src/share/vm/gc_implementation/g1/heapRegion.cpp

Mon, 08 Dec 2014 18:57:33 +0100

author
mgerdin
date
Mon, 08 Dec 2014 18:57:33 +0100
changeset 7971
b554c7fa9478
parent 7366
e8bf410d5e23
child 7990
1f646daf0d67
permissions
-rw-r--r--

8067655: Clean up G1 remembered set oop iteration
Summary: Pass on the static type G1ParPushHeapRSClosure to allow oop_iterate devirtualization
Reviewed-by: jmasa, kbarrett

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    34 #include "gc_implementation/shared/liveRange.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/iterator.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/orderAccess.inline.hpp"
    41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    43 int    HeapRegion::LogOfHRGrainBytes = 0;
    44 int    HeapRegion::LogOfHRGrainWords = 0;
    45 size_t HeapRegion::GrainBytes        = 0;
    46 size_t HeapRegion::GrainWords        = 0;
    47 size_t HeapRegion::CardsPerRegion    = 0;
    49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    50                                  HeapRegion* hr,
    51                                  G1ParPushHeapRSClosure* cl,
    52                                  CardTableModRefBS::PrecisionStyle precision) :
    53   DirtyCardToOopClosure(hr, cl, precision, NULL),
    54   _hr(hr), _rs_scan(cl), _g1(g1) { }
    56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    57                                                    OopClosure* oc) :
    58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    60 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    61                                       HeapWord* bottom,
    62                                       HeapWord* top) {
    63   G1CollectedHeap* g1h = _g1;
    64   size_t oop_size;
    65   HeapWord* cur = bottom;
    67   // Start filtering what we add to the remembered set. If the object is
    68   // not considered dead, either because it is marked (in the mark bitmap)
    69   // or it was allocated after marking finished, then we add it. Otherwise
    70   // we can safely ignore the object.
    71   if (!g1h->is_obj_dead(oop(cur), _hr)) {
    72     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
    73   } else {
    74     oop_size = _hr->block_size(cur);
    75   }
    77   cur += oop_size;
    79   if (cur < top) {
    80     oop cur_oop = oop(cur);
    81     oop_size = _hr->block_size(cur);
    82     HeapWord* next_obj = cur + oop_size;
    83     while (next_obj < top) {
    84       // Keep filtering the remembered set.
    85       if (!g1h->is_obj_dead(cur_oop, _hr)) {
    86         // Bottom lies entirely below top, so we can call the
    87         // non-memRegion version of oop_iterate below.
    88         cur_oop->oop_iterate(_rs_scan);
    89       }
    90       cur = next_obj;
    91       cur_oop = oop(cur);
    92       oop_size = _hr->block_size(cur);
    93       next_obj = cur + oop_size;
    94     }
    96     // Last object. Need to do dead-obj filtering here too.
    97     if (!g1h->is_obj_dead(oop(cur), _hr)) {
    98       oop(cur)->oop_iterate(_rs_scan, mr);
    99     }
   100   }
   101 }
   103 size_t HeapRegion::max_region_size() {
   104   return HeapRegionBounds::max_size();
   105 }
   107 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   108   uintx region_size = G1HeapRegionSize;
   109   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   110     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   111     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
   112                        (uintx) HeapRegionBounds::min_size());
   113   }
   115   int region_size_log = log2_long((jlong) region_size);
   116   // Recalculate the region size to make sure it's a power of
   117   // 2. This means that region_size is the largest power of 2 that's
   118   // <= what we've calculated so far.
   119   region_size = ((uintx)1 << region_size_log);
   121   // Now make sure that we don't go over or under our limits.
   122   if (region_size < HeapRegionBounds::min_size()) {
   123     region_size = HeapRegionBounds::min_size();
   124   } else if (region_size > HeapRegionBounds::max_size()) {
   125     region_size = HeapRegionBounds::max_size();
   126   }
   128   // And recalculate the log.
