src/share/vm/memory/defNewGeneration.cpp

Mon, 16 Apr 2012 08:57:18 +0200

author
brutisso
date
Mon, 16 Apr 2012 08:57:18 +0200
changeset 3711
b632e80fc9dc
parent 3538
d903bf750e9f
child 3767
9d679effd28c
permissions
-rw-r--r--

4988100: oop_verify_old_oop appears to be dead
Summary: removed oop_verify_old_oop and allow_dirty. Also reviewed by: alexlamsl@gmail.com
Reviewed-by: jmasa, jwilhelm

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
    29 #include "memory/defNewGeneration.inline.hpp"
    30 #include "memory/gcLocker.inline.hpp"
    31 #include "memory/genCollectedHeap.hpp"
    32 #include "memory/genOopClosures.inline.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "memory/referencePolicy.hpp"
    36 #include "memory/space.inline.hpp"
    37 #include "oops/instanceRefKlass.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "utilities/copy.hpp"
    41 #include "utilities/stack.inline.hpp"
    42 #ifdef TARGET_OS_FAMILY_linux
    43 # include "thread_linux.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_solaris
    46 # include "thread_solaris.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_windows
    49 # include "thread_windows.inline.hpp"
    50 #endif
    51 #ifdef TARGET_OS_FAMILY_bsd
    52 # include "thread_bsd.inline.hpp"
    53 #endif
    55 //
    56 // DefNewGeneration functions.
    58 // Methods of protected closure types.
    60 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    61   assert(g->level() == 0, "Optimized for youngest gen.");
    62 }
    63 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
    64   assert(false, "Do not call.");
    65 }
    66 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    67   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    68 }
    70 DefNewGeneration::KeepAliveClosure::
    71 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    72   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    73   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    74   _rs = (CardTableRS*)rs;
    75 }
    77 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    78 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    81 DefNewGeneration::FastKeepAliveClosure::
    82 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    83   DefNewGeneration::KeepAliveClosure(cl) {
    84   _boundary = g->reserved().end();
    85 }
    87 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    88 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    90 DefNewGeneration::EvacuateFollowersClosure::
    91 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    92                          ScanClosure* cur, ScanClosure* older) :
    93   _gch(gch), _level(level),
    94   _scan_cur_or_nonheap(cur), _scan_older(older)
    95 {}
    97 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    98   do {
    99     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   100                                        _scan_older);
   101   } while (!_gch->no_allocs_since_save_marks(_level));
   102 }
   104 DefNewGeneration::FastEvacuateFollowersClosure::
   105 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
   106                              DefNewGeneration* gen,
   107                              FastScanClosure* cur, FastScanClosure* older) :
   108   _gch(gch), _level(level), _gen(gen),
   109   _scan_cur_or_nonheap(cur), _scan_older(older)
   110 {}
   112 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   113   do {
   114     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   115                                        _scan_older);
   116   } while (!_gch->no_allocs_since_save_marks(_level));
   117   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   118 }
   120 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   121   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   122 {
   123   assert(_g->level() == 0, "Optimized for youngest generation");
   124   _boundary = _g->reserved().end();
   125 }
   127 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   128 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   130 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   131   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   132 {
   133   assert(_g->level() == 0, "Optimized for youngest generation");
   134   _boundary = _g->reserved().end();
   135 }
   137 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   138 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   140 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   141   OopClosure(g->ref_processor()), _g(g)
   142 {
   143   assert(_g->level() == 0, "Optimized for youngest generation");
   144   _boundary = _g->reserved().end();
   145 }
   147 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   148 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   150 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   151 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   153 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   154                                    size_t initial_size,
   155                                    int level,
   156                                    const char* policy)
   157   : Generation(rs, initial_size, level),
   158     _promo_failure_drain_in_progress(false),
   159     _should_allocate_from_space(false)
   160 {
   161   MemRegion cmr((HeapWord*)_virtual_space.low(),
   162                 (HeapWord*)_virtual_space.high());
   163   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   165   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   166     _eden_space = new ConcEdenSpace(this);
   167   } else {
   168     _eden_space = new EdenSpace(this);
   169   }
   170   _from_space = new ContiguousSpace();
   171   _to_space   = new ContiguousSpace();
   173   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   174     vm_exit_during_initialization("Could not allocate a new gen space");
   176   // Compute the maximum eden and survivor space sizes. These sizes
   177   // are computed assuming the entire reserved space is committed.
