src/share/vm/opto/callnode.cpp

Thu, 06 Mar 2008 10:30:17 -0800

author
kvn
date
Thu, 06 Mar 2008 10:30:17 -0800
changeset 473
b789bcaf2dd9
parent 435
a61af66fc99e
child 474
76256d272075
permissions
-rw-r--r--

6667610: (Escape Analysis) retry compilation without EA if it fails
Summary: During split unique types EA could exceed nodes limit and fail the method compilation.
Reviewed-by: rasbold

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_callnode.cpp.incl"
    32 //=============================================================================
    33 uint StartNode::size_of() const { return sizeof(*this); }
    34 uint StartNode::cmp( const Node &n ) const
    35 { return _domain == ((StartNode&)n)._domain; }
    36 const Type *StartNode::bottom_type() const { return _domain; }
    37 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
    38 #ifndef PRODUCT
    39 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
    40 #endif
    42 //------------------------------Ideal------------------------------------------
    43 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
    44   return remove_dead_region(phase, can_reshape) ? this : NULL;
    45 }
    47 //------------------------------calling_convention-----------------------------
    48 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
    49   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
    50 }
    52 //------------------------------Registers--------------------------------------
    53 const RegMask &StartNode::in_RegMask(uint) const {
    54   return RegMask::Empty;
    55 }
    57 //------------------------------match------------------------------------------
    58 // Construct projections for incoming parameters, and their RegMask info
    59 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
    60   switch (proj->_con) {
    61   case TypeFunc::Control:
    62   case TypeFunc::I_O:
    63   case TypeFunc::Memory:
    64     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
    65   case TypeFunc::FramePtr:
    66     return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
    67   case TypeFunc::ReturnAdr:
    68     return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
    69   case TypeFunc::Parms:
    70   default: {
    71       uint parm_num = proj->_con - TypeFunc::Parms;
    72       const Type *t = _domain->field_at(proj->_con);
    73       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
    74         return new (match->C, 1) ConNode(Type::TOP);
    75       uint ideal_reg = Matcher::base2reg[t->base()];
    76       RegMask &rm = match->_calling_convention_mask[parm_num];
    77       return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
    78     }
    79   }
    80   return NULL;
    81 }
    83 //------------------------------StartOSRNode----------------------------------
    84 // The method start node for an on stack replacement adapter
    86 //------------------------------osr_domain-----------------------------
    87 const TypeTuple *StartOSRNode::osr_domain() {
    88   const Type **fields = TypeTuple::fields(2);
    89   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
    91   return TypeTuple::make(TypeFunc::Parms+1, fields);
    92 }
    94 //=============================================================================
    95 const char * const ParmNode::names[TypeFunc::Parms+1] = {
    96   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
    97 };
    99 #ifndef PRODUCT
   100 void ParmNode::dump_spec(outputStream *st) const {
   101   if( _con < TypeFunc::Parms ) {
   102     st->print(names[_con]);
   103   } else {
   104     st->print("Parm%d: ",_con-TypeFunc::Parms);
   105     // Verbose and WizardMode dump bottom_type for all nodes
   106     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
   107   }
   108 }
   109 #endif
   111 uint ParmNode::ideal_reg() const {
   112   switch( _con ) {
   113   case TypeFunc::Control  : // fall through
   114   case TypeFunc::I_O      : // fall through
   115   case TypeFunc::Memory   : return 0;
   116   case TypeFunc::FramePtr : // fall through
   117   case TypeFunc::ReturnAdr: return Op_RegP;
   118   default                 : assert( _con > TypeFunc::Parms, "" );
   119     // fall through
   120   case TypeFunc::Parms    : {
   121     // Type of argument being passed
   122     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
   123     return Matcher::base2reg[t->base()];
   124   }
   125   }
   126   ShouldNotReachHere();
   127   return 0;
   128 }
   130 //=============================================================================
   131 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
   132   init_req(TypeFunc::Control,cntrl);
   133   init_req(TypeFunc::I_O,i_o);
   134   init_req(TypeFunc::Memory,memory);
   135   init_req(TypeFunc::FramePtr,frameptr);
   136   init_req(TypeFunc::ReturnAdr,retadr);
   137 }
   139 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
   140   return remove_dead_region(phase, can_reshape) ? this : NULL;
   141 }
   143 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
   144   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
   145     ? Type::TOP
   146     : Type::BOTTOM;
   147 }
   149 // Do we Match on this edge index or not?  No edges on return nodes
   150 uint ReturnNode::match_edge(uint idx) const {
   151   return 0;
   152 }
   155 #ifndef PRODUCT
   156 void ReturnNode::dump_req() const {
   157   // Dump the required inputs, enclosed in '(' and ')'
   158   uint i;                       // Exit value of loop