   129   region_size_log = log2_long((jlong) region_size);
   131   // Now, set up the globals.
   132   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   133   LogOfHRGrainBytes = region_size_log;
   135   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   136   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   138   guarantee(GrainBytes == 0, "we should only set it once");
   139   // The cast to int is safe, given that we've bounded region_size by
   140   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   141   GrainBytes = (size_t)region_size;
   143   guarantee(GrainWords == 0, "we should only set it once");
   144   GrainWords = GrainBytes >> LogHeapWordSize;
   145   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   147   guarantee(CardsPerRegion == 0, "we should only set it once");
   148   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   149 }
   151 void HeapRegion::reset_after_compaction() {
   152   G1OffsetTableContigSpace::reset_after_compaction();
   153   // After a compaction the mark bitmap is invalid, so we must
   154   // treat all objects as being inside the unmarked area.
   155   zero_marked_bytes();
   156   init_top_at_mark_start();
   157 }
   159 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   160   assert(_humongous_start_region == NULL,
   161          "we should have already filtered out humongous regions");
   162   assert(_end == _orig_end,
   163          "we should have already filtered out humongous regions");
   165   _in_collection_set = false;
   167   set_allocation_context(AllocationContext::system());
   168   set_young_index_in_cset(-1);
   169   uninstall_surv_rate_group();
   170   set_free();
   171   reset_pre_dummy_top();
   173   if (!par) {
   174     // If this is parallel, this will be done later.
   175     HeapRegionRemSet* hrrs = rem_set();
   176     if (locked) {
   177       hrrs->clear_locked();
   178     } else {
   179       hrrs->clear();
   180     }
   181     _claimed = InitialClaimValue;
   182   }
   183   zero_marked_bytes();
   185   _offsets.resize(HeapRegion::GrainWords);
   186   init_top_at_mark_start();
   187   if (clear_space) clear(SpaceDecorator::Mangle);
   188 }
   190 void HeapRegion::par_clear() {
   191   assert(used() == 0, "the region should have been already cleared");
   192   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   193   HeapRegionRemSet* hrrs = rem_set();
   194   hrrs->clear();
   195   CardTableModRefBS* ct_bs =
   196                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   197   ct_bs->clear(MemRegion(bottom(), end()));
   198 }
   200 void HeapRegion::calc_gc_efficiency() {
   201   // GC efficiency is the ratio of how much space would be
   202   // reclaimed over how long we predict it would take to reclaim it.
   203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   204   G1CollectorPolicy* g1p = g1h->g1_policy();
   206   // Retrieve a prediction of the elapsed time for this region for
   207   // a mixed gc because the region will only be evacuated during a
   208   // mixed gc.
