src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Thu, 07 Oct 2010 08:06:06 -0700

author
coleenp
date
Thu, 07 Oct 2010 08:06:06 -0700
changeset 2222
b6aedd1acdc0
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6983240: guarantee((Solaris::min_stack_allowed >= (StackYellowPages+StackRedPages...) wrong
Summary: min_stack_allowed is a compile time constant and Stack*Pages are settable
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateInterpreter_x86_32.cpp.incl"
    28 #define __ _masm->
    31 #ifndef CC_INTERP
    32 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    33 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    34 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    36 //------------------------------------------------------------------------------------------------------------------------
    38 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    39   address entry = __ pc();
    41   // Note: There should be a minimal interpreter frame set up when stack
    42   // overflow occurs since we check explicitly for it now.
    43   //
    44 #ifdef ASSERT
    45   { Label L;
    46     __ lea(rax, Address(rbp,
    47                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    48     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    49                         //  (stack grows negative)
    50     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    51     __ stop ("interpreter frame not set up");
    52     __ bind(L);
    53   }
    54 #endif // ASSERT
    55   // Restore bcp under the assumption that the current frame is still
    56   // interpreted
    57   __ restore_bcp();
    59   // expression stack must be empty before entering the VM if an exception
    60   // happened
    61   __ empty_expression_stack();
    62   __ empty_FPU_stack();
    63   // throw exception
    64   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    65   return entry;
    66 }
    68 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    69   address entry = __ pc();
    70   // expression stack must be empty before entering the VM if an exception happened
    71   __ empty_expression_stack();
    72   __ empty_FPU_stack();
    73   // setup parameters
    74   // ??? convention: expect aberrant index in register rbx,
    75   __ lea(rax, ExternalAddress((address)name));
    76   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    77   return entry;
    78 }
    80 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
    81   address entry = __ pc();
    82   // object is at TOS
    83   __ pop(rax);
    84   // expression stack must be empty before entering the VM if an exception
    85   // happened
    86   __ empty_expression_stack();
    87   __ empty_FPU_stack();
    88   __ call_VM(noreg,
    89              CAST_FROM_FN_PTR(address,
    90                               InterpreterRuntime::throw_ClassCastException),
    91              rax);
    92   return entry;
    93 }
    95 // Arguments are: required type at TOS+4, failing object (or NULL) at TOS.
    96 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
    97   address entry = __ pc();
    99   __ pop(rbx);                  // actual failing object is at TOS
   100   __ pop(rax);                  // required type is at TOS+4
   102   __ verify_oop(rbx);
   103   __ verify_oop(rax);
   105   // Various method handle types use interpreter registers as temps.
   106   __ restore_bcp();
   107   __ restore_locals();
   109   // Expression stack must be empty before entering the VM for an exception.
   110   __ empty_expression_stack();
   111   __ empty_FPU_stack();
   112   __ call_VM(noreg,
   113              CAST_FROM_FN_PTR(address,
   114                               InterpreterRuntime::throw_WrongMethodTypeException),
   115              // pass required type, failing object (or NULL)
   116              rax, rbx);
   117   return entry;
   118 }
   121 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   122   assert(!pass_oop || message == NULL, "either oop or message but not both");
   123   address entry = __ pc();
   124   if (pass_oop) {
   125     // object is at TOS
   126     __ pop(rbx);
   127   }
   128   // expression stack must be empty before entering the VM if an exception happened
   129   __ empty_expression_stack();
   130   __ empty_FPU_stack();
   131   // setup parameters
   132   __ lea(rax, ExternalAddress((address)name));
   133   if (pass_oop) {
   134     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   135   } else {
   136     if (message != NULL) {
   137       __ lea(rbx, ExternalAddress((address)message));
   138     } else {
   139       __ movptr(rbx, NULL_WORD);
   140     }
   141     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   142   }
   143   // throw exception
   144   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   145   return entry;
   146 }
   149 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   150   address entry = __ pc();
   151   // NULL last_sp until next java call
   152   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   153   __ dispatch_next(state);
   154   return entry;
   155 }
   158 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   159   TosState incoming_state = state;
   161   Label interpreter_entry;
   162   address compiled_entry = __ pc();
   164 #ifdef COMPILER2
   165   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   166   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   167     for (int i = 1; i < 8; i++) {
   168         __ ffree(i);
   169     }
   170   } else if (UseSSE < 2) {
   171     __ empty_FPU_stack();
   172   }
   173 #endif
   174   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   175     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   176   } else {
   177     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   178   }
   180   __ jmp(interpreter_entry, relocInfo::none);
   181   // emit a sentinel we can test for when converting an interpreter
   182   // entry point to a compiled entry point.
   183   __ a_long(Interpreter::return_sentinel);
   184   __ a_long((int)compiled_entry);
   185   address entry = __ pc();
   186   __ bind(interpreter_entry);
   188   // In SSE mode, interpreter returns FP results in xmm0 but they need
   189   // to end up back on the FPU so it can operate on them.
   190   if (incoming_state == ftos && UseSSE >= 1) {
   191     __ subptr(rsp, wordSize);
   192     __ movflt(Address(rsp, 0), xmm0);
   193     __ fld_s(Address(rsp, 0));
   194     __ addptr(rsp, wordSize);
   195   } else if (incoming_state == dtos && UseSSE >= 2) {
   196     __ subptr(rsp, 2*wordSize);
   197     __ movdbl(Address(rsp, 0), xmm0);
   198     __ fld_d(Address(rsp, 0));
   199     __ addptr(rsp, 2*wordSize);
   200   }
   202   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   204   // Restore stack bottom in case i2c adjusted stack
   205   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   206   // and NULL it as marker that rsp is now tos until next java call
   207   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   209   __ restore_bcp();
   210   __ restore_locals();
   212   Label L_got_cache, L_giant_index;
   213   if (EnableInvokeDynamic) {
   214     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   215     __ jcc(Assembler::equal, L_giant_index);
   216   }
   217   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   218   __ bind(L_got_cache);
   219   __ movl(rbx, Address(rbx, rcx,
   220                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
   221                     ConstantPoolCacheEntry::flags_offset()));
   222   __ andptr(rbx, 0xFF);
   223   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   224   __ dispatch_next(state, step);
   226   // out of the main line of code...
   227   if (EnableInvokeDynamic) {
   228     __ bind(L_giant_index);
   229     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   230     __ jmp(L_got_cache);
   231   }
   233   return entry;
   234 }
   237 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   238   address entry = __ pc();
   240   // In SSE mode, FP results are in xmm0
   241   if (state == ftos && UseSSE > 0) {
   242     __ subptr(rsp, wordSize);
   243     __ movflt(Address(rsp, 0), xmm0);
   244     __ fld_s(Address(rsp, 0));
   245     __ addptr(rsp, wordSize);
   246   } else if (state == dtos && UseSSE >= 2) {
   247     __ subptr(rsp, 2*wordSize);
   248     __ movdbl(Address(rsp, 0), xmm0);
   249     __ fld_d(Address(rsp, 0));
   250     __ addptr(rsp, 2*wordSize);
   251   }
   253   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   255   // The stack is not extended by deopt but we must NULL last_sp as this
   256   // entry is like a "return".
