src/cpu/x86/vm/vm_version_x86.cpp

Thu, 07 Oct 2010 08:06:06 -0700

author
coleenp
date
Thu, 07 Oct 2010 08:06:06 -0700
changeset 2222
b6aedd1acdc0
parent 2103
3e8fbc61cee8
child 2314
f95d63e2154a
permissions
-rw-r--r--

6983240: guarantee((Solaris::min_stack_allowed >= (StackYellowPages+StackRedPages...) wrong
Summary: min_stack_allowed is a compile time constant and Stack*Pages are settable
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_vm_version_x86.cpp.incl"
    29 int VM_Version::_cpu;
    30 int VM_Version::_model;
    31 int VM_Version::_stepping;
    32 int VM_Version::_cpuFeatures;
    33 const char*           VM_Version::_features_str = "";
    34 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    36 static BufferBlob* stub_blob;
    37 static const int stub_size = 400;
    39 extern "C" {
    40   typedef void (*getPsrInfo_stub_t)(void*);
    41 }
    42 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    45 class VM_Version_StubGenerator: public StubCodeGenerator {
    46  public:
    48   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    50   address generate_getPsrInfo() {
    51     // Flags to test CPU type.
    52     const uint32_t EFL_AC           = 0x40000;
    53     const uint32_t EFL_ID           = 0x200000;
    54     // Values for when we don't have a CPUID instruction.
    55     const int      CPU_FAMILY_SHIFT = 8;
    56     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    57     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    59     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    60     Label ext_cpuid1, ext_cpuid5, done;
    62     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    63 #   define __ _masm->
    65     address start = __ pc();
    67     //
    68     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    69     //
    70     // LP64: rcx and rdx are first and second argument registers on windows
    72     __ push(rbp);
    73 #ifdef _LP64
    74     __ mov(rbp, c_rarg0); // cpuid_info address
    75 #else
    76     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    77 #endif
    78     __ push(rbx);
    79     __ push(rsi);
    80     __ pushf();          // preserve rbx, and flags
    81     __ pop(rax);
    82     __ push(rax);
    83     __ mov(rcx, rax);
    84     //
    85     // if we are unable to change the AC flag, we have a 386
    86     //
    87     __ xorl(rax, EFL_AC);
    88     __ push(rax);
    89     __ popf();
    90     __ pushf();
    91     __ pop(rax);
    92     __ cmpptr(rax, rcx);
    93     __ jccb(Assembler::notEqual, detect_486);
    95     __ movl(rax, CPU_FAMILY_386);
    96     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    97     __ jmp(done);
    99     //
   100     // If we are unable to change the ID flag, we have a 486 which does
   101     // not support the "cpuid" instruction.
   102     //
   103     __ bind(detect_486);
   104     __ mov(rax, rcx);
   105     __ xorl(rax, EFL_ID);
   106     __ push(rax);
   107     __ popf();
   108     __ pushf();
   109     __ pop(rax);
   110     __ cmpptr(rcx, rax);
   111     __ jccb(Assembler::notEqual, detect_586);
   113     __ bind(cpu486);
   114     __ movl(rax, CPU_FAMILY_486);
   115     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   116     __ jmp(done);
   118     //
   119     // At this point, we have a chip which supports the "cpuid" instruction
   120     //
   121     __ bind(detect_586);
   122     __ xorl(rax, rax);
   123     __ cpuid();
   124     __ orl(rax, rax);
   125     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   126                                         // value of at least 1, we give up and
   127                                         // assume a 486
   128     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   129     __ movl(Address(rsi, 0), rax);
   130     __ movl(Address(rsi, 4), rbx);
   131     __ movl(Address(rsi, 8), rcx);
   132     __ movl(Address(rsi,12), rdx);
   134     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   135     __ jccb(Assembler::belowEqual, std_cpuid4);
   137     //
   138     // cpuid(0xB) Processor Topology
   139     //
   140     __ movl(rax, 0xb);
   141     __ xorl(rcx, rcx);   // Threads level
   142     __ cpuid();
   144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   145     __ movl(Address(rsi, 0), rax);
   146     __ movl(Address(rsi, 4), rbx);
   147     __ movl(Address(rsi, 8), rcx);
   148     __ movl(Address(rsi,12), rdx);
   150     __ movl(rax, 0xb);
   151     __ movl(rcx, 1);     // Cores level
   152     __ cpuid();
   153     __ push(rax);
   154     __ andl(rax, 0x1f);  // Determine if valid topology level
   155     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   156     __ andl(rax, 0xffff);
