src/cpu/x86/vm/interp_masm_x86_64.cpp

Thu, 07 Oct 2010 08:06:06 -0700

author
coleenp
date
Thu, 07 Oct 2010 08:06:06 -0700
changeset 2222
b6aedd1acdc0
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6983240: guarantee((Solaris::min_stack_allowed >= (StackYellowPages+StackRedPages...) wrong
Summary: min_stack_allowed is a compile time constant and Stack*Pages are settable
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_64.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    31 #ifdef CC_INTERP
    32 void InterpreterMacroAssembler::get_method(Register reg) {
    33   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
    34   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    35 }
    36 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    40 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    41                                                   int number_of_arguments) {
    42   // interpreter specific
    43   //
    44   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    45   //       since these are callee saved registers and no blocking/
    46   //       GC can happen in leaf calls.
    47   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    48   // already saved them so that it can use esi/edi as temporaries
    49   // then a save/restore here will DESTROY the copy the caller
    50   // saved! There used to be a save_bcp() that only happened in
    51   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    52   // when jvm built with ASSERTs.
    53 #ifdef ASSERT
    54   {
    55     Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    59          " last_sp != NULL");
    60     bind(L);
    61   }
    62 #endif
    63   // super call
    64   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    65   // interpreter specific
    66   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save thme here (see note above) the assert is invalid.
    69 }
    71 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    72                                              Register java_thread,
    73                                              Register last_java_sp,
    74                                              address  entry_point,
    75                                              int      number_of_arguments,
    76                                              bool     check_exceptions) {
    77   // interpreter specific
    78   //
    79   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    80   //       really make a difference for these runtime calls, since they are
    81   //       slow anyway. Btw., bcp must be saved/restored since it may change
    82   //       due to GC.
    83   // assert(java_thread == noreg , "not expecting a precomputed java thread");
    84   save_bcp();
    85 #ifdef ASSERT
    86   {
    87     Label L;
    88     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    89     jcc(Assembler::equal, L);
    90     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    91          " last_sp != NULL");
    92     bind(L);
    93   }
    94 #endif /* ASSERT */
    95   // super call
    96   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
    97                                entry_point, number_of_arguments,
    98                                check_exceptions);
    99   // interpreter specific
   100   restore_bcp();
   101   restore_locals();
   102 }
   105 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   106   if (JvmtiExport::can_pop_frame()) {
   107     Label L;
   108     // Initiate popframe handling only if it is not already being
   109     // processed.  If the flag has the popframe_processing bit set, it
   110     // means that this code is called *during* popframe handling - we
   111     // don't want to reenter.
   112     // This method is only called just after the call into the vm in
   113     // call_VM_base, so the arg registers are available.
   114     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   115     testl(c_rarg0, JavaThread::popframe_pending_bit);
   116     jcc(Assembler::zero, L);
   117     testl(c_rarg0, JavaThread::popframe_processing_bit);
   118     jcc(Assembler::notZero, L);
   119     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   120     // address of the same-named entrypoint in the generated interpreter code.
   121     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   122     jmp(rax);
   123     bind(L);
   124   }
   125 }
   128 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   129   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   130   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   131   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   132   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   133   switch (state) {
   134     case atos: movptr(rax, oop_addr);
   135                movptr(oop_addr, (int32_t)NULL_WORD);
   136                verify_oop(rax, state);              break;
   137     case ltos: movptr(rax, val_addr);                 break;
   138     case btos:                                   // fall through
   139     case ctos:                                   // fall through
   140     case stos:                                   // fall through
   141     case itos: movl(rax, val_addr);                 break;
   142     case ftos: movflt(xmm0, val_addr);              break;
   143     case dtos: movdbl(xmm0, val_addr);              break;
   144     case vtos: /* nothing to do */                  break;
   145     default  : ShouldNotReachHere();
   146   }
   147   // Clean up tos value in the thread object
   148   movl(tos_addr,  (int) ilgl);
   149   movl(val_addr,  (int32_t) NULL_WORD);
   150 }
   153 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   154   if (JvmtiExport::can_force_early_return()) {
   155     Label L;
   156     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   157     testptr(c_rarg0, c_rarg0);
   158     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   160     // Initiate earlyret handling only if it is not already being processed.
   161     // If the flag has the earlyret_processing bit set, it means that this code
   162     // is called *during* earlyret handling - we don't want to reenter.
   163     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   164     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   165     jcc(Assembler::notEqual, L);
   167     // Call Interpreter::remove_activation_early_entry() to get the address of the
   168     // same-named entrypoint in the generated interpreter code.
   169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   170     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   171     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   172     jmp(rax);
   173     bind(L);
   174   }
   175 }
   178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   179   Register reg,
   180   int bcp_offset) {
   181   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   182   movl(reg, Address(r13, bcp_offset));
   183   bswapl(reg);
   184   shrl(reg, 16);
   185 }
   188 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
   189                                                        int bcp_offset,
   190                                                        size_t index_size) {
   191   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   192   if (index_size == sizeof(u2)) {
   193     load_unsigned_short(index, Address(r13, bcp_offset));
   194   } else if (index_size == sizeof(u4)) {
   195     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   196     movl(index, Address(r13, bcp_offset));
   197     // Check if the secondary index definition is still ~x, otherwise
   198     // we have to change the following assembler code to calculate the
   199     // plain index.