   257   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   258   __ restore_bcp();
   259   __ restore_locals();
   260   // handle exceptions
   261   { Label L;
   262     const Register thread = rcx;
   263     __ get_thread(thread);
   264     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   265     __ jcc(Assembler::zero, L);
   266     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   267     __ should_not_reach_here();
   268     __ bind(L);
   269   }
   270   __ dispatch_next(state, step);
   271   return entry;
   272 }
   275 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   276   int i = 0;
   277   switch (type) {
   278     case T_BOOLEAN: i = 0; break;
   279     case T_CHAR   : i = 1; break;
   280     case T_BYTE   : i = 2; break;
   281     case T_SHORT  : i = 3; break;
   282     case T_INT    : // fall through
   283     case T_LONG   : // fall through
   284     case T_VOID   : i = 4; break;
   285     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   286     case T_DOUBLE : i = 6; break;
   287     case T_OBJECT : // fall through
   288     case T_ARRAY  : i = 7; break;
   289     default       : ShouldNotReachHere();
   290   }
   291   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   292   return i;
   293 }
   296 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   297   address entry = __ pc();
   298   switch (type) {
   299     case T_BOOLEAN: __ c2bool(rax);            break;
   300     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   301     case T_BYTE   : __ sign_extend_byte (rax); break;
   302     case T_SHORT  : __ sign_extend_short(rax); break;
   303     case T_INT    : /* nothing to do */        break;
   304     case T_DOUBLE :
   305     case T_FLOAT  :
   306       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   307         __ pop(t);                            // remove return address first
   308         // Must return a result for interpreter or compiler. In SSE
   309         // mode, results are returned in xmm0 and the FPU stack must
   310         // be empty.
   311         if (type == T_FLOAT && UseSSE >= 1) {
   312           // Load ST0
   313           __ fld_d(Address(rsp, 0));
   314           // Store as float and empty fpu stack
   315           __ fstp_s(Address(rsp, 0));
   316           // and reload
   317           __ movflt(xmm0, Address(rsp, 0));
   318         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   319           __ movdbl(xmm0, Address(rsp, 0));
   320         } else {
   321           // restore ST0
   322           __ fld_d(Address(rsp, 0));
   323         }
   324         // and pop the temp
   325         __ addptr(rsp, 2 * wordSize);
   326         __ push(t);                           // restore return address
   327       }
   328       break;
   329     case T_OBJECT :
   330       // retrieve result from frame
   331       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   332       // and verify it
   333       __ verify_oop(rax);
   334       break;
   335     default       : ShouldNotReachHere();
   336   }
   337   __ ret(0);                                   // return from result handler
   338   return entry;
   339 }
   341 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   342   address entry = __ pc();
   343   __ push(state);
   344   __ call_VM(noreg, runtime_entry);
   345   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   346   return entry;
   347 }
   350 // Helpers for commoning out cases in the various type of method entries.
   351 //
   353 // increment invocation count & check for overflow
   354 //
   355 // Note: checking for negative value instead of overflow
   356 //       so we have a 'sticky' overflow test
   357 //
   358 // rbx,: method
   359 // rcx: invocation counter
   360 //
   361 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   362   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
   363                                         in_bytes(InvocationCounter::counter_offset()));
   364   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   365   if (TieredCompilation) {
   366     int increment = InvocationCounter::count_increment;
   367     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   368     Label no_mdo, done;
   369     if (ProfileInterpreter) {
   370       // Are we profiling?
   371       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
   372       __ testptr(rax, rax);
   373       __ jccb(Assembler::zero, no_mdo);
   374       // Increment counter in the MDO
   375       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   376                                                 in_bytes(InvocationCounter::counter_offset()));
   377       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   378       __ jmpb(done);
   379     }
   380     __ bind(no_mdo);
   381     // Increment counter in methodOop (we don't need to load it, it's in rcx).
   382     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   383     __ bind(done);
   384   } else {
   385     const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() +
   386                                           InvocationCounter::counter_offset());
   388     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   389       __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   390     }
   391     // Update standard invocation counters
   392     __ movl(rax, backedge_counter);               // load backedge counter
   394     __ incrementl(rcx, InvocationCounter::count_increment);
   395     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   397     __ movl(invocation_counter, rcx);             // save invocation count
   398     __ addl(rcx, rax);                            // add both counters
   400     // profile_method is non-null only for interpreted method so
   401     // profile_method != NULL == !native_call
   402     // BytecodeInterpreter only calls for native so code is elided.
   404     if (ProfileInterpreter && profile_method != NULL) {
   405       // Test to see if we should create a method data oop
   406       __ cmp32(rcx,
   407                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   408       __ jcc(Assembler::less, *profile_method_continue);
   410       // if no method data exists, go to profile_method
   411       __ test_method_data_pointer(rax, *profile_method);
   412     }
   414     __ cmp32(rcx,
   415              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   416     __ jcc(Assembler::aboveEqual, *overflow);
   417   }
   418 }
   420 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   422   // Asm interpreter on entry
   423   // rdi - locals
   424   // rsi - bcp
   425   // rbx, - method
   426   // rdx - cpool
   427   // rbp, - interpreter frame
   429   // C++ interpreter on entry
   430   // rsi - new interpreter state pointer
   431   // rbp - interpreter frame pointer
   432   // rbx - method
   434   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   435   // rbx, - method
   436   // rcx - rcvr (assuming there is one)
   437   // top of stack return address of interpreter caller
   438   // rsp - sender_sp
   440   // C++ interpreter only
   441   // rsi - previous interpreter state pointer
   443   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   445   // InterpreterRuntime::frequency_counter_overflow takes one argument
   446   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   447   // The call returns the address of the verified entry point for the method or NULL
   448   // if the compilation did not complete (either went background or bailed out).
   449   __ movptr(rax, (intptr_t)false);
   450   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   452   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
   454   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   455   // and jump to the interpreted entry.
   456   __ jmp(*do_continue, relocInfo::none);
   458 }
   460 void InterpreterGenerator::generate_stack_overflow_check(void) {
   461   // see if we've got enough room on the stack for locals plus overhead.
   462   // the expression stack grows down incrementally, so the normal guard
   463   // page mechanism will work for that.
   464   //
   465   // Registers live on entry:
   466   //
   467   // Asm interpreter
   468   // rdx: number of additional locals this frame needs (what we must check)
   469   // rbx,: methodOop
   471   // destroyed on exit
   472   // rax,
   474   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   475   // generate_method_entry) so the guard should work for them too.
