src/cpu/x86/vm/templateTable_x86_32.cpp

Tue, 18 Jan 2011 18:00:06 -0800

author
iveresov
date
Tue, 18 Jan 2011 18:00:06 -0800
changeset 2461
b599a4c6c2df
parent 2440
bb8e3b66bde6
child 2552
638119ce7cfd
permissions
-rw-r--r--

7012766: assert(false) failed: DEBUG MESSAGE in MacroAssembler::debug32
Summary: Interpreter expects to see methodOop in rbx on method entry, which needs to be restored after call to profile_method.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    39 #define __ _masm->
    41 //----------------------------------------------------------------------------------------------------
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No i486 specific initialization
    46 }
    48 //----------------------------------------------------------------------------------------------------
    49 // Address computation
    51 // local variables
    52 static inline Address iaddress(int n)            {
    53   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    54 }
    56 static inline Address laddress(int n)            { return iaddress(n + 1); }
    57 static inline Address haddress(int n)            { return iaddress(n + 0); }
    58 static inline Address faddress(int n)            { return iaddress(n); }
    59 static inline Address daddress(int n)            { return laddress(n); }
    60 static inline Address aaddress(int n)            { return iaddress(n); }
    62 static inline Address iaddress(Register r)       {
    63   return Address(rdi, r, Interpreter::stackElementScale());
    64 }
    65 static inline Address laddress(Register r)       {
    66   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    67 }
    68 static inline Address haddress(Register r)       {
    69   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    70 }
    72 static inline Address faddress(Register r)       { return iaddress(r); }
    73 static inline Address daddress(Register r)       { return laddress(r); }
    74 static inline Address aaddress(Register r)       { return iaddress(r); }
    76 // expression stack
    77 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    78 // data beyond the rsp which is potentially unsafe in an MT environment;
    79 // an interrupt may overwrite that data.)
    80 static inline Address at_rsp   () {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than rsp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88   return tos;
    89 }
    91 static inline Address at_tos_p1() {
    92   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    93 }
    95 static inline Address at_tos_p2() {
    96   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    97 }
    99 // Condition conversion
   100 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   101   switch (cc) {
   102     case TemplateTable::equal        : return Assembler::notEqual;
   103     case TemplateTable::not_equal    : return Assembler::equal;
   104     case TemplateTable::less         : return Assembler::greaterEqual;
   105     case TemplateTable::less_equal   : return Assembler::greater;
   106     case TemplateTable::greater      : return Assembler::lessEqual;
   107     case TemplateTable::greater_equal: return Assembler::less;
   108   }
   109   ShouldNotReachHere();
   110   return Assembler::zero;
   111 }
   114 //----------------------------------------------------------------------------------------------------
   115 // Miscelaneous helper routines
   117 // Store an oop (or NULL) at the address described by obj.
   118 // If val == noreg this means store a NULL
   120 static void do_oop_store(InterpreterMacroAssembler* _masm,
   121                          Address obj,
   122                          Register val,
   123                          BarrierSet::Name barrier,
   124                          bool precise) {
   125   assert(val == noreg || val == rax, "parameter is just for looks");
   126   switch (barrier) {
   127 #ifndef SERIALGC
   128     case BarrierSet::G1SATBCT:
   129     case BarrierSet::G1SATBCTLogging:
   130       {
   131         // flatten object address if needed
   132         // We do it regardless of precise because we need the registers
   133         if (obj.index() == noreg && obj.disp() == 0) {
   134           if (obj.base() != rdx) {
   135             __ movl(rdx, obj.base());
   136           }
   137         } else {
   138           __ leal(rdx, obj);
   139         }
   140         __ get_thread(rcx);
   141         __ save_bcp();
   142         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   144         // Do the actual store
   145         // noreg means NULL
   146         if (val == noreg) {
   147           __ movptr(Address(rdx, 0), NULL_WORD);
   148           // No post barrier for NULL
   149         } else {
   150           __ movl(Address(rdx, 0), val);
   151           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   152         }
   153         __ restore_bcp();
   155       }
   156       break;
   157 #endif // SERIALGC
   158     case BarrierSet::CardTableModRef:
   159     case BarrierSet::CardTableExtension:
   160       {
   161         if (val == noreg) {
   162           __ movptr(obj, NULL_WORD);
   163         } else {
   164           __ movl(obj, val);
   165           // flatten object address if needed
   166           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   167             __ store_check(obj.base());
   168           } else {
   169             __ leal(rdx, obj);
   170             __ store_check(rdx);
   171           }
   172         }
   173       }
   174       break;
   175     case BarrierSet::ModRef:
   176     case BarrierSet::Other:
   177       if (val == noreg) {
   178         __ movptr(obj, NULL_WORD);
   179       } else {
   180         __ movl(obj, val);
   181       }
   182       break;
   183     default      :
   184       ShouldNotReachHere();
   186   }
   187 }
   189 Address TemplateTable::at_bcp(int offset) {
   190   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   191   return Address(rsi, offset);
   192 }
   195 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   196                                    Register scratch,
   197                                    bool load_bc_into_scratch/*=true*/) {
   199   if (!RewriteBytecodes) return;
   200   // the pair bytecodes have already done the load.
   201   if (load_bc_into_scratch) {
   202     __ movl(bc, bytecode);
   203   }
   204   Label patch_done;
   205   if (JvmtiExport::can_post_breakpoint()) {
   206     Label fast_patch;
   207     // if a breakpoint is present we can't rewrite the stream directly
   208     __ movzbl(scratch, at_bcp(0));
   209     __ cmpl(scratch, Bytecodes::_breakpoint);
   210     __ jcc(Assembler::notEqual, fast_patch);
   211     __ get_method(scratch);
   212     // Let breakpoint table handling rewrite to quicker bytecode
   213     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   214 #ifndef ASSERT
   215     __ jmpb(patch_done);
   216 #else
   217     __ jmp(patch_done);
   218 #endif
   219     __ bind(fast_patch);
   220   }
   221 #ifdef ASSERT
   222   Label okay;
   223   __ load_unsigned_byte(scratch, at_bcp(0));
   224   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   225   __ jccb(Assembler::equal, okay);
   226   __ cmpl(scratch, bc);
   227   __ jcc(Assembler::equal, okay);
   228   __ stop("patching the wrong bytecode");
   229   __ bind(okay);
   230 #endif
   231   // patch bytecode
   232   __ movb(at_bcp(0), bc);
   233   __ bind(patch_done);
   234 }
   236 //----------------------------------------------------------------------------------------------------
   237 // Individual instructions
   239 void TemplateTable::nop() {
   240   transition(vtos, vtos);
   241   // nothing to do
   242 }
   244 void TemplateTable::shouldnotreachhere() {
   245   transition(vtos, vtos);
   246   __ stop("shouldnotreachhere bytecode");
   247 }
   251 void TemplateTable::aconst_null() {
   252   transition(vtos, atos);
   253   __ xorptr(rax, rax);
   254 }
   257 void TemplateTable::iconst(int value) {
   258   transition(vtos, itos);
   259   if (value == 0) {
   260     __ xorptr(rax, rax);
   261   } else {
   262     __ movptr(rax, value);
   263   }
   264 }
   267 void TemplateTable::lconst(int value) {
   268   transition(vtos, ltos);
   269   if (value == 0) {
   270     __ xorptr(rax, rax);
   271   } else {
   272     __ movptr(rax, value);
   273   }
   274   assert(value >= 0, "check this code");
   275   __ xorptr(rdx, rdx);
   276 }
   279 void TemplateTable::fconst(int value) {
   280   transition(vtos, ftos);
   281          if (value == 0) { __ fldz();
   282   } else if (value == 1) { __ fld1();
   283   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   284   } else                 { ShouldNotReachHere();
   285   }
   286 }
   289 void TemplateTable::dconst(int value) {
   290   transition(vtos, dtos);
   291          if (value == 0) { __ fldz();
   292   } else if (value == 1) { __ fld1();
   293   } else                 { ShouldNotReachHere();
   294   }
   295 }
   298 void TemplateTable::bipush() {
   299   transition(vtos, itos);
   300   __ load_signed_byte(rax, at_bcp(1));
   301 }
   304 void TemplateTable::sipush() {
   305   transition(vtos, itos);
   306   __ load_unsigned_short(rax, at_bcp(1));
   307   __ bswapl(rax);
   308   __ sarl(rax, 16);
   309 }
   311 void TemplateTable::ldc(bool wide) {
   312   transition(vtos, vtos);
   313   Label call_ldc, notFloat, notClass, Done;
   315   if (wide) {
   316     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   317   } else {
   318     __ load_unsigned_byte(rbx, at_bcp(1));
   319   }
   320   __ get_cpool_and_tags(rcx, rax);
   321   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   322   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   324   // get type
   325   __ xorptr(rdx, rdx);
   326   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   328   // unresolved string - get the resolved string
   329   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   330   __ jccb(Assembler::equal, call_ldc);
   332   // unresolved class - get the resolved class
   333   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   334   __ jccb(Assembler::equal, call_ldc);
   336   // unresolved class in error (resolution failed) - call into runtime
   337   // so that the same error from first resolution attempt is thrown.
   338   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   339   __ jccb(Assembler::equal, call_ldc);
   341   // resolved class - need to call vm to get java mirror of the class
   342   __ cmpl(rdx, JVM_CONSTANT_Class);
   343   __ jcc(Assembler::notEqual, notClass);
   345   __ bind(call_ldc);
   346   __ movl(rcx, wide);
   347   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   348   __ push(atos);
   349   __ jmp(Done);
   351   __ bind(notClass);
   352   __ cmpl(rdx, JVM_CONSTANT_Float);
   353   __ jccb(Assembler::notEqual, notFloat);
   354   // ftos
   355   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   356   __ push(ftos);
   357   __ jmp(Done);
   359   __ bind(notFloat);
   360 #ifdef ASSERT
   361   { Label L;
   362     __ cmpl(rdx, JVM_CONSTANT_Integer);
   363     __ jcc(Assembler::equal, L);
   364     __ cmpl(rdx, JVM_CONSTANT_String);
   365     __ jcc(Assembler::equal, L);
   366     __ stop("unexpected tag type in ldc");
   367     __ bind(L);
   368   }
   369 #endif
   370   Label isOop;
   371   // atos and itos
   372   // String is only oop type we will see here
   373   __ cmpl(rdx, JVM_CONSTANT_String);
   374   __ jccb(Assembler::equal, isOop);
   375   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   376   __ push(itos);
   377   __ jmp(Done);
   378   __ bind(isOop);
   379   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   380   __ push(atos);
   382   if (VerifyOops) {
   383     __ verify_oop(rax);
   384   }
   385   __ bind(Done);
   386 }
   388 // Fast path for caching oop constants.
   389 // %%% We should use this to handle Class and String constants also.
   390 // %%% It will simplify the ldc/primitive path considerably.
   391 void TemplateTable::fast_aldc(bool wide) {
   392   transition(vtos, atos);
   394   if (!EnableMethodHandles) {
   395     // We should not encounter this bytecode if !EnableMethodHandles.
   396     // The verifier will stop it.  However, if we get past the verifier,
   397     // this will stop the thread in a reasonable way, without crashing the JVM.
   398     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   399                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   400     // the call_VM checks for exception, so we should never return here.
   401     __ should_not_reach_here();
   402     return;
   403   }
   405   const Register cache = rcx;
   406   const Register index = rdx;
   408   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   409   if (VerifyOops) {
   410     __ verify_oop(rax);
   411   }
   413   Label L_done, L_throw_exception;
   414   const Register con_klass_temp = rcx;  // same as Rcache
   415   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
   416   __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   417   __ jcc(Assembler::notEqual, L_done);
   418   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   419   __ jcc(Assembler::notEqual, L_throw_exception);
   420   __ xorptr(rax, rax);
   421   __ jmp(L_done);
   423   // Load the exception from the system-array which wraps it:
   424   __ bind(L_throw_exception);
   425   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   426   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   428   __ bind(L_done);
   429 }
   431 void TemplateTable::ldc2_w() {
   432   transition(vtos, vtos);
   433   Label Long, Done;
   434   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   436   __ get_cpool_and_tags(rcx, rax);
   437   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   438   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   440   // get type
   441   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   442   __ jccb(Assembler::notEqual, Long);
   443   // dtos
   444   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   445   __ push(dtos);
   446   __ jmpb(Done);
   448   __ bind(Long);
   449   // ltos
   450   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   451   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   453   __ push(ltos);
   455   __ bind(Done);
   456 }
   459 void TemplateTable::locals_index(Register reg, int offset) {
   460   __ load_unsigned_byte(reg, at_bcp(offset));
   461   __ negptr(reg);
   462 }
   465 void TemplateTable::iload() {
   466   transition(vtos, itos);
   467   if (RewriteFrequentPairs) {
   468     Label rewrite, done;
   470     // get next byte
   471     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   472     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   473     // last two iloads in a pair.  Comparing against fast_iload means that
   474     // the next bytecode is neither an iload or a caload, and therefore
   475     // an iload pair.