   157     __ pop(rax);
   158     __ jccb(Assembler::equal, std_cpuid4);
   160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   161     __ movl(Address(rsi, 0), rax);
   162     __ movl(Address(rsi, 4), rbx);
   163     __ movl(Address(rsi, 8), rcx);
   164     __ movl(Address(rsi,12), rdx);
   166     __ movl(rax, 0xb);
   167     __ movl(rcx, 2);     // Packages level
   168     __ cpuid();
   169     __ push(rax);
   170     __ andl(rax, 0x1f);  // Determine if valid topology level
   171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   172     __ andl(rax, 0xffff);
   173     __ pop(rax);
   174     __ jccb(Assembler::equal, std_cpuid4);
   176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   177     __ movl(Address(rsi, 0), rax);
   178     __ movl(Address(rsi, 4), rbx);
   179     __ movl(Address(rsi, 8), rcx);
   180     __ movl(Address(rsi,12), rdx);
   182     //
   183     // cpuid(0x4) Deterministic cache params
   184     //
   185     __ bind(std_cpuid4);
   186     __ movl(rax, 4);
   187     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   188     __ jccb(Assembler::greater, std_cpuid1);
   190     __ xorl(rcx, rcx);   // L1 cache
   191     __ cpuid();
   192     __ push(rax);
   193     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   194     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   195     __ pop(rax);
   196     __ jccb(Assembler::equal, std_cpuid1);
   198     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   199     __ movl(Address(rsi, 0), rax);
   200     __ movl(Address(rsi, 4), rbx);
   201     __ movl(Address(rsi, 8), rcx);
   202     __ movl(Address(rsi,12), rdx);
   204     //
   205     // Standard cpuid(0x1)
   206     //
   207     __ bind(std_cpuid1);
   208     __ movl(rax, 1);
   209     __ cpuid();
   210     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   211     __ movl(Address(rsi, 0), rax);
   212     __ movl(Address(rsi, 4), rbx);
   213     __ movl(Address(rsi, 8), rcx);
   214     __ movl(Address(rsi,12), rdx);
   216     __ movl(rax, 0x80000000);
   217     __ cpuid();
   218     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   219     __ jcc(Assembler::belowEqual, done);
   220     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   221     __ jccb(Assembler::belowEqual, ext_cpuid1);
   222     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   223     __ jccb(Assembler::belowEqual, ext_cpuid5);
   224     //
   225     // Extended cpuid(0x80000008)
   226     //
   227     __ movl(rax, 0x80000008);
   228     __ cpuid();
   229     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   230     __ movl(Address(rsi, 0), rax);
   231     __ movl(Address(rsi, 4), rbx);
   232     __ movl(Address(rsi, 8), rcx);
   233     __ movl(Address(rsi,12), rdx);
   235     //
   236     // Extended cpuid(0x80000005)
   237     //
   238     __ bind(ext_cpuid5);
   239     __ movl(rax, 0x80000005);
   240     __ cpuid();
   241     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   242     __ movl(Address(rsi, 0), rax);
   243     __ movl(Address(rsi, 4), rbx);
   244     __ movl(Address(rsi, 8), rcx);
   245     __ movl(Address(rsi,12), rdx);
   247     //
   248     // Extended cpuid(0x80000001)
   249     //
   250     __ bind(ext_cpuid1);
   251     __ movl(rax, 0x80000001);
   252     __ cpuid();
   253     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   254     __ movl(Address(rsi, 0), rax);
   255     __ movl(Address(rsi, 4), rbx);
   256     __ movl(Address(rsi, 8), rcx);
   257     __ movl(Address(rsi,12), rdx);
   259     //
   260     // return
   261     //
   262     __ bind(done);
   263     __ popf();
   264     __ pop(rsi);
   265     __ pop(rbx);
   266     __ pop(rbp);
   267     __ ret(0);
   269 #   undef __
   271     return start;
   272   };
   273 };
   276 void VM_Version::get_processor_features() {
   278   _cpu = 4; // 486 by default
   279   _model = 0;
   280   _stepping = 0;
   281   _cpuFeatures = 0;
   282   _logical_processors_per_package = 1;
   284   if (!Use486InstrsOnly) {
   285     // Get raw processor info
   286     getPsrInfo_stub(&_cpuid_info);
   287     assert_is_initialized();
   288     _cpu = extended_cpu_family();
   289     _model = extended_cpu_model();
   290     _stepping = cpu_stepping();
   292     if (cpu_family() > 4) { // it supports CPUID
   293       _cpuFeatures = feature_flags();
   294       // Logical processors are only available on P4s and above,
   295       // and only if hyperthreading is available.
   296       _logical_processors_per_package = logical_processor_count();
   297     }
   298   }
   300   _supports_cx8 = supports_cmpxchg8();
   302 #ifdef _LP64
   303   // OS should support SSE for x64 and hardware should support at least SSE2.