   178   // These values are exported as performance counters.
   179   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   180   uintx size = _virtual_space.reserved_size();
   181   _max_survivor_size = compute_survivor_size(size, alignment);
   182   _max_eden_size = size - (2*_max_survivor_size);
   184   // allocate the performance counters
   186   // Generation counters -- generation 0, 3 subspaces
   187   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   188   _gc_counters = new CollectorCounters(policy, 0);
   190   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   191                                       _gen_counters);
   192   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   193                                       _gen_counters);
   194   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   195                                     _gen_counters);
   197   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   198   update_counters();
   199   _next_gen = NULL;
   200   _tenuring_threshold = MaxTenuringThreshold;
   201   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   202 }
   204 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   205                                                 bool clear_space,
   206                                                 bool mangle_space) {
   207   uintx alignment =
   208     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   210   // If the spaces are being cleared (only done at heap initialization
   211   // currently), the survivor spaces need not be empty.
   212   // Otherwise, no care is taken for used areas in the survivor spaces
   213   // so check.
   214   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   215     "Initialization of the survivor spaces assumes these are empty");
   217   // Compute sizes
   218   uintx size = _virtual_space.committed_size();
   219   uintx survivor_size = compute_survivor_size(size, alignment);
   220   uintx eden_size = size - (2*survivor_size);
   221   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   223   if (eden_size < minimum_eden_size) {
   224     // May happen due to 64Kb rounding, if so adjust eden size back up
   225     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   226     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   227     uintx unaligned_survivor_size =
   228       align_size_down(maximum_survivor_size, alignment);
   229     survivor_size = MAX2(unaligned_survivor_size, alignment);
   230     eden_size = size - (2*survivor_size);
   231     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   232     assert(eden_size >= minimum_eden_size, "just checking");
   233   }
   235   char *eden_start = _virtual_space.low();
   236   char *from_start = eden_start + eden_size;
   237   char *to_start   = from_start + survivor_size;
   238   char *to_end     = to_start   + survivor_size;
   240   assert(to_end == _virtual_space.high(), "just checking");
   241   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   242   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   243   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   245   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   246   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   247   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   249   // A minimum eden size implies that there is a part of eden that
   250   // is being used and that affects the initialization of any
   251   // newly formed eden.
   252   bool live_in_eden = minimum_eden_size > 0;
   254   // If not clearing the spaces, do some checking to verify that
   255   // the space are already mangled.
   256   if (!clear_space) {
   257     // Must check mangling before the spaces are reshaped.  Otherwise,
   258     // the bottom or end of one space may have moved into another
   259     // a failure of the check may not correctly indicate which space
   260     // is not properly mangled.
   261     if (ZapUnusedHeapArea) {
   262       HeapWord* limit = (HeapWord*) _virtual_space.high();
   263       eden()->check_mangled_unused_area(limit);
   264       from()->check_mangled_unused_area(limit);
   265         to()->check_mangled_unused_area(limit);
   266     }
   267   }
   269   // Reset the spaces for their new regions.
   270   eden()->initialize(edenMR,
   271                      clear_space && !live_in_eden,
   272                      SpaceDecorator::Mangle);
   273   // If clear_space and live_in_eden, we will not have cleared any
   274   // portion of eden above its top. This can cause newly
   275   // expanded space not to be mangled if using ZapUnusedHeapArea.
   276   // We explicitly do such mangling here.
   277   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   278     eden()->mangle_unused_area();
   279   }
   280   from()->initialize(fromMR, clear_space, mangle_space);
   281   to()->initialize(toMR, clear_space, mangle_space);
   283   // Set next compaction spaces.
   284   eden()->set_next_compaction_space(from());
   285   // The to-space is normally empty before a compaction so need
   286   // not be considered.  The exception is during promotion
   287   // failure handling when to-space can contain live objects.