   476     __ cmpl(rbx, Bytecodes::_iload);
   477     __ jcc(Assembler::equal, done);
   479     __ cmpl(rbx, Bytecodes::_fast_iload);
   480     __ movl(rcx, Bytecodes::_fast_iload2);
   481     __ jccb(Assembler::equal, rewrite);
   483     // if _caload, rewrite to fast_icaload
   484     __ cmpl(rbx, Bytecodes::_caload);
   485     __ movl(rcx, Bytecodes::_fast_icaload);
   486     __ jccb(Assembler::equal, rewrite);
   488     // rewrite so iload doesn't check again.
   489     __ movl(rcx, Bytecodes::_fast_iload);
   491     // rewrite
   492     // rcx: fast bytecode
   493     __ bind(rewrite);
   494     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   495     __ bind(done);
   496   }
   498   // Get the local value into tos
   499   locals_index(rbx);
   500   __ movl(rax, iaddress(rbx));
   501 }
   504 void TemplateTable::fast_iload2() {
   505   transition(vtos, itos);
   506   locals_index(rbx);
   507   __ movl(rax, iaddress(rbx));
   508   __ push(itos);
   509   locals_index(rbx, 3);
   510   __ movl(rax, iaddress(rbx));
   511 }
   513 void TemplateTable::fast_iload() {
   514   transition(vtos, itos);
   515   locals_index(rbx);
   516   __ movl(rax, iaddress(rbx));
   517 }
   520 void TemplateTable::lload() {
   521   transition(vtos, ltos);
   522   locals_index(rbx);
   523   __ movptr(rax, laddress(rbx));
   524   NOT_LP64(__ movl(rdx, haddress(rbx)));
   525 }
   528 void TemplateTable::fload() {
   529   transition(vtos, ftos);
   530   locals_index(rbx);
   531   __ fld_s(faddress(rbx));
   532 }
   535 void TemplateTable::dload() {
   536   transition(vtos, dtos);
   537   locals_index(rbx);
   538   __ fld_d(daddress(rbx));
   539 }
   542 void TemplateTable::aload() {
   543   transition(vtos, atos);
   544   locals_index(rbx);
   545   __ movptr(rax, aaddress(rbx));
   546 }
   549 void TemplateTable::locals_index_wide(Register reg) {
   550   __ movl(reg, at_bcp(2));
   551   __ bswapl(reg);
   552   __ shrl(reg, 16);
   553   __ negptr(reg);
   554 }
   557 void TemplateTable::wide_iload() {
   558   transition(vtos, itos);
   559   locals_index_wide(rbx);
   560   __ movl(rax, iaddress(rbx));
   561 }
   564 void TemplateTable::wide_lload() {
   565   transition(vtos, ltos);
   566   locals_index_wide(rbx);
   567   __ movptr(rax, laddress(rbx));
   568   NOT_LP64(__ movl(rdx, haddress(rbx)));
   569 }
   572 void TemplateTable::wide_fload() {
   573   transition(vtos, ftos);
   574   locals_index_wide(rbx);
   575   __ fld_s(faddress(rbx));
   576 }
   579 void TemplateTable::wide_dload() {
   580   transition(vtos, dtos);
   581   locals_index_wide(rbx);
   582   __ fld_d(daddress(rbx));
   583 }
   586 void TemplateTable::wide_aload() {
   587   transition(vtos, atos);
   588   locals_index_wide(rbx);
   589   __ movptr(rax, aaddress(rbx));
   590 }
   592 void TemplateTable::index_check(Register array, Register index) {
   593   // Pop ptr into array
   594   __ pop_ptr(array);
   595   index_check_without_pop(array, index);
   596 }
   598 void TemplateTable::index_check_without_pop(Register array, Register index) {
   599   // destroys rbx,
   600   // check array
   601   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   602   LP64_ONLY(__ movslq(index, index));
   603   // check index
   604   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   605   if (index != rbx) {
   606     // ??? convention: move aberrant index into rbx, for exception message
   607     assert(rbx != array, "different registers");
   608     __ mov(rbx, index);
   609   }
   610   __ jump_cc(Assembler::aboveEqual,
   611              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   612 }
   615 void TemplateTable::iaload() {
   616   transition(itos, itos);
   617   // rdx: array
   618   index_check(rdx, rax);  // kills rbx,
   619   // rax,: index
   620   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   621 }
   624 void TemplateTable::laload() {
   625   transition(itos, ltos);
   626   // rax,: index
   627   // rdx: array
   628   index_check(rdx, rax);
   629   __ mov(rbx, rax);
   630   // rbx,: index
   631   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   632   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   633 }
   636 void TemplateTable::faload() {
   637   transition(itos, ftos);
   638   // rdx: array
   639   index_check(rdx, rax);  // kills rbx,
   640   // rax,: index
   641   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   642 }
   645 void TemplateTable::daload() {
   646   transition(itos, dtos);
   647   // rdx: array
   648   index_check(rdx, rax);  // kills rbx,
   649   // rax,: index
   650   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   651 }
   654 void TemplateTable::aaload() {
   655   transition(itos, atos);
   656   // rdx: array
   657   index_check(rdx, rax);  // kills rbx,
   658   // rax,: index
   659   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   660 }
   663 void TemplateTable::baload() {
   664   transition(itos, itos);
   665   // rdx: array
   666   index_check(rdx, rax);  // kills rbx,
   667   // rax,: index
   668   // can do better code for P5 - fix this at some point
   669   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   670   __ mov(rax, rbx);
   671 }
   674 void TemplateTable::caload() {
   675   transition(itos, itos);
   676   // rdx: array
   677   index_check(rdx, rax);  // kills rbx,
   678   // rax,: index
   679   // can do better code for P5 - may want to improve this at some point
   680   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   681   __ mov(rax, rbx);
   682 }
   684 // iload followed by caload frequent pair
   685 void TemplateTable::fast_icaload() {
   686   transition(vtos, itos);
   687   // load index out of locals
   688   locals_index(rbx);
   689   __ movl(rax, iaddress(rbx));
   691   // rdx: array
   692   index_check(rdx, rax);
   693   // rax,: index
   694   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   695   __ mov(rax, rbx);
   696 }
   698 void TemplateTable::saload() {
   699   transition(itos, itos);
   700   // rdx: array
   701   index_check(rdx, rax);  // kills rbx,
   702   // rax,: index
   703   // can do better code for P5 - may want to improve this at some point
   704   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   705   __ mov(rax, rbx);
   706 }
   709 void TemplateTable::iload(int n) {
   710   transition(vtos, itos);
   711   __ movl(rax, iaddress(n));
   712 }
   715 void TemplateTable::lload(int n) {
   716   transition(vtos, ltos);
   717   __ movptr(rax, laddress(n));
   718   NOT_LP64(__ movptr(rdx, haddress(n)));
   719 }
   722 void TemplateTable::fload(int n) {
   723   transition(vtos, ftos);
   724   __ fld_s(faddress(n));
   725 }
   728 void TemplateTable::dload(int n) {
   729   transition(vtos, dtos);
   730   __ fld_d(daddress(n));
   731 }
   734 void TemplateTable::aload(int n) {
   735   transition(vtos, atos);
   736   __ movptr(rax, aaddress(n));
   737 }
   740 void TemplateTable::aload_0() {
   741   transition(vtos, atos);
   742   // According to bytecode histograms, the pairs:
   743   //
   744   // _aload_0, _fast_igetfield
   745   // _aload_0, _fast_agetfield
   746   // _aload_0, _fast_fgetfield
   747   //
   748   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   749   // bytecode checks if the next bytecode is either _fast_igetfield,
   750   // _fast_agetfield or _fast_fgetfield and then rewrites the
   751   // current bytecode into a pair bytecode; otherwise it rewrites the current
   752   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   753   //
   754   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   755   //       otherwise we may miss an opportunity for a pair.
   756   //
   757   // Also rewrite frequent pairs
   758   //   aload_0, aload_1
   759   //   aload_0, iload_1
   760   // These bytecodes with a small amount of code are most profitable to rewrite
   761   if (RewriteFrequentPairs) {
   762     Label rewrite, done;
   763     // get next byte
   764     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   766     // do actual aload_0
   767     aload(0);
   769     // if _getfield then wait with rewrite
   770     __ cmpl(rbx, Bytecodes::_getfield);
   771     __ jcc(Assembler::equal, done);
   773     // if _igetfield then reqrite to _fast_iaccess_0
   774     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   775     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   776     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   777     __ jccb(Assembler::equal, rewrite);
   779     // if _agetfield then reqrite to _fast_aaccess_0
   780     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   781     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   782     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   783     __ jccb(Assembler::equal, rewrite);
   785     // if _fgetfield then reqrite to _fast_faccess_0
   786     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   787     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   788     __ movl(rcx, Bytecodes::_fast_faccess_0);
   789     __ jccb(Assembler::equal, rewrite);
   791     // else rewrite to _fast_aload0
   792     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   793     __ movl(rcx, Bytecodes::_fast_aload_0);
   795     // rewrite
   796     // rcx: fast bytecode
   797     __ bind(rewrite);
   798     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   800     __ bind(done);
   801   } else {
   802     aload(0);
   803   }
   804 }
   806 void TemplateTable::istore() {
   807   transition(itos, vtos);
   808   locals_index(rbx);
   809   __ movl(iaddress(rbx), rax);
   810 }
   813 void TemplateTable::lstore() {
   814   transition(ltos, vtos);
   815   locals_index(rbx);
   816   __ movptr(laddress(rbx), rax);
   817   NOT_LP64(__ movptr(haddress(rbx), rdx));
   818 }
   821 void TemplateTable::fstore() {
   822   transition(ftos, vtos);
   823   locals_index(rbx);
   824   __ fstp_s(faddress(rbx));
   825 }
   828 void TemplateTable::dstore() {
   829   transition(dtos, vtos);
   830   locals_index(rbx);
   831   __ fstp_d(daddress(rbx));
   832 }
   835 void TemplateTable::astore() {
   836   transition(vtos, vtos);
   837   __ pop_ptr(rax);
   838   locals_index(rbx);
   839   __ movptr(aaddress(rbx), rax);
   840 }
   843 void TemplateTable::wide_istore() {
   844   transition(vtos, vtos);
   845   __ pop_i(rax);
   846   locals_index_wide(rbx);
   847   __ movl(iaddress(rbx), rax);
   848 }
   851 void TemplateTable::wide_lstore() {
   852   transition(vtos, vtos);
   853   __ pop_l(rax, rdx);
   854   locals_index_wide(rbx);
   855   __ movptr(laddress(rbx), rax);
   856   NOT_LP64(__ movl(haddress(rbx), rdx));
   857 }
   860 void TemplateTable::wide_fstore() {
   861   wide_istore();
   862 }
   865 void TemplateTable::wide_dstore() {
   866   wide_lstore();
   867 }
   870 void TemplateTable::wide_astore() {
   871   transition(vtos, vtos);
   872   __ pop_ptr(rax);
   873   locals_index_wide(rbx);
   874   __ movptr(aaddress(rbx), rax);
   875 }
   878 void TemplateTable::iastore() {
   879   transition(itos, vtos);
   880   __ pop_i(rbx);
   881   // rax,: value
   882   // rdx: array
   883   index_check(rdx, rbx);  // prefer index in rbx,
   884   // rbx,: index
   885   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   886 }
   889 void TemplateTable::lastore() {
   890   transition(ltos, vtos);
   891   __ pop_i(rbx);
   892   // rax,: low(value)
   893   // rcx: array
   894   // rdx: high(value)
   895   index_check(rcx, rbx);  // prefer index in rbx,
   896   // rbx,: index
   897   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   898   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   899 }
   902 void TemplateTable::fastore() {
   903   transition(ftos, vtos);
   904   __ pop_i(rbx);
   905   // rdx: array
   906   // st0: value
   907   index_check(rdx, rbx);  // prefer index in rbx,
   908   // rbx,: index
   909   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   910 }
   913 void TemplateTable::dastore() {
   914   transition(dtos, vtos);
   915   __ pop_i(rbx);
   916   // rdx: array
   917   // st0: value
   918   index_check(rdx, rbx);  // prefer index in rbx,
   919   // rbx,: index
   920   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   921 }
   924 void TemplateTable::aastore() {
   925   Label is_null, ok_is_subtype, done;
   926   transition(vtos, vtos);
   927   // stack: ..., array, index, value
   928   __ movptr(rax, at_tos());     // Value
   929   __ movl(rcx, at_tos_p1());  // Index
   930   __ movptr(rdx, at_tos_p2());  // Array
   932   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   933   index_check_without_pop(rdx, rcx);      // kills rbx,
   934   // do array store check - check for NULL value first
   935   __ testptr(rax, rax);
   936   __ jcc(Assembler::zero, is_null);
   938   // Move subklass into EBX
   939   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   940   // Move superklass into EAX
   941   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   942   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   943   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   944   __ lea(rdx, element_address);
   946   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   947   // Superklass in EAX.  Subklass in EBX.
