }
    64   virtual int Opcode() const;
    65   virtual bool pinned() const { return true; };
    66   virtual const Type *bottom_type() const;
    67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    68   virtual const Type *Value( PhaseTransform *phase ) const;
    69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    71   virtual const RegMask &in_RegMask(uint) const;
    72   virtual Node *match( const ProjNode *proj, const Matcher *m );
    73   virtual uint ideal_reg() const { return 0; }
    74 #ifndef PRODUCT
    75   virtual void  dump_spec(outputStream *st) const;
    76 #endif
    77 };
    79 //------------------------------StartOSRNode-----------------------------------
    80 // The method start node for on stack replacement code
    81 class StartOSRNode : public StartNode {
    82 public:
    83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    84   virtual int   Opcode() const;
    85   static  const TypeTuple *osr_domain();
    86 };
    89 //------------------------------ParmNode---------------------------------------
    90 // Incoming parameters
    91 class ParmNode : public ProjNode {
    92   static const char * const names[TypeFunc::Parms+1];
    93 public:
    94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    95     init_class_id(Class_Parm);
    96   }
    97   virtual int Opcode() const;
    98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
    99   virtual uint ideal_reg() const;
   100 #ifndef PRODUCT
   101   virtual void dump_spec(outputStream *st) const;
   102 #endif
   103 };
   106 //------------------------------ReturnNode-------------------------------------
   107 // Return from subroutine node
   108 class ReturnNode : public Node {
   109 public:
   110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   111   virtual int Opcode() const;
   112   virtual bool  is_CFG() const { return true; }
   113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   114   virtual bool depends_only_on_test() const { return false; }
   115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   116   virtual const Type *Value( PhaseTransform *phase ) const;
   117   virtual uint ideal_reg() const { return NotAMachineReg; }
   118   virtual uint match_edge(uint idx) const;
   119 #ifndef PRODUCT
   120   virtual void dump_req() const;
   121 #endif
   122 };
   125 //------------------------------RethrowNode------------------------------------
   126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   127 // ends the current basic block like a ReturnNode.  Restores registers and
   128 // unwinds stack.  Rethrow happens in the caller's method.
   129 class RethrowNode : public Node {
   130  public:
   131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   132   virtual int Opcode() const;
   133   virtual bool  is_CFG() const { return true; }
   134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   135   virtual bool depends_only_on_test() const { return false; }
   136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   137   virtual const Type *Value( PhaseTransform *phase ) const;
   138   virtual uint match_edge(uint idx) const;
   139   virtual uint ideal_reg() const { return NotAMachineReg; }
   140 #ifndef PRODUCT
   141   virtual void dump_req() const;
   142 #endif
   143 };
   146 //------------------------------TailCallNode-----------------------------------
   147 // Pop stack frame and jump indirect
   148 class TailCallNode : public ReturnNode {
   149 public:
   150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   152     init_req(TypeFunc::Parms, target);
   153     init_req(TypeFunc::Parms+1, moop);
   154   }
   156   virtual int Opcode() const;
   157   virtual uint match_edge(uint idx) const;
   158 };
   160 //------------------------------TailJumpNode-----------------------------------
   161 // Pop stack frame and jump indirect
   162 class TailJumpNode : public ReturnNode {
   163 public:
   164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   166     init_req(TypeFunc::Parms, target);
   167     init_req(TypeFunc::Parms+1, ex_oop);
   168   }
   170   virtual int Opcode() const;
   171   virtual uint match_edge(uint idx) const;
   172 };
   174 //-------------------------------JVMState-------------------------------------
   175 // A linked list of JVMState nodes captures the whole interpreter state,
   176 // plus GC roots, for all active calls at some call site in this compilation
   177 // unit.  (If there is no inlining, then the list has exactly one link.)
   178 // This provides a way to map the optimized program back into the interpreter,
   179 // or to let the GC mark the stack.
   180 class JVMState : public ResourceObj {
   181 private:
   182   JVMState*         _caller;    // List pointer for forming scope chains
   183   uint              _depth;     // One mroe than caller depth, or one.