   200     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   201     notl(index);  // convert to plain index
   202   } else if (index_size == sizeof(u1)) {
   203     assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
   204     load_unsigned_byte(index, Address(r13, bcp_offset));
   205   } else {
   206     ShouldNotReachHere();
   207   }
   208 }
   211 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   212                                                            Register index,
   213                                                            int bcp_offset,
   214                                                            size_t index_size) {
   215   assert(cache != index, "must use different registers");
   216   get_cache_index_at_bcp(index, bcp_offset, index_size);
   217   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   218   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   219   // convert from field index to ConstantPoolCacheEntry index
   220   shll(index, 2);
   221 }
   224 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   225                                                                Register tmp,
   226                                                                int bcp_offset,
   227                                                                size_t index_size) {
   228   assert(cache != tmp, "must use different register");
   229   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   230   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   231   // convert from field index to ConstantPoolCacheEntry index
   232   // and from word offset to byte offset
   233   shll(tmp, 2 + LogBytesPerWord);
   234   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   235   // skip past the header
   236   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   237   addptr(cache, tmp);  // construct pointer to cache entry
   238 }
   241 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   242 // subtype of super_klass.
   243 //
   244 // Args:
   245 //      rax: superklass
   246 //      Rsub_klass: subklass
   247 //
   248 // Kills:
   249 //      rcx, rdi
   250 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   251                                                   Label& ok_is_subtype) {
   252   assert(Rsub_klass != rax, "rax holds superklass");
   253   assert(Rsub_klass != r14, "r14 holds locals");
   254   assert(Rsub_klass != r13, "r13 holds bcp");
   255   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   256   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   258   // Profile the not-null value's klass.
   259   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   261   // Do the check.
   262   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   264   // Profile the failure of the check.
   265   profile_typecheck_failed(rcx); // blows rcx
   266 }
   270 // Java Expression Stack
   272 void InterpreterMacroAssembler::pop_ptr(Register r) {
   273   pop(r);
   274 }
   276 void InterpreterMacroAssembler::pop_i(Register r) {
   277   // XXX can't use pop currently, upper half non clean
   278   movl(r, Address(rsp, 0));
   279   addptr(rsp, wordSize);
   280 }
   282 void InterpreterMacroAssembler::pop_l(Register r) {
   283   movq(r, Address(rsp, 0));
   284   addptr(rsp, 2 * Interpreter::stackElementSize);
   285 }
   287 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   288   movflt(r, Address(rsp, 0));
   289   addptr(rsp, wordSize);
   290 }
   292 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   293   movdbl(r, Address(rsp, 0));
   294   addptr(rsp, 2 * Interpreter::stackElementSize);
   295 }
   297 void InterpreterMacroAssembler::push_ptr(Register r) {
   298   push(r);
   299 }
   301 void InterpreterMacroAssembler::push_i(Register r) {
   302   push(r);
   303 }
   305 void InterpreterMacroAssembler::push_l(Register r) {
   306   subptr(rsp, 2 * wordSize);
   307   movq(Address(rsp, 0), r);
   308 }
   310 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   311   subptr(rsp, wordSize);
   312   movflt(Address(rsp, 0), r);
   313 }
   315 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   316   subptr(rsp, 2 * wordSize);
   317   movdbl(Address(rsp, 0), r);
   318 }
   320 void InterpreterMacroAssembler::pop(TosState state) {
   321   switch (state) {
   322   case atos: pop_ptr();                 break;
   323   case btos:
   324   case ctos:
   325   case stos:
   326   case itos: pop_i();                   break;
   327   case ltos: pop_l();                   break;
   328   case ftos: pop_f();                   break;
   329   case dtos: pop_d();                   break;
   330   case vtos: /* nothing to do */        break;
   331   default:   ShouldNotReachHere();
   332   }
   333   verify_oop(rax, state);
   334 }
   336 void InterpreterMacroAssembler::push(TosState state) {
   337   verify_oop(rax, state);
   338   switch (state) {
   339   case atos: push_ptr();                break;
   340   case btos:
   341   case ctos:
   342   case stos:
   343   case itos: push_i();                  break;
   344   case ltos: push_l();                  break;
   345   case ftos: push_f();                  break;
   346   case dtos: push_d();                  break;
   347   case vtos: /* nothing to do */        break;
   348   default  : ShouldNotReachHere();
   349   }
   350 }
   353 // Helpers for swap and dup
   354 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   355   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   356 }
   358 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   359   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   360 }
   363 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   364   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   365 }
   368 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   369                                                    Register arg_1) {
   370   if (c_rarg0 != arg_1) {
   371     mov(c_rarg0, arg_1);
   372   }
   373   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   374 }
   377 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   378                                                    Register arg_1,
   379                                                    Register arg_2) {
   380   assert(c_rarg0 != arg_2, "smashed argument");
   381   assert(c_rarg1 != arg_1, "smashed argument");
   382   if (c_rarg0 != arg_1) {
   383     mov(c_rarg0, arg_1);
   384   }
   385   if (c_rarg1 != arg_2) {
   386     mov(c_rarg1, arg_2);
   387   }
   388   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   389 }
   391 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   392                                                    Register arg_1,
   393                                                    Register arg_2,
   394                                                    Register arg_3) {
   395   assert(c_rarg0 != arg_2, "smashed argument");
   396   assert(c_rarg0 != arg_3, "smashed argument");
   397   assert(c_rarg1 != arg_1, "smashed argument");
   398   assert(c_rarg1 != arg_3, "smashed argument");
   399   assert(c_rarg2 != arg_1, "smashed argument");
   400   assert(c_rarg2 != arg_2, "smashed argument");
   401   if (c_rarg0 != arg_1) {
   402     mov(c_rarg0, arg_1);
   403   }
   404   if (c_rarg1 != arg_2) {
   405     mov(c_rarg1, arg_2);
   406   }
   407   if (c_rarg2 != arg_3) {
   408     mov(c_rarg2, arg_3);
   409   }
   410   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   411 }
   413 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   414   // set sender sp
   415   lea(r13, Address(rsp, wordSize));
   416   // record last_sp
   417   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   418 }
   421 // Jump to from_interpreted entry of a call unless single stepping is possible
   422 // in this thread in which case we must call the i2i entry
   423 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   424   prepare_to_jump_from_interpreted();
   426   if (JvmtiExport::can_post_interpreter_events()) {
   427     Label run_compiled_code;
   428     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   429     // compiled code in threads for which the event is enabled.  Check here for
   430     // interp_only_mode if these events CAN be enabled.