   288   from()->set_next_compaction_space(NULL);
   289 }
   291 void DefNewGeneration::swap_spaces() {
   292   ContiguousSpace* s = from();
   293   _from_space        = to();
   294   _to_space          = s;
   295   eden()->set_next_compaction_space(from());
   296   // The to-space is normally empty before a compaction so need
   297   // not be considered.  The exception is during promotion
   298   // failure handling when to-space can contain live objects.
   299   from()->set_next_compaction_space(NULL);
   301   if (UsePerfData) {
   302     CSpaceCounters* c = _from_counters;
   303     _from_counters = _to_counters;
   304     _to_counters = c;
   305   }
   306 }
   308 bool DefNewGeneration::expand(size_t bytes) {
   309   MutexLocker x(ExpandHeap_lock);
   310   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   311   bool success = _virtual_space.expand_by(bytes);
   312   if (success && ZapUnusedHeapArea) {
   313     // Mangle newly committed space immediately because it
   314     // can be done here more simply that after the new
   315     // spaces have been computed.
   316     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   317     MemRegion mangle_region(prev_high, new_high);
   318     SpaceMangler::mangle_region(mangle_region);
   319   }
   321   // Do not attempt an expand-to-the reserve size.  The
   322   // request should properly observe the maximum size of
   323   // the generation so an expand-to-reserve should be
   324   // unnecessary.  Also a second call to expand-to-reserve
   325   // value potentially can cause an undue expansion.
   326   // For example if the first expand fail for unknown reasons,
   327   // but the second succeeds and expands the heap to its maximum
   328   // value.
   329   if (GC_locker::is_active()) {
   330     if (PrintGC && Verbose) {
   331       gclog_or_tty->print_cr("Garbage collection disabled, "
   332         "expanded heap instead");
   333     }
   334   }
   336   return success;
   337 }
   340 void DefNewGeneration::compute_new_size() {
   341   // This is called after a gc that includes the following generation
   342   // (which is required to exist.)  So from-space will normally be empty.
   343   // Note that we check both spaces, since if scavenge failed they revert roles.
   344   // If not we bail out (otherwise we would have to relocate the objects)
   345   if (!from()->is_empty() || !to()->is_empty()) {
   346     return;
   347   }
   349   int next_level = level() + 1;
   350   GenCollectedHeap* gch = GenCollectedHeap::heap();
   351   assert(next_level < gch->_n_gens,
   352          "DefNewGeneration cannot be an oldest gen");
   354   Generation* next_gen = gch->_gens[next_level];
   355   size_t old_size = next_gen->capacity();
   356   size_t new_size_before = _virtual_space.committed_size();
   357   size_t min_new_size = spec()->init_size();
   358   size_t max_new_size = reserved().byte_size();
   359   assert(min_new_size <= new_size_before &&
   360          new_size_before <= max_new_size,
   361          "just checking");
   362   // All space sizes must be multiples of Generation::GenGrain.
   363   size_t alignment = Generation::GenGrain;
   365   // Compute desired new generation size based on NewRatio and
   366   // NewSizeThreadIncrease
   367   size_t desired_new_size = old_size/NewRatio;
   368   int threads_count = Threads::number_of_non_daemon_threads();
   369   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   370   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   372   // Adjust new generation size
   373   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   374   assert(desired_new_size <= max_new_size, "just checking");
   376   bool changed = false;
   377   if (desired_new_size > new_size_before) {
   378     size_t change = desired_new_size - new_size_before;
   379     assert(change % alignment == 0, "just checking");
   380     if (expand(change)) {
   381        changed = true;
   382     }
   383     // If the heap failed to expand to the desired size,
   384     // "changed" will be false.  If the expansion failed
   385     // (and at this point it was expected to succeed),
   386     // ignore the failure (leaving "changed" as false).