   184   uint              _locoff;    // Offset to locals in input edge mapping
   185   uint              _stkoff;    // Offset to stack in input edge mapping
   186   uint              _monoff;    // Offset to monitors in input edge mapping
   187   uint              _endoff;    // Offset to end of input edge mapping
   188   uint              _sp;        // Jave Expression Stack Pointer for this state
   189   int               _bci;       // Byte Code Index of this JVM point
   190   ciMethod*         _method;    // Method Pointer
   191   SafePointNode*    _map;       // Map node associated with this scope
   192 public:
   193   friend class Compile;
   195   // Because JVMState objects live over the entire lifetime of the
   196   // Compile object, they are allocated into the comp_arena, which
   197   // does not get resource marked or reset during the compile process
   198   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   199   void operator delete( void * ) { } // fast deallocation
   201   // Create a new JVMState, ready for abstract interpretation.
   202   JVMState(ciMethod* method, JVMState* caller);
   203   JVMState(int stack_size);  // root state; has a null method
   205   // Access functions for the JVM
   206   uint              locoff() const { return _locoff; }
   207   uint              stkoff() const { return _stkoff; }
   208   uint              argoff() const { return _stkoff + _sp; }
   209   uint              monoff() const { return _monoff; }
   210   uint              endoff() const { return _endoff; }
   211   uint              oopoff() const { return debug_end(); }
   213   int            loc_size() const { return _stkoff - _locoff; }
   214   int            stk_size() const { return _monoff - _stkoff; }
   215   int            mon_size() const { return _endoff - _monoff; }
   217   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   218   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   219   bool        is_mon(uint i) const { return i >= _monoff && i < _endoff; }
   221   uint              sp()     const { return _sp; }
   222   int               bci()    const { return _bci; }
   223   bool          has_method() const { return _method != NULL; }
   224   ciMethod*         method() const { assert(has_method(), ""); return _method; }
   225   JVMState*         caller() const { return _caller; }
   226   SafePointNode*    map()    const { return _map; }
   227   uint              depth()  const { return _depth; }
   228   uint        debug_start()  const; // returns locoff of root caller
   229   uint        debug_end()    const; // returns endoff of self
   230   uint        debug_size()   const { return loc_size() + sp() + mon_size(); }
   231   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   233   // Returns the JVM state at the desired depth (1 == root).
   234   JVMState* of_depth(int d) const;
   236   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   237   bool same_calls_as(const JVMState* that) const;
   239   // Monitors (monitors are stored as (boxNode, objNode) pairs
   240   enum { logMonitorEdges = 1 };
   241   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   242   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   243   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   244   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   245   bool is_monitor_box(uint off)    const {
   246     assert(is_mon(off), "should be called only for monitor edge");
   247     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   248   }
   249   bool is_monitor_use(uint off)    const { return (is_mon(off)
   250                                                    && is_monitor_box(off))
   251                                              || (caller() && caller()->is_monitor_use(off)); }
   253   // Initialization functions for the JVM
   254   void              set_locoff(uint off) { _locoff = off; }
   255   void              set_stkoff(uint off) { _stkoff = off; }
   256   void              set_monoff(uint off) { _monoff = off; }
   257   void              set_endoff(uint off) { _endoff = off; }
   258   void              set_offsets(uint off) { _locoff = _stkoff = _monoff = _endoff = off; }
   259   void              set_map(SafePointNode *map) { _map = map; }
   260   void              set_sp(uint sp) { _sp = sp; }
   261   void              set_bci(int bci) { _bci = bci; }
   263   // Miscellaneous utility functions
   264   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   265   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   267 #ifndef PRODUCT
   268   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   269   void      dump_spec(outputStream *st) const;
   270   void      dump_on(outputStream* st) const;
   271   void      dump() const {
   272     dump_on(tty);
   273   }
   274 #endif
   275 };
   277 //------------------------------SafePointNode----------------------------------
   278 // A SafePointNode is a subclass of a MultiNode for convenience (and
   279 // potential code sharing) only - conceptually it is independent of
   280 // the Node semantics.
   281 class SafePointNode : public MultiNode {
   282   virtual uint           cmp( const Node &n ) const;
   283   virtual uint           size_of() const;       // Size is bigger
   285 public:
   286   SafePointNode(uint edges, JVMState* jvms,
   287                 // A plain safepoint advertises no memory effects (NULL):
   288                 const TypePtr* adr_type = NULL)
   289     : MultiNode( edges ),
   290       _jvms(jvms),
   291       _oop_map(NULL),
   292       _adr_type(adr_type)
   293   {
   294     init_class_id(Class_SafePoint);
   295   }
   297   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   298   JVMState* const _jvms;      // Pointer to list of JVM State objects
   299   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   301   // Many calls take *all* of memory as input,
   302   // but some produce a limited subset of that memory as output.