   159   for( i=0; i<req(); i++ ) {    // For all required inputs
   160     if( i == TypeFunc::Parms ) tty->print("returns");
   161     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   162     else tty->print("_ ");
   163   }
   164 }
   165 #endif
   167 //=============================================================================
   168 RethrowNode::RethrowNode(
   169   Node* cntrl,
   170   Node* i_o,
   171   Node* memory,
   172   Node* frameptr,
   173   Node* ret_adr,
   174   Node* exception
   175 ) : Node(TypeFunc::Parms + 1) {
   176   init_req(TypeFunc::Control  , cntrl    );
   177   init_req(TypeFunc::I_O      , i_o      );
   178   init_req(TypeFunc::Memory   , memory   );
   179   init_req(TypeFunc::FramePtr , frameptr );
   180   init_req(TypeFunc::ReturnAdr, ret_adr);
   181   init_req(TypeFunc::Parms    , exception);
   182 }
   184 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
   185   return remove_dead_region(phase, can_reshape) ? this : NULL;
   186 }
   188 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
   189   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
   190     ? Type::TOP
   191     : Type::BOTTOM;
   192 }
   194 uint RethrowNode::match_edge(uint idx) const {
   195   return 0;
   196 }
   198 #ifndef PRODUCT
   199 void RethrowNode::dump_req() const {
   200   // Dump the required inputs, enclosed in '(' and ')'
   201   uint i;                       // Exit value of loop
   202   for( i=0; i<req(); i++ ) {    // For all required inputs
   203     if( i == TypeFunc::Parms ) tty->print("exception");
   204     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   205     else tty->print("_ ");
   206   }
   207 }
   208 #endif
   210 //=============================================================================
   211 // Do we Match on this edge index or not?  Match only target address & method
   212 uint TailCallNode::match_edge(uint idx) const {
   213   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   214 }
   216 //=============================================================================
   217 // Do we Match on this edge index or not?  Match only target address & oop
   218 uint TailJumpNode::match_edge(uint idx) const {
   219   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   220 }
   222 //=============================================================================
   223 JVMState::JVMState(ciMethod* method, JVMState* caller) {
   224   assert(method != NULL, "must be valid call site");
   225   _method = method;
   226   debug_only(_bci = -99);  // random garbage value
   227   debug_only(_map = (SafePointNode*)-1);
   228   _caller = caller;
   229   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
   230   _locoff = TypeFunc::Parms;
   231   _stkoff = _locoff + _method->max_locals();
   232   _monoff = _stkoff + _method->max_stack();
   233   _endoff = _monoff;
   234   _sp = 0;
   235 }
   236 JVMState::JVMState(int stack_size) {
   237   _method = NULL;
   238   _bci = InvocationEntryBci;
   239   debug_only(_map = (SafePointNode*)-1);
   240   _caller = NULL;
   241   _depth  = 1;
   242   _locoff = TypeFunc::Parms;
   243   _stkoff = _locoff;
   244   _monoff = _stkoff + stack_size;
   245   _endoff = _monoff;
   246   _sp = 0;
   247 }
   249 //--------------------------------of_depth-------------------------------------
   250 JVMState* JVMState::of_depth(int d) const {
   251   const JVMState* jvmp = this;
   252   assert(0 < d && (uint)d <= depth(), "oob");
   253   for (int skip = depth() - d; skip > 0; skip--) {
   254     jvmp = jvmp->caller();
   255   }
   256   assert(jvmp->depth() == (uint)d, "found the right one");
   257   return (JVMState*)jvmp;
   258 }
   260 //-----------------------------same_calls_as-----------------------------------
   261 bool JVMState::same_calls_as(const JVMState* that) const {
   262   if (this == that)                    return true;
   263   if (this->depth() != that->depth())  return false;
   264   const JVMState* p = this;
   265   const JVMState* q = that;
   266   for (;;) {
   267     if (p->_method != q->_method)    return false;
   268     if (p->_method == NULL)          return true;   // bci is irrelevant
   269     if (p->_bci    != q->_bci)       return false;
   270     p = p->caller();
   271     q = q->caller();
   272     if (p == q)                      return true;
   273     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
   274   }
   275 }
   277 //------------------------------debug_start------------------------------------
   278 uint JVMState::debug_start()  const {
   279   debug_only(JVMState* jvmroot = of_depth(1));
   280   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
   281   return of_depth(1)->locoff();
   282 }
   284 //-------------------------------debug_end-------------------------------------
   285 uint JVMState::debug_end() const {
   286   debug_only(JVMState* jvmroot = of_depth(1));
   287   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
   288   return endoff();
   289 }
   291 //------------------------------debug_depth------------------------------------
   292 uint JVMState::debug_depth() const {
   293   uint total = 0;
   294   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
   295     total += jvmp->debug_size();
   296   }
   297   return total;
   298 }
   300 //------------------------------format_helper----------------------------------
   301 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
   302 // any defined value or not.  If it does, print out the register or constant.