   209   double region_elapsed_time_ms =
   210     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   211   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   212 }
   214 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   215   assert(!isHumongous(), "sanity / pre-condition");
   216   assert(end() == _orig_end,
   217          "Should be normal before the humongous object allocation");
   218   assert(top() == bottom(), "should be empty");
   219   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   221   _type.set_starts_humongous();
   222   _humongous_start_region = this;
   224   set_end(new_end);
   225   _offsets.set_for_starts_humongous(new_top);
   226 }
   228 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   229   assert(!isHumongous(), "sanity / pre-condition");
   230   assert(end() == _orig_end,
   231          "Should be normal before the humongous object allocation");
   232   assert(top() == bottom(), "should be empty");
   233   assert(first_hr->startsHumongous(), "pre-condition");
   235   _type.set_continues_humongous();
   236   _humongous_start_region = first_hr;
   237 }
   239 void HeapRegion::clear_humongous() {
   240   assert(isHumongous(), "pre-condition");
   242   if (startsHumongous()) {
   243     assert(top() <= end(), "pre-condition");
   244     set_end(_orig_end);
   245     if (top() > end()) {
   246       // at least one "continues humongous" region after it
   247       set_top(end());
   248     }
   249   } else {
   250     // continues humongous
   251     assert(end() == _orig_end, "sanity");
   252   }
   254   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   255   _humongous_start_region = NULL;
   256 }
   258 bool HeapRegion::claimHeapRegion(jint claimValue) {
   259   jint current = _claimed;
   260   if (current != claimValue) {
   261     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   262     if (res == current) {
   263       return true;
   264     }
   265   }
   266   return false;
   267 }
   269 HeapRegion::HeapRegion(uint hrm_index,
   270                        G1BlockOffsetSharedArray* sharedOffsetArray,
   271                        MemRegion mr) :
   272     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   273     _hrm_index(hrm_index),
   274     _allocation_context(AllocationContext::system()),
   275     _humongous_start_region(NULL),
   276     _in_collection_set(false),
   277     _next_in_special_set(NULL), _orig_end(NULL),
   278     _claimed(InitialClaimValue), _evacuation_failed(false),
   279     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   280     _next_young_region(NULL),
   281     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
   282 #ifdef ASSERT
   283     _containing_set(NULL),
   284 #endif // ASSERT
   285      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   286     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   287     _predicted_bytes_to_copy(0)
   288 {
   289   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   290   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   292   initialize(mr);
   293 }
   295 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   296   assert(_rem_set->is_empty(), "Remembered set must be empty");
   298   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
   300   _orig_end = mr.end();
   301   hr_clear(false /*par*/, false /*clear_space*/);
   302   set_top(bottom());
   303   record_top_and_timestamp();
   304 }
   306 CompactibleSpace* HeapRegion::next_compaction_space() const {
   307   return G1CollectedHeap::heap()->next_compaction_region(this);
   308 }
   310 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   311                                                     bool during_conc_mark) {
   312   // We always recreate the prev marking info and we'll explicitly
   313   // mark all objects we find to be self-forwarded on the prev
   314   // bitmap. So all objects need to be below PTAMS.
   315   _prev_marked_bytes = 0;
   317   if (during_initial_mark) {
   318     // During initial-mark, we'll also explicitly mark all objects
   319     // we find to be self-forwarded on the next bitmap. So all
   320     // objects need to be below NTAMS.
   321     _next_top_at_mark_start = top();
   322     _next_marked_bytes = 0;
   323   } else if (during_conc_mark) {
   324     // During concurrent mark, all objects in the CSet (including
   325     // the ones we find to be self-forwarded) are implicitly live.
   326     // So all objects need to be above NTAMS.
   327     _next_top_at_mark_start = bottom();
   328     _next_marked_bytes = 0;
   329   }
   330 }
   332 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   333                                                   bool during_conc_mark,
   334                                                   size_t marked_bytes) {
   335   assert(0 <= marked_bytes && marked_bytes <= used(),
   336          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   337                  marked_bytes, used()));
   338   _prev_top_at_mark_start = top();
   339   _prev_marked_bytes = marked_bytes;
   340 }
   342 HeapWord*
   343 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   344                                                  ObjectClosure* cl) {
   345   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   346   // We used to use "block_start_careful" here.  But we're actually happy
   347   // to update the BOT while we do this...
   348   HeapWord* cur = block_start(mr.start());
   349   mr = mr.intersection(used_region());
   350   if (mr.is_empty()) return NULL;
   351   // Otherwise, find the obj that extends onto mr.start().
   353   assert(cur <= mr.start()
   354          && (oop(cur)->klass_or_null() == NULL ||
   355              cur + oop(cur)->size() > mr.start()),
   356          "postcondition of block_start");
   357   oop obj;
   358   while (cur < mr.end()) {
   359     obj = oop(cur);
   360     if (obj->klass_or_null() == NULL) {
   361       // Ran into an unparseable point.