   303   // The adr_type reports the call's behavior as a store, not a load.
   305   virtual JVMState* jvms() const { return _jvms; }
   306   void set_jvms(JVMState* s) {
   307     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   308   }
   309   OopMap *oop_map() const { return _oop_map; }
   310   void set_oop_map(OopMap *om) { _oop_map = om; }
   312   // Functionality from old debug nodes which has changed
   313   Node *local(JVMState* jvms, uint idx) const {
   314     assert(verify_jvms(jvms), "jvms must match");
   315     return in(jvms->locoff() + idx);
   316   }
   317   Node *stack(JVMState* jvms, uint idx) const {
   318     assert(verify_jvms(jvms), "jvms must match");
   319     return in(jvms->stkoff() + idx);
   320   }
   321   Node *argument(JVMState* jvms, uint idx) const {
   322     assert(verify_jvms(jvms), "jvms must match");
   323     return in(jvms->argoff() + idx);
   324   }
   325   Node *monitor_box(JVMState* jvms, uint idx) const {
   326     assert(verify_jvms(jvms), "jvms must match");
   327     return in(jvms->monitor_box_offset(idx));
   328   }
   329   Node *monitor_obj(JVMState* jvms, uint idx) const {
   330     assert(verify_jvms(jvms), "jvms must match");
   331     return in(jvms->monitor_obj_offset(idx));
   332   }
   334   void  set_local(JVMState* jvms, uint idx, Node *c);
   336   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   337     assert(verify_jvms(jvms), "jvms must match");
   338     set_req(jvms->stkoff() + idx, c);
   339   }
   340   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   341     assert(verify_jvms(jvms), "jvms must match");
   342     set_req(jvms->argoff() + idx, c);
   343   }
   344   void ensure_stack(JVMState* jvms, uint stk_size) {
   345     assert(verify_jvms(jvms), "jvms must match");
   346     int grow_by = (int)stk_size - (int)jvms->stk_size();
   347     if (grow_by > 0)  grow_stack(jvms, grow_by);
   348   }
   349   void grow_stack(JVMState* jvms, uint grow_by);
   350   // Handle monitor stack
   351   void push_monitor( const FastLockNode *lock );
   352   void pop_monitor ();
   353   Node *peek_monitor_box() const;
   354   Node *peek_monitor_obj() const;
   356   // Access functions for the JVM
   357   Node *control  () const { return in(TypeFunc::Control  ); }
   358   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   359   Node *memory   () const { return in(TypeFunc::Memory   ); }
   360   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   361   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   363   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   364   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   365   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   367   MergeMemNode* merged_memory() const {
   368     return in(TypeFunc::Memory)->as_MergeMem();
   369   }
   371   // The parser marks useless maps as dead when it's done with them:
   372   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   374   // Exception states bubbling out of subgraphs such as inlined calls
   375   // are recorded here.  (There might be more than one, hence the "next".)
   376   // This feature is used only for safepoints which serve as "maps"
   377   // for JVM states during parsing, intrinsic expansion, etc.
   378   SafePointNode*         next_exception() const;
   379   void               set_next_exception(SafePointNode* n);
   380   bool                   has_exceptions() const { return next_exception() != NULL; }
   382   // Standard Node stuff
   383   virtual int            Opcode() const;
   384   virtual bool           pinned() const { return true; }
   385   virtual const Type    *Value( PhaseTransform *phase ) const;
   386   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   387   virtual const TypePtr *adr_type() const { return _adr_type; }
   388   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   389   virtual Node          *Identity( PhaseTransform *phase );
   390   virtual uint           ideal_reg() const { return 0; }
   391   virtual const RegMask &in_RegMask(uint) const;
   392   virtual const RegMask &out_RegMask() const;
   393   virtual uint           match_edge(uint idx) const;
   395   static  bool           needs_polling_address_input();
   397 #ifndef PRODUCT
   398   virtual void              dump_spec(outputStream *st) const;
   399 #endif
   400 };
   402 //------------------------------CallNode---------------------------------------
   403 // Call nodes now subsume the function of debug nodes at callsites, so they
   404 // contain the functionality of a full scope chain of debug nodes.