   476   //
   478   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   479   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   481   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   482   // be sure to change this if you add/subtract anything to/from the overhead area
   483   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   485   const int page_size = os::vm_page_size();
   487   Label after_frame_check;
   489   // see if the frame is greater than one page in size. If so,
   490   // then we need to verify there is enough stack space remaining
   491   // for the additional locals.
   492   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   493   __ jcc(Assembler::belowEqual, after_frame_check);
   495   // compute rsp as if this were going to be the last frame on
   496   // the stack before the red zone
   498   Label after_frame_check_pop;
   500   __ push(rsi);
   502   const Register thread = rsi;
   504   __ get_thread(thread);
   506   const Address stack_base(thread, Thread::stack_base_offset());
   507   const Address stack_size(thread, Thread::stack_size_offset());
   509   // locals + overhead, in bytes
   510   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   512 #ifdef ASSERT
   513   Label stack_base_okay, stack_size_okay;
   514   // verify that thread stack base is non-zero
   515   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   516   __ jcc(Assembler::notEqual, stack_base_okay);
   517   __ stop("stack base is zero");
   518   __ bind(stack_base_okay);
   519   // verify that thread stack size is non-zero
   520   __ cmpptr(stack_size, 0);
   521   __ jcc(Assembler::notEqual, stack_size_okay);
   522   __ stop("stack size is zero");
   523   __ bind(stack_size_okay);
   524 #endif
   526   // Add stack base to locals and subtract stack size
   527   __ addptr(rax, stack_base);
   528   __ subptr(rax, stack_size);
   530   // Use the maximum number of pages we might bang.
   531   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   532                                                                               (StackRedPages+StackYellowPages);
   533   __ addptr(rax, max_pages * page_size);
   535   // check against the current stack bottom
   536   __ cmpptr(rsp, rax);
   537   __ jcc(Assembler::above, after_frame_check_pop);
   539   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   541   __ pop(rax);  // get return address
   542   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
   544   // all done with frame size check
   545   __ bind(after_frame_check_pop);
   546   __ pop(rsi);
   548   __ bind(after_frame_check);
   549 }
   551 // Allocate monitor and lock method (asm interpreter)
   552 // rbx, - methodOop
   553 //
   554 void InterpreterGenerator::lock_method(void) {
   555   // synchronize method
   556   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   557   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   558   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   560   #ifdef ASSERT
   561     { Label L;
   562       __ movl(rax, access_flags);
   563       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   564       __ jcc(Assembler::notZero, L);
   565       __ stop("method doesn't need synchronization");
   566       __ bind(L);
   567     }
   568   #endif // ASSERT
   569   // get synchronization object
   570   { Label done;
   571     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   572     __ movl(rax, access_flags);
   573     __ testl(rax, JVM_ACC_STATIC);
   574     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   575     __ jcc(Assembler::zero, done);
   576     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   577     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   578     __ movptr(rax, Address(rax, mirror_offset));
   579     __ bind(done);
   580   }
   581   // add space for monitor & lock
   582   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   583   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   584   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   585   __ mov(rdx, rsp);                                                    // object address
   586   __ lock_object(rdx);
   587 }
   589 //
   590 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   591 // and for native methods hence the shared code.
   593 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   594   // initialize fixed part of activation frame
   595   __ push(rax);                                       // save return address
   596   __ enter();                                         // save old & set new rbp,
   599   __ push(rsi);                                       // set sender sp
   600   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   601   __ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
   602   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
   603   __ push(rbx);                                      // save methodOop
   604   if (ProfileInterpreter) {
   605     Label method_data_continue;
   606     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   607     __ testptr(rdx, rdx);
   608     __ jcc(Assembler::zero, method_data_continue);
   609     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
   610     __ bind(method_data_continue);
   611     __ push(rdx);                                       // set the mdp (method data pointer)
   612   } else {
   613     __ push(0);
   614   }
   616   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   617   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   618   __ push(rdx);                                       // set constant pool cache
   619   __ push(rdi);                                       // set locals pointer
   620   if (native_call) {
   621     __ push(0);                                       // no bcp
   622   } else {
   623     __ push(rsi);                                     // set bcp
   624     }
   625   __ push(0);                                         // reserve word for pointer to expression stack bottom
   626   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   627 }
   629 // End of helpers
   631 //
   632 // Various method entries
   633 //------------------------------------------------------------------------------------------------------------------------
   634 //
   635 //
   637 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   639 address InterpreterGenerator::generate_accessor_entry(void) {
   641   // rbx,: methodOop
   642   // rcx: receiver (preserve for slow entry into asm interpreter)
   644   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   646   address entry_point = __ pc();
   647   Label xreturn_path;
   649   // do fastpath for resolved accessor methods
   650   if (UseFastAccessorMethods) {
   651     Label slow_path;
   652     // If we need a safepoint check, generate full interpreter entry.
   653     ExternalAddress state(SafepointSynchronize::address_of_state());
   654     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   655              SafepointSynchronize::_not_synchronized);
   657     __ jcc(Assembler::notEqual, slow_path);
   658     // ASM/C++ Interpreter
   659     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   660     // Note: We can only use this code if the getfield has been resolved
   661     //       and if we don't have a null-pointer exception => check for
   662     //       these conditions first and use slow path if necessary.
   663     // rbx,: method
   664     // rcx: receiver
   665     __ movptr(rax, Address(rsp, wordSize));
   667     // check if local 0 != NULL and read field
   668     __ testptr(rax, rax);
   669     __ jcc(Assembler::zero, slow_path);
   671     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   672     // read first instruction word and extract bytecode @ 1 and index @ 2
   673     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   674     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   675     // Shift codes right to get the index on the right.
   676     // The bytecode fetched looks like <index><0xb4><0x2a>
   677     __ shrl(rdx, 2*BitsPerByte);
   678     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   679     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   681     // rax,: local 0
   682     // rbx,: method
   683     // rcx: receiver - do not destroy since it is needed for slow path!
   684     // rcx: scratch
   685     // rdx: constant pool cache index
   686     // rdi: constant pool cache
   687     // rsi: sender sp
   689     // check if getfield has been resolved and read constant pool cache entry
   690     // check the validity of the cache entry by testing whether _indices field
   691     // contains Bytecode::_getfield in b1 byte.
   692     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   693     __ movl(rcx,
   694             Address(rdi,
   695                     rdx,
   696                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   697     __ shrl(rcx, 2*BitsPerByte);
   698     __ andl(rcx, 0xFF);
   699     __ cmpl(rcx, Bytecodes::_getfield);
   700     __ jcc(Assembler::notEqual, slow_path);
   702     // Note: constant pool entry is not valid before bytecode is resolved
   703     __ movptr(rcx,
   704               Address(rdi,
   705                       rdx,
   706                       Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   707     __ movl(rdx,
   708             Address(rdi,
   709                     rdx,
   710                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   712     Label notByte, notShort, notChar;
   713     const Address field_address (rax, rcx, Address::times_1);
   715     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   716     // because they are different sizes.