   387   }
   388   if (desired_new_size < new_size_before && eden()->is_empty()) {
   389     // bail out of shrinking if objects in eden
   390     size_t change = new_size_before - desired_new_size;
   391     assert(change % alignment == 0, "just checking");
   392     _virtual_space.shrink_by(change);
   393     changed = true;
   394   }
   395   if (changed) {
   396     // The spaces have already been mangled at this point but
   397     // may not have been cleared (set top = bottom) and should be.
   398     // Mangling was done when the heap was being expanded.
   399     compute_space_boundaries(eden()->used(),
   400                              SpaceDecorator::Clear,
   401                              SpaceDecorator::DontMangle);
   402     MemRegion cmr((HeapWord*)_virtual_space.low(),
   403                   (HeapWord*)_virtual_space.high());
   404     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   405     if (Verbose && PrintGC) {
   406       size_t new_size_after  = _virtual_space.committed_size();
   407       size_t eden_size_after = eden()->capacity();
   408       size_t survivor_size_after = from()->capacity();
   409       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   410         SIZE_FORMAT "K [eden="
   411         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   412         new_size_before/K, new_size_after/K,
   413         eden_size_after/K, survivor_size_after/K);
   414       if (WizardMode) {
   415         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   416           thread_increase_size/K, threads_count);
   417       }
   418       gclog_or_tty->cr();
   419     }
   420   }
   421 }
   423 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
   424   // $$$ This may be wrong in case of "scavenge failure"?
   425   eden()->object_iterate(cl);
   426 }
   428 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   429   assert(false, "NYI -- are you sure you want to call this?");
   430 }
   433 size_t DefNewGeneration::capacity() const {
   434   return eden()->capacity()
   435        + from()->capacity();  // to() is only used during scavenge
   436 }
   439 size_t DefNewGeneration::used() const {
   440   return eden()->used()
   441        + from()->used();      // to() is only used during scavenge
   442 }
   445 size_t DefNewGeneration::free() const {
   446   return eden()->free()
   447        + from()->free();      // to() is only used during scavenge
   448 }
   450 size_t DefNewGeneration::max_capacity() const {
   451   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   452   const size_t reserved_bytes = reserved().byte_size();
   453   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   454 }
   456 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   457   return eden()->free();
   458 }
   460 size_t DefNewGeneration::capacity_before_gc() const {
   461   return eden()->capacity();
   462 }
   464 size_t DefNewGeneration::contiguous_available() const {
   465   return eden()->free();
   466 }
   469 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   470 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   472 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   473   eden()->object_iterate(blk);
   474   from()->object_iterate(blk);
   475 }
   478 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   479                                      bool usedOnly) {
   480   blk->do_space(eden());
   481   blk->do_space(from());
   482   blk->do_space(to());
   483 }
   485 // The last collection bailed out, we are running out of heap space,
   486 // so we try to allocate the from-space, too.
   487 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   488   HeapWord* result = NULL;
   489   if (Verbose && PrintGCDetails) {
   490     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   491                         "  will_fail: %s"
   492                         "  heap_lock: %s"
   493                         "  free: " SIZE_FORMAT,
   494                         size,
   495                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   496                           "true" : "false",
   497                         Heap_lock->is_locked() ? "locked" : "unlocked",
   498                         from()->free());
   499   }
   500   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   501     if (Heap_lock->owned_by_self() ||
   502         (SafepointSynchronize::is_at_safepoint() &&
   503          Thread::current()->is_VM_thread())) {
   504       // If the Heap_lock is not locked by this thread, this will be called
   505       // again later with the Heap_lock held.
   506       result = from()->allocate(size);
   507     } else if (PrintGC && Verbose) {
   508       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   509     }
   510   } else if (PrintGC && Verbose) {
   511     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   512   }
   513   if (PrintGC && Verbose) {
   514     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   515   }
   516   return result;
   517 }
   519 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   520                                                 bool   is_tlab,
   521                                                 bool   parallel) {
   522   // We don't attempt to expand the young generation (but perhaps we should.)