   405 class CallNode : public SafePointNode {
   406 public:
   407   const TypeFunc *_tf;        // Function type
   408   address      _entry_point;  // Address of method being called
   409   float        _cnt;          // Estimate of number of times called
   410   PointsToNode::EscapeState _escape_state;
   412   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   413     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   414       _tf(tf),
   415       _entry_point(addr),
   416       _cnt(COUNT_UNKNOWN)
   417   {
   418     init_class_id(Class_Call);
   419     init_flags(Flag_is_Call);
   420     _escape_state = PointsToNode::UnknownEscape;
   421   }
   423   const TypeFunc* tf()        const { return _tf; }
   424   const address entry_point() const { return _entry_point; }
   425   const float   cnt()         const { return _cnt; }
   427   void set_tf(const TypeFunc* tf) { _tf = tf; }
   428   void set_entry_point(address p) { _entry_point = p; }
   429   void set_cnt(float c)           { _cnt = c; }
   431   virtual const Type *bottom_type() const;
   432   virtual const Type *Value( PhaseTransform *phase ) const;
   433   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   434   virtual uint        cmp( const Node &n ) const;
   435   virtual uint        size_of() const = 0;
   436   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   437   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   438   virtual uint        ideal_reg() const { return NotAMachineReg; }
   439   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   440   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   441   virtual bool        guaranteed_safepoint()  { return true; }
   442   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   443   // the node the JVMState must be cloned.
   444   virtual void        clone_jvms() { }   // default is not to clone
   446   virtual uint match_edge(uint idx) const;
   448 #ifndef PRODUCT
   449   virtual void        dump_req()  const;
   450   virtual void        dump_spec(outputStream *st) const;
   451 #endif
   452 };
   454 //------------------------------CallJavaNode-----------------------------------
   455 // Make a static or dynamic subroutine call node using Java calling
   456 // convention.  (The "Java" calling convention is the compiler's calling
   457 // convention, as opposed to the interpreter's or that of native C.)
   458 class CallJavaNode : public CallNode {
   459 protected:
   460   virtual uint cmp( const Node &n ) const;
   461   virtual uint size_of() const; // Size is bigger
   463   bool    _optimized_virtual;
   464   ciMethod* _method;            // Method being direct called
   465 public:
   466   const int       _bci;         // Byte Code Index of call byte code
   467   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   468     : CallNode(tf, addr, TypePtr::BOTTOM),
   469       _method(method), _bci(bci), _optimized_virtual(false)
   470   {
   471     init_class_id(Class_CallJava);
   472   }
   474   virtual int   Opcode() const;
   475   ciMethod* method() const                { return _method; }
   476   void  set_method(ciMethod *m)           { _method = m; }
   477   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   478   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   480 #ifndef PRODUCT
   481   virtual void  dump_spec(outputStream *st) const;
   482 #endif
   483 };
   485 //------------------------------CallStaticJavaNode-----------------------------
   486 // Make a direct subroutine call using Java calling convention (for static
   487 // calls and optimized virtual calls, plus calls to wrappers for run-time
   488 // routines); generates static stub.
   489 class CallStaticJavaNode : public CallJavaNode {
   490   virtual uint cmp( const Node &n ) const;
   491   virtual uint size_of() const; // Size is bigger
   492 public:
   493   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   494     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   495     init_class_id(Class_CallStaticJava);
   496   }
   497   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   498                      const TypePtr* adr_type)
   499     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   500     init_class_id(Class_CallStaticJava);
   501     // This node calls a runtime stub, which often has narrow memory effects.
   502     _adr_type = adr_type;
   503   }
   504   const char *_name;            // Runtime wrapper name
   506   // If this is an uncommon trap, return the request code, else zero.
   507   int uncommon_trap_request() const;
   508   static int extract_uncommon_trap_request(const Node* call);
   510   virtual int         Opcode() const;
   511 #ifndef PRODUCT
   512   virtual void        dump_spec(outputStream *st) const;
   513 #endif
   514 };
   516 //------------------------------CallDynamicJavaNode----------------------------
   517 // Make a dispatched call using Java calling convention.
   518 class CallDynamicJavaNode : public CallJavaNode {
   519   virtual uint cmp( const Node &n ) const;
   520   virtual uint size_of() const; // Size is bigger
   521 public:
   522   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   523     init_class_id(Class_CallDynamicJava);
   524   }
   526   int _vtable_index;
   527   virtual int   Opcode() const;
   528 #ifndef PRODUCT
   529   virtual void  dump_spec(outputStream *st) const;
   530 #endif
   531 };
   533 //------------------------------CallRuntimeNode--------------------------------
   534 // Make a direct subroutine call node into compiled C++ code.