   948   __ gen_subtype_check( rbx, ok_is_subtype );
   950   // Come here on failure
   951   // object is at TOS
   952   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   954   // Come here on success
   955   __ bind(ok_is_subtype);
   957   // Get the value to store
   958   __ movptr(rax, at_rsp());
   959   // and store it with appropriate barrier
   960   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   962   __ jmp(done);
   964   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   965   __ bind(is_null);
   966   __ profile_null_seen(rbx);
   968   // Store NULL, (noreg means NULL to do_oop_store)
   969   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   971   // Pop stack arguments
   972   __ bind(done);
   973   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   974 }
   977 void TemplateTable::bastore() {
   978   transition(itos, vtos);
   979   __ pop_i(rbx);
   980   // rax,: value
   981   // rdx: array
   982   index_check(rdx, rbx);  // prefer index in rbx,
   983   // rbx,: index
   984   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   985 }
   988 void TemplateTable::castore() {
   989   transition(itos, vtos);
   990   __ pop_i(rbx);
   991   // rax,: value
   992   // rdx: array
   993   index_check(rdx, rbx);  // prefer index in rbx,
   994   // rbx,: index
   995   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
   996 }
   999 void TemplateTable::sastore() {
  1000   castore();
  1004 void TemplateTable::istore(int n) {
  1005   transition(itos, vtos);
  1006   __ movl(iaddress(n), rax);
  1010 void TemplateTable::lstore(int n) {
  1011   transition(ltos, vtos);
  1012   __ movptr(laddress(n), rax);
  1013   NOT_LP64(__ movptr(haddress(n), rdx));
  1017 void TemplateTable::fstore(int n) {
  1018   transition(ftos, vtos);
  1019   __ fstp_s(faddress(n));
  1023 void TemplateTable::dstore(int n) {
  1024   transition(dtos, vtos);
  1025   __ fstp_d(daddress(n));
  1029 void TemplateTable::astore(int n) {
  1030   transition(vtos, vtos);
  1031   __ pop_ptr(rax);
  1032   __ movptr(aaddress(n), rax);
  1036 void TemplateTable::pop() {
  1037   transition(vtos, vtos);
  1038   __ addptr(rsp, Interpreter::stackElementSize);
  1042 void TemplateTable::pop2() {
  1043   transition(vtos, vtos);
  1044   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1048 void TemplateTable::dup() {
  1049   transition(vtos, vtos);
  1050   // stack: ..., a
  1051   __ load_ptr(0, rax);
  1052   __ push_ptr(rax);
  1053   // stack: ..., a, a
  1057 void TemplateTable::dup_x1() {
  1058   transition(vtos, vtos);
  1059   // stack: ..., a, b
  1060   __ load_ptr( 0, rax);  // load b
  1061   __ load_ptr( 1, rcx);  // load a
  1062   __ store_ptr(1, rax);  // store b
  1063   __ store_ptr(0, rcx);  // store a
  1064   __ push_ptr(rax);      // push b
  1065   // stack: ..., b, a, b
  1069 void TemplateTable::dup_x2() {
  1070   transition(vtos, vtos);
  1071   // stack: ..., a, b, c
  1072   __ load_ptr( 0, rax);  // load c
  1073   __ load_ptr( 2, rcx);  // load a
  1074   __ store_ptr(2, rax);  // store c in a
  1075   __ push_ptr(rax);      // push c
  1076   // stack: ..., c, b, c, c
  1077   __ load_ptr( 2, rax);  // load b
  1078   __ store_ptr(2, rcx);  // store a in b
  1079   // stack: ..., c, a, c, c
  1080   __ store_ptr(1, rax);  // store b in c
  1081   // stack: ..., c, a, b, c
  1085 void TemplateTable::dup2() {
  1086   transition(vtos, vtos);
  1087   // stack: ..., a, b
  1088   __ load_ptr(1, rax);  // load a
  1089   __ push_ptr(rax);     // push a
  1090   __ load_ptr(1, rax);  // load b
  1091   __ push_ptr(rax);     // push b
  1092   // stack: ..., a, b, a, b
  1096 void TemplateTable::dup2_x1() {
  1097   transition(vtos, vtos);
  1098   // stack: ..., a, b, c
  1099   __ load_ptr( 0, rcx);  // load c
  1100   __ load_ptr( 1, rax);  // load b
  1101   __ push_ptr(rax);      // push b
  1102   __ push_ptr(rcx);      // push c
  1103   // stack: ..., a, b, c, b, c
  1104   __ store_ptr(3, rcx);  // store c in b
  1105   // stack: ..., a, c, c, b, c
  1106   __ load_ptr( 4, rcx);  // load a
  1107   __ store_ptr(2, rcx);  // store a in 2nd c
  1108   // stack: ..., a, c, a, b, c
  1109   __ store_ptr(4, rax);  // store b in a
  1110   // stack: ..., b, c, a, b, c
  1111   // stack: ..., b, c, a, b, c
  1115 void TemplateTable::dup2_x2() {
  1116   transition(vtos, vtos);
  1117   // stack: ..., a, b, c, d
  1118   __ load_ptr( 0, rcx);  // load d
  1119   __ load_ptr( 1, rax);  // load c
  1120   __ push_ptr(rax);      // push c
  1121   __ push_ptr(rcx);      // push d
  1122   // stack: ..., a, b, c, d, c, d
  1123   __ load_ptr( 4, rax);  // load b
  1124   __ store_ptr(2, rax);  // store b in d
  1125   __ store_ptr(4, rcx);  // store d in b
  1126   // stack: ..., a, d, c, b, c, d
  1127   __ load_ptr( 5, rcx);  // load a
  1128   __ load_ptr( 3, rax);  // load c
  1129   __ store_ptr(3, rcx);  // store a in c
  1130   __ store_ptr(5, rax);  // store c in a
  1131   // stack: ..., c, d, a, b, c, d
  1132   // stack: ..., c, d, a, b, c, d
  1136 void TemplateTable::swap() {
  1137   transition(vtos, vtos);
  1138   // stack: ..., a, b
  1139   __ load_ptr( 1, rcx);  // load a
  1140   __ load_ptr( 0, rax);  // load b
  1141   __ store_ptr(0, rcx);  // store a in b
  1142   __ store_ptr(1, rax);  // store b in a
  1143   // stack: ..., b, a
  1147 void TemplateTable::iop2(Operation op) {
  1148   transition(itos, itos);
  1149   switch (op) {
  1150     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1151     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1152     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1153     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1154     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1155     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1156     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1157     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1158     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1159     default   : ShouldNotReachHere();
  1164 void TemplateTable::lop2(Operation op) {
  1165   transition(ltos, ltos);
  1166   __ pop_l(rbx, rcx);
  1167   switch (op) {
  1168     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1169     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1170                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1171     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1172     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1173     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1174     default   : ShouldNotReachHere();
  1179 void TemplateTable::idiv() {
  1180   transition(itos, itos);
  1181   __ mov(rcx, rax);
  1182   __ pop_i(rax);
  1183   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1184   //       they are not equal, one could do a normal division (no correction
  1185   //       needed), which may speed up this implementation for the common case.
  1186   //       (see also JVM spec., p.243 & p.271)
  1187   __ corrected_idivl(rcx);
  1191 void TemplateTable::irem() {
  1192   transition(itos, itos);
  1193   __ mov(rcx, rax);
  1194   __ pop_i(rax);
  1195   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1196   //       they are not equal, one could do a normal division (no correction
  1197   //       needed), which may speed up this implementation for the common case.
  1198   //       (see also JVM spec., p.243 & p.271)
  1199   __ corrected_idivl(rcx);
  1200   __ mov(rax, rdx);
  1204 void TemplateTable::lmul() {
  1205   transition(ltos, ltos);
  1206   __ pop_l(rbx, rcx);
  1207   __ push(rcx); __ push(rbx);
  1208   __ push(rdx); __ push(rax);
  1209   __ lmul(2 * wordSize, 0);
  1210   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1214 void TemplateTable::ldiv() {
  1215   transition(ltos, ltos);
  1216   __ pop_l(rbx, rcx);
  1217   __ push(rcx); __ push(rbx);
  1218   __ push(rdx); __ push(rax);
  1219   // check if y = 0
  1220   __ orl(rax, rdx);
  1221   __ jump_cc(Assembler::zero,
  1222              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1223   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1224   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1228 void TemplateTable::lrem() {
  1229   transition(ltos, ltos);
  1230   __ pop_l(rbx, rcx);
  1231   __ push(rcx); __ push(rbx);
  1232   __ push(rdx); __ push(rax);
  1233   // check if y = 0
  1234   __ orl(rax, rdx);
  1235   __ jump_cc(Assembler::zero,
  1236              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1237   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1238   __ addptr(rsp, 4 * wordSize);
  1242 void TemplateTable::lshl() {
  1243   transition(itos, ltos);
  1244   __ movl(rcx, rax);                             // get shift count
  1245   __ pop_l(rax, rdx);                            // get shift value
  1246   __ lshl(rdx, rax);
  1250 void TemplateTable::lshr() {
  1251   transition(itos, ltos);
  1252   __ mov(rcx, rax);                              // get shift count
  1253   __ pop_l(rax, rdx);                            // get shift value
  1254   __ lshr(rdx, rax, true);
  1258 void TemplateTable::lushr() {
  1259   transition(itos, ltos);
  1260   __ mov(rcx, rax);                              // get shift count
  1261   __ pop_l(rax, rdx);                            // get shift value
  1262   __ lshr(rdx, rax);
  1266 void TemplateTable::fop2(Operation op) {
  1267   transition(ftos, ftos);
  1268   switch (op) {
  1269     case add: __ fadd_s (at_rsp());                break;
  1270     case sub: __ fsubr_s(at_rsp());                break;
  1271     case mul: __ fmul_s (at_rsp());                break;
  1272     case div: __ fdivr_s(at_rsp());                break;
  1273     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1274     default : ShouldNotReachHere();
  1276   __ f2ieee();
  1277   __ pop(rax);  // pop float thing off
  1281 void TemplateTable::dop2(Operation op) {
  1282   transition(dtos, dtos);
  1284   switch (op) {
  1285     case add: __ fadd_d (at_rsp());                break;
  1286     case sub: __ fsubr_d(at_rsp());                break;
  1287     case mul: {
  1288       Label L_strict;
  1289       Label L_join;
  1290       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1291       __ get_method(rcx);
  1292       __ movl(rcx, access_flags);
  1293       __ testl(rcx, JVM_ACC_STRICT);
  1294       __ jccb(Assembler::notZero, L_strict);
  1295       __ fmul_d (at_rsp());
  1296       __ jmpb(L_join);
  1297       __ bind(L_strict);
  1298       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1299       __ fmulp();
  1300       __ fmul_d (at_rsp());
  1301       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1302       __ fmulp();
  1303       __ bind(L_join);
  1304       break;
  1306     case div: {
  1307       Label L_strict;
  1308       Label L_join;
  1309       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1310       __ get_method(rcx);
  1311       __ movl(rcx, access_flags);
  1312       __ testl(rcx, JVM_ACC_STRICT);
  1313       __ jccb(Assembler::notZero, L_strict);
  1314       __ fdivr_d(at_rsp());
  1315       __ jmp(L_join);
  1316       __ bind(L_strict);
  1317       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1318       __ fmul_d (at_rsp());
  1319       __ fdivrp();
  1320       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1321       __ fmulp();
  1322       __ bind(L_join);
  1323       break;
  1325     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1326     default : ShouldNotReachHere();
  1328   __ d2ieee();
  1329   // Pop double precision number from rsp.
