src/cpu/x86/vm/vm_version_x86.hpp

Thu, 07 Oct 2010 08:06:06 -0700

author
coleenp
date
Thu, 07 Oct 2010 08:06:06 -0700
changeset 2222
b6aedd1acdc0
parent 2144
a83b0246bb77
child 2269
ae065c367d93
permissions
-rw-r--r--

6983240: guarantee((Solaris::min_stack_allowed >= (StackYellowPages+StackRedPages...) wrong
Summary: min_stack_allowed is a compile time constant and Stack*Pages are settable
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class VM_Version : public Abstract_VM_Version {
    26 public:
    27   // cpuid result register layouts.  These are all unions of a uint32_t
    28   // (in case anyone wants access to the register as a whole) and a bitfield.
    30   union StdCpuid1Eax {
    31     uint32_t value;
    32     struct {
    33       uint32_t stepping   : 4,
    34                model      : 4,
    35                family     : 4,
    36                proc_type  : 2,
    37                           : 2,
    38                ext_model  : 4,
    39                ext_family : 8,
    40                           : 4;
    41     } bits;
    42   };
    44   union StdCpuid1Ebx { // example, unused
    45     uint32_t value;
    46     struct {
    47       uint32_t brand_id         : 8,
    48                clflush_size     : 8,
    49                threads_per_cpu  : 8,
    50                apic_id          : 8;
    51     } bits;
    52   };
    54   union StdCpuid1Ecx {
    55     uint32_t value;
    56     struct {
    57       uint32_t sse3     : 1,
    58                         : 2,
    59                monitor  : 1,
    60                         : 1,
    61                vmx      : 1,
    62                         : 1,
    63                est      : 1,
    64                         : 1,
    65                ssse3    : 1,
    66                cid      : 1,
    67                         : 2,
    68                cmpxchg16: 1,
    69                         : 4,
    70                dca      : 1,
    71                sse4_1   : 1,
    72                sse4_2   : 1,
    73                         : 2,
    74                popcnt   : 1,
    75                         : 8;
    76     } bits;
    77   };
    79   union StdCpuid1Edx {
    80     uint32_t value;
    81     struct {
    82       uint32_t          : 4,
    83                tsc      : 1,
    84                         : 3,
    85                cmpxchg8 : 1,
    86                         : 6,
    87                cmov     : 1,
    88                         : 7,
    89                mmx      : 1,
    90                fxsr     : 1,
    91                sse      : 1,
    92                sse2     : 1,
    93                         : 1,
    94                ht       : 1,
    95                         : 3;
    96     } bits;
    97   };
    99   union DcpCpuid4Eax {
   100     uint32_t value;
   101     struct {
   102       uint32_t cache_type    : 5,
   103                              : 21,
   104                cores_per_cpu : 6;
   105     } bits;
   106   };
   108   union DcpCpuid4Ebx {
   109     uint32_t value;
   110     struct {
   111       uint32_t L1_line_size  : 12,
   112                partitions    : 10,
   113                associativity : 10;
   114     } bits;
   115   };
   117   union TplCpuidBEbx {
   118     uint32_t value;
   119     struct {
   120       uint32_t logical_cpus : 16,
   121                             : 16;
   122     } bits;
   123   };
   125   union ExtCpuid1Ecx {
   126     uint32_t value;
   127     struct {
   128       uint32_t LahfSahf     : 1,
   129                CmpLegacy    : 1,
   130                             : 4,
   131                lzcnt        : 1,
   132                sse4a        : 1,
   133                misalignsse  : 1,
   134                prefetchw    : 1,
   135                             : 22;
   136     } bits;
   137   };
   139   union ExtCpuid1Edx {
   140     uint32_t value;
   141     struct {
   142       uint32_t           : 22,
   143                mmx_amd   : 1,
   144                mmx       : 1,
   145                fxsr      : 1,
   146                          : 4,
   147                long_mode : 1,
   148                tdnow2    : 1,
   149                tdnow     : 1;
   150     } bits;
   151   };
   153   union ExtCpuid5Ex {
   154     uint32_t value;
   155     struct {
   156       uint32_t L1_line_size : 8,
   157                L1_tag_lines : 8,
   158                L1_assoc     : 8,
   159                L1_size      : 8;
   160     } bits;
   161   };
   163   union ExtCpuid8Ecx {
   164     uint32_t value;
   165     struct {
   166       uint32_t cores_per_cpu : 8,
   167                              : 24;
   168     } bits;
   169   };
   171 protected:
   172    static int _cpu;
   173    static int _model;
   174    static int _stepping;
   175    static int _cpuFeatures;     // features returned by the "cpuid" instruction
   176                                 // 0 if this instruction is not available
   177    static const char* _features_str;
   179    enum {
   180      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   181      CPU_CMOV   = (1 << 1),
   182      CPU_FXSR   = (1 << 2),
   183      CPU_HT     = (1 << 3),
   184      CPU_MMX    = (1 << 4),
   185      CPU_3DNOW  = (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
   186      CPU_SSE    = (1 << 6),
   187      CPU_SSE2   = (1 << 7),
   188      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   189      CPU_SSSE3  = (1 << 9),
   190      CPU_SSE4A  = (1 << 10),
   191      CPU_SSE4_1 = (1 << 11),
   192      CPU_SSE4_2 = (1 << 12),
   193      CPU_POPCNT = (1 << 13),
   194      CPU_LZCNT  = (1 << 14)
   195    } cpuFeatureFlags;
   197   // cpuid information block.  All info derived from executing cpuid with
   198   // various function numbers is stored here.  Intel and AMD info is
   199   // merged in this block: accessor methods disentangle it.