   535 class CallRuntimeNode : public CallNode {
   536   virtual uint cmp( const Node &n ) const;
   537   virtual uint size_of() const; // Size is bigger
   538 public:
   539   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   540                   const TypePtr* adr_type)
   541     : CallNode(tf, addr, adr_type),
   542       _name(name)
   543   {
   544     init_class_id(Class_CallRuntime);
   545   }
   547   const char *_name;            // Printable name, if _method is NULL
   548   virtual int   Opcode() const;
   549   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   551 #ifndef PRODUCT
   552   virtual void  dump_spec(outputStream *st) const;
   553 #endif
   554 };
   556 //------------------------------CallLeafNode-----------------------------------
   557 // Make a direct subroutine call node into compiled C++ code, without
   558 // safepoints
   559 class CallLeafNode : public CallRuntimeNode {
   560 public:
   561   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   562                const TypePtr* adr_type)
   563     : CallRuntimeNode(tf, addr, name, adr_type)
   564   {
   565     init_class_id(Class_CallLeaf);
   566   }
   567   virtual int   Opcode() const;
   568   virtual bool        guaranteed_safepoint()  { return false; }
   569 #ifndef PRODUCT
   570   virtual void  dump_spec(outputStream *st) const;
   571 #endif
   572 };
   574 //------------------------------CallLeafNoFPNode-------------------------------
   575 // CallLeafNode, not using floating point or using it in the same manner as
   576 // the generated code
   577 class CallLeafNoFPNode : public CallLeafNode {
   578 public:
   579   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   580                    const TypePtr* adr_type)
   581     : CallLeafNode(tf, addr, name, adr_type)
   582   {
   583   }
   584   virtual int   Opcode() const;
   585 };
   588 //------------------------------Allocate---------------------------------------
   589 // High-level memory allocation
   590 //
   591 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   592 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   593 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   594 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   595 //  order to differentiate the uses of the projection on the normal control path from
   596 //  those on the exception return path.
   597 //
   598 class AllocateNode : public CallNode {
   599 public:
   600   enum {
   601     // Output:
   602     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   603     // Inputs:
   604     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   605     KlassNode,                        // type (maybe dynamic) of the obj.
   606     InitialTest,                      // slow-path test (may be constant)
   607     ALength,                          // array length (or TOP if none)
   608     ParmLimit
   609   };
   611   static const TypeFunc* alloc_type() {
   612     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   613     fields[AllocSize]   = TypeInt::POS;
   614     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   615     fields[InitialTest] = TypeInt::BOOL;
   616     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   618     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   620     // create result type (range)
   621     fields = TypeTuple::fields(1);
   622     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   624     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   626     return TypeFunc::make(domain, range);
   627   }
   629   virtual uint size_of() const; // Size is bigger
   630   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   631                Node *size, Node *klass_node, Node *initial_test);
   632   // Expansion modifies the JVMState, so we need to clone it
   633   virtual void  clone_jvms() {
   634     set_jvms(jvms()->clone_deep(Compile::current()));
   635   }
   636   virtual int Opcode() const;
   637   virtual uint ideal_reg() const { return Op_RegP; }
   638   virtual bool        guaranteed_safepoint()  { return false; }
   640   // Pattern-match a possible usage of AllocateNode.
   641   // Return null if no allocation is recognized.
   642   // The operand is the pointer produced by the (possible) allocation.
   643   // It must be a projection of the Allocate or its subsequent CastPP.
   644   // (Note:  This function is defined in file graphKit.cpp, near
   645   // GraphKit::new_instance/new_array, whose output it recognizes.)
   646   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   647   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   649   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   650   // an offset, which is reported back to the caller.
   651   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   652   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   653                                         intptr_t& offset);
   655   // Dig the klass operand out of a (possible) allocation site.
   656   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   657     AllocateNode* allo = Ideal_allocation(ptr, phase);
   658     return (allo == NULL) ? NULL : allo->in(KlassNode);
   659   }
   661   // Conservatively small estimate of offset of first non-header byte.
   662   int minimum_header_size() {
   663     return is_AllocateArray() ? sizeof(arrayOopDesc) : sizeof(oopDesc);
   664   }
   666   // Return the corresponding initialization barrier (or null if none).
   667   // Walks out edges to find it...