   431     get_thread(temp);
   432     // interp_only is an int, on little endian it is sufficient to test the byte only
   433     // Is a cmpl faster (ce
   434     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   435     jcc(Assembler::zero, run_compiled_code);
   436     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   437     bind(run_compiled_code);
   438   }
   440   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   442 }
   445 // The following two routines provide a hook so that an implementation
   446 // can schedule the dispatch in two parts.  amd64 does not do this.
   447 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   448   // Nothing amd64 specific to be done here
   449 }
   451 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   452   dispatch_next(state, step);
   453 }
   455 void InterpreterMacroAssembler::dispatch_base(TosState state,
   456                                               address* table,
   457                                               bool verifyoop) {
   458   verify_FPU(1, state);
   459   if (VerifyActivationFrameSize) {
   460     Label L;
   461     mov(rcx, rbp);
   462     subptr(rcx, rsp);
   463     int32_t min_frame_size =
   464       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   465       wordSize;
   466     cmpptr(rcx, (int32_t)min_frame_size);
   467     jcc(Assembler::greaterEqual, L);
   468     stop("broken stack frame");
   469     bind(L);
   470   }
   471   if (verifyoop) {
   472     verify_oop(rax, state);
   473   }
   474   lea(rscratch1, ExternalAddress((address)table));
   475   jmp(Address(rscratch1, rbx, Address::times_8));
   476 }
   478 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   479   dispatch_base(state, Interpreter::dispatch_table(state));
   480 }
   482 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   483   dispatch_base(state, Interpreter::normal_table(state));
   484 }
   486 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   487   dispatch_base(state, Interpreter::normal_table(state), false);
   488 }
   491 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   492   // load next bytecode (load before advancing r13 to prevent AGI)
   493   load_unsigned_byte(rbx, Address(r13, step));
   494   // advance r13
   495   increment(r13, step);
   496   dispatch_base(state, Interpreter::dispatch_table(state));
   497 }
   499 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   500   // load current bytecode
   501   load_unsigned_byte(rbx, Address(r13, 0));
   502   dispatch_base(state, table);
   503 }
   505 // remove activation
   506 //
   507 // Unlock the receiver if this is a synchronized method.
   508 // Unlock any Java monitors from syncronized blocks.
   509 // Remove the activation from the stack.
   510 //
   511 // If there are locked Java monitors
   512 //    If throw_monitor_exception
   513 //       throws IllegalMonitorStateException
   514 //    Else if install_monitor_exception
   515 //       installs IllegalMonitorStateException
   516 //    Else
   517 //       no error processing
   518 void InterpreterMacroAssembler::remove_activation(
   519         TosState state,
   520         Register ret_addr,
   521         bool throw_monitor_exception,
   522         bool install_monitor_exception,
   523         bool notify_jvmdi) {
   524   // Note: Registers rdx xmm0 may be in use for the
   525   // result check if synchronized method
   526   Label unlocked, unlock, no_unlock;
   528   // get the value of _do_not_unlock_if_synchronized into rdx
   529   const Address do_not_unlock_if_synchronized(r15_thread,
   530     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   531   movbool(rdx, do_not_unlock_if_synchronized);
   532   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   534  // get method access flags
   535   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   536   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   537   testl(rcx, JVM_ACC_SYNCHRONIZED);
   538   jcc(Assembler::zero, unlocked);
   540   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   541   // is set.
   542   testbool(rdx);
   543   jcc(Assembler::notZero, no_unlock);
   545   // unlock monitor
   546   push(state); // save result
   548   // BasicObjectLock will be first in list, since this is a
   549   // synchronized method. However, need to check that the object has
   550   // not been unlocked by an explicit monitorexit bytecode.
   551   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   552                         wordSize - (int) sizeof(BasicObjectLock));
   553   // We use c_rarg1 so that if we go slow path it will be the correct
   554   // register for unlock_object to pass to VM directly
   555   lea(c_rarg1, monitor); // address of first monitor
   557   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   558   testptr(rax, rax);
   559   jcc(Assembler::notZero, unlock);
   561   pop(state);
   562   if (throw_monitor_exception) {
   563     // Entry already unlocked, need to throw exception
   564     call_VM(noreg, CAST_FROM_FN_PTR(address,
   565                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   566     should_not_reach_here();
   567   } else {
   568     // Monitor already unlocked during a stack unroll. If requested,
   569     // install an illegal_monitor_state_exception.  Continue with
   570     // stack unrolling.