  1330   __ pop(rax);
  1331   __ pop(rdx);
  1335 void TemplateTable::ineg() {
  1336   transition(itos, itos);
  1337   __ negl(rax);
  1341 void TemplateTable::lneg() {
  1342   transition(ltos, ltos);
  1343   __ lneg(rdx, rax);
  1347 void TemplateTable::fneg() {
  1348   transition(ftos, ftos);
  1349   __ fchs();
  1353 void TemplateTable::dneg() {
  1354   transition(dtos, dtos);
  1355   __ fchs();
  1359 void TemplateTable::iinc() {
  1360   transition(vtos, vtos);
  1361   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1362   locals_index(rbx);
  1363   __ addl(iaddress(rbx), rdx);
  1367 void TemplateTable::wide_iinc() {
  1368   transition(vtos, vtos);
  1369   __ movl(rdx, at_bcp(4));                       // get constant
  1370   locals_index_wide(rbx);
  1371   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1372   __ sarl(rdx, 16);
  1373   __ addl(iaddress(rbx), rdx);
  1374   // Note: should probably use only one movl to get both
  1375   //       the index and the constant -> fix this
  1379 void TemplateTable::convert() {
  1380   // Checking
  1381 #ifdef ASSERT
  1382   { TosState tos_in  = ilgl;
  1383     TosState tos_out = ilgl;
  1384     switch (bytecode()) {
  1385       case Bytecodes::_i2l: // fall through
  1386       case Bytecodes::_i2f: // fall through
  1387       case Bytecodes::_i2d: // fall through
  1388       case Bytecodes::_i2b: // fall through
  1389       case Bytecodes::_i2c: // fall through
  1390       case Bytecodes::_i2s: tos_in = itos; break;
  1391       case Bytecodes::_l2i: // fall through
  1392       case Bytecodes::_l2f: // fall through
  1393       case Bytecodes::_l2d: tos_in = ltos; break;
  1394       case Bytecodes::_f2i: // fall through
  1395       case Bytecodes::_f2l: // fall through
  1396       case Bytecodes::_f2d: tos_in = ftos; break;
  1397       case Bytecodes::_d2i: // fall through
  1398       case Bytecodes::_d2l: // fall through
  1399       case Bytecodes::_d2f: tos_in = dtos; break;
  1400       default             : ShouldNotReachHere();
  1402     switch (bytecode()) {
  1403       case Bytecodes::_l2i: // fall through
  1404       case Bytecodes::_f2i: // fall through
  1405       case Bytecodes::_d2i: // fall through
  1406       case Bytecodes::_i2b: // fall through
  1407       case Bytecodes::_i2c: // fall through
  1408       case Bytecodes::_i2s: tos_out = itos; break;
  1409       case Bytecodes::_i2l: // fall through
  1410       case Bytecodes::_f2l: // fall through
  1411       case Bytecodes::_d2l: tos_out = ltos; break;
  1412       case Bytecodes::_i2f: // fall through
  1413       case Bytecodes::_l2f: // fall through
  1414       case Bytecodes::_d2f: tos_out = ftos; break;
  1415       case Bytecodes::_i2d: // fall through
  1416       case Bytecodes::_l2d: // fall through
  1417       case Bytecodes::_f2d: tos_out = dtos; break;
  1418       default             : ShouldNotReachHere();
  1420     transition(tos_in, tos_out);
  1422 #endif // ASSERT
  1424   // Conversion
  1425   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1426   switch (bytecode()) {
  1427     case Bytecodes::_i2l:
  1428       __ extend_sign(rdx, rax);
  1429       break;
  1430     case Bytecodes::_i2f:
  1431       __ push(rax);          // store int on tos
  1432       __ fild_s(at_rsp());   // load int to ST0
  1433       __ f2ieee();           // truncate to float size
  1434       __ pop(rcx);           // adjust rsp
  1435       break;
  1436     case Bytecodes::_i2d:
  1437       __ push(rax);          // add one slot for d2ieee()
  1438       __ push(rax);          // store int on tos
  1439       __ fild_s(at_rsp());   // load int to ST0
  1440       __ d2ieee();           // truncate to double size
  1441       __ pop(rcx);           // adjust rsp
  1442       __ pop(rcx);
  1443       break;
  1444     case Bytecodes::_i2b:
  1445       __ shll(rax, 24);      // truncate upper 24 bits
  1446       __ sarl(rax, 24);      // and sign-extend byte
  1447       LP64_ONLY(__ movsbl(rax, rax));
  1448       break;
  1449     case Bytecodes::_i2c:
  1450       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1451       LP64_ONLY(__ movzwl(rax, rax));
  1452       break;
  1453     case Bytecodes::_i2s:
  1454       __ shll(rax, 16);      // truncate upper 16 bits
  1455       __ sarl(rax, 16);      // and sign-extend short
  1456       LP64_ONLY(__ movswl(rax, rax));
  1457       break;
  1458     case Bytecodes::_l2i:
  1459       /* nothing to do */
  1460       break;
  1461     case Bytecodes::_l2f:
  1462       __ push(rdx);          // store long on tos
  1463       __ push(rax);
  1464       __ fild_d(at_rsp());   // load long to ST0
  1465       __ f2ieee();           // truncate to float size
  1466       __ pop(rcx);           // adjust rsp
  1467       __ pop(rcx);
  1468       break;
  1469     case Bytecodes::_l2d:
  1470       __ push(rdx);          // store long on tos
  1471       __ push(rax);
  1472       __ fild_d(at_rsp());   // load long to ST0
  1473       __ d2ieee();           // truncate to double size
  1474       __ pop(rcx);           // adjust rsp
  1475       __ pop(rcx);
  1476       break;
  1477     case Bytecodes::_f2i:
  1478       __ push(rcx);          // reserve space for argument
  1479       __ fstp_s(at_rsp());   // pass float argument on stack
  1480       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1481       break;
  1482     case Bytecodes::_f2l:
  1483       __ push(rcx);          // reserve space for argument
  1484       __ fstp_s(at_rsp());   // pass float argument on stack
  1485       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1486       break;
  1487     case Bytecodes::_f2d:
  1488       /* nothing to do */
  1489       break;
  1490     case Bytecodes::_d2i:
  1491       __ push(rcx);          // reserve space for argument
  1492       __ push(rcx);
  1493       __ fstp_d(at_rsp());   // pass double argument on stack
  1494       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1495       break;
  1496     case Bytecodes::_d2l:
  1497       __ push(rcx);          // reserve space for argument
  1498       __ push(rcx);
  1499       __ fstp_d(at_rsp());   // pass double argument on stack
  1500       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1501       break;
  1502     case Bytecodes::_d2f:
  1503       __ push(rcx);          // reserve space for f2ieee()
  1504       __ f2ieee();           // truncate to float size
  1505       __ pop(rcx);           // adjust rsp
  1506       break;
  1507     default             :
  1508       ShouldNotReachHere();
  1513 void TemplateTable::lcmp() {
  1514   transition(ltos, itos);
  1515   // y = rdx:rax
  1516   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1517   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1518   __ mov(rax, rcx);
  1522 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1523   if (is_float) {
  1524     __ fld_s(at_rsp());
  1525   } else {
  1526     __ fld_d(at_rsp());
  1527     __ pop(rdx);
  1529   __ pop(rcx);
  1530   __ fcmp2int(rax, unordered_result < 0);
  1534 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1535   __ get_method(rcx);           // ECX holds method
  1536   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1538   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1539   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1540   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1542   // Load up EDX with the branch displacement
  1543   __ movl(rdx, at_bcp(1));
  1544   __ bswapl(rdx);
  1545   if (!is_wide) __ sarl(rdx, 16);
  1546   LP64_ONLY(__ movslq(rdx, rdx));
  1549   // Handle all the JSR stuff here, then exit.
  1550   // It's much shorter and cleaner than intermingling with the
  1551   // non-JSR normal-branch stuff occurring below.
  1552   if (is_jsr) {
  1553     // Pre-load the next target bytecode into EBX
  1554     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1556     // compute return address as bci in rax,
  1557     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1558     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1559     // Adjust the bcp in RSI by the displacement in EDX
  1560     __ addptr(rsi, rdx);
  1561     // Push return address
  1562     __ push_i(rax);
  1563     // jsr returns vtos
  1564     __ dispatch_only_noverify(vtos);
  1565     return;
  1568   // Normal (non-jsr) branch handling
  1570   // Adjust the bcp in RSI by the displacement in EDX
  1571   __ addptr(rsi, rdx);
  1573   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1574   Label backedge_counter_overflow;
  1575   Label profile_method;
  1576   Label dispatch;
  1577   if (UseLoopCounter) {
  1578     // increment backedge counter for backward branches
  1579     // rax,: MDO
  1580     // rbx,: MDO bumped taken-count
  1581     // rcx: method
  1582     // rdx: target offset
  1583     // rsi: target bcp
  1584     // rdi: locals pointer
  1585     __ testl(rdx, rdx);             // check if forward or backward branch
  1586     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1588     if (TieredCompilation) {
  1589       Label no_mdo;
  1590       int increment = InvocationCounter::count_increment;
  1591       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1592       if (ProfileInterpreter) {
  1593         // Are we profiling?
  1594         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1595         __ testptr(rbx, rbx);
  1596         __ jccb(Assembler::zero, no_mdo);
  1597         // Increment the MDO backedge counter
  1598         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1599                                                 in_bytes(InvocationCounter::counter_offset()));
  1600         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1601                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1602         __ jmp(dispatch);
  1604       __ bind(no_mdo);
  1605       // Increment backedge counter in methodOop
  1606       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1607                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1608     } else {
  1609       // increment counter
  1610       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1611       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1612       __ movl(Address(rcx, be_offset), rax);        // store counter
  1614       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1615       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1616       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1618       if (ProfileInterpreter) {
  1619         // Test to see if we should create a method data oop
  1620         __ cmp32(rax,
  1621                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1622         __ jcc(Assembler::less, dispatch);
  1624         // if no method data exists, go to profile method
  1625         __ test_method_data_pointer(rax, profile_method);
  1627         if (UseOnStackReplacement) {
  1628           // check for overflow against rbx, which is the MDO taken count
  1629           __ cmp32(rbx,
  1630                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1631           __ jcc(Assembler::below, dispatch);
  1633           // When ProfileInterpreter is on, the backedge_count comes from the
  1634           // methodDataOop, which value does not get reset on the call to
  1635           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1636           // routine while the method is being compiled, add a second test to make
  1637           // sure the overflow function is called only once every overflow_frequency.
  1638           const int overflow_frequency = 1024;
  1639           __ andptr(rbx, overflow_frequency-1);
  1640           __ jcc(Assembler::zero, backedge_counter_overflow);
  1642       } else {
  1643         if (UseOnStackReplacement) {
  1644           // check for overflow against rax, which is the sum of the counters
  1645           __ cmp32(rax,
  1646                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1647           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1652     __ bind(dispatch);
  1655   // Pre-load the next target bytecode into EBX
  1656   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1658   // continue with the bytecode @ target
  1659   // rax,: return bci for jsr's, unused otherwise
  1660   // rbx,: target bytecode
  1661   // rsi: target bcp
  1662   __ dispatch_only(vtos);
  1664   if (UseLoopCounter) {
  1665     if (ProfileInterpreter) {
  1666       // Out-of-line code to allocate method data oop.
  1667       __ bind(profile_method);
  1668       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1669       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1670       __ set_method_data_pointer_for_bcp();
  1671       __ jmp(dispatch);
  1674     if (UseOnStackReplacement) {
  1676       // invocation counter overflow
  1677       __ bind(backedge_counter_overflow);
  1678       __ negptr(rdx);
  1679       __ addptr(rdx, rsi);        // branch bcp
  1680       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1681       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1683       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1684       // rbx,: target bytecode
  1685       // rdx: scratch
  1686       // rdi: locals pointer
  1687       // rsi: bcp
  1688       __ testptr(rax, rax);                      // test result
  1689       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1690       // nmethod may have been invalidated (VM may block upon call_VM return)
  1691       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1692       __ cmpl(rcx, InvalidOSREntryBci);
  1693       __ jcc(Assembler::equal, dispatch);
  1695       // We have the address of an on stack replacement routine in rax,
  1696       // We need to prepare to execute the OSR method. First we must
  1697       // migrate the locals and monitors off of the stack.
  1699       __ mov(rbx, rax);                             // save the nmethod
  1701       const Register thread = rcx;
  1702       __ get_thread(thread);
  1703       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1704       // rax, is OSR buffer, move it to expected parameter location
  1705       __ mov(rcx, rax);
  1707       // pop the interpreter frame
  1708       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1709       __ leave();                                // remove frame anchor
  1710       __ pop(rdi);                               // get return address
  1711       __ mov(rsp, rdx);                          // set sp to sender sp
  1714       Label skip;
  1715       Label chkint;
  1717       // The interpreter frame we have removed may be returning to
  1718       // either the callstub or the interpreter. Since we will
  1719       // now be returning from a compiled (OSR) nmethod we must
  1720       // adjust the return to the return were it can handler compiled
  1721       // results and clean the fpu stack. This is very similar to
  1722       // what a i2c adapter must do.
  1724       // Are we returning to the call stub?
  1726       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1727       __ jcc(Assembler::notEqual, chkint);
  1729       // yes adjust to the specialized call stub  return.