   304   if (!VM_Version::supports_sse2()) {
   305     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   306   }
   307   // in 64 bit the use of SSE2 is the minimum
   308   if (UseSSE < 2) UseSSE = 2;
   309 #endif
   311   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   312   if (!os::supports_sse())
   313     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   315   if (UseSSE < 4) {
   316     _cpuFeatures &= ~CPU_SSE4_1;
   317     _cpuFeatures &= ~CPU_SSE4_2;
   318   }
   320   if (UseSSE < 3) {
   321     _cpuFeatures &= ~CPU_SSE3;
   322     _cpuFeatures &= ~CPU_SSSE3;
   323     _cpuFeatures &= ~CPU_SSE4A;
   324   }
   326   if (UseSSE < 2)
   327     _cpuFeatures &= ~CPU_SSE2;
   329   if (UseSSE < 1)
   330     _cpuFeatures &= ~CPU_SSE;
   332   if (logical_processors_per_package() == 1) {
   333     // HT processor could be installed on a system which doesn't support HT.
   334     _cpuFeatures &= ~CPU_HT;
   335   }
   337   char buf[256];
   338   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   339                cores_per_cpu(), threads_per_core(),
   340                cpu_family(), _model, _stepping,
   341                (supports_cmov() ? ", cmov" : ""),
   342                (supports_cmpxchg8() ? ", cx8" : ""),
   343                (supports_fxsr() ? ", fxsr" : ""),
   344                (supports_mmx()  ? ", mmx"  : ""),
   345                (supports_sse()  ? ", sse"  : ""),
   346                (supports_sse2() ? ", sse2" : ""),
   347                (supports_sse3() ? ", sse3" : ""),
   348                (supports_ssse3()? ", ssse3": ""),
   349                (supports_sse4_1() ? ", sse4.1" : ""),
   350                (supports_sse4_2() ? ", sse4.2" : ""),
   351                (supports_popcnt() ? ", popcnt" : ""),
   352                (supports_mmx_ext() ? ", mmxext" : ""),
   353                (supports_3dnow()   ? ", 3dnow"  : ""),
   354                (supports_3dnow2()  ? ", 3dnowext" : ""),
   355                (supports_lzcnt()   ? ", lzcnt": ""),
   356                (supports_sse4a()   ? ", sse4a": ""),
   357                (supports_ht() ? ", ht": ""));
   358   _features_str = strdup(buf);
   360   // UseSSE is set to the smaller of what hardware supports and what
   361   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   362   // older Pentiums which do not support it.
   363   if( UseSSE > 4 ) UseSSE=4;
   364   if( UseSSE < 0 ) UseSSE=0;
   365   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
   366     UseSSE = MIN2((intx)3,UseSSE);
   367   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
   368     UseSSE = MIN2((intx)2,UseSSE);
   369   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
   370     UseSSE = MIN2((intx)1,UseSSE);
   371   if( !supports_sse () ) // Drop to 0 if no SSE  support
   372     UseSSE = 0;
   374   // On new cpus instructions which update whole XMM register should be used
   375   // to prevent partial register stall due to dependencies on high half.
   376   //
   377   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   378   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   379   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   380   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   382   if( is_amd() ) { // AMD cpus specific settings
   383     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   384       // Use it on new AMD cpus starting from Opteron.
   385       UseAddressNop = true;
   386     }
   387     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   388       // Use it on new AMD cpus starting from Opteron.
   389       UseNewLongLShift = true;
   390     }
   391     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   392       if( supports_sse4a() ) {
   393         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   394       } else {
   395         UseXmmLoadAndClearUpper = false;
   396       }
   397     }
   398     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   399       if( supports_sse4a() ) {
   400         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   401       } else {
   402         UseXmmRegToRegMoveAll = false;
   403       }
   404     }
   405     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   406       if( supports_sse4a() ) {
   407         UseXmmI2F = true;
   408       } else {
   409         UseXmmI2F = false;
   410       }
   411     }
   412     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   413       if( supports_sse4a() ) {
   414         UseXmmI2D = true;
   415       } else {
   416         UseXmmI2D = false;
   417       }
   418     }
   420     // Use count leading zeros count instruction if available.