   523   return allocate(size, is_tlab);
   524 }
   527 void DefNewGeneration::collect(bool   full,
   528                                bool   clear_all_soft_refs,
   529                                size_t size,
   530                                bool   is_tlab) {
   531   assert(full || size > 0, "otherwise we don't want to collect");
   532   GenCollectedHeap* gch = GenCollectedHeap::heap();
   533   _next_gen = gch->next_gen(this);
   534   assert(_next_gen != NULL,
   535     "This must be the youngest gen, and not the only gen");
   537   // If the next generation is too full to accomodate promotion
   538   // from this generation, pass on collection; let the next generation
   539   // do it.
   540   if (!collection_attempt_is_safe()) {
   541     if (Verbose && PrintGCDetails) {
   542       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   543     }
   544     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   545     return;
   546   }
   547   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   549   init_assuming_no_promotion_failure();
   551   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
   552   // Capture heap used before collection (for printing).
   553   size_t gch_prev_used = gch->used();
   555   SpecializationStats::clear();
   557   // These can be shared for all code paths
   558   IsAliveClosure is_alive(this);
   559   ScanWeakRefClosure scan_weak_ref(this);
   561   age_table()->clear();
   562   to()->clear(SpaceDecorator::Mangle);
   564   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   566   assert(gch->no_allocs_since_save_marks(0),
   567          "save marks have not been newly set.");
   569   // Not very pretty.
   570   CollectorPolicy* cp = gch->collector_policy();
   572   FastScanClosure fsc_with_no_gc_barrier(this, false);
   573   FastScanClosure fsc_with_gc_barrier(this, true);
   575   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   576   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   577                                                   &fsc_with_no_gc_barrier,
   578                                                   &fsc_with_gc_barrier);
   580   assert(gch->no_allocs_since_save_marks(0),
   581          "save marks have not been newly set.");
   583   gch->gen_process_strong_roots(_level,
   584                                 true,  // Process younger gens, if any,
   585                                        // as strong roots.
   586                                 true,  // activate StrongRootsScope
   587                                 false, // not collecting perm generation.
   588                                 SharedHeap::SO_AllClasses,
   589                                 &fsc_with_no_gc_barrier,
   590                                 true,   // walk *all* scavengable nmethods
   591                                 &fsc_with_gc_barrier);
   593   // "evacuate followers".
   594   evacuate_followers.do_void();
   596   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   597   ReferenceProcessor* rp = ref_processor();
   598   rp->setup_policy(clear_all_soft_refs);
   599   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   600                                     NULL);
   601   if (!promotion_failed()) {
   602     // Swap the survivor spaces.
   603     eden()->clear(SpaceDecorator::Mangle);
   604     from()->clear(SpaceDecorator::Mangle);
   605     if (ZapUnusedHeapArea) {
   606       // This is now done here because of the piece-meal mangling which
   607       // can check for valid mangling at intermediate points in the
   608       // collection(s).  When a minor collection fails to collect
   609       // sufficient space resizing of the young generation can occur
   610       // an redistribute the spaces in the young generation.  Mangle
   611       // here so that unzapped regions don't get distributed to
   612       // other spaces.
   613       to()->mangle_unused_area();
   614     }
   615     swap_spaces();
   617     assert(to()->is_empty(), "to space should be empty now");
   619     // Set the desired survivor size to half the real survivor space
   620     _tenuring_threshold =
   621       age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   623     // A successful scavenge should restart the GC time limit count which is
   624     // for full GC's.
   625     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   626     size_policy->reset_gc_overhead_limit_count();
   627     if (PrintGC && !PrintGCDetails) {
   628       gch->print_heap_change(gch_prev_used);
   629     }
   630     assert(!gch->incremental_collection_failed(), "Should be clear");
   631   } else {
   632     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   633     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   635     remove_forwarding_pointers();
   636     if (PrintGCDetails) {
   637       gclog_or_tty->print(" (promotion failed) ");
   638     }
   639     // Add to-space to the list of space to compact
   640     // when a promotion failure has occurred.  In that
   641     // case there can be live objects in to-space
   642     // as a result of a partial evacuation of eden
   643     // and from-space.
   644     swap_spaces();   // For uniformity wrt ParNewGeneration.
   645     from()->set_next_compaction_space(to());
   646     gch->set_incremental_collection_failed();
   648     // Inform the next generation that a promotion failure occurred.