   200   //
   201   // The info block is laid out in subblocks of 4 dwords corresponding to
   202   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   203   struct CpuidInfo {
   204     // cpuid function 0
   205     uint32_t std_max_function;
   206     uint32_t std_vendor_name_0;
   207     uint32_t std_vendor_name_1;
   208     uint32_t std_vendor_name_2;
   210     // cpuid function 1
   211     StdCpuid1Eax std_cpuid1_eax;
   212     StdCpuid1Ebx std_cpuid1_ebx;
   213     StdCpuid1Ecx std_cpuid1_ecx;
   214     StdCpuid1Edx std_cpuid1_edx;
   216     // cpuid function 4 (deterministic cache parameters)
   217     DcpCpuid4Eax dcp_cpuid4_eax;
   218     DcpCpuid4Ebx dcp_cpuid4_ebx;
   219     uint32_t     dcp_cpuid4_ecx; // unused currently
   220     uint32_t     dcp_cpuid4_edx; // unused currently
   222     // cpuid function 0xB (processor topology)
   223     // ecx = 0
   224     uint32_t     tpl_cpuidB0_eax;
   225     TplCpuidBEbx tpl_cpuidB0_ebx;
   226     uint32_t     tpl_cpuidB0_ecx; // unused currently
   227     uint32_t     tpl_cpuidB0_edx; // unused currently
   229     // ecx = 1
   230     uint32_t     tpl_cpuidB1_eax;
   231     TplCpuidBEbx tpl_cpuidB1_ebx;
   232     uint32_t     tpl_cpuidB1_ecx; // unused currently
   233     uint32_t     tpl_cpuidB1_edx; // unused currently
   235     // ecx = 2
   236     uint32_t     tpl_cpuidB2_eax;
   237     TplCpuidBEbx tpl_cpuidB2_ebx;
   238     uint32_t     tpl_cpuidB2_ecx; // unused currently
   239     uint32_t     tpl_cpuidB2_edx; // unused currently
   241     // cpuid function 0x80000000 // example, unused
   242     uint32_t ext_max_function;
   243     uint32_t ext_vendor_name_0;
   244     uint32_t ext_vendor_name_1;
   245     uint32_t ext_vendor_name_2;
   247     // cpuid function 0x80000001
   248     uint32_t     ext_cpuid1_eax; // reserved
   249     uint32_t     ext_cpuid1_ebx; // reserved
   250     ExtCpuid1Ecx ext_cpuid1_ecx;
   251     ExtCpuid1Edx ext_cpuid1_edx;
   253     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   254     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   255     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   256     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   258     // cpuid function 0x80000005 //AMD L1, Intel reserved
   259     uint32_t     ext_cpuid5_eax; // unused currently
   260     uint32_t     ext_cpuid5_ebx; // reserved
   261     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   262     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   264     // cpuid function 0x80000008
   265     uint32_t     ext_cpuid8_eax; // unused currently
   266     uint32_t     ext_cpuid8_ebx; // reserved
   267     ExtCpuid8Ecx ext_cpuid8_ecx;
   268     uint32_t     ext_cpuid8_edx; // reserved
   269   };
   271   // The actual cpuid info block
   272   static CpuidInfo _cpuid_info;
   274   // Extractors and predicates
   275   static uint32_t extended_cpu_family() {
   276     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   277     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   278     return result;
   279   }
   280   static uint32_t extended_cpu_model() {
   281     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   282     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   283     return result;
   284   }
   285   static uint32_t cpu_stepping() {
   286     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   287     return result;
   288   }
   289   static uint logical_processor_count() {
   290     uint result = threads_per_core();
   291     return result;
   292   }
   293   static uint32_t feature_flags() {
   294     uint32_t result = 0;
   295     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   296       result |= CPU_CX8;
   297     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   298       result |= CPU_CMOV;
   299     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   300         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   301       result |= CPU_FXSR;
   302     // HT flag is set for multi-core processors also.
   303     if (threads_per_core() > 1)
   304       result |= CPU_HT;
   305     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   306         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   307       result |= CPU_MMX;
   308     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   309       result |= CPU_SSE;
   310     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   311       result |= CPU_SSE2;
   312     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   313       result |= CPU_SSE3;
   314     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   315       result |= CPU_SSSE3;
   316     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   317       result |= CPU_SSE4_1;
   318     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   319       result |= CPU_SSE4_2;
   320     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   321       result |= CPU_POPCNT;
   323     // AMD features.