   571     if (install_monitor_exception) {
   572       call_VM(noreg, CAST_FROM_FN_PTR(address,
   573                      InterpreterRuntime::new_illegal_monitor_state_exception));
   574     }
   575     jmp(unlocked);
   576   }
   578   bind(unlock);
   579   unlock_object(c_rarg1);
   580   pop(state);
   582   // Check that for block-structured locking (i.e., that all locked
   583   // objects has been unlocked)
   584   bind(unlocked);
   586   // rax: Might contain return value
   588   // Check that all monitors are unlocked
   589   {
   590     Label loop, exception, entry, restart;
   591     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   592     const Address monitor_block_top(
   593         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   594     const Address monitor_block_bot(
   595         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   597     bind(restart);
   598     // We use c_rarg1 so that if we go slow path it will be the correct
   599     // register for unlock_object to pass to VM directly
   600     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
   601                                   // with top-most entry
   602     lea(rbx, monitor_block_bot);  // points to word before bottom of
   603                                   // monitor block
   604     jmp(entry);
   606     // Entry already locked, need to throw exception
   607     bind(exception);
   609     if (throw_monitor_exception) {
   610       // Throw exception
   611       MacroAssembler::call_VM(noreg,
   612                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   613                                    throw_illegal_monitor_state_exception));
   614       should_not_reach_here();
   615     } else {
   616       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   617       // Unlock does not block, so don't have to worry about the frame.
   618       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   620       push(state);
   621       unlock_object(c_rarg1);
   622       pop(state);
   624       if (install_monitor_exception) {
   625         call_VM(noreg, CAST_FROM_FN_PTR(address,
   626                                         InterpreterRuntime::
   627                                         new_illegal_monitor_state_exception));
   628       }
   630       jmp(restart);
   631     }
   633     bind(loop);
   634     // check if current entry is used
   635     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
   636     jcc(Assembler::notEqual, exception);
   638     addptr(c_rarg1, entry_size); // otherwise advance to next entry
   639     bind(entry);
   640     cmpptr(c_rarg1, rbx); // check if bottom reached
   641     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   642   }
   644   bind(no_unlock);
   646   // jvmti support
   647   if (notify_jvmdi) {
   648     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   649   } else {
   650     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   651   }
   653   // remove activation
   654   // get sender sp
   655   movptr(rbx,
   656          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   657   leave();                           // remove frame anchor
   658   pop(ret_addr);                     // get return address
   659   mov(rsp, rbx);                     // set sp to sender sp
   660 }
   662 #endif // C_INTERP
   664 // Lock object
   665 //
   666 // Args:
   667 //      c_rarg1: BasicObjectLock to be used for locking
   668 //
   669 // Kills:
   670 //      rax
   671 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   672 //      rscratch1, rscratch2 (scratch regs)
   673 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   674   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   676   if (UseHeavyMonitors) {
   677     call_VM(noreg,
   678             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   679             lock_reg);
   680   } else {
   681     Label done;
   683     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   684     const Register obj_reg = c_rarg3; // Will contain the oop
   686     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   687     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   688     const int mark_offset = lock_offset +
   689                             BasicLock::displaced_header_offset_in_bytes();
   691     Label slow_case;
   693     // Load object pointer into obj_reg %c_rarg3
   694     movptr(obj_reg, Address(lock_reg, obj_offset));
   696     if (UseBiasedLocking) {
   697       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   698     }
   700     // Load immediate 1 into swap_reg %rax
   701     movl(swap_reg, 1);
   703     // Load (object->mark() | 1) into swap_reg %rax
   704     orptr(swap_reg, Address(obj_reg, 0));
   706     // Save (object->mark() | 1) into BasicLock's displaced header
   707     movptr(Address(lock_reg, mark_offset), swap_reg);
   709     assert(lock_offset == 0,
   710            "displached header must be first word in BasicObjectLock");
   712     if (os::is_MP()) lock();
   713     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   714     if (PrintBiasedLockingStatistics) {
   715       cond_inc32(Assembler::zero,
   716                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   717     }
   718     jcc(Assembler::zero, done);
   720     // Test if the oopMark is an obvious stack pointer, i.e.,
   721     //  1) (mark & 7) == 0, and
   722     //  2) rsp <= mark < mark + os::pagesize()
   723     //
   724     // These 3 tests can be done by evaluating the following
   725     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   726     // assuming both stack pointer and pagesize have their
   727     // least significant 3 bits clear.
   728     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   729     subptr(swap_reg, rsp);
   730     andptr(swap_reg, 7 - os::vm_page_size());
   732     // Save the test result, for recursive case, the result is zero
   733     movptr(Address(lock_reg, mark_offset), swap_reg);
   735     if (PrintBiasedLockingStatistics) {
   736       cond_inc32(Assembler::zero,
   737                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   738     }
   739     jcc(Assembler::zero, done);
   741     bind(slow_case);
   743     // Call the runtime routine for slow case
   744     call_VM(noreg,
   745             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   746             lock_reg);
   748     bind(done);
   749   }
   750 }
   753 // Unlocks an object. Used in monitorexit bytecode and
   754 // remove_activation.  Throws an IllegalMonitorException if object is
   755 // not locked by current thread.