   649     _next_gen->promotion_failure_occurred();
   651     // Reset the PromotionFailureALot counters.
   652     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   653   }
   654   // set new iteration safe limit for the survivor spaces
   655   from()->set_concurrent_iteration_safe_limit(from()->top());
   656   to()->set_concurrent_iteration_safe_limit(to()->top());
   657   SpecializationStats::print();
   659   // We need to use a monotonically non-deccreasing time in ms
   660   // or we will see time-warp warnings and os::javaTimeMillis()
   661   // does not guarantee monotonicity.
   662   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   663   update_time_of_last_gc(now);
   664 }
   666 class RemoveForwardPointerClosure: public ObjectClosure {
   667 public:
   668   void do_object(oop obj) {
   669     obj->init_mark();
   670   }
   671 };
   673 void DefNewGeneration::init_assuming_no_promotion_failure() {
   674   _promotion_failed = false;
   675   from()->set_next_compaction_space(NULL);
   676 }
   678 void DefNewGeneration::remove_forwarding_pointers() {
   679   RemoveForwardPointerClosure rspc;
   680   eden()->object_iterate(&rspc);
   681   from()->object_iterate(&rspc);
   683   // Now restore saved marks, if any.
   684   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   685          "should be the same");
   686   while (!_objs_with_preserved_marks.is_empty()) {
   687     oop obj   = _objs_with_preserved_marks.pop();
   688     markOop m = _preserved_marks_of_objs.pop();
   689     obj->set_mark(m);
   690   }
   691   _objs_with_preserved_marks.clear(true);
   692   _preserved_marks_of_objs.clear(true);
   693 }
   695 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   696   assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
   697          "Oversaving!");
   698   _objs_with_preserved_marks.push(obj);
   699   _preserved_marks_of_objs.push(m);
   700 }
   702 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   703   if (m->must_be_preserved_for_promotion_failure(obj)) {
   704     preserve_mark(obj, m);
   705   }
   706 }
   708 void DefNewGeneration::handle_promotion_failure(oop old) {
   709   if (PrintPromotionFailure && !_promotion_failed) {
   710     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   711                         old->size());
   712   }
   713   _promotion_failed = true;
   714   preserve_mark_if_necessary(old, old->mark());
   715   // forward to self
   716   old->forward_to(old);
   718   _promo_failure_scan_stack.push(old);
   720   if (!_promo_failure_drain_in_progress) {
   721     // prevent recursion in copy_to_survivor_space()
   722     _promo_failure_drain_in_progress = true;
   723     drain_promo_failure_scan_stack();
   724     _promo_failure_drain_in_progress = false;
   725   }
   726 }
   728 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   729   assert(is_in_reserved(old) && !old->is_forwarded(),
   730          "shouldn't be scavenging this oop");
   731   size_t s = old->size();
   732   oop obj = NULL;
   734   // Try allocating obj in to-space (unless too old)
   735   if (old->age() < tenuring_threshold()) {
   736     obj = (oop) to()->allocate(s);
   737   }
   739   // Otherwise try allocating obj tenured
   740   if (obj == NULL) {
   741     obj = _next_gen->promote(old, s);
   742     if (obj == NULL) {
   743       handle_promotion_failure(old);
   744       return old;
   745     }
   746   } else {
   747     // Prefetch beyond obj
   748     const intx interval = PrefetchCopyIntervalInBytes;
   749     Prefetch::write(obj, interval);
   751     // Copy obj
   752     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   754     // Increment age if obj still in new generation
   755     obj->incr_age();
   756     age_table()->add(obj, s);
   757   }
   759   // Done, insert forward pointer to obj in this header
   760   old->forward_to(obj);
   762   return obj;
   763 }
   765 void DefNewGeneration::drain_promo_failure_scan_stack() {
   766   while (!_promo_failure_scan_stack.is_empty()) {
   767      oop obj = _promo_failure_scan_stack.pop();
   768      obj->oop_iterate(_promo_failure_scan_stack_closure);
   769   }
   770 }
   772 void DefNewGeneration::save_marks() {
   773   eden()->set_saved_mark();
   774   to()->set_saved_mark();
   775   from()->set_saved_mark();
   776 }
   779 void DefNewGeneration::reset_saved_marks() {
   780   eden()->reset_saved_mark();
   781   to()->reset_saved_mark();
   782   from()->reset_saved_mark();
   783 }
   786 bool DefNewGeneration::no_allocs_since_save_marks() {