   303 #ifndef PRODUCT
   304 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i ) {
   305   if (n == NULL) { st->print(" NULL"); return; }
   306   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
   307     char buf[50];
   308     regalloc->dump_register(n,buf);
   309     st->print(" %s%d]=%s",msg,i,buf);
   310   } else {                      // No register, but might be constant
   311     const Type *t = n->bottom_type();
   312     switch (t->base()) {
   313     case Type::Int:
   314       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
   315       break;
   316     case Type::AnyPtr:
   317       assert( t == TypePtr::NULL_PTR, "" );
   318       st->print(" %s%d]=#NULL",msg,i);
   319       break;
   320     case Type::AryPtr:
   321     case Type::KlassPtr:
   322     case Type::InstPtr:
   323       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
   324       break;
   325     case Type::RawPtr:
   326       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
   327       break;
   328     case Type::DoubleCon:
   329       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
   330       break;
   331     case Type::FloatCon:
   332       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
   333       break;
   334     case Type::Long:
   335       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
   336       break;
   337     case Type::Half:
   338     case Type::Top:
   339       st->print(" %s%d]=_",msg,i);
   340       break;
   341     default: ShouldNotReachHere();
   342     }
   343   }
   344 }
   345 #endif
   347 //------------------------------format-----------------------------------------
   348 #ifndef PRODUCT
   349 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
   350   st->print("        #");
   351   if( _method ) {
   352     _method->print_short_name(st);
   353     st->print(" @ bci:%d ",_bci);
   354   } else {
   355     st->print_cr(" runtime stub ");
   356     return;
   357   }
   358   if (n->is_MachSafePoint()) {
   359     MachSafePointNode *mcall = n->as_MachSafePoint();
   360     uint i;
   361     // Print locals
   362     for( i = 0; i < (uint)loc_size(); i++ )
   363       format_helper( regalloc, st, mcall->local(this, i), "L[", i );
   364     // Print stack
   365     for (i = 0; i < (uint)stk_size(); i++) {
   366       if ((uint)(_stkoff + i) >= mcall->len())
   367         st->print(" oob ");
   368       else
   369        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i );
   370     }
   371     for (i = 0; (int)i < nof_monitors(); i++) {
   372       Node *box = mcall->monitor_box(this, i);
   373       Node *obj = mcall->monitor_obj(this, i);
   374       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
   375         while( !box->is_BoxLock() )  box = box->in(1);
   376         format_helper( regalloc, st, box, "MON-BOX[", i );
   377       } else {
   378         OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
   379         st->print(" MON-BOX%d=%s+%d",
   380                    i,
   381                    OptoReg::regname(OptoReg::c_frame_pointer),
   382                    regalloc->reg2offset(box_reg));
   383       }
   384       format_helper( regalloc, st, obj, "MON-OBJ[", i );
   385     }
   386   }
   387   st->print_cr("");
   388   if (caller() != NULL)  caller()->format(regalloc, n, st);
   389 }
   390 #endif
   392 #ifndef PRODUCT
   393 void JVMState::dump_spec(outputStream *st) const {
   394   if (_method != NULL) {
   395     bool printed = false;
   396     if (!Verbose) {
   397       // The JVMS dumps make really, really long lines.
   398       // Take out the most boring parts, which are the package prefixes.
   399       char buf[500];
   400       stringStream namest(buf, sizeof(buf));
   401       _method->print_short_name(&namest);
   402       if (namest.count() < sizeof(buf)) {
   403         const char* name = namest.base();
   404         if (name[0] == ' ')  ++name;
   405         const char* endcn = strchr(name, ':');  // end of class name
   406         if (endcn == NULL)  endcn = strchr(name, '(');
   407         if (endcn == NULL)  endcn = name + strlen(name);
   408         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
   409           --endcn;
   410         st->print(" %s", endcn);
   411         printed = true;
   412       }
   413     }
   414     if (!printed)
   415       _method->print_short_name(st);
   416     st->print(" @ bci:%d",_bci);
   417   } else {
   418     st->print(" runtime stub");
   419   }
   420   if (caller() != NULL)  caller()->dump_spec(st);
   421 }
   422 #endif
   424 #ifndef PRODUCT
   425 void JVMState::dump_on(outputStream* st) const {
   426   if (_map && !((uintptr_t)_map & 1)) {
   427     if (_map->len() > _map->req()) {  // _map->has_exceptions()
   428       Node* ex = _map->in(_map->req());  // _map->next_exception()
   429       // skip the first one; it's already being printed
   430       while (ex != NULL && ex->len() > ex->req()) {
   431         ex = ex->in(ex->req());  // ex->next_exception()
   432         ex->dump(1);
   433       }
   434     }
   435     _map->dump(2);
   436   }
   437   st->print("JVMS depth=%d loc=%d stk=%d mon=%d end=%d mondepth=%d sp=%d bci=%d method=",
   438              depth(), locoff(), stkoff(), monoff(), endoff(), monitor_depth(), sp(), bci());
   439   if (_method == NULL) {
   440     st->print_cr("(none)");
   441   } else {
   442     _method->print_name(st);
   443     st->cr();
   444     if (bci() >= 0 && bci() < _method->code_size()) {
   445       st->print("    bc: ");
   446       _method->print_codes_on(bci(), bci()+1, st);
   447     }
   448   }
   449   if (caller() != NULL) {
   450     caller()->dump_on(st);
   451   }
   452 }
   454 // Extra way to dump a jvms from the debugger,
   455 // to avoid a bug with C++ member function calls.