   717     // Use the type from the constant pool cache
   718     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   719     // Make sure we don't need to mask rdx for tosBits after the above shift
   720     ConstantPoolCacheEntry::verify_tosBits();
   721     __ cmpl(rdx, btos);
   722     __ jcc(Assembler::notEqual, notByte);
   723     __ load_signed_byte(rax, field_address);
   724     __ jmp(xreturn_path);
   726     __ bind(notByte);
   727     __ cmpl(rdx, stos);
   728     __ jcc(Assembler::notEqual, notShort);
   729     __ load_signed_short(rax, field_address);
   730     __ jmp(xreturn_path);
   732     __ bind(notShort);
   733     __ cmpl(rdx, ctos);
   734     __ jcc(Assembler::notEqual, notChar);
   735     __ load_unsigned_short(rax, field_address);
   736     __ jmp(xreturn_path);
   738     __ bind(notChar);
   739 #ifdef ASSERT
   740     Label okay;
   741     __ cmpl(rdx, atos);
   742     __ jcc(Assembler::equal, okay);
   743     __ cmpl(rdx, itos);
   744     __ jcc(Assembler::equal, okay);
   745     __ stop("what type is this?");
   746     __ bind(okay);
   747 #endif // ASSERT
   748     // All the rest are a 32 bit wordsize
   749     // This is ok for now. Since fast accessors should be going away
   750     __ movptr(rax, field_address);
   752     __ bind(xreturn_path);
   754     // _ireturn/_areturn
   755     __ pop(rdi);                               // get return address
   756     __ mov(rsp, rsi);                          // set sp to sender sp
   757     __ jmp(rdi);
   759     // generate a vanilla interpreter entry as the slow path
   760     __ bind(slow_path);
   762     (void) generate_normal_entry(false);
   763     return entry_point;
   764   }
   765   return NULL;
   767 }
   769 //
   770 // Interpreter stub for calling a native method. (asm interpreter)
   771 // This sets up a somewhat different looking stack for calling the native method
   772 // than the typical interpreter frame setup.
   773 //
   775 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   776   // determine code generation flags
   777   bool inc_counter  = UseCompiler || CountCompiledCalls;
   779   // rbx,: methodOop
   780   // rsi: sender sp
   781   // rsi: previous interpreter state (C++ interpreter) must preserve
   782   address entry_point = __ pc();
   785   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   786   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   787   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   789   // get parameter size (always needed)
   790   __ load_unsigned_short(rcx, size_of_parameters);
   792   // native calls don't need the stack size check since they have no expression stack
   793   // and the arguments are already on the stack and we only add a handful of words
   794   // to the stack
   796   // rbx,: methodOop
   797   // rcx: size of parameters
   798   // rsi: sender sp
   800   __ pop(rax);                                       // get return address
   801   // for natives the size of locals is zero
   803   // compute beginning of parameters (rdi)
   804   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
   807   // add 2 zero-initialized slots for native calls
   808   // NULL result handler
   809   __ push((int32_t)NULL_WORD);
   810   // NULL oop temp (mirror or jni oop result)
   811   __ push((int32_t)NULL_WORD);
   813   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   814   // initialize fixed part of activation frame
   816   generate_fixed_frame(true);
   818   // make sure method is native & not abstract
   819 #ifdef ASSERT
   820   __ movl(rax, access_flags);
   821   {
   822     Label L;
   823     __ testl(rax, JVM_ACC_NATIVE);
   824     __ jcc(Assembler::notZero, L);
   825     __ stop("tried to execute non-native method as native");
   826     __ bind(L);
   827   }
   828   { Label L;
   829     __ testl(rax, JVM_ACC_ABSTRACT);
   830     __ jcc(Assembler::zero, L);
   831     __ stop("tried to execute abstract method in interpreter");
   832     __ bind(L);
   833   }
   834 #endif
   836   // Since at this point in the method invocation the exception handler
   837   // would try to exit the monitor of synchronized methods which hasn't
   838   // been entered yet, we set the thread local variable
   839   // _do_not_unlock_if_synchronized to true. The remove_activation will
   840   // check this flag.
   842   __ get_thread(rax);
   843   const Address do_not_unlock_if_synchronized(rax,
   844         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   845   __ movbool(do_not_unlock_if_synchronized, true);
   847   // increment invocation count & check for overflow
   848   Label invocation_counter_overflow;
   849   if (inc_counter) {
   850     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   851   }
   853   Label continue_after_compile;
   854   __ bind(continue_after_compile);
   856   bang_stack_shadow_pages(true);
   858   // reset the _do_not_unlock_if_synchronized flag
   859   __ get_thread(rax);
   860   __ movbool(do_not_unlock_if_synchronized, false);
   862   // check for synchronized methods
   863   // Must happen AFTER invocation_counter check and stack overflow check,
   864   // so method is not locked if overflows.
   865   //
   866   if (synchronized) {
   867     lock_method();
   868   } else {
   869     // no synchronization necessary
   870 #ifdef ASSERT
   871       { Label L;
   872         __ movl(rax, access_flags);
   873         __ testl(rax, JVM_ACC_SYNCHRONIZED);
   874         __ jcc(Assembler::zero, L);
   875         __ stop("method needs synchronization");
   876         __ bind(L);
   877       }
   878 #endif
   879   }
   881   // start execution
   882 #ifdef ASSERT
   883   { Label L;
   884     const Address monitor_block_top (rbp,
   885                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   886     __ movptr(rax, monitor_block_top);
   887     __ cmpptr(rax, rsp);
   888     __ jcc(Assembler::equal, L);
   889     __ stop("broken stack frame setup in interpreter");
   890     __ bind(L);
   891   }
   892 #endif
   894   // jvmti/dtrace support
   895   __ notify_method_entry();
   897   // work registers
   898   const Register method = rbx;
   899   const Register thread = rdi;
   900   const Register t      = rcx;
   902   // allocate space for parameters
   903   __ get_method(method);
   904   __ verify_oop(method);
   905   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
   906   __ shlptr(t, Interpreter::logStackElementSize);
   907   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
   908   __ subptr(rsp, t);
   909   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
   911   // get signature handler
   912   { Label L;
   913     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   914     __ testptr(t, t);
   915     __ jcc(Assembler::notZero, L);
   916     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   917     __ get_method(method);
   918     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   919     __ bind(L);
   920   }
   922   // call signature handler
   923   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
   924   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
   925   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
   926   // The generated handlers do not touch RBX (the method oop).
   927   // However, large signatures cannot be cached and are generated
   928   // each time here.  The slow-path generator will blow RBX
   929   // sometime, so we must reload it after the call.