   756 //
   757 // Args:
   758 //      c_rarg1: BasicObjectLock for lock
   759 //
   760 // Kills:
   761 //      rax
   762 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   763 //      rscratch1, rscratch2 (scratch regs)
   764 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   765   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   767   if (UseHeavyMonitors) {
   768     call_VM(noreg,
   769             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   770             lock_reg);
   771   } else {
   772     Label done;
   774     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   775     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   776     const Register obj_reg    = c_rarg3;  // Will contain the oop
   778     save_bcp(); // Save in case of exception
   780     // Convert from BasicObjectLock structure to object and BasicLock
   781     // structure Store the BasicLock address into %rax
   782     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   784     // Load oop into obj_reg(%c_rarg3)
   785     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   787     // Free entry
   788     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   790     if (UseBiasedLocking) {
   791       biased_locking_exit(obj_reg, header_reg, done);
   792     }
   794     // Load the old header from BasicLock structure
   795     movptr(header_reg, Address(swap_reg,
   796                                BasicLock::displaced_header_offset_in_bytes()));
   798     // Test for recursion
   799     testptr(header_reg, header_reg);
   801     // zero for recursive case
   802     jcc(Assembler::zero, done);
   804     // Atomic swap back the old header
   805     if (os::is_MP()) lock();
   806     cmpxchgptr(header_reg, Address(obj_reg, 0));
   808     // zero for recursive case
   809     jcc(Assembler::zero, done);
   811     // Call the runtime routine for slow case.
   812     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
   813          obj_reg); // restore obj
   814     call_VM(noreg,
   815             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   816             lock_reg);
   818     bind(done);
   820     restore_bcp();
   821   }
   822 }
   824 #ifndef CC_INTERP
   826 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
   827                                                          Label& zero_continue) {
   828   assert(ProfileInterpreter, "must be profiling interpreter");
   829   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   830   testptr(mdp, mdp);
   831   jcc(Assembler::zero, zero_continue);
   832 }
   835 // Set the method data pointer for the current bcp.
   836 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   837   assert(ProfileInterpreter, "must be profiling interpreter");
   838   Label zero_continue;
   839   push(rax);
   840   push(rbx);
   842   get_method(rbx);
   843   // Test MDO to avoid the call if it is NULL.
   844   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   845   testptr(rax, rax);
   846   jcc(Assembler::zero, zero_continue);
   848   // rbx: method
   849   // r13: bcp
   850   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
   851   // rax: mdi
   853   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   854   testptr(rbx, rbx);
   855   jcc(Assembler::zero, zero_continue);
   856   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   857   addptr(rbx, rax);
   858   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
   860   bind(zero_continue);
   861   pop(rbx);
   862   pop(rax);
   863 }
   865 void InterpreterMacroAssembler::verify_method_data_pointer() {
   866   assert(ProfileInterpreter, "must be profiling interpreter");
   867 #ifdef ASSERT
   868   Label verify_continue;
   869   push(rax);
   870   push(rbx);
   871   push(c_rarg3);
   872   push(c_rarg2);
   873   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
   874   get_method(rbx);
   876   // If the mdp is valid, it will point to a DataLayout header which is
   877   // consistent with the bcp.  The converse is highly probable also.
   878   load_unsigned_short(c_rarg2,
   879                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
   880   addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
   881   lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
   882   cmpptr(c_rarg2, r13);
   883   jcc(Assembler::equal, verify_continue);
   884   // rbx: method
   885   // r13: bcp
   886   // c_rarg3: mdp
   887   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
   888                rbx, r13, c_rarg3);
   889   bind(verify_continue);
   890   pop(c_rarg2);
   891   pop(c_rarg3);
   892   pop(rbx);
   893   pop(rax);
   894 #endif // ASSERT
   895 }
   898 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
   899                                                 int constant,
   900                                                 Register value) {
   901   assert(ProfileInterpreter, "must be profiling interpreter");
   902   Address data(mdp_in, constant);
   903   movptr(data, value);
   904 }
   907 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   908                                                       int constant,
   909                                                       bool decrement) {
   910   // Counter address
   911   Address data(mdp_in, constant);
   913   increment_mdp_data_at(data, decrement);
   914 }
   916 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   917                                                       bool decrement) {
   918   assert(ProfileInterpreter, "must be profiling interpreter");
   919   // %%% this does 64bit counters at best it is wasting space
   920   // at worst it is a rare bug when counters overflow
   922   if (decrement) {
   923     // Decrement the register.  Set condition codes.
   924     addptr(data, (int32_t) -DataLayout::counter_increment);
   925     // If the decrement causes the counter to overflow, stay negative
   926     Label L;
   927     jcc(Assembler::negative, L);
   928     addptr(data, (int32_t) DataLayout::counter_increment);
   929     bind(L);
   930   } else {
   931     assert(DataLayout::counter_increment == 1,
   932            "flow-free idiom only works with 1");
   933     // Increment the register.  Set carry flag.
   934     addptr(data, DataLayout::counter_increment);
   935     // If the increment causes the counter to overflow, pull back by 1.