  1730       assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
  1731       __ lea(rdi, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
  1732       __ jmp(skip);
  1734       __ bind(chkint);
  1736       // Are we returning to the interpreter? Look for sentinel
  1738       __ cmpl(Address(rdi, -2*wordSize), Interpreter::return_sentinel);
  1739       __ jcc(Assembler::notEqual, skip);
  1741       // Adjust to compiled return back to interpreter
  1743       __ movptr(rdi, Address(rdi, -wordSize));
  1744       __ bind(skip);
  1746       // Align stack pointer for compiled code (note that caller is
  1747       // responsible for undoing this fixup by remembering the old SP
  1748       // in an rbp,-relative location)
  1749       __ andptr(rsp, -(StackAlignmentInBytes));
  1751       // push the (possibly adjusted) return address
  1752       __ push(rdi);
  1754       // and begin the OSR nmethod
  1755       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1761 void TemplateTable::if_0cmp(Condition cc) {
  1762   transition(itos, vtos);
  1763   // assume branch is more often taken than not (loops use backward branches)
  1764   Label not_taken;
  1765   __ testl(rax, rax);
  1766   __ jcc(j_not(cc), not_taken);
  1767   branch(false, false);
  1768   __ bind(not_taken);
  1769   __ profile_not_taken_branch(rax);
  1773 void TemplateTable::if_icmp(Condition cc) {
  1774   transition(itos, vtos);
  1775   // assume branch is more often taken than not (loops use backward branches)
  1776   Label not_taken;
  1777   __ pop_i(rdx);
  1778   __ cmpl(rdx, rax);
  1779   __ jcc(j_not(cc), not_taken);
  1780   branch(false, false);
  1781   __ bind(not_taken);
  1782   __ profile_not_taken_branch(rax);
  1786 void TemplateTable::if_nullcmp(Condition cc) {
  1787   transition(atos, vtos);
  1788   // assume branch is more often taken than not (loops use backward branches)
  1789   Label not_taken;
  1790   __ testptr(rax, rax);
  1791   __ jcc(j_not(cc), not_taken);
  1792   branch(false, false);
  1793   __ bind(not_taken);
  1794   __ profile_not_taken_branch(rax);
  1798 void TemplateTable::if_acmp(Condition cc) {
  1799   transition(atos, vtos);
  1800   // assume branch is more often taken than not (loops use backward branches)
  1801   Label not_taken;
  1802   __ pop_ptr(rdx);
  1803   __ cmpptr(rdx, rax);
  1804   __ jcc(j_not(cc), not_taken);
  1805   branch(false, false);
  1806   __ bind(not_taken);
  1807   __ profile_not_taken_branch(rax);
  1811 void TemplateTable::ret() {
  1812   transition(vtos, vtos);
  1813   locals_index(rbx);
  1814   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1815   __ profile_ret(rbx, rcx);
  1816   __ get_method(rax);
  1817   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1818   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1819                       constMethodOopDesc::codes_offset()));
  1820   __ dispatch_next(vtos);
  1824 void TemplateTable::wide_ret() {
  1825   transition(vtos, vtos);
  1826   locals_index_wide(rbx);
  1827   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1828   __ profile_ret(rbx, rcx);
  1829   __ get_method(rax);
  1830   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1831   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1832   __ dispatch_next(vtos);
  1836 void TemplateTable::tableswitch() {
  1837   Label default_case, continue_execution;
  1838   transition(itos, vtos);
  1839   // align rsi
  1840   __ lea(rbx, at_bcp(wordSize));
  1841   __ andptr(rbx, -wordSize);
  1842   // load lo & hi
  1843   __ movl(rcx, Address(rbx, 1 * wordSize));
  1844   __ movl(rdx, Address(rbx, 2 * wordSize));
  1845   __ bswapl(rcx);
  1846   __ bswapl(rdx);
  1847   // check against lo & hi
  1848   __ cmpl(rax, rcx);
  1849   __ jccb(Assembler::less, default_case);
  1850   __ cmpl(rax, rdx);
  1851   __ jccb(Assembler::greater, default_case);
  1852   // lookup dispatch offset
  1853   __ subl(rax, rcx);
  1854   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1855   __ profile_switch_case(rax, rbx, rcx);
  1856   // continue execution
  1857   __ bind(continue_execution);
  1858   __ bswapl(rdx);
  1859   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1860   __ addptr(rsi, rdx);
  1861   __ dispatch_only(vtos);
  1862   // handle default
  1863   __ bind(default_case);
  1864   __ profile_switch_default(rax);
  1865   __ movl(rdx, Address(rbx, 0));
  1866   __ jmp(continue_execution);
  1870 void TemplateTable::lookupswitch() {
  1871   transition(itos, itos);
  1872   __ stop("lookupswitch bytecode should have been rewritten");
  1876 void TemplateTable::fast_linearswitch() {
  1877   transition(itos, vtos);
  1878   Label loop_entry, loop, found, continue_execution;
  1879   // bswapl rax, so we can avoid bswapping the table entries
  1880   __ bswapl(rax);
  1881   // align rsi
  1882   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1883   __ andptr(rbx, -wordSize);
  1884   // set counter
  1885   __ movl(rcx, Address(rbx, wordSize));
  1886   __ bswapl(rcx);
  1887   __ jmpb(loop_entry);
  1888   // table search
  1889   __ bind(loop);
  1890   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1891   __ jccb(Assembler::equal, found);
  1892   __ bind(loop_entry);
  1893   __ decrementl(rcx);
  1894   __ jcc(Assembler::greaterEqual, loop);
  1895   // default case
  1896   __ profile_switch_default(rax);
  1897   __ movl(rdx, Address(rbx, 0));
  1898   __ jmpb(continue_execution);
  1899   // entry found -> get offset
  1900   __ bind(found);
  1901   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1902   __ profile_switch_case(rcx, rax, rbx);
  1903   // continue execution
  1904   __ bind(continue_execution);
  1905   __ bswapl(rdx);
  1906   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1907   __ addptr(rsi, rdx);
  1908   __ dispatch_only(vtos);
  1912 void TemplateTable::fast_binaryswitch() {
  1913   transition(itos, vtos);
  1914   // Implementation using the following core algorithm:
  1915   //
  1916   // int binary_search(int key, LookupswitchPair* array, int n) {
  1917   //   // Binary search according to "Methodik des Programmierens" by
  1918   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1919   //   int i = 0;
  1920   //   int j = n;
  1921   //   while (i+1 < j) {
  1922   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1923   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1924   //     // where a stands for the array and assuming that the (inexisting)
  1925   //     // element a[n] is infinitely big.
  1926   //     int h = (i + j) >> 1;
  1927   //     // i < h < j
  1928   //     if (key < array[h].fast_match()) {
  1929   //       j = h;
  1930   //     } else {
  1931   //       i = h;
  1932   //     }
  1933   //   }
  1934   //   // R: a[i] <= key < a[i+1] or Q
  1935   //   // (i.e., if key is within array, i is the correct index)
  1936   //   return i;
  1937   // }
  1939   // register allocation
  1940   const Register key   = rax;                    // already set (tosca)
  1941   const Register array = rbx;
  1942   const Register i     = rcx;
  1943   const Register j     = rdx;
  1944   const Register h     = rdi;                    // needs to be restored
  1945   const Register temp  = rsi;
  1946   // setup array
  1947   __ save_bcp();
  1949   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1950   __ andptr(array, -wordSize);
  1951   // initialize i & j
  1952   __ xorl(i, i);                                 // i = 0;
  1953   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1954   // Convert j into native byteordering
  1955   __ bswapl(j);
  1956   // and start
  1957   Label entry;
  1958   __ jmp(entry);
  1960   // binary search loop
  1961   { Label loop;
  1962     __ bind(loop);
  1963     // int h = (i + j) >> 1;
  1964     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1965     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1966     // if (key < array[h].fast_match()) {
  1967     //   j = h;
  1968     // } else {
  1969     //   i = h;
  1970     // }
  1971     // Convert array[h].match to native byte-ordering before compare
  1972     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1973     __ bswapl(temp);
  1974     __ cmpl(key, temp);
  1975     if (VM_Version::supports_cmov()) {
  1976       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  1977       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  1978     } else {
  1979       Label set_i, end_of_if;
  1980       __ jccb(Assembler::greaterEqual, set_i);     // {
  1981       __ mov(j, h);                                //   j = h;
  1982       __ jmp(end_of_if);                           // }
  1983       __ bind(set_i);                              // else {
  1984       __ mov(i, h);                                //   i = h;
  1985       __ bind(end_of_if);                          // }
  1987     // while (i+1 < j)
  1988     __ bind(entry);
  1989     __ leal(h, Address(i, 1));                   // i+1
  1990     __ cmpl(h, j);                               // i+1 < j
  1991     __ jcc(Assembler::less, loop);
  1994   // end of binary search, result index is i (must check again!)
  1995   Label default_case;
  1996   // Convert array[i].match to native byte-ordering before compare
  1997   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1998   __ bswapl(temp);
  1999   __ cmpl(key, temp);
  2000   __ jcc(Assembler::notEqual, default_case);
  2002   // entry found -> j = offset
  2003   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  2004   __ profile_switch_case(i, key, array);
  2005   __ bswapl(j);
  2006   LP64_ONLY(__ movslq(j, j));
  2007   __ restore_bcp();
  2008   __ restore_locals();                           // restore rdi
  2009   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2011   __ addptr(rsi, j);
  2012   __ dispatch_only(vtos);
  2014   // default case -> j = default offset
  2015   __ bind(default_case);
  2016   __ profile_switch_default(i);
  2017   __ movl(j, Address(array, -2*wordSize));
  2018   __ bswapl(j);
  2019   LP64_ONLY(__ movslq(j, j));
  2020   __ restore_bcp();
  2021   __ restore_locals();                           // restore rdi
  2022   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2023   __ addptr(rsi, j);
  2024   __ dispatch_only(vtos);
  2028 void TemplateTable::_return(TosState state) {
  2029   transition(state, state);
  2030   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2032   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2033     assert(state == vtos, "only valid state");
  2034     __ movptr(rax, aaddress(0));
  2035     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  2036     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2037     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2038     Label skip_register_finalizer;
  2039     __ jcc(Assembler::zero, skip_register_finalizer);
  2041     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2043     __ bind(skip_register_finalizer);
  2046   __ remove_activation(state, rsi);
  2047   __ jmp(rsi);
  2051 // ----------------------------------------------------------------------------
  2052 // Volatile variables demand their effects be made known to all CPU's in
  2053 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2054 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2055 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2056 // reorder volatile references, the hardware also must not reorder them).
  2057 //
  2058 // According to the new Java Memory Model (JMM):
  2059 // (1) All volatiles are serialized wrt to each other.
  2060 // ALSO reads & writes act as aquire & release, so:
  2061 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2062 // the read float up to before the read.  It's OK for non-volatile memory refs
  2063 // that happen before the volatile read to float down below it.
  2064 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2065 // that happen BEFORE the write float down to after the write.  It's OK for
  2066 // non-volatile memory refs that happen after the volatile write to float up
  2067 // before it.
  2068 //
  2069 // We only put in barriers around volatile refs (they are expensive), not
  2070 // _between_ memory refs (that would require us to track the flavor of the
  2071 // previous memory refs).  Requirements (2) and (3) require some barriers
  2072 // before volatile stores and after volatile loads.  These nearly cover
  2073 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2074 // case is placed after volatile-stores although it could just as well go
  2075 // before volatile-loads.
  2076 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2077   // Helper function to insert a is-volatile test and memory barrier
  2078   if( !os::is_MP() ) return;    // Not needed on single CPU
  2079   __ membar(order_constraint);
  2082 void TemplateTable::resolve_cache_and_index(int byte_no,
  2083                                             Register result,
  2084                                             Register Rcache,
  2085                                             Register index,
  2086                                             size_t index_size) {
  2087   Register temp = rbx;
  2089   assert_different_registers(result, Rcache, index, temp);
  2091   Label resolved;
  2092   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2093   if (byte_no == f1_oop) {
  2094     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2095     // This kind of CP cache entry does not need to match the flags byte, because
  2096     // there is a 1-1 relation between bytecode type and CP entry type.
  2097     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2098     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2099     __ testptr(result, result);
  2100     __ jcc(Assembler::notEqual, resolved);
  2101   } else {
  2102     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2103     assert(result == noreg, "");  //else change code for setting result
  2104     const int shift_count = (1 + byte_no)*BitsPerByte;
  2105     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2106     __ shrl(temp, shift_count);
  2107     // have we resolved this bytecode?
  2108     __ andl(temp, 0xFF);
  2109     __ cmpl(temp, (int)bytecode());
  2110     __ jcc(Assembler::equal, resolved);
  2113   // resolve first time through
  2114   address entry;
  2115   switch (bytecode()) {
  2116     case Bytecodes::_getstatic      : // fall through
  2117     case Bytecodes::_putstatic      : // fall through
  2118     case Bytecodes::_getfield       : // fall through
  2119     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2120     case Bytecodes::_invokevirtual  : // fall through
  2121     case Bytecodes::_invokespecial  : // fall through
  2122     case Bytecodes::_invokestatic   : // fall through
  2123     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2124     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
  2125     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2126     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2127     default                         : ShouldNotReachHere();                                 break;
  2129   __ movl(temp, (int)bytecode());
  2130   __ call_VM(noreg, entry, temp);
  2131   // Update registers with resolved info
  2132   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2133   if (result != noreg)
  2134     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2135   __ bind(resolved);
  2139 // The cache and index registers must be set before call
  2140 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2141                                               Register cache,
  2142                                               Register index,
  2143                                               Register off,
  2144                                               Register flags,
  2145                                               bool is_static = false) {
  2146   assert_different_registers(cache, index, flags, off);
  2148   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2149   // Field offset
  2150   __ movptr(off, Address(cache, index, Address::times_ptr,
  2151                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2152   // Flags
  2153   __ movl(flags, Address(cache, index, Address::times_ptr,
  2154            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2156   // klass     overwrite register
  2157   if (is_static) {
  2158     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2159                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2163 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2164                                                Register method,
  2165                                                Register itable_index,
  2166                                                Register flags,
  2167                                                bool is_invokevirtual,
  2168                                                bool is_invokevfinal /*unused*/,
  2169                                                bool is_invokedynamic) {
  2170   // setup registers
  2171   const Register cache = rcx;
  2172   const Register index = rdx;
  2173   assert_different_registers(method, flags);
  2174   assert_different_registers(method, cache, index);
  2175   assert_different_registers(itable_index, flags);
  2176   assert_different_registers(itable_index, cache, index);
  2177   // determine constant pool cache field offsets
  2178   const int method_offset = in_bytes(
  2179     constantPoolCacheOopDesc::base_offset() +
  2180       (is_invokevirtual
  2181        ? ConstantPoolCacheEntry::f2_offset()
  2182        : ConstantPoolCacheEntry::f1_offset()
  2184     );
  2185   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2186                                     ConstantPoolCacheEntry::flags_offset());
  2187   // access constant pool cache fields
  2188   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2189                                     ConstantPoolCacheEntry::f2_offset());
  2191   if (byte_no == f1_oop) {
  2192     // Resolved f1_oop goes directly into 'method' register.