   930   __ call(t);
   931   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
   933   // result handler is in rax,
   934   // set result handler
   935   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
   937   // pass mirror handle if static call
   938   { Label L;
   939     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   940     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
   941     __ testl(t, JVM_ACC_STATIC);
   942     __ jcc(Assembler::zero, L);
   943     // get mirror
   944     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
   945     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   946     __ movptr(t, Address(t, mirror_offset));
   947     // copy mirror into activation frame
   948     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
   949     // pass handle to mirror
   950     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
   951     __ movptr(Address(rsp, wordSize), t);
   952     __ bind(L);
   953   }
   955   // get native function entry point
   956   { Label L;
   957     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   958     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
   959     __ cmpptr(rax, unsatisfied.addr());
   960     __ jcc(Assembler::notEqual, L);
   961     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   962     __ get_method(method);
   963     __ verify_oop(method);
   964     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   965     __ bind(L);
   966   }
   968   // pass JNIEnv
   969   __ get_thread(thread);
   970   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
   971   __ movptr(Address(rsp, 0), t);
   973   // set_last_Java_frame_before_call
   974   // It is enough that the pc()
   975   // points into the right code segment. It does not have to be the correct return pc.
   976   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
   978   // change thread state
   979 #ifdef ASSERT
   980   { Label L;
   981     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
   982     __ cmpl(t, _thread_in_Java);
   983     __ jcc(Assembler::equal, L);
   984     __ stop("Wrong thread state in native stub");
   985     __ bind(L);
   986   }
   987 #endif
   989   // Change state to native
   990   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
   991   __ call(rax);
   993   // result potentially in rdx:rax or ST0
   995   // Either restore the MXCSR register after returning from the JNI Call
   996   // or verify that it wasn't changed.
   997   if (VM_Version::supports_sse()) {
   998     if (RestoreMXCSROnJNICalls) {
   999       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1001     else if (CheckJNICalls ) {
  1002       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1006   // Either restore the x87 floating pointer control word after returning
  1007   // from the JNI call or verify that it wasn't changed.
  1008   if (CheckJNICalls) {
  1009     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1012   // save potential result in ST(0) & rdx:rax
  1013   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1014   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1015   // It is safe to do this push because state is _thread_in_native and return address will be found
  1016   // via _last_native_pc and not via _last_jave_sp
  1018   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1019   // If the order changes or anything else is added to the stack the code in
  1020   // interpreter_frame_result will have to be changed.
  1022   { Label L;
  1023     Label push_double;
  1024     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1025     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1026     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1027               float_handler.addr());
  1028     __ jcc(Assembler::equal, push_double);
  1029     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1030               double_handler.addr());
  1031     __ jcc(Assembler::notEqual, L);
  1032     __ bind(push_double);
  1033     __ push(dtos);
  1034     __ bind(L);
  1036   __ push(ltos);
  1038   // change thread state
  1039   __ get_thread(thread);
  1040   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1041   if(os::is_MP()) {
  1042     if (UseMembar) {
  1043       // Force this write out before the read below
  1044       __ membar(Assembler::Membar_mask_bits(
  1045            Assembler::LoadLoad | Assembler::LoadStore |
  1046            Assembler::StoreLoad | Assembler::StoreStore));
  1047     } else {
  1048       // Write serialization page so VM thread can do a pseudo remote membar.
  1049       // We use the current thread pointer to calculate a thread specific
  1050       // offset to write to within the page. This minimizes bus traffic
  1051       // due to cache line collision.
  1052       __ serialize_memory(thread, rcx);
  1056   if (AlwaysRestoreFPU) {
  1057     //  Make sure the control word is correct.
  1058     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1061   // check for safepoint operation in progress and/or pending suspend requests
  1062   { Label Continue;
  1064     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1065              SafepointSynchronize::_not_synchronized);
  1067     Label L;
  1068     __ jcc(Assembler::notEqual, L);
  1069     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1070     __ jcc(Assembler::equal, Continue);
  1071     __ bind(L);
  1073     // Don't use call_VM as it will see a possible pending exception and forward it
  1074     // and never return here preventing us from clearing _last_native_pc down below.
  1075     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1076     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1077     // by hand.
  1078     //
  1079     __ push(thread);
  1080     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1081                                             JavaThread::check_special_condition_for_native_trans)));
  1082     __ increment(rsp, wordSize);
  1083     __ get_thread(thread);
  1085     __ bind(Continue);
  1088   // change thread state
  1089   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1091   __ reset_last_Java_frame(thread, true, true);
  1093   // reset handle block
  1094   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1095   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1097   // If result was an oop then unbox and save it in the frame
  1098   { Label L;
  1099     Label no_oop, store_result;
  1100     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1101     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1102               handler.addr());
  1103     __ jcc(Assembler::notEqual, no_oop);
  1104     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1105     __ pop(ltos);
  1106     __ testptr(rax, rax);
  1107     __ jcc(Assembler::zero, store_result);
  1108     // unbox
  1109     __ movptr(rax, Address(rax, 0));
  1110     __ bind(store_result);
  1111     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1112     // keep stack depth as expected by pushing oop which will eventually be discarded
  1113     __ push(ltos);
  1114     __ bind(no_oop);
  1118      Label no_reguard;
  1119      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1120      __ jcc(Assembler::notEqual, no_reguard);
  1122      __ pusha();
  1123      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1124      __ popa();
  1126      __ bind(no_reguard);
  1129   // restore rsi to have legal interpreter frame,
  1130   // i.e., bci == 0 <=> rsi == code_base()
  1131   // Can't call_VM until bcp is within reasonable.
  1132   __ get_method(method);      // method is junk from thread_in_native to now.
  1133   __ verify_oop(method);
  1134   __ movptr(rsi, Address(method,methodOopDesc::const_offset()));   // get constMethodOop
  1135   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset()));    // get codebase
  1137   // handle exceptions (exception handling will handle unlocking!)
  1138   { Label L;
  1139     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1140     __ jcc(Assembler::zero, L);
  1141     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1142     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1143     //       doesn't work here because the rsp is not correctly set at this point.
  1144     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1145     __ should_not_reach_here();
  1146     __ bind(L);
  1149   // do unlocking if necessary
  1150   { Label L;
  1151     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1152     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1153     __ jcc(Assembler::zero, L);
  1154     // the code below should be shared with interpreter macro assembler implementation
  1155     { Label unlock;
  1156       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1157       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1158       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1160       __ lea(rdx, monitor);                   // address of first monitor
  1162       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1163       __ testptr(t, t);
  1164       __ jcc(Assembler::notZero, unlock);
  1166       // Entry already unlocked, need to throw exception
  1167       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1168       __ should_not_reach_here();
  1170       __ bind(unlock);
  1171       __ unlock_object(rdx);
  1173     __ bind(L);
  1176   // jvmti/dtrace support
  1177   // Note: This must happen _after_ handling/throwing any exceptions since
  1178   //       the exception handler code notifies the runtime of method exits
  1179   //       too. If this happens before, method entry/exit notifications are
  1180   //       not properly paired (was bug - gri 11/22/99).