   668   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   669   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   670   InitializeNode* initialization();
   672   // Convenience for initialization->maybe_set_complete(phase)
   673   bool maybe_set_complete(PhaseGVN* phase);
   674 };
   676 //------------------------------AllocateArray---------------------------------
   677 //
   678 // High-level array allocation
   679 //
   680 class AllocateArrayNode : public AllocateNode {
   681 public:
   682   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   683                     Node* size, Node* klass_node, Node* initial_test,
   684                     Node* count_val
   685                     )
   686     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   687                    initial_test)
   688   {
   689     init_class_id(Class_AllocateArray);
   690     set_req(AllocateNode::ALength,        count_val);
   691   }
   692   virtual int Opcode() const;
   693   virtual uint size_of() const; // Size is bigger
   695   // Pattern-match a possible usage of AllocateArrayNode.
   696   // Return null if no allocation is recognized.
   697   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   698     AllocateNode* allo = Ideal_allocation(ptr, phase);
   699     return (allo == NULL || !allo->is_AllocateArray())
   700            ? NULL : allo->as_AllocateArray();
   701   }
   703   // Dig the length operand out of a (possible) array allocation site.
   704   static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
   705     AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
   706     return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
   707   }
   708 };
   710 //------------------------------AbstractLockNode-----------------------------------
   711 class AbstractLockNode: public CallNode {
   712 private:
   713  bool _eliminate;    // indicates this lock can be safely eliminated
   714 #ifndef PRODUCT
   715   NamedCounter* _counter;
   716 #endif
   718 protected:
   719   // helper functions for lock elimination
   720   //
   722   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   723                             GrowableArray<AbstractLockNode*> &lock_ops);
   724   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   725                                        GrowableArray<AbstractLockNode*> &lock_ops);
   726   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   727                                GrowableArray<AbstractLockNode*> &lock_ops);
   728   LockNode *find_matching_lock(UnlockNode* unlock);
   731 public:
   732   AbstractLockNode(const TypeFunc *tf)
   733     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   734       _eliminate(false)
   735   {
   736 #ifndef PRODUCT
   737     _counter = NULL;
   738 #endif
   739   }
   740   virtual int Opcode() const = 0;
   741   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   742   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   743   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   744   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   746   virtual uint size_of() const { return sizeof(*this); }
   748   bool is_eliminated()         {return _eliminate; }
   749   // mark node as eliminated and update the counter if there is one
   750   void set_eliminated();
   752 #ifndef PRODUCT
   753   void create_lock_counter(JVMState* s);
   754   NamedCounter* counter() const { return _counter; }
   755 #endif
   756 };
   758 //------------------------------Lock---------------------------------------
   759 // High-level lock operation
   760 //
   761 // This is a subclass of CallNode because it is a macro node which gets expanded
   762 // into a code sequence containing a call.  This node takes 3 "parameters":
   763 //    0  -  object to lock
   764 //    1 -   a BoxLockNode
   765 //    2 -   a FastLockNode
   766 //
   767 class LockNode : public AbstractLockNode {
   768 public:
   770   static const TypeFunc *lock_type() {
   771     // create input type (domain)
   772     const Type **fields = TypeTuple::fields(3);
   773     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   774     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   775     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   776     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   778     // create result type (range)
   779     fields = TypeTuple::fields(0);
   781     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   783     return TypeFunc::make(domain,range);
   784   }
   786   virtual int Opcode() const;
   787   virtual uint size_of() const; // Size is bigger
   788   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   789     init_class_id(Class_Lock);
   790     init_flags(Flag_is_macro);
   791     C->add_macro_node(this);
   792   }
   793   virtual bool        guaranteed_safepoint()  { return false; }
   795   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   796   // Expansion modifies the JVMState, so we need to clone it
   797   virtual void  clone_jvms() {
   798     set_jvms(jvms()->clone_deep(Compile::current()));
   799   }
   800 };
   802 //------------------------------Unlock---------------------------------------
   803 // High-level unlock operation
   804 class UnlockNode : public AbstractLockNode {
   805 public:
   806   virtual int Opcode() const;
   807   virtual uint size_of() const; // Size is bigger
   808   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   809     init_class_id(Class_Unlock);
   810     init_flags(Flag_is_macro);
   811     C->add_macro_node(this);
   812   }
   813   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   814   // unlock is never a safepoint
   815   virtual bool        guaranteed_safepoint()  { return false; }
   816 };

mercurial