  2193     assert(is_invokedynamic, "");
  2194     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2195   } else {
  2196     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2197     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2199   if (itable_index != noreg) {
  2200     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2202   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2206 // The registers cache and index expected to be set before call.
  2207 // Correct values of the cache and index registers are preserved.
  2208 void TemplateTable::jvmti_post_field_access(Register cache,
  2209                                             Register index,
  2210                                             bool is_static,
  2211                                             bool has_tos) {
  2212   if (JvmtiExport::can_post_field_access()) {
  2213     // Check to see if a field access watch has been set before we take
  2214     // the time to call into the VM.
  2215     Label L1;
  2216     assert_different_registers(cache, index, rax);
  2217     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2218     __ testl(rax,rax);
  2219     __ jcc(Assembler::zero, L1);
  2221     // cache entry pointer
  2222     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2223     __ shll(index, LogBytesPerWord);
  2224     __ addptr(cache, index);
  2225     if (is_static) {
  2226       __ xorptr(rax, rax);      // NULL object reference
  2227     } else {
  2228       __ pop(atos);         // Get the object
  2229       __ verify_oop(rax);
  2230       __ push(atos);        // Restore stack state
  2232     // rax,:   object pointer or NULL
  2233     // cache: cache entry pointer
  2234     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2235                rax, cache);
  2236     __ get_cache_and_index_at_bcp(cache, index, 1);
  2237     __ bind(L1);
  2241 void TemplateTable::pop_and_check_object(Register r) {
  2242   __ pop_ptr(r);
  2243   __ null_check(r);  // for field access must check obj.
  2244   __ verify_oop(r);
  2247 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2248   transition(vtos, vtos);
  2250   const Register cache = rcx;
  2251   const Register index = rdx;
  2252   const Register obj   = rcx;
  2253   const Register off   = rbx;
  2254   const Register flags = rax;
  2256   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2257   jvmti_post_field_access(cache, index, is_static, false);
  2258   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2260   if (!is_static) pop_and_check_object(obj);
  2262   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2263   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2265   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2267   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2268   assert(btos == 0, "change code, btos != 0");
  2269   // btos
  2270   __ andptr(flags, 0x0f);
  2271   __ jcc(Assembler::notZero, notByte);
  2273   __ load_signed_byte(rax, lo );
  2274   __ push(btos);
  2275   // Rewrite bytecode to be faster
  2276   if (!is_static) {
  2277     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2279   __ jmp(Done);
  2281   __ bind(notByte);
  2282   // itos
  2283   __ cmpl(flags, itos );
  2284   __ jcc(Assembler::notEqual, notInt);
  2286   __ movl(rax, lo );
  2287   __ push(itos);
  2288   // Rewrite bytecode to be faster
  2289   if (!is_static) {
  2290     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2292   __ jmp(Done);
  2294   __ bind(notInt);
  2295   // atos
  2296   __ cmpl(flags, atos );
  2297   __ jcc(Assembler::notEqual, notObj);
  2299   __ movl(rax, lo );
  2300   __ push(atos);
  2301   if (!is_static) {
  2302     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2304   __ jmp(Done);
  2306   __ bind(notObj);
  2307   // ctos
  2308   __ cmpl(flags, ctos );
  2309   __ jcc(Assembler::notEqual, notChar);
  2311   __ load_unsigned_short(rax, lo );
  2312   __ push(ctos);
  2313   if (!is_static) {
  2314     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2316   __ jmp(Done);
  2318   __ bind(notChar);
  2319   // stos
  2320   __ cmpl(flags, stos );
  2321   __ jcc(Assembler::notEqual, notShort);
  2323   __ load_signed_short(rax, lo );
  2324   __ push(stos);
  2325   if (!is_static) {
  2326     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2328   __ jmp(Done);
  2330   __ bind(notShort);
  2331   // ltos
  2332   __ cmpl(flags, ltos );
  2333   __ jcc(Assembler::notEqual, notLong);
  2335   // Generate code as if volatile.  There just aren't enough registers to
  2336   // save that information and this code is faster than the test.
  2337   __ fild_d(lo);                // Must load atomically
  2338   __ subptr(rsp,2*wordSize);    // Make space for store
  2339   __ fistp_d(Address(rsp,0));
  2340   __ pop(rax);
  2341   __ pop(rdx);
  2343   __ push(ltos);
  2344   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2345   __ jmp(Done);
  2347   __ bind(notLong);
  2348   // ftos
  2349   __ cmpl(flags, ftos );
  2350   __ jcc(Assembler::notEqual, notFloat);
  2352   __ fld_s(lo);
  2353   __ push(ftos);
  2354   if (!is_static) {
  2355     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2357   __ jmp(Done);
  2359   __ bind(notFloat);
  2360   // dtos
  2361   __ cmpl(flags, dtos );
  2362   __ jcc(Assembler::notEqual, notDouble);
  2364   __ fld_d(lo);
  2365   __ push(dtos);
  2366   if (!is_static) {
  2367     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2369   __ jmpb(Done);
  2371   __ bind(notDouble);
  2373   __ stop("Bad state");
  2375   __ bind(Done);
  2376   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2377   // volatile_barrier( );
  2381 void TemplateTable::getfield(int byte_no) {
  2382   getfield_or_static(byte_no, false);
  2386 void TemplateTable::getstatic(int byte_no) {
  2387   getfield_or_static(byte_no, true);
  2390 // The registers cache and index expected to be set before call.
  2391 // The function may destroy various registers, just not the cache and index registers.
  2392 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2394   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2396   if (JvmtiExport::can_post_field_modification()) {
  2397     // Check to see if a field modification watch has been set before we take
  2398     // the time to call into the VM.
  2399     Label L1;
  2400     assert_different_registers(cache, index, rax);
  2401     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2402     __ testl(rax, rax);
  2403     __ jcc(Assembler::zero, L1);
  2405     // The cache and index registers have been already set.
  2406     // This allows to eliminate this call but the cache and index
  2407     // registers have to be correspondingly used after this line.
  2408     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2410     if (is_static) {
  2411       // Life is simple.  Null out the object pointer.
  2412       __ xorptr(rbx, rbx);
  2413     } else {
  2414       // Life is harder. The stack holds the value on top, followed by the object.
  2415       // We don't know the size of the value, though; it could be one or two words
  2416       // depending on its type. As a result, we must find the type to determine where
  2417       // the object is.
  2418       Label two_word, valsize_known;
  2419       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2420                                    ConstantPoolCacheEntry::flags_offset())));
  2421       __ mov(rbx, rsp);
  2422       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2423       // Make sure we don't need to mask rcx for tosBits after the above shift
  2424       ConstantPoolCacheEntry::verify_tosBits();
  2425       __ cmpl(rcx, ltos);
  2426       __ jccb(Assembler::equal, two_word);
  2427       __ cmpl(rcx, dtos);
  2428       __ jccb(Assembler::equal, two_word);
  2429       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2430       __ jmpb(valsize_known);
  2432       __ bind(two_word);
  2433       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2435       __ bind(valsize_known);
  2436       // setup object pointer
  2437       __ movptr(rbx, Address(rbx, 0));
  2439     // cache entry pointer
  2440     __ addptr(rax, in_bytes(cp_base_offset));
  2441     __ shll(rdx, LogBytesPerWord);
  2442     __ addptr(rax, rdx);
  2443     // object (tos)
  2444     __ mov(rcx, rsp);
  2445     // rbx,: object pointer set up above (NULL if static)
  2446     // rax,: cache entry pointer
  2447     // rcx: jvalue object on the stack
  2448     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2449                rbx, rax, rcx);
  2450     __ get_cache_and_index_at_bcp(cache, index, 1);
  2451     __ bind(L1);
  2456 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2457   transition(vtos, vtos);
  2459   const Register cache = rcx;
  2460   const Register index = rdx;
  2461   const Register obj   = rcx;
  2462   const Register off   = rbx;
  2463   const Register flags = rax;
  2465   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2466   jvmti_post_field_mod(cache, index, is_static);
  2467   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2469   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2470   // volatile_barrier( );
  2472   Label notVolatile, Done;
  2473   __ movl(rdx, flags);
  2474   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2475   __ andl(rdx, 0x1);
  2477   // field addresses
  2478   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2479   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2481   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2483   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2484   assert(btos == 0, "change code, btos != 0");
  2485   // btos
  2486   __ andl(flags, 0x0f);
  2487   __ jcc(Assembler::notZero, notByte);
  2489   __ pop(btos);
  2490   if (!is_static) pop_and_check_object(obj);
  2491   __ movb(lo, rax );
  2492   if (!is_static) {
  2493     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2495   __ jmp(Done);
  2497   __ bind(notByte);
  2498   // itos
  2499   __ cmpl(flags, itos );
  2500   __ jcc(Assembler::notEqual, notInt);
  2502   __ pop(itos);
  2503   if (!is_static) pop_and_check_object(obj);
  2505   __ movl(lo, rax );
  2506   if (!is_static) {
  2507     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2509   __ jmp(Done);
  2511   __ bind(notInt);
  2512   // atos
  2513   __ cmpl(flags, atos );
  2514   __ jcc(Assembler::notEqual, notObj);
  2516   __ pop(atos);
  2517   if (!is_static) pop_and_check_object(obj);
  2519   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2521   if (!is_static) {
  2522     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2525   __ jmp(Done);
  2527   __ bind(notObj);
  2528   // ctos
  2529   __ cmpl(flags, ctos );
  2530   __ jcc(Assembler::notEqual, notChar);
  2532   __ pop(ctos);
  2533   if (!is_static) pop_and_check_object(obj);
  2534   __ movw(lo, rax );
  2535   if (!is_static) {
  2536     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2538   __ jmp(Done);
  2540   __ bind(notChar);
  2541   // stos
  2542   __ cmpl(flags, stos );
  2543   __ jcc(Assembler::notEqual, notShort);
  2545   __ pop(stos);
  2546   if (!is_static) pop_and_check_object(obj);
  2547   __ movw(lo, rax );
  2548   if (!is_static) {
  2549     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2551   __ jmp(Done);
  2553   __ bind(notShort);
  2554   // ltos
  2555   __ cmpl(flags, ltos );
  2556   __ jcc(Assembler::notEqual, notLong);
  2558   Label notVolatileLong;
  2559   __ testl(rdx, rdx);
  2560   __ jcc(Assembler::zero, notVolatileLong);
  2562   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2563   if (!is_static) pop_and_check_object(obj);
  2565   // Replace with real volatile test
  2566   __ push(rdx);
  2567   __ push(rax);                 // Must update atomically with FIST
  2568   __ fild_d(Address(rsp,0));    // So load into FPU register
  2569   __ fistp_d(lo);               // and put into memory atomically
  2570   __ addptr(rsp, 2*wordSize);
  2571   // volatile_barrier();
  2572   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2573                                                Assembler::StoreStore));
  2574   // Don't rewrite volatile version
  2575   __ jmp(notVolatile);
  2577   __ bind(notVolatileLong);
  2579   __ pop(ltos);  // overwrites rdx
  2580   if (!is_static) pop_and_check_object(obj);
  2581   NOT_LP64(__ movptr(hi, rdx));
  2582   __ movptr(lo, rax);
  2583   if (!is_static) {
  2584     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2586   __ jmp(notVolatile);
  2588   __ bind(notLong);
  2589   // ftos
  2590   __ cmpl(flags, ftos );
  2591   __ jcc(Assembler::notEqual, notFloat);
  2593   __ pop(ftos);
  2594   if (!is_static) pop_and_check_object(obj);
  2595   __ fstp_s(lo);
  2596   if (!is_static) {
  2597     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2599   __ jmp(Done);
  2601   __ bind(notFloat);
  2602   // dtos
  2603   __ cmpl(flags, dtos );
  2604   __ jcc(Assembler::notEqual, notDouble);
  2606   __ pop(dtos);
  2607   if (!is_static) pop_and_check_object(obj);
  2608   __ fstp_d(lo);
  2609   if (!is_static) {
  2610     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2612   __ jmp(Done);
  2614   __ bind(notDouble);
  2616   __ stop("Bad state");
  2618   __ bind(Done);
  2620   // Check for volatile store
  2621   __ testl(rdx, rdx);
  2622   __ jcc(Assembler::zero, notVolatile);
  2623   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2624                                                Assembler::StoreStore));
  2625   __ bind(notVolatile);
  2629 void TemplateTable::putfield(int byte_no) {
  2630   putfield_or_static(byte_no, false);
  2634 void TemplateTable::putstatic(int byte_no) {
  2635   putfield_or_static(byte_no, true);
  2638 void TemplateTable::jvmti_post_fast_field_mod() {
  2639   if (JvmtiExport::can_post_field_modification()) {
  2640     // Check to see if a field modification watch has been set before we take
  2641     // the time to call into the VM.