  1181   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1183   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1184   __ pop(ltos);
  1185   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1186   __ call(t);
  1188   // remove activation
  1189   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1190   __ leave();                                // remove frame anchor
  1191   __ pop(rdi);                               // get return address
  1192   __ mov(rsp, t);                            // set sp to sender sp
  1193   __ jmp(rdi);
  1195   if (inc_counter) {
  1196     // Handle overflow of counter and compile method
  1197     __ bind(invocation_counter_overflow);
  1198     generate_counter_overflow(&continue_after_compile);
  1201   return entry_point;
  1204 //
  1205 // Generic interpreted method entry to (asm) interpreter
  1206 //
  1207 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1208   // determine code generation flags
  1209   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1211   // rbx,: methodOop
  1212   // rsi: sender sp
  1213   address entry_point = __ pc();
  1216   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1217   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1218   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
  1219   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1221   // get parameter size (always needed)
  1222   __ load_unsigned_short(rcx, size_of_parameters);
  1224   // rbx,: methodOop
  1225   // rcx: size of parameters
  1227   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1229   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1230   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1232   // see if we've got enough room on the stack for locals plus overhead.
  1233   generate_stack_overflow_check();
  1235   // get return address
  1236   __ pop(rax);
  1238   // compute beginning of parameters (rdi)
  1239   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1241   // rdx - # of additional locals
  1242   // allocate space for locals
  1243   // explicitly initialize locals
  1245     Label exit, loop;
  1246     __ testl(rdx, rdx);
  1247     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1248     __ bind(loop);
  1249     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1250     __ decrement(rdx);                                // until everything initialized
  1251     __ jcc(Assembler::greater, loop);
  1252     __ bind(exit);
  1255   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1256   // initialize fixed part of activation frame
  1257   generate_fixed_frame(false);
  1259   // make sure method is not native & not abstract
  1260 #ifdef ASSERT
  1261   __ movl(rax, access_flags);
  1263     Label L;
  1264     __ testl(rax, JVM_ACC_NATIVE);
  1265     __ jcc(Assembler::zero, L);
  1266     __ stop("tried to execute native method as non-native");
  1267     __ bind(L);
  1269   { Label L;
  1270     __ testl(rax, JVM_ACC_ABSTRACT);
  1271     __ jcc(Assembler::zero, L);
  1272     __ stop("tried to execute abstract method in interpreter");
  1273     __ bind(L);
  1275 #endif
  1277   // Since at this point in the method invocation the exception handler
  1278   // would try to exit the monitor of synchronized methods which hasn't
  1279   // been entered yet, we set the thread local variable
  1280   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1281   // check this flag.
  1283   __ get_thread(rax);
  1284   const Address do_not_unlock_if_synchronized(rax,
  1285         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1286   __ movbool(do_not_unlock_if_synchronized, true);
  1288   // increment invocation count & check for overflow
  1289   Label invocation_counter_overflow;
  1290   Label profile_method;
  1291   Label profile_method_continue;
  1292   if (inc_counter) {
  1293     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1294     if (ProfileInterpreter) {
  1295       __ bind(profile_method_continue);
  1298   Label continue_after_compile;
  1299   __ bind(continue_after_compile);
  1301   bang_stack_shadow_pages(false);
  1303   // reset the _do_not_unlock_if_synchronized flag
  1304   __ get_thread(rax);
  1305   __ movbool(do_not_unlock_if_synchronized, false);
  1307   // check for synchronized methods
  1308   // Must happen AFTER invocation_counter check and stack overflow check,
  1309   // so method is not locked if overflows.
  1310   //
  1311   if (synchronized) {
  1312     // Allocate monitor and lock method
  1313     lock_method();
  1314   } else {
  1315     // no synchronization necessary
  1316 #ifdef ASSERT
  1317       { Label L;
  1318         __ movl(rax, access_flags);
  1319         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1320         __ jcc(Assembler::zero, L);
  1321         __ stop("method needs synchronization");
  1322         __ bind(L);
  1324 #endif
  1327   // start execution
  1328 #ifdef ASSERT
  1329   { Label L;
  1330      const Address monitor_block_top (rbp,
  1331                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1332     __ movptr(rax, monitor_block_top);
  1333     __ cmpptr(rax, rsp);
  1334     __ jcc(Assembler::equal, L);
  1335     __ stop("broken stack frame setup in interpreter");
  1336     __ bind(L);
  1338 #endif
  1340   // jvmti support
  1341   __ notify_method_entry();
  1343   __ dispatch_next(vtos);
  1345   // invocation counter overflow
  1346   if (inc_counter) {
  1347     if (ProfileInterpreter) {
  1348       // We have decided to profile this method in the interpreter
  1349       __ bind(profile_method);
  1351       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi, true);
  1353       __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
  1354       __ movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1355       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
  1356       __ test_method_data_pointer(rax, profile_method_continue);
  1357       __ addptr(rax, in_bytes(methodDataOopDesc::data_offset()));
  1358       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
  1359       __ jmp(profile_method_continue);
  1361     // Handle overflow of counter and compile method
  1362     __ bind(invocation_counter_overflow);
  1363     generate_counter_overflow(&continue_after_compile);
  1366   return entry_point;
  1369 //------------------------------------------------------------------------------------------------------------------------
  1370 // Entry points
  1371 //
  1372 // Here we generate the various kind of entries into the interpreter.
  1373 // The two main entry type are generic bytecode methods and native call method.
  1374 // These both come in synchronized and non-synchronized versions but the
  1375 // frame layout they create is very similar. The other method entry
  1376 // types are really just special purpose entries that are really entry
  1377 // and interpretation all in one. These are for trivial methods like
  1378 // accessor, empty, or special math methods.
  1379 //
  1380 // When control flow reaches any of the entry types for the interpreter
  1381 // the following holds ->
  1382 //
  1383 // Arguments:
  1384 //
  1385 // rbx,: methodOop
  1386 // rcx: receiver
  1387 //
  1388 //
  1389 // Stack layout immediately at entry
  1390 //
  1391 // [ return address     ] <--- rsp
  1392 // [ parameter n        ]
  1393 //   ...
  1394 // [ parameter 1        ]
  1395 // [ expression stack   ] (caller's java expression stack)
  1397 // Assuming that we don't go to one of the trivial specialized
  1398 // entries the stack will look like below when we are ready to execute
  1399 // the first bytecode (or call the native routine). The register usage
  1400 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1401 //
  1402 // local variables follow incoming parameters immediately; i.e.
  1403 // the return address is moved to the end of the locals).
  1404 //
  1405 // [ monitor entry      ] <--- rsp
  1406 //   ...
  1407 // [ monitor entry      ]
  1408 // [ expr. stack bottom ]
  1409 // [ saved rsi          ]
  1410 // [ current rdi        ]
  1411 // [ methodOop          ]
  1412 // [ saved rbp,          ] <--- rbp,
  1413 // [ return address     ]
  1414 // [ local variable m   ]
  1415 //   ...
  1416 // [ local variable 1   ]
  1417 // [ parameter n        ]
  1418 //   ...