   456 void dump_jvms(JVMState* jvms) {
   457   jvms->dump();
   458 }
   459 #endif
   461 //--------------------------clone_shallow--------------------------------------
   462 JVMState* JVMState::clone_shallow(Compile* C) const {
   463   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
   464   n->set_bci(_bci);
   465   n->set_locoff(_locoff);
   466   n->set_stkoff(_stkoff);
   467   n->set_monoff(_monoff);
   468   n->set_endoff(_endoff);
   469   n->set_sp(_sp);
   470   n->set_map(_map);
   471   return n;
   472 }
   474 //---------------------------clone_deep----------------------------------------
   475 JVMState* JVMState::clone_deep(Compile* C) const {
   476   JVMState* n = clone_shallow(C);
   477   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
   478     p->_caller = p->_caller->clone_shallow(C);
   479   }
   480   assert(n->depth() == depth(), "sanity");
   481   assert(n->debug_depth() == debug_depth(), "sanity");
   482   return n;
   483 }
   485 //=============================================================================
   486 uint CallNode::cmp( const Node &n ) const
   487 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
   488 #ifndef PRODUCT
   489 void CallNode::dump_req() const {
   490   // Dump the required inputs, enclosed in '(' and ')'
   491   uint i;                       // Exit value of loop
   492   for( i=0; i<req(); i++ ) {    // For all required inputs
   493     if( i == TypeFunc::Parms ) tty->print("(");
   494     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   495     else tty->print("_ ");
   496   }
   497   tty->print(")");
   498 }
   500 void CallNode::dump_spec(outputStream *st) const {
   501   st->print(" ");
   502   tf()->dump_on(st);
   503   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
   504   if (jvms() != NULL)  jvms()->dump_spec(st);
   505 }
   506 #endif
   508 const Type *CallNode::bottom_type() const { return tf()->range(); }
   509 const Type *CallNode::Value(PhaseTransform *phase) const {
   510   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
   511   return tf()->range();
   512 }
   514 //------------------------------calling_convention-----------------------------
   515 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   516   // Use the standard compiler calling convention
   517   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
   518 }
   521 //------------------------------match------------------------------------------
   522 // Construct projections for control, I/O, memory-fields, ..., and
   523 // return result(s) along with their RegMask info
   524 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
   525   switch (proj->_con) {
   526   case TypeFunc::Control:
   527   case TypeFunc::I_O:
   528   case TypeFunc::Memory:
   529     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
   531   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
   532     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
   533     // 2nd half of doubles and longs
   534     return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
   536   case TypeFunc::Parms: {       // Normal returns
   537     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
   538     OptoRegPair regs = is_CallRuntime()
   539       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
   540       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
   541     RegMask rm = RegMask(regs.first());
   542     if( OptoReg::is_valid(regs.second()) )
   543       rm.Insert( regs.second() );
   544     return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
   545   }
   547   case TypeFunc::ReturnAdr:
   548   case TypeFunc::FramePtr:
   549   default:
   550     ShouldNotReachHere();
   551   }
   552   return NULL;
   553 }
   555 // Do we Match on this edge index or not?  Match no edges
   556 uint CallNode::match_edge(uint idx) const {
   557   return 0;
   558 }
   560 //=============================================================================
   561 uint CallJavaNode::size_of() const { return sizeof(*this); }
   562 uint CallJavaNode::cmp( const Node &n ) const {
   563   CallJavaNode &call = (CallJavaNode&)n;
   564   return CallNode::cmp(call) && _method == call._method;
   565 }
   566 #ifndef PRODUCT
   567 void CallJavaNode::dump_spec(outputStream *st) const {
   568   if( _method ) _method->print_short_name(st);
   569   CallNode::dump_spec(st);
   570 }
   571 #endif
   573 //=============================================================================
   574 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
   575 uint CallStaticJavaNode::cmp( const Node &n ) const {
   576   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
   577   return CallJavaNode::cmp(call);
   578 }
   580 //----------------------------uncommon_trap_request----------------------------
   581 // If this is an uncommon trap, return the request code, else zero.
   582 int CallStaticJavaNode::uncommon_trap_request() const {
   583   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
   584     return extract_uncommon_trap_request(this);
   585   }
   586   return 0;
   587 }
   588 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
   589 #ifndef PRODUCT
   590   if (!(call->req() > TypeFunc::Parms &&
   591         call->in(TypeFunc::Parms) != NULL &&
   592         call->in(TypeFunc::Parms)->is_Con())) {
   593     assert(_in_dump_cnt != 0, "OK if dumping");
   594     tty->print("[bad uncommon trap]");
   595     return 0;
   596   }
   597 #endif
   598   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
   599 }
   601 #ifndef PRODUCT
   602 void CallStaticJavaNode::dump_spec(outputStream *st) const {
   603   st->print("# Static ");
   604   if (_name != NULL) {
   605     st->print("%s", _name);
   606     int trap_req = uncommon_trap_request();
   607     if (trap_req != 0) {
   608       char buf[100];
   609       st->print("(%s)",
   610                  Deoptimization::format_trap_request(buf, sizeof(buf),
   611                                                      trap_req));
   612     }
   613     st->print(" ");
   614   }
   615   CallJavaNode::dump_spec(st);
   616 }
   617 #endif
   619 //=============================================================================
   620 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
   621 uint CallDynamicJavaNode::cmp( const Node &n ) const {
   622   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
   623   return CallJavaNode::cmp(call);
   624 }
   625 #ifndef PRODUCT
   626 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
   627   st->print("# Dynamic ");
   628   CallJavaNode::dump_spec(st);
   629 }
   630 #endif
   632 //=============================================================================
   633 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
   634 uint CallRuntimeNode::cmp( const Node &n ) const {
   635   CallRuntimeNode &call = (CallRuntimeNode&)n;
   636   return CallNode::cmp(call) && !strcmp(_name,call._name);
   637 }
   638 #ifndef PRODUCT
   639 void CallRuntimeNode::dump_spec(outputStream *st) const {
   640   st->print("# ");
   641   st->print(_name);
   642   CallNode::dump_spec(st);
   643 }
   644 #endif
   646 //------------------------------calling_convention-----------------------------
   647 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   648   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
   649 }
   651 //=============================================================================
   652 //------------------------------calling_convention-----------------------------
   655 //=============================================================================
   656 #ifndef PRODUCT
   657 void CallLeafNode::dump_spec(outputStream *st) const {
   658   st->print("# ");
   659   st->print(_name);
   660   CallNode::dump_spec(st);
   661 }
   662 #endif
   664 //=============================================================================
   666 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
   667   assert(verify_jvms(jvms), "jvms must match");
   668   int loc = jvms->locoff() + idx;
   669   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
   670     // If current local idx is top then local idx - 1 could
   671     // be a long/double that needs to be killed since top could
   672     // represent the 2nd half ofthe long/double.