  2642     Label L2;
  2643     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2644     __ testl(rcx,rcx);
  2645     __ jcc(Assembler::zero, L2);
  2646     __ pop_ptr(rbx);               // copy the object pointer from tos
  2647     __ verify_oop(rbx);
  2648     __ push_ptr(rbx);              // put the object pointer back on tos
  2649     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2650     __ mov(rcx, rsp);
  2651     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2652     __ xorptr(rbx, rbx);
  2653     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2654     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2655     switch (bytecode()) {          // load values into the jvalue object
  2656     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2657     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2658     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2659     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2660     case Bytecodes::_fast_lputfield:
  2661       NOT_LP64(__ movptr(hi_value, rdx));
  2662       __ movptr(lo_value, rax);
  2663       break;
  2665     // need to call fld_s() after fstp_s() to restore the value for below
  2666     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2668     // need to call fld_d() after fstp_d() to restore the value for below
  2669     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2671     // since rcx is not an object we don't call store_check() here
  2672     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2674     default:  ShouldNotReachHere();
  2676     __ pop_ptr(rbx);  // restore copy of object pointer
  2678     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2679     // then use them for JVM/DI purposes
  2680     __ push(rax);
  2681     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2682     // access constant pool cache entry
  2683     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2684     __ verify_oop(rbx);
  2685     // rbx,: object pointer copied above
  2686     // rax,: cache entry pointer
  2687     // rcx: jvalue object on the stack
  2688     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2689     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2690     __ pop(rax);     // restore lower value
  2691     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2692     __ bind(L2);
  2696 void TemplateTable::fast_storefield(TosState state) {
  2697   transition(state, vtos);
  2699   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2701   jvmti_post_fast_field_mod();
  2703   // access constant pool cache
  2704   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2706   // test for volatile with rdx but rdx is tos register for lputfield.
  2707   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2708   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2709                        ConstantPoolCacheEntry::flags_offset())));
  2711   // replace index with field offset from cache entry
  2712   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2714   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2715   // volatile_barrier( );
  2717   Label notVolatile, Done;
  2718   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2719   __ andl(rdx, 0x1);
  2720   // Check for volatile store
  2721   __ testl(rdx, rdx);
  2722   __ jcc(Assembler::zero, notVolatile);
  2724   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2726   // Get object from stack
  2727   pop_and_check_object(rcx);
  2729   // field addresses
  2730   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2731   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2733   // access field
  2734   switch (bytecode()) {
  2735     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2736     case Bytecodes::_fast_sputfield: // fall through
  2737     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2738     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2739     case Bytecodes::_fast_lputfield:
  2740       NOT_LP64(__ movptr(hi, rdx));
  2741       __ movptr(lo, rax);
  2742       break;
  2743     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2744     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2745     case Bytecodes::_fast_aputfield: {
  2746       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2747       break;
  2749     default:
  2750       ShouldNotReachHere();
  2753   Label done;
  2754   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2755                                                Assembler::StoreStore));
  2756   // Barriers are so large that short branch doesn't reach!
  2757   __ jmp(done);
  2759   // Same code as above, but don't need rdx to test for volatile.
  2760   __ bind(notVolatile);
  2762   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2764   // Get object from stack
  2765   pop_and_check_object(rcx);
  2767   // access field
  2768   switch (bytecode()) {
  2769     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2770     case Bytecodes::_fast_sputfield: // fall through
  2771     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2772     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2773     case Bytecodes::_fast_lputfield:
  2774       NOT_LP64(__ movptr(hi, rdx));
  2775       __ movptr(lo, rax);
  2776       break;
  2777     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2778     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2779     case Bytecodes::_fast_aputfield: {
  2780       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2781       break;
  2783     default:
  2784       ShouldNotReachHere();
  2786   __ bind(done);
  2790 void TemplateTable::fast_accessfield(TosState state) {
  2791   transition(atos, state);
  2793   // do the JVMTI work here to avoid disturbing the register state below
  2794   if (JvmtiExport::can_post_field_access()) {
  2795     // Check to see if a field access watch has been set before we take
  2796     // the time to call into the VM.
  2797     Label L1;
  2798     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2799     __ testl(rcx,rcx);
  2800     __ jcc(Assembler::zero, L1);
  2801     // access constant pool cache entry
  2802     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2803     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2804     __ verify_oop(rax);
  2805     // rax,: object pointer copied above
  2806     // rcx: cache entry pointer
  2807     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2808     __ pop_ptr(rax);   // restore object pointer
  2809     __ bind(L1);
  2812   // access constant pool cache
  2813   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2814   // replace index with field offset from cache entry
  2815   __ movptr(rbx, Address(rcx,
  2816                          rbx,
  2817                          Address::times_ptr,
  2818                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2821   // rax,: object
  2822   __ verify_oop(rax);
  2823   __ null_check(rax);
  2824   // field addresses
  2825   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2826   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2828   // access field
  2829   switch (bytecode()) {
  2830     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2831     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2832     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2833     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2834     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2835     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2836     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2837     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2838     default:
  2839       ShouldNotReachHere();
  2842   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2843   // volatile_barrier( );
  2846 void TemplateTable::fast_xaccess(TosState state) {
  2847   transition(vtos, state);
  2848   // get receiver
  2849   __ movptr(rax, aaddress(0));
  2850   // access constant pool cache
  2851   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2852   __ movptr(rbx, Address(rcx,
  2853                          rdx,
  2854                          Address::times_ptr,
  2855                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2856   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2857   __ increment(rsi);
  2858   __ null_check(rax);
  2859   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2860   if (state == itos) {
  2861     __ movl(rax, lo);
  2862   } else if (state == atos) {
  2863     __ movptr(rax, lo);
  2864     __ verify_oop(rax);
  2865   } else if (state == ftos) {
  2866     __ fld_s(lo);
  2867   } else {
  2868     ShouldNotReachHere();
  2870   __ decrement(rsi);
  2875 //----------------------------------------------------------------------------------------------------
  2876 // Calls
  2878 void TemplateTable::count_calls(Register method, Register temp) {
  2879   // implemented elsewhere
  2880   ShouldNotReachHere();
  2884 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2885   // determine flags
  2886   Bytecodes::Code code = bytecode();
  2887   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2888   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2889   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2890   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2891   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2892   const bool receiver_null_check = is_invokespecial;
  2893   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2894   // setup registers & access constant pool cache
  2895   const Register recv   = rcx;
  2896   const Register flags  = rdx;
  2897   assert_different_registers(method, index, recv, flags);
  2899   // save 'interpreter return address'
  2900   __ save_bcp();
  2902   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2904   // load receiver if needed (note: no return address pushed yet)
  2905   if (load_receiver) {
  2906     assert(!is_invokedynamic, "");
  2907     __ movl(recv, flags);
  2908     __ andl(recv, 0xFF);
  2909     // recv count is 0 based?
  2910     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
  2911     __ movptr(recv, recv_addr);
  2912     __ verify_oop(recv);
  2915   // do null check if needed
  2916   if (receiver_null_check) {
  2917     __ null_check(recv);
  2920   if (save_flags) {
  2921     __ mov(rsi, flags);
  2924   // compute return type
  2925   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2926   // Make sure we don't need to mask flags for tosBits after the above shift
  2927   ConstantPoolCacheEntry::verify_tosBits();
  2928   // load return address
  2930     address table_addr;
  2931     if (is_invokeinterface || is_invokedynamic)
  2932       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2933     else
  2934       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2935     ExternalAddress table(table_addr);
  2936     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2939   // push return address
  2940   __ push(flags);
  2942   // Restore flag value from the constant pool cache, and restore rsi
  2943   // for later null checks.  rsi is the bytecode pointer
  2944   if (save_flags) {
  2945     __ mov(flags, rsi);
  2946     __ restore_bcp();
  2951 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2952                         Register flags) {
  2954   // Uses temporary registers rax, rdx
  2955   assert_different_registers(index, recv, rax, rdx);
  2957   // Test for an invoke of a final method
  2958   Label notFinal;
  2959   __ movl(rax, flags);
  2960   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2961   __ jcc(Assembler::zero, notFinal);
  2963   Register method = index;  // method must be rbx,
  2964   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2966   // do the call - the index is actually the method to call
  2967   __ verify_oop(method);
  2969   // It's final, need a null check here!
  2970   __ null_check(recv);
  2972   // profile this call
  2973   __ profile_final_call(rax);
  2975   __ jump_from_interpreted(method, rax);
  2977   __ bind(notFinal);
  2979   // get receiver klass
  2980   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2981   // Keep recv in rcx for callee expects it there
  2982   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2983   __ verify_oop(rax);
  2985   // profile this call
  2986   __ profile_virtual_call(rax, rdi, rdx);
  2988   // get target methodOop & entry point
  2989   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2990   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2991   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2992   __ jump_from_interpreted(method, rdx);
  2996 void TemplateTable::invokevirtual(int byte_no) {
  2997   transition(vtos, vtos);
  2998   assert(byte_no == f2_byte, "use this argument");
  2999   prepare_invoke(rbx, noreg, byte_no);
  3001   // rbx,: index
  3002   // rcx: receiver
  3003   // rdx: flags
  3005   invokevirtual_helper(rbx, rcx, rdx);
  3009 void TemplateTable::invokespecial(int byte_no) {
  3010   transition(vtos, vtos);
  3011   assert(byte_no == f1_byte, "use this argument");
  3012   prepare_invoke(rbx, noreg, byte_no);
  3013   // do the call
  3014   __ verify_oop(rbx);
  3015   __ profile_call(rax);
  3016   __ jump_from_interpreted(rbx, rax);
  3020 void TemplateTable::invokestatic(int byte_no) {
  3021   transition(vtos, vtos);
  3022   assert(byte_no == f1_byte, "use this argument");
  3023   prepare_invoke(rbx, noreg, byte_no);
  3024   // do the call
  3025   __ verify_oop(rbx);
  3026   __ profile_call(rax);
  3027   __ jump_from_interpreted(rbx, rax);
  3031 void TemplateTable::fast_invokevfinal(int byte_no) {
  3032   transition(vtos, vtos);
  3033   assert(byte_no == f2_byte, "use this argument");
  3034   __ stop("fast_invokevfinal not used on x86");
  3038 void TemplateTable::invokeinterface(int byte_no) {
  3039   transition(vtos, vtos);
  3040   assert(byte_no == f1_byte, "use this argument");
  3041   prepare_invoke(rax, rbx, byte_no);
  3043   // rax,: Interface
  3044   // rbx,: index
  3045   // rcx: receiver
  3046   // rdx: flags
  3048   // Special case of invokeinterface called for virtual method of
  3049   // java.lang.Object.  See cpCacheOop.cpp for details.
  3050   // This code isn't produced by javac, but could be produced by
  3051   // another compliant java compiler.
  3052   Label notMethod;
  3053   __ movl(rdi, rdx);
  3054   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3055   __ jcc(Assembler::zero, notMethod);
  3057   invokevirtual_helper(rbx, rcx, rdx);
  3058   __ bind(notMethod);
  3060   // Get receiver klass into rdx - also a null check
  3061   __ restore_locals();  // restore rdi
  3062   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  3063   __ verify_oop(rdx);
  3065   // profile this call
  3066   __ profile_virtual_call(rdx, rsi, rdi);
  3068   Label no_such_interface, no_such_method;
  3070   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3071                              rdx, rax, rbx,
  3072                              // outputs: method, scan temp. reg
  3073                              rbx, rsi,
  3074                              no_such_interface);
  3076   // rbx,: methodOop to call
  3077   // rcx: receiver
  3078   // Check for abstract method error
  3079   // Note: This should be done more efficiently via a throw_abstract_method_error
  3080   //       interpreter entry point and a conditional jump to it in case of a null
  3081   //       method.
  3082   __ testptr(rbx, rbx);
  3083   __ jcc(Assembler::zero, no_such_method);
  3085   // do the call
  3086   // rcx: receiver
  3087   // rbx,: methodOop
  3088   __ jump_from_interpreted(rbx, rdx);
  3089   __ should_not_reach_here();
  3091   // exception handling code follows...
  3092   // note: must restore interpreter registers to canonical
  3093   //       state for exception handling to work correctly!
  3095   __ bind(no_such_method);
  3096   // throw exception
  3097   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3098   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3099   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3100   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3101   // the call_VM checks for exception, so we should never return here.
  3102   __ should_not_reach_here();
  3104   __ bind(no_such_interface);
  3105   // throw exception
  3106   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3107   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3108   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3109   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3110                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3111   // the call_VM checks for exception, so we should never return here.
  3112   __ should_not_reach_here();
  3115 void TemplateTable::invokedynamic(int byte_no) {
  3116   transition(vtos, vtos);
  3118   if (!EnableInvokeDynamic) {
  3119     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3120     // The verifier will stop it.  However, if we get past the verifier,
  3121     // this will stop the thread in a reasonable way, without crashing the JVM.
  3122     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3123                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3124     // the call_VM checks for exception, so we should never return here.