  1419 // [ parameter 1        ] <--- rdi
  1421 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1422   // determine code generation flags
  1423   bool synchronized = false;
  1424   address entry_point = NULL;
  1426   switch (kind) {
  1427     case Interpreter::zerolocals             :                                                                             break;
  1428     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1429     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  1430     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  1431     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  1432     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  1433     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  1434     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  1436     case Interpreter::java_lang_math_sin     : // fall thru
  1437     case Interpreter::java_lang_math_cos     : // fall thru
  1438     case Interpreter::java_lang_math_tan     : // fall thru
  1439     case Interpreter::java_lang_math_abs     : // fall thru
  1440     case Interpreter::java_lang_math_log     : // fall thru
  1441     case Interpreter::java_lang_math_log10   : // fall thru
  1442     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  1443     default                                  : ShouldNotReachHere();                                                       break;
  1446   if (entry_point) return entry_point;
  1448   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1452 // These should never be compiled since the interpreter will prefer
  1453 // the compiled version to the intrinsic version.
  1454 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1455   switch (method_kind(m)) {
  1456     case Interpreter::java_lang_math_sin     : // fall thru
  1457     case Interpreter::java_lang_math_cos     : // fall thru
  1458     case Interpreter::java_lang_math_tan     : // fall thru
  1459     case Interpreter::java_lang_math_abs     : // fall thru
  1460     case Interpreter::java_lang_math_log     : // fall thru
  1461     case Interpreter::java_lang_math_log10   : // fall thru
  1462     case Interpreter::java_lang_math_sqrt    :
  1463       return false;
  1464     default:
  1465       return true;
  1469 // How much stack a method activation needs in words.
  1470 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1472   const int stub_code = 4;  // see generate_call_stub
  1473   // Save space for one monitor to get into the interpreted method in case
  1474   // the method is synchronized
  1475   int monitor_size    = method->is_synchronized() ?
  1476                                 1*frame::interpreter_frame_monitor_size() : 0;
  1478   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1479   // be sure to change this if you add/subtract anything to/from the overhead area
  1480   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1482   const int extra_stack = methodOopDesc::extra_stack_entries();
  1483   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1484                            Interpreter::stackElementWords;
  1485   return overhead_size + method_stack + stub_code;
  1488 // asm based interpreter deoptimization helpers
  1490 int AbstractInterpreter::layout_activation(methodOop method,
  1491                                            int tempcount,
  1492                                            int popframe_extra_args,
  1493                                            int moncount,
  1494                                            int callee_param_count,
  1495                                            int callee_locals,
  1496                                            frame* caller,
  1497                                            frame* interpreter_frame,
  1498                                            bool is_top_frame) {
  1499   // Note: This calculation must exactly parallel the frame setup
  1500   // in AbstractInterpreterGenerator::generate_method_entry.
  1501   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1502   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1503   // as determined by a previous call to this method.
  1504   // It is also guaranteed to be walkable even though it is in a skeletal state
  1505   // NOTE: return size is in words not bytes
  1507   // fixed size of an interpreter frame:
  1508   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1509   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1510                      Interpreter::stackElementWords;
  1512   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1514   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1515   // Since the callee parameters already account for the callee's params we only need to account for
  1516   // the extra locals.
  1519   int size = overhead +
  1520          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1521          (moncount*frame::interpreter_frame_monitor_size()) +
  1522          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1524   if (interpreter_frame != NULL) {
  1525 #ifdef ASSERT
  1526     if (!EnableMethodHandles)
  1527       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1528       // Probably, since deoptimization doesn't work yet.
  1529       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1530     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1531 #endif
  1533     interpreter_frame->interpreter_frame_set_method(method);
  1534     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1535     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1536     // and sender_sp is fp+8
  1537     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1539     interpreter_frame->interpreter_frame_set_locals(locals);
  1540     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1541     BasicObjectLock* monbot = montop - moncount;
  1542     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1544     // Set last_sp
  1545     intptr_t*  rsp = (intptr_t*) monbot  -
  1546                      tempcount*Interpreter::stackElementWords -
  1547                      popframe_extra_args;
  1548     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1550     // All frames but the initial (oldest) interpreter frame we fill in have a
  1551     // value for sender_sp that allows walking the stack but isn't
  1552     // truly correct. Correct the value here.
  1554     if (extra_locals != 0 &&
  1555         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1556       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1558     *interpreter_frame->interpreter_frame_cache_addr() =
  1559       method->constants()->cache();
  1561   return size;
  1565 //------------------------------------------------------------------------------------------------------------------------
  1566 // Exceptions
  1568 void TemplateInterpreterGenerator::generate_throw_exception() {
  1569   // Entry point in previous activation (i.e., if the caller was interpreted)
  1570   Interpreter::_rethrow_exception_entry = __ pc();
  1571   const Register thread = rcx;
  1573   // Restore sp to interpreter_frame_last_sp even though we are going
  1574   // to empty the expression stack for the exception processing.
  1575   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1576   // rax,: exception
  1577   // rdx: return address/pc that threw exception
  1578   __ restore_bcp();                              // rsi points to call/send
  1579   __ restore_locals();
  1581   // Entry point for exceptions thrown within interpreter code
  1582   Interpreter::_throw_exception_entry = __ pc();
  1583   // expression stack is undefined here
  1584   // rax,: exception
  1585   // rsi: exception bcp
  1586   __ verify_oop(rax);
  1588   // expression stack must be empty before entering the VM in case of an exception
  1589   __ empty_expression_stack();
  1590   __ empty_FPU_stack();
  1591   // find exception handler address and preserve exception oop
  1592   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1593   // rax,: exception handler entry point
  1594   // rdx: preserved exception oop
  1595   // rsi: bcp for exception handler
  1596   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1597   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1599   // If the exception is not handled in the current frame the frame is removed and
  1600   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1601   //
  1602   // Note: At this point the bci is still the bxi for the instruction which caused
  1603   //       the exception and the expression stack is empty. Thus, for any VM calls
  1604   //       at this point, GC will find a legal oop map (with empty expression stack).
  1606   // In current activation
  1607   // tos: exception
  1608   // rsi: exception bcp
  1610   //
  1611   // JVMTI PopFrame support
  1612   //
  1614    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1615   __ empty_expression_stack();
  1616   __ empty_FPU_stack();
  1617   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1618   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1619   // popframe handling cycles.
  1620   __ get_thread(thread);
  1621   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1622   __ orl(rdx, JavaThread::popframe_processing_bit);
  1623   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1626     // Check to see whether we are returning to a deoptimized frame.
  1627     // (The PopFrame call ensures that the caller of the popped frame is
  1628     // either interpreted or compiled and deoptimizes it if compiled.)
  1629     // In this case, we can't call dispatch_next() after the frame is
  1630     // popped, but instead must save the incoming arguments and restore
  1631     // them after deoptimization has occurred.