   787   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   788   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   789   return to()->saved_mark_at_top();
   790 }
   792 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   793                                                                 \
   794 void DefNewGeneration::                                         \
   795 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   796   cl->set_generation(this);                                     \
   797   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   798   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   799   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   800   cl->reset_generation();                                       \
   801   save_marks();                                                 \
   802 }
   804 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   806 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   808 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   809                                          size_t max_alloc_words) {
   810   if (requestor == this || _promotion_failed) return;
   811   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   813   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   814   if (to_space->top() > to_space->bottom()) {
   815     trace("to_space not empty when contribute_scratch called");
   816   }
   817   */
   819   ContiguousSpace* to_space = to();
   820   assert(to_space->end() >= to_space->top(), "pointers out of order");
   821   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   822   if (free_words >= MinFreeScratchWords) {
   823     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   824     sb->num_words = free_words;
   825     sb->next = list;
   826     list = sb;
   827   }
   828 }
   830 void DefNewGeneration::reset_scratch() {
   831   // If contributing scratch in to_space, mangle all of
   832   // to_space if ZapUnusedHeapArea.  This is needed because
   833   // top is not maintained while using to-space as scratch.
   834   if (ZapUnusedHeapArea) {
   835     to()->mangle_unused_area_complete();
   836   }
   837 }
   839 bool DefNewGeneration::collection_attempt_is_safe() {
   840   if (!to()->is_empty()) {
   841     if (Verbose && PrintGCDetails) {
   842       gclog_or_tty->print(" :: to is not empty :: ");
   843     }
   844     return false;
   845   }
   846   if (_next_gen == NULL) {
   847     GenCollectedHeap* gch = GenCollectedHeap::heap();
   848     _next_gen = gch->next_gen(this);
   849     assert(_next_gen != NULL,
   850            "This must be the youngest gen, and not the only gen");
   851   }
   852   return _next_gen->promotion_attempt_is_safe(used());
   853 }
   855 void DefNewGeneration::gc_epilogue(bool full) {
   856   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   858   assert(!GC_locker::is_active(), "We should not be executing here");
   859   // Check if the heap is approaching full after a collection has
   860   // been done.  Generally the young generation is empty at
   861   // a minimum at the end of a collection.  If it is not, then
   862   // the heap is approaching full.
   863   GenCollectedHeap* gch = GenCollectedHeap::heap();
   864   if (full) {
   865     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   866     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   867       if (Verbose && PrintGCDetails) {
   868         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   869                             GCCause::to_string(gch->gc_cause()));
   870       }
   871       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   872       set_should_allocate_from_space(); // we seem to be running out of space
   873     } else {
   874       if (Verbose && PrintGCDetails) {
   875         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   876                             GCCause::to_string(gch->gc_cause()));
   877       }
   878       gch->clear_incremental_collection_failed(); // We just did a full collection
   879       clear_should_allocate_from_space(); // if set
   880     }
   881   } else {
   882 #ifdef ASSERT
   883     // It is possible that incremental_collection_failed() == true
   884     // here, because an attempted scavenge did not succeed. The policy
   885     // is normally expected to cause a full collection which should
   886     // clear that condition, so we should not be here twice in a row
   887     // with incremental_collection_failed() == true without having done
   888     // a full collection in between.