   673     uint ideal = in(loc -1)->ideal_reg();
   674     if (ideal == Op_RegD || ideal == Op_RegL) {
   675       // set other (low index) half to top
   676       set_req(loc - 1, in(loc));
   677     }
   678   }
   679   set_req(loc, c);
   680 }
   682 uint SafePointNode::size_of() const { return sizeof(*this); }
   683 uint SafePointNode::cmp( const Node &n ) const {
   684   return (&n == this);          // Always fail except on self
   685 }
   687 //-------------------------set_next_exception----------------------------------
   688 void SafePointNode::set_next_exception(SafePointNode* n) {
   689   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
   690   if (len() == req()) {
   691     if (n != NULL)  add_prec(n);
   692   } else {
   693     set_prec(req(), n);
   694   }
   695 }
   698 //----------------------------next_exception-----------------------------------
   699 SafePointNode* SafePointNode::next_exception() const {
   700   if (len() == req()) {
   701     return NULL;
   702   } else {
   703     Node* n = in(req());
   704     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
   705     return (SafePointNode*) n;
   706   }
   707 }
   710 //------------------------------Ideal------------------------------------------
   711 // Skip over any collapsed Regions
   712 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   713   if (remove_dead_region(phase, can_reshape))  return this;
   715   return NULL;
   716 }
   718 //------------------------------Identity---------------------------------------
   719 // Remove obviously duplicate safepoints
   720 Node *SafePointNode::Identity( PhaseTransform *phase ) {
   722   // If you have back to back safepoints, remove one
   723   if( in(TypeFunc::Control)->is_SafePoint() )
   724     return in(TypeFunc::Control);
   726   if( in(0)->is_Proj() ) {
   727     Node *n0 = in(0)->in(0);
   728     // Check if he is a call projection (except Leaf Call)
   729     if( n0->is_Catch() ) {
   730       n0 = n0->in(0)->in(0);
   731       assert( n0->is_Call(), "expect a call here" );
   732     }
   733     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
   734       // Useless Safepoint, so remove it
   735       return in(TypeFunc::Control);
   736     }
   737   }
   739   return this;
   740 }
   742 //------------------------------Value------------------------------------------
   743 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
   744   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
   745   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
   746   return Type::CONTROL;
   747 }
   749 #ifndef PRODUCT
   750 void SafePointNode::dump_spec(outputStream *st) const {
   751   st->print(" SafePoint ");
   752 }
   753 #endif
   755 const RegMask &SafePointNode::in_RegMask(uint idx) const {
   756   if( idx < TypeFunc::Parms ) return RegMask::Empty;
   757   // Values outside the domain represent debug info
   758   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
   759 }
   760 const RegMask &SafePointNode::out_RegMask() const {
   761   return RegMask::Empty;
   762 }
   765 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
   766   assert((int)grow_by > 0, "sanity");
   767   int monoff = jvms->monoff();
   768   int endoff = jvms->endoff();
   769   assert(endoff == (int)req(), "no other states or debug info after me");
   770   Node* top = Compile::current()->top();
   771   for (uint i = 0; i < grow_by; i++) {
   772     ins_req(monoff, top);
   773   }
   774   jvms->set_monoff(monoff + grow_by);
   775   jvms->set_endoff(endoff + grow_by);
   776 }
   778 void SafePointNode::push_monitor(const FastLockNode *lock) {
   779   // Add a LockNode, which points to both the original BoxLockNode (the
   780   // stack space for the monitor) and the Object being locked.
   781   const int MonitorEdges = 2;
   782   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
   783   assert(req() == jvms()->endoff(), "correct sizing");
   784   if (GenerateSynchronizationCode) {
   785     add_req(lock->box_node());
   786     add_req(lock->obj_node());
   787   } else {
   788     add_req(NULL);
   789     add_req(NULL);
   790   }
   791   jvms()->set_endoff(req());
   792 }
   794 void SafePointNode::pop_monitor() {
   795   // Delete last monitor from debug info
   796   debug_only(int num_before_pop = jvms()->nof_monitors());
   797   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
   798   int endoff = jvms()->endoff();
   799   int new_endoff = endoff - MonitorEdges;
   800   jvms()->set_endoff(new_endoff);
   801   while (endoff > new_endoff)  del_req(--endoff);
   802   assert(jvms()->nof_monitors() == num_before_pop-1, "");
   803 }
   805 Node *SafePointNode::peek_monitor_box() const {
   806   int mon = jvms()->nof_monitors() - 1;
   807   assert(mon >= 0, "most have a monitor");
   808   return monitor_box(jvms(), mon);
   809 }
   811 Node *SafePointNode::peek_monitor_obj() const {
   812   int mon = jvms()->nof_monitors() - 1;
   813   assert(mon >= 0, "most have a monitor");
   814   return monitor_obj(jvms(), mon);
   815 }
   817 // Do we Match on this edge index or not?  Match no edges
   818 uint SafePointNode::match_edge(uint idx) const {
   819   if( !needs_polling_address_input() )
   820     return 0;
   822   return (TypeFunc::Parms == idx);
   823 }
   825 //=============================================================================
   826 uint AllocateNode::size_of() const { return sizeof(*this); }
   828 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
   829                            Node *ctrl, Node *mem, Node *abio,
   830                            Node *size, Node *klass_node, Node *initial_test)
   831   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
   832 {
   833   init_class_id(Class_Allocate);
   834   init_flags(Flag_is_macro);
   835   Node *topnode = C->top();
   837   init_req( TypeFunc::Control  , ctrl );