   936     sbbptr(data, (int32_t)0);
   937   }
   938 }
   941 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   942                                                       Register reg,
   943                                                       int constant,
   944                                                       bool decrement) {
   945   Address data(mdp_in, reg, Address::times_1, constant);
   947   increment_mdp_data_at(data, decrement);
   948 }
   950 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
   951                                                 int flag_byte_constant) {
   952   assert(ProfileInterpreter, "must be profiling interpreter");
   953   int header_offset = in_bytes(DataLayout::header_offset());
   954   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   955   // Set the flag
   956   orl(Address(mdp_in, header_offset), header_bits);
   957 }
   961 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   962                                                  int offset,
   963                                                  Register value,
   964                                                  Register test_value_out,
   965                                                  Label& not_equal_continue) {
   966   assert(ProfileInterpreter, "must be profiling interpreter");
   967   if (test_value_out == noreg) {
   968     cmpptr(value, Address(mdp_in, offset));
   969   } else {
   970     // Put the test value into a register, so caller can use it:
   971     movptr(test_value_out, Address(mdp_in, offset));
   972     cmpptr(test_value_out, value);
   973   }
   974   jcc(Assembler::notEqual, not_equal_continue);
   975 }
   978 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
   979                                                      int offset_of_disp) {
   980   assert(ProfileInterpreter, "must be profiling interpreter");
   981   Address disp_address(mdp_in, offset_of_disp);
   982   addptr(mdp_in, disp_address);
   983   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   984 }
   987 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
   988                                                      Register reg,
   989                                                      int offset_of_disp) {
   990   assert(ProfileInterpreter, "must be profiling interpreter");
   991   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   992   addptr(mdp_in, disp_address);
   993   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   994 }
   997 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
   998                                                        int constant) {
   999   assert(ProfileInterpreter, "must be profiling interpreter");
  1000   addptr(mdp_in, constant);
  1001   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1005 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1006   assert(ProfileInterpreter, "must be profiling interpreter");
  1007   push(return_bci); // save/restore across call_VM
  1008   call_VM(noreg,
  1009           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1010           return_bci);
  1011   pop(return_bci);
  1015 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1016                                                      Register bumped_count) {
  1017   if (ProfileInterpreter) {
  1018     Label profile_continue;
  1020     // If no method data exists, go to profile_continue.
  1021     // Otherwise, assign to mdp
  1022     test_method_data_pointer(mdp, profile_continue);
  1024     // We are taking a branch.  Increment the taken count.
  1025     // We inline increment_mdp_data_at to return bumped_count in a register
  1026     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1027     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1028     movptr(bumped_count, data);
  1029     assert(DataLayout::counter_increment == 1,
  1030             "flow-free idiom only works with 1");
  1031     addptr(bumped_count, DataLayout::counter_increment);
  1032     sbbptr(bumped_count, 0);
  1033     movptr(data, bumped_count); // Store back out
  1035     // The method data pointer needs to be updated to reflect the new target.
  1036     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1037     bind(profile_continue);
  1042 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1043   if (ProfileInterpreter) {
  1044     Label profile_continue;
  1046     // If no method data exists, go to profile_continue.
  1047     test_method_data_pointer(mdp, profile_continue);
  1049     // We are taking a branch.  Increment the not taken count.
  1050     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1052     // The method data pointer needs to be updated to correspond to
  1053     // the next bytecode
  1054     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1055     bind(profile_continue);
  1060 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1061   if (ProfileInterpreter) {
  1062     Label profile_continue;
  1064     // If no method data exists, go to profile_continue.
  1065     test_method_data_pointer(mdp, profile_continue);
  1067     // We are making a call.  Increment the count.
  1068     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1070     // The method data pointer needs to be updated to reflect the new target.
  1071     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1072     bind(profile_continue);
  1077 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1078   if (ProfileInterpreter) {
  1079     Label profile_continue;
  1081     // If no method data exists, go to profile_continue.
  1082     test_method_data_pointer(mdp, profile_continue);
  1084     // We are making a call.  Increment the count.
  1085     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1087     // The method data pointer needs to be updated to reflect the new target.
  1088     update_mdp_by_constant(mdp,
  1089                            in_bytes(VirtualCallData::
  1090                                     virtual_call_data_size()));
  1091     bind(profile_continue);
  1096 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1097                                                      Register mdp,
  1098                                                      Register reg2,
  1099                                                      bool receiver_can_be_null) {
  1100   if (ProfileInterpreter) {
  1101     Label profile_continue;
  1103     // If no method data exists, go to profile_continue.
  1104     test_method_data_pointer(mdp, profile_continue);
  1106     Label skip_receiver_profile;
  1107     if (receiver_can_be_null) {
  1108       Label not_null;
  1109       testptr(receiver, receiver);
  1110       jccb(Assembler::notZero, not_null);
  1111       // We are making a call.  Increment the count for null receiver.
  1112       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1113       jmp(skip_receiver_profile);
  1114       bind(not_null);
  1117     // Record the receiver type.
  1118     record_klass_in_profile(receiver, mdp, reg2, true);
  1119     bind(skip_receiver_profile);
  1121     // The method data pointer needs to be updated to reflect the new target.
  1122     update_mdp_by_constant(mdp,
  1123                            in_bytes(VirtualCallData::
  1124                                     virtual_call_data_size()));
  1125     bind(profile_continue);
  1129 // This routine creates a state machine for updating the multi-row
  1130 // type profile at a virtual call site (or other type-sensitive bytecode).
  1131 // The machine visits each row (of receiver/count) until the receiver type
  1132 // is found, or until it runs out of rows.  At the same time, it remembers
  1133 // the location of the first empty row.  (An empty row records null for its
  1134 // receiver, and can be allocated for a newly-observed receiver type.)