   889     if (!seen_incremental_collection_failed &&
   890         gch->incremental_collection_failed()) {
   891       if (Verbose && PrintGCDetails) {
   892         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   893                             GCCause::to_string(gch->gc_cause()));
   894       }
   895       seen_incremental_collection_failed = true;
   896     } else if (seen_incremental_collection_failed) {
   897       if (Verbose && PrintGCDetails) {
   898         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   899                             GCCause::to_string(gch->gc_cause()));
   900       }
   901       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   902              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   903              !gch->incremental_collection_failed(),
   904              "Twice in a row");
   905       seen_incremental_collection_failed = false;
   906     }
   907 #endif // ASSERT
   908   }
   910   if (ZapUnusedHeapArea) {
   911     eden()->check_mangled_unused_area_complete();
   912     from()->check_mangled_unused_area_complete();
   913     to()->check_mangled_unused_area_complete();
   914   }
   916   if (!CleanChunkPoolAsync) {
   917     Chunk::clean_chunk_pool();
   918   }
   920   // update the generation and space performance counters
   921   update_counters();
   922   gch->collector_policy()->counters()->update_counters();
   923 }
   925 void DefNewGeneration::record_spaces_top() {
   926   assert(ZapUnusedHeapArea, "Not mangling unused space");
   927   eden()->set_top_for_allocations();
   928   to()->set_top_for_allocations();
   929   from()->set_top_for_allocations();
   930 }
   933 void DefNewGeneration::update_counters() {
   934   if (UsePerfData) {
   935     _eden_counters->update_all();
   936     _from_counters->update_all();
   937     _to_counters->update_all();
   938     _gen_counters->update_all();
   939   }
   940 }
   942 void DefNewGeneration::verify() {
   943   eden()->verify();
   944   from()->verify();
   945     to()->verify();
   946 }
   948 void DefNewGeneration::print_on(outputStream* st) const {
   949   Generation::print_on(st);
   950   st->print("  eden");
   951   eden()->print_on(st);
   952   st->print("  from");
   953   from()->print_on(st);
   954   st->print("  to  ");
   955   to()->print_on(st);
   956 }
   959 const char* DefNewGeneration::name() const {
   960   return "def new generation";
   961 }
   963 // Moved from inline file as they are not called inline
   964 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
   965   return eden();
   966 }
   968 HeapWord* DefNewGeneration::allocate(size_t word_size,
   969                                      bool is_tlab) {
   970   // This is the slow-path allocation for the DefNewGeneration.
   971   // Most allocations are fast-path in compiled code.
   972   // We try to allocate from the eden.  If that works, we are happy.
   973   // Note that since DefNewGeneration supports lock-free allocation, we
   974   // have to use it here, as well.
   975   HeapWord* result = eden()->par_allocate(word_size);
   976   if (result != NULL) {
   977     return result;
   978   }
   979   do {
   980     HeapWord* old_limit = eden()->soft_end();
   981     if (old_limit < eden()->end()) {
   982       // Tell the next generation we reached a limit.
   983       HeapWord* new_limit =
   984         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
   985       if (new_limit != NULL) {
   986         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
   987       } else {
   988         assert(eden()->soft_end() == eden()->end(),
   989                "invalid state after allocation_limit_reached returned null");
   990       }
   991     } else {
   992       // The allocation failed and the soft limit is equal to the hard limit,
   993       // there are no reasons to do an attempt to allocate
   994       assert(old_limit == eden()->end(), "sanity check");
   995       break;
   996     }
   997     // Try to allocate until succeeded or the soft limit can't be adjusted
   998     result = eden()->par_allocate(word_size);
   999   } while (result == NULL);
  1001   // If the eden is full and the last collection bailed out, we are running
  1002   // out of heap space, and we try to allocate the from-space, too.
  1003   // allocate_from_space can't be inlined because that would introduce a
  1004   // circular dependency at compile time.
  1005   if (result == NULL) {
  1006     result = allocate_from_space(word_size);
  1008   return result;
  1011 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1012                                          bool is_tlab) {
  1013   return eden()->par_allocate(word_size);
  1016 void DefNewGeneration::gc_prologue(bool full) {
  1017   // Ensure that _end and _soft_end are the same in eden space.
  1018   eden()->set_soft_end(eden()->end());
  1021 size_t DefNewGeneration::tlab_capacity() const {
  1022   return eden()->capacity();
  1025 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1026   return unsafe_max_alloc_nogc();

mercurial