  3125     __ should_not_reach_here();
  3126     return;
  3129   assert(byte_no == f1_oop, "use this argument");
  3130   prepare_invoke(rax, rbx, byte_no);
  3132   // rax: CallSite object (f1)
  3133   // rbx: unused (f2)
  3134   // rcx: receiver address
  3135   // rdx: flags (unused)
  3137   Register rax_callsite      = rax;
  3138   Register rcx_method_handle = rcx;
  3140   if (ProfileInterpreter) {
  3141     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3142     // profile this call
  3143     __ profile_call(rsi);
  3146   __ movptr(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3147   __ null_check(rcx_method_handle);
  3148   __ prepare_to_jump_from_interpreted();
  3149   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3152 //----------------------------------------------------------------------------------------------------
  3153 // Allocation
  3155 void TemplateTable::_new() {
  3156   transition(vtos, atos);
  3157   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3158   Label slow_case;
  3159   Label slow_case_no_pop;
  3160   Label done;
  3161   Label initialize_header;
  3162   Label initialize_object;  // including clearing the fields
  3163   Label allocate_shared;
  3165   __ get_cpool_and_tags(rcx, rax);
  3167   // Make sure the class we're about to instantiate has been resolved.
  3168   // This is done before loading instanceKlass to be consistent with the order
  3169   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3170   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3171   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3172   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3174   // get instanceKlass
  3175   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3176   __ push(rcx);  // save the contexts of klass for initializing the header
  3178   // make sure klass is initialized & doesn't have finalizer
  3179   // make sure klass is fully initialized
  3180   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3181   __ jcc(Assembler::notEqual, slow_case);
  3183   // get instance_size in instanceKlass (scaled to a count of bytes)
  3184   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3185   // test to see if it has a finalizer or is malformed in some way
  3186   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3187   __ jcc(Assembler::notZero, slow_case);
  3189   //
  3190   // Allocate the instance
  3191   // 1) Try to allocate in the TLAB
  3192   // 2) if fail and the object is large allocate in the shared Eden
  3193   // 3) if the above fails (or is not applicable), go to a slow case
  3194   // (creates a new TLAB, etc.)
  3196   const bool allow_shared_alloc =
  3197     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3199   const Register thread = rcx;
  3200   if (UseTLAB || allow_shared_alloc) {
  3201     __ get_thread(thread);
  3204   if (UseTLAB) {
  3205     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3206     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3207     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3208     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3209     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3210     if (ZeroTLAB) {
  3211       // the fields have been already cleared
  3212       __ jmp(initialize_header);
  3213     } else {
  3214       // initialize both the header and fields
  3215       __ jmp(initialize_object);
  3219   // Allocation in the shared Eden, if allowed.
  3220   //
  3221   // rdx: instance size in bytes
  3222   if (allow_shared_alloc) {
  3223     __ bind(allocate_shared);
  3225     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3227     Label retry;
  3228     __ bind(retry);
  3229     __ movptr(rax, heap_top);
  3230     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3231     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3232     __ jcc(Assembler::above, slow_case);
  3234     // Compare rax, with the top addr, and if still equal, store the new
  3235     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3236     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3237     //
  3238     // rax,: object begin
  3239     // rbx,: object end
  3240     // rdx: instance size in bytes
  3241     __ locked_cmpxchgptr(rbx, heap_top);
  3243     // if someone beat us on the allocation, try again, otherwise continue
  3244     __ jcc(Assembler::notEqual, retry);
  3246     __ incr_allocated_bytes(thread, rdx, 0);
  3249   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3250     // The object is initialized before the header.  If the object size is
  3251     // zero, go directly to the header initialization.
  3252     __ bind(initialize_object);
  3253     __ decrement(rdx, sizeof(oopDesc));
  3254     __ jcc(Assembler::zero, initialize_header);
  3256     // Initialize topmost object field, divide rdx by 8, check if odd and
  3257     // test if zero.
  3258     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3259     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3261     // rdx must have been multiple of 8
  3262 #ifdef ASSERT
  3263     // make sure rdx was multiple of 8
  3264     Label L;
  3265     // Ignore partial flag stall after shrl() since it is debug VM
  3266     __ jccb(Assembler::carryClear, L);
  3267     __ stop("object size is not multiple of 2 - adjust this code");
  3268     __ bind(L);
  3269     // rdx must be > 0, no extra check needed here
  3270 #endif
  3272     // initialize remaining object fields: rdx was a multiple of 8
  3273     { Label loop;
  3274     __ bind(loop);
  3275     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3276     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3277     __ decrement(rdx);
  3278     __ jcc(Assembler::notZero, loop);
  3281     // initialize object header only.
  3282     __ bind(initialize_header);
  3283     if (UseBiasedLocking) {
  3284       __ pop(rcx);   // get saved klass back in the register.
  3285       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3286       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3287     } else {
  3288       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3289                 (int32_t)markOopDesc::prototype()); // header
  3290       __ pop(rcx);   // get saved klass back in the register.
  3292     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3295       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3296       // Trigger dtrace event for fastpath
  3297       __ push(atos);
  3298       __ call_VM_leaf(
  3299            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3300       __ pop(atos);
  3303     __ jmp(done);
  3306   // slow case
  3307   __ bind(slow_case);
  3308   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3309   __ bind(slow_case_no_pop);
  3310   __ get_constant_pool(rax);
  3311   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3312   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3314   // continue
  3315   __ bind(done);
  3319 void TemplateTable::newarray() {
  3320   transition(itos, atos);
  3321   __ push_i(rax);                                 // make sure everything is on the stack
  3322   __ load_unsigned_byte(rdx, at_bcp(1));
  3323   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3324   __ pop_i(rdx);                                  // discard size
  3328 void TemplateTable::anewarray() {
  3329   transition(itos, atos);
  3330   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3331   __ get_constant_pool(rcx);
  3332   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3336 void TemplateTable::arraylength() {
  3337   transition(atos, itos);
  3338   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3339   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3343 void TemplateTable::checkcast() {
  3344   transition(atos, atos);
  3345   Label done, is_null, ok_is_subtype, quicked, resolved;
  3346   __ testptr(rax, rax);   // Object is in EAX
  3347   __ jcc(Assembler::zero, is_null);
  3349   // Get cpool & tags index
  3350   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3351   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3352   // See if bytecode has already been quicked
  3353   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3354   __ jcc(Assembler::equal, quicked);
  3356   __ push(atos);
  3357   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3358   __ pop_ptr(rdx);
  3359   __ jmpb(resolved);
  3361   // Get superklass in EAX and subklass in EBX
  3362   __ bind(quicked);
  3363   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3364   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3366   __ bind(resolved);
  3367   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3369   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3370   // Superklass in EAX.  Subklass in EBX.
  3371   __ gen_subtype_check( rbx, ok_is_subtype );
  3373   // Come here on failure
  3374   __ push(rdx);
  3375   // object is at TOS
  3376   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3378   // Come here on success
  3379   __ bind(ok_is_subtype);
  3380   __ mov(rax,rdx);           // Restore object in EDX
  3382   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3383   if (ProfileInterpreter) {
  3384     __ jmp(done);
  3385     __ bind(is_null);
  3386     __ profile_null_seen(rcx);
  3387   } else {
  3388     __ bind(is_null);   // same as 'done'
  3390   __ bind(done);
  3394 void TemplateTable::instanceof() {
  3395   transition(atos, itos);
  3396   Label done, is_null, ok_is_subtype, quicked, resolved;
  3397   __ testptr(rax, rax);
  3398   __ jcc(Assembler::zero, is_null);
  3400   // Get cpool & tags index
  3401   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3402   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3403   // See if bytecode has already been quicked
  3404   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3405   __ jcc(Assembler::equal, quicked);
  3407   __ push(atos);
  3408   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3409   __ pop_ptr(rdx);
  3410   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3411   __ jmp(resolved);
  3413   // Get superklass in EAX and subklass in EDX
  3414   __ bind(quicked);
  3415   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3416   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3418   __ bind(resolved);
  3420   // Generate subtype check.  Blows ECX.  Resets EDI.
  3421   // Superklass in EAX.  Subklass in EDX.
  3422   __ gen_subtype_check( rdx, ok_is_subtype );
  3424   // Come here on failure
  3425   __ xorl(rax,rax);
  3426   __ jmpb(done);
  3427   // Come here on success
  3428   __ bind(ok_is_subtype);
  3429   __ movl(rax, 1);
  3431   // Collect counts on whether this test sees NULLs a lot or not.
  3432   if (ProfileInterpreter) {
  3433     __ jmp(done);
  3434     __ bind(is_null);
  3435     __ profile_null_seen(rcx);
  3436   } else {
  3437     __ bind(is_null);   // same as 'done'
  3439   __ bind(done);
  3440   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3441   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3445 //----------------------------------------------------------------------------------------------------
  3446 // Breakpoints
  3447 void TemplateTable::_breakpoint() {
  3449   // Note: We get here even if we are single stepping..
  3450   // jbug inists on setting breakpoints at every bytecode
  3451   // even if we are in single step mode.
  3453   transition(vtos, vtos);
  3455   // get the unpatched byte code
  3456   __ get_method(rcx);
  3457   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3458   __ mov(rbx, rax);
  3460   // post the breakpoint event
  3461   __ get_method(rcx);
  3462   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3464   // complete the execution of original bytecode
  3465   __ dispatch_only_normal(vtos);
  3469 //----------------------------------------------------------------------------------------------------
  3470 // Exceptions
  3472 void TemplateTable::athrow() {
  3473   transition(atos, vtos);
  3474   __ null_check(rax);
  3475   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3479 //----------------------------------------------------------------------------------------------------
  3480 // Synchronization
  3481 //
  3482 // Note: monitorenter & exit are symmetric routines; which is reflected
  3483 //       in the assembly code structure as well
  3484 //
  3485 // Stack layout:
  3486 //
  3487 // [expressions  ] <--- rsp               = expression stack top
  3488 // ..
  3489 // [expressions  ]
  3490 // [monitor entry] <--- monitor block top = expression stack bot
  3491 // ..
  3492 // [monitor entry]
  3493 // [frame data   ] <--- monitor block bot
  3494 // ...
  3495 // [saved rbp,    ] <--- rbp,
  3498 void TemplateTable::monitorenter() {
  3499   transition(atos, vtos);
  3501   // check for NULL object
  3502   __ null_check(rax);
  3504   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3505   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3506   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3507   Label allocated;
  3509   // initialize entry pointer
  3510   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3512   // find a free slot in the monitor block (result in rdx)
  3513   { Label entry, loop, exit;
  3514     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
  3515     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
  3516     __ jmpb(entry);
  3518     __ bind(loop);
  3519     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3521 // TODO - need new func here - kbt
  3522     if (VM_Version::supports_cmov()) {
  3523       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
  3524     } else {
  3525       Label L;
  3526       __ jccb(Assembler::notEqual, L);
  3527       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
  3528       __ bind(L);
  3530     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3531     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3532     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3533     __ bind(entry);
  3534     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3535     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3536     __ bind(exit);
  3539   __ testptr(rdx, rdx);                          // check if a slot has been found
  3540   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3542   // allocate one if there's no free slot
  3543   { Label entry, loop;
  3544     // 1. compute new pointers                   // rsp: old expression stack top
  3545     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3546     __ subptr(rsp, entry_size);                  // move expression stack top
  3547     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3548     __ mov(rcx, rsp);                            // set start value for copy loop
  3549     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3550     __ jmp(entry);
  3551     // 2. move expression stack contents
  3552     __ bind(loop);
  3553     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3554     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3555     __ addptr(rcx, wordSize);                    // advance to next word
  3556     __ bind(entry);
  3557     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3558     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3561   // call run-time routine
  3562   // rdx: points to monitor entry
  3563   __ bind(allocated);
  3565   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3566   // The object has already been poped from the stack, so the expression stack looks correct.
  3567   __ increment(rsi);
  3569   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3570   __ lock_object(rdx);
  3572   // check to make sure this monitor doesn't cause stack overflow after locking
  3573   __ save_bcp();  // in case of exception
  3574   __ generate_stack_overflow_check(0);
  3576   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3577   __ dispatch_next(vtos);
  3581 void TemplateTable::monitorexit() {
  3582   transition(atos, vtos);
  3584   // check for NULL object
  3585   __ null_check(rax);
  3587   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3588   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3589   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3590   Label found;
  3592   // find matching slot
  3593   { Label entry, loop;
  3594     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3595     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3596     __ jmpb(entry);
  3598     __ bind(loop);
  3599     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3600     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3601     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3602     __ bind(entry);
  3603     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3604     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3607   // error handling. Unlocking was not block-structured
  3608   Label end;
  3609   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3610   __ should_not_reach_here();
  3612   // call run-time routine
  3613   // rcx: points to monitor entry
  3614   __ bind(found);
  3615   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3616   __ unlock_object(rdx);
  3617   __ pop_ptr(rax);                                  // discard object
  3618   __ bind(end);
  3622 //----------------------------------------------------------------------------------------------------
  3623 // Wide instructions
  3625 void TemplateTable::wide() {
  3626   transition(vtos, vtos);
  3627   __ load_unsigned_byte(rbx, at_bcp(1));
  3628   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3629   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3630   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3634 //----------------------------------------------------------------------------------------------------
  3635 // Multi arrays
  3637 void TemplateTable::multianewarray() {
  3638   transition(vtos, atos);
  3639   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3640   // last dim is on top of stack; we want address of first one:
  3641   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3642   // the latter wordSize to point to the beginning of the array.
  3643   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3644   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3645   __ load_unsigned_byte(rbx, at_bcp(3));
  3646   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3649 #endif /* !CC_INTERP */

mercurial