  1135 // Because there are two degrees of freedom in the state, a simple linear
  1136 // search will not work; it must be a decision tree.  Hence this helper
  1137 // function is recursive, to generate the required tree structured code.
  1138 // It's the interpreter, so we are trading off code space for speed.
  1139 // See below for example code.
  1140 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1141                                         Register receiver, Register mdp,
  1142                                         Register reg2, int start_row,
  1143                                         Label& done, bool is_virtual_call) {
  1144   if (TypeProfileWidth == 0) {
  1145     if (is_virtual_call) {
  1146       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1148     return;
  1151   int last_row = VirtualCallData::row_limit() - 1;
  1152   assert(start_row <= last_row, "must be work left to do");
  1153   // Test this row for both the receiver and for null.
  1154   // Take any of three different outcomes:
  1155   //   1. found receiver => increment count and goto done
  1156   //   2. found null => keep looking for case 1, maybe allocate this cell
  1157   //   3. found something else => keep looking for cases 1 and 2
  1158   // Case 3 is handled by a recursive call.
  1159   for (int row = start_row; row <= last_row; row++) {
  1160     Label next_test;
  1161     bool test_for_null_also = (row == start_row);
  1163     // See if the receiver is receiver[n].
  1164     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1165     test_mdp_data_at(mdp, recvr_offset, receiver,
  1166                      (test_for_null_also ? reg2 : noreg),
  1167                      next_test);
  1168     // (Reg2 now contains the receiver from the CallData.)
  1170     // The receiver is receiver[n].  Increment count[n].
  1171     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1172     increment_mdp_data_at(mdp, count_offset);
  1173     jmp(done);
  1174     bind(next_test);
  1176     if (test_for_null_also) {
  1177       Label found_null;
  1178       // Failed the equality check on receiver[n]...  Test for null.
  1179       testptr(reg2, reg2);
  1180       if (start_row == last_row) {
  1181         // The only thing left to do is handle the null case.
  1182         if (is_virtual_call) {
  1183           jccb(Assembler::zero, found_null);
  1184           // Receiver did not match any saved receiver and there is no empty row for it.
  1185           // Increment total counter to indicate polymorphic case.
  1186           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1187           jmp(done);
  1188           bind(found_null);
  1189         } else {
  1190           jcc(Assembler::notZero, done);
  1192         break;
  1194       // Since null is rare, make it be the branch-taken case.
  1195       jcc(Assembler::zero, found_null);
  1197       // Put all the "Case 3" tests here.
  1198       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1200       // Found a null.  Keep searching for a matching receiver,
  1201       // but remember that this is an empty (unused) slot.
  1202       bind(found_null);
  1206   // In the fall-through case, we found no matching receiver, but we
  1207   // observed the receiver[start_row] is NULL.
  1209   // Fill in the receiver field and increment the count.
  1210   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1211   set_mdp_data_at(mdp, recvr_offset, receiver);
  1212   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1213   movl(reg2, DataLayout::counter_increment);
  1214   set_mdp_data_at(mdp, count_offset, reg2);
  1215   if (start_row > 0) {
  1216     jmp(done);
  1220 // Example state machine code for three profile rows:
  1221 //   // main copy of decision tree, rooted at row[1]
  1222 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1223 //   if (row[0].rec != NULL) {
  1224 //     // inner copy of decision tree, rooted at row[1]
  1225 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1226 //     if (row[1].rec != NULL) {
  1227 //       // degenerate decision tree, rooted at row[2]
  1228 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1229 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
  1230 //       row[2].init(rec); goto done;
  1231 //     } else {
  1232 //       // remember row[1] is empty
  1233 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1234 //       row[1].init(rec); goto done;
  1235 //     }
  1236 //   } else {
  1237 //     // remember row[0] is empty
  1238 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1239 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1240 //     row[0].init(rec); goto done;
  1241 //   }
  1242 //   done:
  1244 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1245                                                         Register mdp, Register reg2,
  1246                                                         bool is_virtual_call) {
  1247   assert(ProfileInterpreter, "must be profiling");
  1248   Label done;
  1250   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1252   bind (done);
  1255 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1256                                             Register mdp) {
  1257   if (ProfileInterpreter) {
  1258     Label profile_continue;
  1259     uint row;
  1261     // If no method data exists, go to profile_continue.
  1262     test_method_data_pointer(mdp, profile_continue);
  1264     // Update the total ret count.
  1265     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1267     for (row = 0; row < RetData::row_limit(); row++) {
  1268       Label next_test;
  1270       // See if return_bci is equal to bci[n]:
  1271       test_mdp_data_at(mdp,
  1272                        in_bytes(RetData::bci_offset(row)),
  1273                        return_bci, noreg,
  1274                        next_test);
  1276       // return_bci is equal to bci[n].  Increment the count.
  1277       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1279       // The method data pointer needs to be updated to reflect the new target.
  1280       update_mdp_by_offset(mdp,
  1281                            in_bytes(RetData::bci_displacement_offset(row)));
  1282       jmp(profile_continue);
  1283       bind(next_test);
  1286     update_mdp_for_ret(return_bci);
  1288     bind(profile_continue);
  1293 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1294   if (ProfileInterpreter) {
  1295     Label profile_continue;
  1297     // If no method data exists, go to profile_continue.
  1298     test_method_data_pointer(mdp, profile_continue);
  1300     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1302     // The method data pointer needs to be updated.