   421     if (supports_lzcnt()) {
   422       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   423         UseCountLeadingZerosInstruction = true;
   424       }
   425     }
   426   }
   428   if( is_intel() ) { // Intel cpus specific settings
   429     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   430       UseStoreImmI16 = false; // don't use it on Intel cpus
   431     }
   432     if( cpu_family() == 6 || cpu_family() == 15 ) {
   433       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   434         // Use it on all Intel cpus starting from PentiumPro
   435         UseAddressNop = true;
   436       }
   437     }
   438     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   439       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   440     }
   441     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   442       if( supports_sse3() ) {
   443         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   444       } else {
   445         UseXmmRegToRegMoveAll = false;
   446       }
   447     }
   448     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   449 #ifdef COMPILER2
   450       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   451         // For new Intel cpus do the next optimization:
   452         // don't align the beginning of a loop if there are enough instructions
   453         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   454         // in current fetch line (OptoLoopAlignment) or the padding
   455         // is big (> MaxLoopPad).
   456         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   457         // generated NOP instructions. 11 is the largest size of one
   458         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   459         MaxLoopPad = 11;
   460       }
   461 #endif // COMPILER2
   462       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   463         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   464       }
   465       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   466         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   467           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   468         }
   469       }
   470       if( supports_sse4_2() && UseSSE >= 4 ) {
   471         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   472           UseSSE42Intrinsics = true;
   473         }
   474       }
   475     }
   476   }
   478   // Use population count instruction if available.
   479   if (supports_popcnt()) {
   480     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   481       UsePopCountInstruction = true;
   482     }
   483   }
   485 #ifdef COMPILER2
   486   if (UseFPUForSpilling) {
   487     if (UseSSE < 2) {
   488       // Only supported with SSE2+
   489       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   490     }
   491   }
   492 #endif
   494   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   495   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   497   // set valid Prefetch instruction
   498   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   499   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   500   if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
   501   if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3;
   503   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   504   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   505   if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
   506   if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3;
   508   // Allocation prefetch settings
   509   intx cache_line_size = L1_data_cache_line_size();
   510   if( cache_line_size > AllocatePrefetchStepSize )
   511     AllocatePrefetchStepSize = cache_line_size;
   512   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
   513     AllocatePrefetchLines = 3; // Optimistic value
   514   assert(AllocatePrefetchLines > 0, "invalid value");
   515   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
   516     AllocatePrefetchLines = 1; // Conservative value
   518   AllocatePrefetchDistance = allocate_prefetch_distance();
   519   AllocatePrefetchStyle    = allocate_prefetch_style();
   521   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   522     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   523 #ifdef _LP64
   524       AllocatePrefetchDistance = 384;
   525 #else
   526       AllocatePrefetchDistance = 320;
   527 #endif
   528     }
   529     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   530       AllocatePrefetchDistance = 192;
   531       AllocatePrefetchLines = 4;
   532 #ifdef COMPILER2
   533       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   534         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   535       }
   536 #endif
   537     }
   538   }
   539   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   541 #ifdef _LP64
   542   // Prefetch settings
   543   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   544   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   545   PrefetchFieldsAhead         = prefetch_fields_ahead();
   546 #endif
   548 #ifndef PRODUCT
   549   if (PrintMiscellaneous && Verbose) {
   550     tty->print_cr("Logical CPUs per core: %u",
   551                   logical_processors_per_package());
   552     tty->print_cr("UseSSE=%d",UseSSE);
   553     tty->print("Allocation: ");
   554     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) {
   555       tty->print_cr("no prefetching");
   556     } else {
   557       if (UseSSE == 0 && supports_3dnow()) {
   558         tty->print("PREFETCHW");
   559       } else if (UseSSE >= 1) {
   560         if (AllocatePrefetchInstr == 0) {
   561           tty->print("PREFETCHNTA");
   562         } else if (AllocatePrefetchInstr == 1) {
   563           tty->print("PREFETCHT0");
   564         } else if (AllocatePrefetchInstr == 2) {
   565           tty->print("PREFETCHT2");
   566         } else if (AllocatePrefetchInstr == 3) {
   567           tty->print("PREFETCHW");
   568         }
   569       }
   570       if (AllocatePrefetchLines > 1) {
   571         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   572       } else {
   573         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
   574       }
   575     }
   577     if (PrefetchCopyIntervalInBytes > 0) {
   578       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   579     }
   580     if (PrefetchScanIntervalInBytes > 0) {
   581       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   582     }
   583     if (PrefetchFieldsAhead > 0) {
   584       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   585     }
   586   }
   587 #endif // !PRODUCT
   588 }
   590 void VM_Version::initialize() {
   591   ResourceMark rm;
   592   // Making this stub must be FIRST use of assembler
   594   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   595   if (stub_blob == NULL) {
   596     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   597   }
   598   CodeBuffer c(stub_blob);
   599   VM_Version_StubGenerator g(&c);
   600   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   601                                    g.generate_getPsrInfo());
   603   get_processor_features();
   604 }

mercurial