   838   init_req( TypeFunc::I_O      , abio );
   839   init_req( TypeFunc::Memory   , mem );
   840   init_req( TypeFunc::ReturnAdr, topnode );
   841   init_req( TypeFunc::FramePtr , topnode );
   842   init_req( AllocSize          , size);
   843   init_req( KlassNode          , klass_node);
   844   init_req( InitialTest        , initial_test);
   845   init_req( ALength            , topnode);
   846   C->add_macro_node(this);
   847 }
   849 //=============================================================================
   850 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
   852 //=============================================================================
   853 uint LockNode::size_of() const { return sizeof(*this); }
   855 // Redundant lock elimination
   856 //
   857 // There are various patterns of locking where we release and
   858 // immediately reacquire a lock in a piece of code where no operations
   859 // occur in between that would be observable.  In those cases we can
   860 // skip releasing and reacquiring the lock without violating any
   861 // fairness requirements.  Doing this around a loop could cause a lock
   862 // to be held for a very long time so we concentrate on non-looping
   863 // control flow.  We also require that the operations are fully
   864 // redundant meaning that we don't introduce new lock operations on
   865 // some paths so to be able to eliminate it on others ala PRE.  This
   866 // would probably require some more extensive graph manipulation to
   867 // guarantee that the memory edges were all handled correctly.
   868 //
   869 // Assuming p is a simple predicate which can't trap in any way and s
   870 // is a synchronized method consider this code:
   871 //
   872 //   s();
   873 //   if (p)
   874 //     s();
   875 //   else
   876 //     s();
   877 //   s();
   878 //
   879 // 1. The unlocks of the first call to s can be eliminated if the
   880 // locks inside the then and else branches are eliminated.
   881 //
   882 // 2. The unlocks of the then and else branches can be eliminated if
   883 // the lock of the final call to s is eliminated.
   884 //
   885 // Either of these cases subsumes the simple case of sequential control flow
   886 //
   887 // Addtionally we can eliminate versions without the else case:
   888 //
   889 //   s();
   890 //   if (p)
   891 //     s();
   892 //   s();
   893 //
   894 // 3. In this case we eliminate the unlock of the first s, the lock
   895 // and unlock in the then case and the lock in the final s.
   896 //
   897 // Note also that in all these cases the then/else pieces don't have
   898 // to be trivial as long as they begin and end with synchronization
   899 // operations.
   900 //
   901 //   s();
   902 //   if (p)
   903 //     s();
   904 //     f();
   905 //     s();
   906 //   s();
   907 //
   908 // The code will work properly for this case, leaving in the unlock
   909 // before the call to f and the relock after it.
   910 //
   911 // A potentially interesting case which isn't handled here is when the
   912 // locking is partially redundant.
   913 //
   914 //   s();
   915 //   if (p)
   916 //     s();
   917 //
   918 // This could be eliminated putting unlocking on the else case and
   919 // eliminating the first unlock and the lock in the then side.
   920 // Alternatively the unlock could be moved out of the then side so it
   921 // was after the merge and the first unlock and second lock
   922 // eliminated.  This might require less manipulation of the memory
   923 // state to get correct.
   924 //
   925 // Additionally we might allow work between a unlock and lock before
   926 // giving up eliminating the locks.  The current code disallows any
   927 // conditional control flow between these operations.  A formulation
   928 // similar to partial redundancy elimination computing the
   929 // availability of unlocking and the anticipatability of locking at a
   930 // program point would allow detection of fully redundant locking with
   931 // some amount of work in between.  I'm not sure how often I really
   932 // think that would occur though.  Most of the cases I've seen
   933 // indicate it's likely non-trivial work would occur in between.
   934 // There may be other more complicated constructs where we could
   935 // eliminate locking but I haven't seen any others appear as hot or
   936 // interesting.
   937 //
   938 // Locking and unlocking have a canonical form in ideal that looks
   939 // roughly like this:
   940 //
   941 //              <obj>
   942 //                | \\------+
   943 //                |  \       \
   944 //                | BoxLock   \
   945 //                |  |   |     \
   946 //                |  |    \     \
   947 //                |  |   FastLock
   948 //                |  |   /
   949 //                |  |  /
   950 //                |  |  |
   951 //
   952 //               Lock
   953 //                |
   954 //            Proj #0
   955 //                |
   956 //            MembarAcquire
   957 //                |
   958 //            Proj #0
   959 //
   960 //            MembarRelease
   961 //                |
   962 //            Proj #0
   963 //                |
   964 //              Unlock
   965 //                |
   966 //            Proj #0
   967 //
   968 //
   969 // This code proceeds by processing Lock nodes during PhaseIterGVN
   970 // and searching back through its control for the proper code
   971 // patterns.  Once it finds a set of lock and unlock operations to
   972 // eliminate they are marked as eliminatable which causes the
   973 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
   974 //
   975 //=============================================================================
   977 //
   978 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
   979 //   - copy regions.  (These may not have been optimized away yet.)