   324     if (is_amd()) {
   325       if (_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0)
   326         result |= CPU_3DNOW;
   327       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   328         result |= CPU_LZCNT;
   329       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   330         result |= CPU_SSE4A;
   331     }
   333     return result;
   334   }
   336   static void get_processor_features();
   338 public:
   339   // Offsets for cpuid asm stub
   340   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   341   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   342   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   343   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   344   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   345   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   346   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   347   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   348   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   350   // Initialization
   351   static void initialize();
   353   // Asserts
   354   static void assert_is_initialized() {
   355     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   356   }
   358   //
   359   // Processor family:
   360   //       3   -  386
   361   //       4   -  486
   362   //       5   -  Pentium
   363   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   364   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   365   //    family 6 model:   9,        13,       14,        15
   366   //    0x0f   -  Pentium 4, Opteron
   367   //
   368   // Note: The cpu family should be used to select between
   369   //       instruction sequences which are valid on all Intel
   370   //       processors.  Use the feature test functions below to
   371   //       determine whether a particular instruction is supported.
   372   //
   373   static int  cpu_family()        { return _cpu;}
   374   static bool is_P6()             { return cpu_family() >= 6; }
   376   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   377   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   379   static bool supports_processor_topology() {
   380     return (_cpuid_info.std_max_function >= 0xB) &&
   381            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   382            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   383            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   384   }
   386   static uint cores_per_cpu()  {
   387     uint result = 1;
   388     if (is_intel()) {
   389       if (supports_processor_topology()) {
   390         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   391                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   392       } else {
   393         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   394       }
   395     } else if (is_amd()) {
   396       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   397     }
   398     return result;
   399   }
   401   static uint threads_per_core()  {
   402     uint result = 1;
   403     if (is_intel() && supports_processor_topology()) {
   404       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   405     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   406       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   407                cores_per_cpu();
   408     }
   409     return result;
   410   }
   412   static intx L1_data_cache_line_size()  {
   413     intx result = 0;
   414     if (is_intel()) {
   415       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   416     } else if (is_amd()) {
   417       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   418     }
   419     if (result < 32) // not defined ?
   420       result = 32;   // 32 bytes by default on x86 and other x64
   421     return result;
   422   }
   424   //
   425   // Feature identification
   426   //
   427   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   428   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   429   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   430   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   431   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   432   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   433   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   434   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   435   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   436   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   437   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   438   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   439   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   440   //
   441   // AMD features
   442   //
   443   static bool supports_3dnow()    { return (_cpuFeatures & CPU_3DNOW) != 0; }
   444   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   445   static bool supports_3dnow2()   { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow2 != 0; }
   446   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   447   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   449   static bool supports_compare_and_exchange() { return true; }
   451   static const char* cpu_features()           { return _features_str; }
   453   static intx allocate_prefetch_distance() {
   454     // This method should be called before allocate_prefetch_style().
   455     //
   456     // Hardware prefetching (distance/size in bytes):
   457     // Pentium 3 -  64 /  32
   458     // Pentium 4 - 256 / 128
   459     // Athlon    -  64 /  32 ????
   460     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   461     // Core      - 128 /  64
   462     //
   463     // Software prefetching (distance in bytes / instruction with best score):
   464     // Pentium 3 - 128 / prefetchnta
   465     // Pentium 4 - 512 / prefetchnta
   466     // Athlon    - 128 / prefetchnta
   467     // Opteron   - 256 / prefetchnta
   468     // Core      - 256 / prefetchnta
   469     // It will be used only when AllocatePrefetchStyle > 0
   471     intx count = AllocatePrefetchDistance;
   472     if (count < 0) {   // default ?
   473       if (is_amd()) {  // AMD
   474         if (supports_sse2())
   475           count = 256; // Opteron
   476         else
   477           count = 128; // Athlon
   478       } else {         // Intel
   479         if (supports_sse2())
   480           if (cpu_family() == 6) {
   481             count = 256; // Pentium M, Core, Core2
   482           } else {
   483             count = 512; // Pentium 4
   484           }
   485         else
   486           count = 128; // Pentium 3 (and all other old CPUs)
   487       }
   488     }
   489     return count;
   490   }
   491   static intx allocate_prefetch_style() {
   492     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   493     // Return 0 if AllocatePrefetchDistance was not defined.
   494     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   495   }
   497   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   498   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   499   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   500   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   502   // gc copy/scan is disabled if prefetchw isn't supported, because
   503   // Prefetch::write emits an inlined prefetchw on Linux.
   504   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   505   // The used prefetcht0 instruction works for both amd64 and em64t.
   506   static intx prefetch_copy_interval_in_bytes() {
   507     intx interval = PrefetchCopyIntervalInBytes;
   508     return interval >= 0 ? interval : 576;
   509   }
   510   static intx prefetch_scan_interval_in_bytes() {
   511     intx interval = PrefetchScanIntervalInBytes;
   512     return interval >= 0 ? interval : 576;
   513   }
   514   static intx prefetch_fields_ahead() {
   515     intx count = PrefetchFieldsAhead;
   516     return count >= 0 ? count : 1;
   517   }
   518 };

mercurial