  1632     //
  1633     // Note that we don't compare the return PC against the
  1634     // deoptimization blob's unpack entry because of the presence of
  1635     // adapter frames in C2.
  1636     Label caller_not_deoptimized;
  1637     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1638     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1639     __ testl(rax, rax);
  1640     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1642     // Compute size of arguments for saving when returning to deoptimized caller
  1643     __ get_method(rax);
  1644     __ verify_oop(rax);
  1645     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
  1646     __ shlptr(rax, Interpreter::logStackElementSize);
  1647     __ restore_locals();
  1648     __ subptr(rdi, rax);
  1649     __ addptr(rdi, wordSize);
  1650     // Save these arguments
  1651     __ get_thread(thread);
  1652     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1654     __ remove_activation(vtos, rdx,
  1655                          /* throw_monitor_exception */ false,
  1656                          /* install_monitor_exception */ false,
  1657                          /* notify_jvmdi */ false);
  1659     // Inform deoptimization that it is responsible for restoring these arguments
  1660     __ get_thread(thread);
  1661     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1663     // Continue in deoptimization handler
  1664     __ jmp(rdx);
  1666     __ bind(caller_not_deoptimized);
  1669   __ remove_activation(vtos, rdx,
  1670                        /* throw_monitor_exception */ false,
  1671                        /* install_monitor_exception */ false,
  1672                        /* notify_jvmdi */ false);
  1674   // Finish with popframe handling
  1675   // A previous I2C followed by a deoptimization might have moved the
  1676   // outgoing arguments further up the stack. PopFrame expects the
  1677   // mutations to those outgoing arguments to be preserved and other
  1678   // constraints basically require this frame to look exactly as
  1679   // though it had previously invoked an interpreted activation with
  1680   // no space between the top of the expression stack (current
  1681   // last_sp) and the top of stack. Rather than force deopt to
  1682   // maintain this kind of invariant all the time we call a small
  1683   // fixup routine to move the mutated arguments onto the top of our
  1684   // expression stack if necessary.
  1685   __ mov(rax, rsp);
  1686   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1687   __ get_thread(thread);
  1688   // PC must point into interpreter here
  1689   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1690   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1691   __ get_thread(thread);
  1692   __ reset_last_Java_frame(thread, true, true);
  1693   // Restore the last_sp and null it out
  1694   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1695   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1697   __ restore_bcp();
  1698   __ restore_locals();
  1699   // The method data pointer was incremented already during
  1700   // call profiling. We have to restore the mdp for the current bcp.
  1701   if (ProfileInterpreter) {
  1702     __ set_method_data_pointer_for_bcp();
  1705   // Clear the popframe condition flag
  1706   __ get_thread(thread);
  1707   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1709   __ dispatch_next(vtos);
  1710   // end of PopFrame support
  1712   Interpreter::_remove_activation_entry = __ pc();
  1714   // preserve exception over this code sequence
  1715   __ pop_ptr(rax);
  1716   __ get_thread(thread);
  1717   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1718   // remove the activation (without doing throws on illegalMonitorExceptions)
  1719   __ remove_activation(vtos, rdx, false, true, false);
  1720   // restore exception
  1721   __ get_thread(thread);
  1722   __ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
  1723   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  1724   __ verify_oop(rax);
  1726   // Inbetween activations - previous activation type unknown yet
  1727   // compute continuation point - the continuation point expects
  1728   // the following registers set up:
  1729   //
  1730   // rax: exception
  1731   // rdx: return address/pc that threw exception
  1732   // rsp: expression stack of caller
  1733   // rbp: rbp, of caller
  1734   __ push(rax);                                  // save exception
  1735   __ push(rdx);                                  // save return address
  1736   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1737   __ mov(rbx, rax);                              // save exception handler
  1738   __ pop(rdx);                                   // restore return address
  1739   __ pop(rax);                                   // restore exception
  1740   // Note that an "issuing PC" is actually the next PC after the call
  1741   __ jmp(rbx);                                   // jump to exception handler of caller
  1745 //
  1746 // JVMTI ForceEarlyReturn support
  1747 //
  1748 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1749   address entry = __ pc();
  1750   const Register thread = rcx;
  1752   __ restore_bcp();
  1753   __ restore_locals();
  1754   __ empty_expression_stack();
  1755   __ empty_FPU_stack();
  1756   __ load_earlyret_value(state);
  1758   __ get_thread(thread);
  1759   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1760   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1762   // Clear the earlyret state
  1763   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1765   __ remove_activation(state, rsi,
  1766                        false, /* throw_monitor_exception */
  1767                        false, /* install_monitor_exception */
  1768                        true); /* notify_jvmdi */
  1769   __ jmp(rsi);
  1770   return entry;
  1771 } // end of ForceEarlyReturn support
  1774 //------------------------------------------------------------------------------------------------------------------------
  1775 // Helper for vtos entry point generation
  1777 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1778   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1779   Label L;
  1780   fep = __ pc(); __ push(ftos); __ jmp(L);
  1781   dep = __ pc(); __ push(dtos); __ jmp(L);
  1782   lep = __ pc(); __ push(ltos); __ jmp(L);
  1783   aep = __ pc(); __ push(atos); __ jmp(L);
  1784   bep = cep = sep =             // fall through
  1785   iep = __ pc(); __ push(itos); // fall through
  1786   vep = __ pc(); __ bind(L);    // fall through
  1787   generate_and_dispatch(t);
  1790 //------------------------------------------------------------------------------------------------------------------------
  1791 // Generation of individual instructions
  1793 // helpers for generate_and_dispatch
  1797 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1798  : TemplateInterpreterGenerator(code) {
  1799    generate_all(); // down here so it can be "virtual"
  1802 //------------------------------------------------------------------------------------------------------------------------
  1804 // Non-product code
  1805 #ifndef PRODUCT
  1806 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1807   address entry = __ pc();
  1809   // prepare expression stack
  1810   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1811   __ push(state);       // save tosca
  1813   // pass tosca registers as arguments & call tracer
  1814   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1815   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1816   __ pop(state);        // restore tosca
  1818   // return
  1819   __ jmp(rcx);
  1821   return entry;
  1825 void TemplateInterpreterGenerator::count_bytecode() {
  1826   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1830 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1831   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1835 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1836   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1837   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1838   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1839   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1840   Address index(noreg, rbx, Address::times_4);
  1841   __ incrementl(ArrayAddress(table, index));
  1845 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1846   // Call a little run-time stub to avoid blow-up for each bytecode.
  1847   // The run-time runtime saves the right registers, depending on
  1848   // the tosca in-state for the given template.
  1849   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1850          "entry must have been generated");
  1851   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1855 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1856   Label L;
  1857   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1858            StopInterpreterAt);
  1859   __ jcc(Assembler::notEqual, L);
  1860   __ int3();
  1861   __ bind(L);
  1863 #endif // !PRODUCT
  1864 #endif // CC_INTERP

mercurial