   980 //   - eliminated locking nodes
   981 //
   982 static Node *next_control(Node *ctrl) {
   983   if (ctrl == NULL)
   984     return NULL;
   985   while (1) {
   986     if (ctrl->is_Region()) {
   987       RegionNode *r = ctrl->as_Region();
   988       Node *n = r->is_copy();
   989       if (n == NULL)
   990         break;  // hit a region, return it
   991       else
   992         ctrl = n;
   993     } else if (ctrl->is_Proj()) {
   994       Node *in0 = ctrl->in(0);
   995       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
   996         ctrl = in0->in(0);
   997       } else {
   998         break;
   999       }
  1000     } else {
  1001       break; // found an interesting control
  1004   return ctrl;
  1006 //
  1007 // Given a control, see if it's the control projection of an Unlock which
  1008 // operating on the same object as lock.
  1009 //
  1010 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
  1011                                             GrowableArray<AbstractLockNode*> &lock_ops) {
  1012   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  1013   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
  1014     Node *n = ctrl_proj->in(0);
  1015     if (n != NULL && n->is_Unlock()) {
  1016       UnlockNode *unlock = n->as_Unlock();
  1017       if ((lock->obj_node() == unlock->obj_node()) &&
  1018           (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
  1019         lock_ops.append(unlock);
  1020         return true;
  1024   return false;
  1027 //
  1028 // Find the lock matching an unlock.  Returns null if a safepoint
  1029 // or complicated control is encountered first.
  1030 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  1031   LockNode *lock_result = NULL;
  1032   // find the matching lock, or an intervening safepoint
  1033   Node *ctrl = next_control(unlock->in(0));
  1034   while (1) {
  1035     assert(ctrl != NULL, "invalid control graph");
  1036     assert(!ctrl->is_Start(), "missing lock for unlock");
  1037     if (ctrl->is_top()) break;  // dead control path
  1038     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
  1039     if (ctrl->is_SafePoint()) {
  1040         break;  // found a safepoint (may be the lock we are searching for)
  1041     } else if (ctrl->is_Region()) {
  1042       // Check for a simple diamond pattern.  Punt on anything more complicated
  1043       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
  1044         Node *in1 = next_control(ctrl->in(1));
  1045         Node *in2 = next_control(ctrl->in(2));
  1046         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
  1047              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
  1048           ctrl = next_control(in1->in(0)->in(0));
  1049         } else {
  1050           break;
  1052       } else {
  1053         break;
  1055     } else {
  1056       ctrl = next_control(ctrl->in(0));  // keep searching
  1059   if (ctrl->is_Lock()) {
  1060     LockNode *lock = ctrl->as_Lock();
  1061     if ((lock->obj_node() == unlock->obj_node()) &&
  1062             (lock->box_node() == unlock->box_node())) {
  1063       lock_result = lock;
  1066   return lock_result;
  1069 // This code corresponds to case 3 above.
  1071 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
  1072                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
  1073   Node* if_node = node->in(0);
  1074   bool  if_true = node->is_IfTrue();
  1076   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
  1077     Node *lock_ctrl = next_control(if_node->in(0));
  1078     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
  1079       Node* lock1_node = NULL;
  1080       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
  1081       if (if_true) {
  1082         if (proj->is_IfFalse() && proj->outcnt() == 1) {
  1083           lock1_node = proj->unique_out();
  1085       } else {
  1086         if (proj->is_IfTrue() && proj->outcnt() == 1) {
  1087           lock1_node = proj->unique_out();
  1090       if (lock1_node != NULL && lock1_node->is_Lock()) {
  1091         LockNode *lock1 = lock1_node->as_Lock();
  1092         if ((lock->obj_node() == lock1->obj_node()) &&
  1093             (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
  1094           lock_ops.append(lock1);
  1095           return true;
  1101   lock_ops.trunc_to(0);
  1102   return false;
  1105 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
  1106                                GrowableArray<AbstractLockNode*> &lock_ops) {
  1107   // check each control merging at this point for a matching unlock.
  1108   // in(0) should be self edge so skip it.
  1109   for (int i = 1; i < (int)region->req(); i++) {
  1110     Node *in_node = next_control(region->in(i));
  1111     if (in_node != NULL) {
  1112       if (find_matching_unlock(in_node, lock, lock_ops)) {
  1113         // found a match so keep on checking.
  1114         continue;
  1115       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
  1116         continue;
  1119       // If we fall through to here then it was some kind of node we
  1120       // don't understand or there wasn't a matching unlock, so give
  1121       // up trying to merge locks.
  1122       lock_ops.trunc_to(0);
  1123       return false;
  1126   return true;
  1130 #ifndef PRODUCT
  1131 //
  1132 // Create a counter which counts the number of times this lock is acquired
  1133 //
  1134 void AbstractLockNode::create_lock_counter(JVMState* state) {
  1135   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
  1137 #endif
  1139 void AbstractLockNode::set_eliminated() {
  1140   _eliminate = true;
  1141 #ifndef PRODUCT
  1142   if (_counter) {
  1143     // Update the counter to indicate that this lock was eliminated.
  1144     // The counter update code will stay around even though the
  1145     // optimizer will eliminate the lock operation itself.
  1146     _counter->set_tag(NamedCounter::EliminatedLockCounter);
  1148 #endif
  1151 //=============================================================================
  1152 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1154   // perform any generic optimizations first
  1155   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1157   // Now see if we can optimize away this lock.  We don't actually
  1158   // remove the locking here, we simply set the _eliminate flag which
  1159   // prevents macro expansion from expanding the lock.  Since we don't
  1160   // modify the graph, the value returned from this function is the
  1161   // one computed above.