  1303     int mdp_delta = in_bytes(BitData::bit_data_size());
  1304     if (TypeProfileCasts) {
  1305       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1307     update_mdp_by_constant(mdp, mdp_delta);
  1309     bind(profile_continue);
  1314 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1315   if (ProfileInterpreter && TypeProfileCasts) {
  1316     Label profile_continue;
  1318     // If no method data exists, go to profile_continue.
  1319     test_method_data_pointer(mdp, profile_continue);
  1321     int count_offset = in_bytes(CounterData::count_offset());
  1322     // Back up the address, since we have already bumped the mdp.
  1323     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1325     // *Decrement* the counter.  We expect to see zero or small negatives.
  1326     increment_mdp_data_at(mdp, count_offset, true);
  1328     bind (profile_continue);
  1333 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1334   if (ProfileInterpreter) {
  1335     Label profile_continue;
  1337     // If no method data exists, go to profile_continue.
  1338     test_method_data_pointer(mdp, profile_continue);
  1340     // The method data pointer needs to be updated.
  1341     int mdp_delta = in_bytes(BitData::bit_data_size());
  1342     if (TypeProfileCasts) {
  1343       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1345       // Record the object type.
  1346       record_klass_in_profile(klass, mdp, reg2, false);
  1348     update_mdp_by_constant(mdp, mdp_delta);
  1350     bind(profile_continue);
  1355 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1356   if (ProfileInterpreter) {
  1357     Label profile_continue;
  1359     // If no method data exists, go to profile_continue.
  1360     test_method_data_pointer(mdp, profile_continue);
  1362     // Update the default case count
  1363     increment_mdp_data_at(mdp,
  1364                           in_bytes(MultiBranchData::default_count_offset()));
  1366     // The method data pointer needs to be updated.
  1367     update_mdp_by_offset(mdp,
  1368                          in_bytes(MultiBranchData::
  1369                                   default_displacement_offset()));
  1371     bind(profile_continue);
  1376 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1377                                                     Register mdp,
  1378                                                     Register reg2) {
  1379   if (ProfileInterpreter) {
  1380     Label profile_continue;
  1382     // If no method data exists, go to profile_continue.
  1383     test_method_data_pointer(mdp, profile_continue);
  1385     // Build the base (index * per_case_size_in_bytes()) +
  1386     // case_array_offset_in_bytes()
  1387     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1388     imulptr(index, reg2); // XXX l ?
  1389     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1391     // Update the case count
  1392     increment_mdp_data_at(mdp,
  1393                           index,
  1394                           in_bytes(MultiBranchData::relative_count_offset()));
  1396     // The method data pointer needs to be updated.
  1397     update_mdp_by_offset(mdp,
  1398                          index,
  1399                          in_bytes(MultiBranchData::
  1400                                   relative_displacement_offset()));
  1402     bind(profile_continue);
  1408 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1409   if (state == atos) {
  1410     MacroAssembler::verify_oop(reg);
  1414 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1416 #endif // !CC_INTERP
  1419 void InterpreterMacroAssembler::notify_method_entry() {
  1420   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1421   // track stack depth.  If it is possible to enter interp_only_mode we add
  1422   // the code to check if the event should be sent.
  1423   if (JvmtiExport::can_post_interpreter_events()) {
  1424     Label L;
  1425     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1426     testl(rdx, rdx);
  1427     jcc(Assembler::zero, L);
  1428     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1429                                     InterpreterRuntime::post_method_entry));
  1430     bind(L);
  1434     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1435     get_method(c_rarg1);
  1436     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1437                  r15_thread, c_rarg1);
  1440   // RedefineClasses() tracing support for obsolete method entry
  1441   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1442     get_method(c_rarg1);
  1443     call_VM_leaf(
  1444       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1445       r15_thread, c_rarg1);
  1450 void InterpreterMacroAssembler::notify_method_exit(
  1451     TosState state, NotifyMethodExitMode mode) {
  1452   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1453   // track stack depth.  If it is possible to enter interp_only_mode we add
  1454   // the code to check if the event should be sent.
  1455   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1456     Label L;
  1457     // Note: frame::interpreter_frame_result has a dependency on how the
  1458     // method result is saved across the call to post_method_exit. If this
  1459     // is changed then the interpreter_frame_result implementation will
  1460     // need to be updated too.
  1462     // For c++ interpreter the result is always stored at a known location in the frame
  1463     // template interpreter will leave it on the top of the stack.
  1464     NOT_CC_INTERP(push(state);)
  1465     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1466     testl(rdx, rdx);
  1467     jcc(Assembler::zero, L);
  1468     call_VM(noreg,
  1469             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1470     bind(L);
  1471     NOT_CC_INTERP(pop(state));
  1475     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1476     NOT_CC_INTERP(push(state));
  1477     get_method(c_rarg1);
  1478     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1479                  r15_thread, c_rarg1);
  1480     NOT_CC_INTERP(pop(state));
  1484 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1485 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1486                                                         int increment, int mask,
  1487                                                         Register scratch, bool preloaded,
  1488                                                         Condition cond, Label* where) {
  1489   if (!preloaded) {
  1490     movl(scratch, counter_addr);
  1492   incrementl(scratch, increment);
  1493   movl(counter_addr, scratch);
  1494   andl(scratch, mask);
  1495   jcc(cond, *where);

mercurial