  1162   if (EliminateLocks && !is_eliminated()) {
  1163     //
  1164     // Try lock coarsening
  1165     //
  1166     PhaseIterGVN* iter = phase->is_IterGVN();
  1167     if (iter != NULL) {
  1169       GrowableArray<AbstractLockNode*>   lock_ops;
  1171       Node *ctrl = next_control(in(0));
  1173       // now search back for a matching Unlock
  1174       if (find_matching_unlock(ctrl, this, lock_ops)) {
  1175         // found an unlock directly preceding this lock.  This is the
  1176         // case of single unlock directly control dependent on a
  1177         // single lock which is the trivial version of case 1 or 2.
  1178       } else if (ctrl->is_Region() ) {
  1179         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
  1180         // found lock preceded by multiple unlocks along all paths
  1181         // joining at this point which is case 3 in description above.
  1183       } else {
  1184         // see if this lock comes from either half of an if and the
  1185         // predecessors merges unlocks and the other half of the if
  1186         // performs a lock.
  1187         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
  1188           // found unlock splitting to an if with locks on both branches.
  1192       if (lock_ops.length() > 0) {
  1193         // add ourselves to the list of locks to be eliminated.
  1194         lock_ops.append(this);
  1196   #ifndef PRODUCT
  1197         if (PrintEliminateLocks) {
  1198           int locks = 0;
  1199           int unlocks = 0;
  1200           for (int i = 0; i < lock_ops.length(); i++) {
  1201             AbstractLockNode* lock = lock_ops.at(i);
  1202             if (lock->Opcode() == Op_Lock) locks++;
  1203             else                               unlocks++;
  1204             if (Verbose) {
  1205               lock->dump(1);
  1208           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
  1210   #endif
  1212         // for each of the identified locks, mark them
  1213         // as eliminatable
  1214         for (int i = 0; i < lock_ops.length(); i++) {
  1215           AbstractLockNode* lock = lock_ops.at(i);
  1217           // Mark it eliminated to update any counters
  1218           lock->set_eliminated();
  1220       } else if (result != NULL && ctrl->is_Region() &&
  1221                  iter->_worklist.member(ctrl)) {
  1222         // We weren't able to find any opportunities but the region this
  1223         // lock is control dependent on hasn't been processed yet so put
  1224         // this lock back on the worklist so we can check again once any
  1225         // region simplification has occurred.
  1226         iter->_worklist.push(this);
  1231   return result;
  1234 //=============================================================================
  1235 uint UnlockNode::size_of() const { return sizeof(*this); }
  1237 //=============================================================================
  1238 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1240   // perform any generic optimizations first
  1241   Node * result = SafePointNode::Ideal(phase, can_reshape);
  1243   // Now see if we can optimize away this unlock.  We don't actually
  1244   // remove the unlocking here, we simply set the _eliminate flag which
  1245   // prevents macro expansion from expanding the unlock.  Since we don't
  1246   // modify the graph, the value returned from this function is the
  1247   // one computed above.
  1248   if (EliminateLocks && !is_eliminated()) {
  1249     //
  1250     // If we are unlocking an unescaped object, the lock/unlock is unnecessary
  1251     // We can eliminate them if there are no safepoints in the locked region.
  1252     //
  1253     ConnectionGraph *cgr = Compile::current()->congraph();
  1254     if (cgr != NULL && cgr->escape_state(obj_node(), phase) == PointsToNode::NoEscape) {
  1255       GrowableArray<AbstractLockNode*>   lock_ops;
  1256       LockNode *lock = find_matching_lock(this);
  1257       if (lock != NULL) {
  1258         lock_ops.append(this);
  1259         lock_ops.append(lock);
  1260         // find other unlocks which pair with the lock we found and add them
  1261         // to the list
  1262         Node * box = box_node();
  1264         for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
  1265           Node *use = box->fast_out(i);
  1266           if (use->is_Unlock() && use != this) {
  1267             UnlockNode *unlock1 = use->as_Unlock();
  1268             if (!unlock1->is_eliminated()) {
  1269               LockNode *lock1 = find_matching_lock(unlock1);
  1270               if (lock == lock1)
  1271                 lock_ops.append(unlock1);
  1272               else if (lock1 == NULL) {
  1273                // we can't find a matching lock, we must assume the worst
  1274                 lock_ops.trunc_to(0);
  1275                 break;
  1280         if (lock_ops.length() > 0) {
  1282   #ifndef PRODUCT
  1283           if (PrintEliminateLocks) {
  1284             int locks = 0;
  1285             int unlocks = 0;
  1286             for (int i = 0; i < lock_ops.length(); i++) {
  1287               AbstractLockNode* lock = lock_ops.at(i);
  1288               if (lock->Opcode() == Op_Lock) locks++;
  1289               else                               unlocks++;
  1290               if (Verbose) {
  1291                 lock->dump(1);
  1294             tty->print_cr("***Eliminated %d unescaped unlocks and %d unescaped locks", unlocks, locks);
  1296   #endif
  1298           // for each of the identified locks, mark them
  1299           // as eliminatable
  1300           for (int i = 0; i < lock_ops.length(); i++) {
  1301             AbstractLockNode* lock = lock_ops.at(i);
  1303             // Mark it eliminated to update any counters
  1304             lock->set_eliminated();
  1310   return result;

mercurial