   362       return cur;
   363     } else if (!g1h->is_obj_dead(obj)) {
   364       cl->do_object(obj);
   365     }
   366     if (cl->abort()) return cur;
   367     // The check above must occur before the operation below, since an
   368     // abort might invalidate the "size" operation.
   369     cur += block_size(cur);
   370   }
   371   return NULL;
   372 }
   374 HeapWord*
   375 HeapRegion::
   376 oops_on_card_seq_iterate_careful(MemRegion mr,
   377                                  FilterOutOfRegionClosure* cl,
   378                                  bool filter_young,
   379                                  jbyte* card_ptr) {
   380   // Currently, we should only have to clean the card if filter_young
   381   // is true and vice versa.
   382   if (filter_young) {
   383     assert(card_ptr != NULL, "pre-condition");
   384   } else {
   385     assert(card_ptr == NULL, "pre-condition");
   386   }
   387   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   389   // If we're within a stop-world GC, then we might look at a card in a
   390   // GC alloc region that extends onto a GC LAB, which may not be
   391   // parseable.  Stop such at the "saved_mark" of the region.
   392   if (g1h->is_gc_active()) {
   393     mr = mr.intersection(used_region_at_save_marks());
   394   } else {
   395     mr = mr.intersection(used_region());
   396   }
   397   if (mr.is_empty()) return NULL;
   398   // Otherwise, find the obj that extends onto mr.start().
   400   // The intersection of the incoming mr (for the card) and the
   401   // allocated part of the region is non-empty. This implies that
   402   // we have actually allocated into this region. The code in
   403   // G1CollectedHeap.cpp that allocates a new region sets the
   404   // is_young tag on the region before allocating. Thus we
   405   // safely know if this region is young.
   406   if (is_young() && filter_young) {
   407     return NULL;
   408   }
   410   assert(!is_young(), "check value of filter_young");
   412   // We can only clean the card here, after we make the decision that
   413   // the card is not young. And we only clean the card if we have been
   414   // asked to (i.e., card_ptr != NULL).
   415   if (card_ptr != NULL) {
   416     *card_ptr = CardTableModRefBS::clean_card_val();
   417     // We must complete this write before we do any of the reads below.
   418     OrderAccess::storeload();
   419   }
   421   // Cache the boundaries of the memory region in some const locals
   422   HeapWord* const start = mr.start();
   423   HeapWord* const end = mr.end();
   425   // We used to use "block_start_careful" here.  But we're actually happy
   426   // to update the BOT while we do this...
   427   HeapWord* cur = block_start(start);
   428   assert(cur <= start, "Postcondition");
   430   oop obj;
   432   HeapWord* next = cur;
   433   while (next <= start) {
   434     cur = next;
   435     obj = oop(cur);
   436     if (obj->klass_or_null() == NULL) {
   437       // Ran into an unparseable point.
   438       return cur;
   439     }
   440     // Otherwise...
   441     next = cur + block_size(cur);
   442   }
   444   // If we finish the above loop...We have a parseable object that
   445   // begins on or before the start of the memory region, and ends
   446   // inside or spans the entire region.
   448   assert(obj == oop(cur), "sanity");
   449   assert(cur <= start, "Loop postcondition");
   450   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   451   assert((cur + block_size(cur)) > start, "Loop postcondition");
   453   if (!g1h->is_obj_dead(obj)) {
   454     obj->oop_iterate(cl, mr);
   455   }
   457   while (cur < end) {
   458     obj = oop(cur);
   459     if (obj->klass_or_null() == NULL) {
   460       // Ran into an unparseable point.
   461       return cur;
   462     };
   464     // Otherwise:
   465     next = cur + block_size(cur);
   467     if (!g1h->is_obj_dead(obj)) {
   468       if (next < end || !obj->is_objArray()) {
   469         // This object either does not span the MemRegion
   470         // boundary, or if it does it's not an array.
   471         // Apply closure to whole object.
   472         obj->oop_iterate(cl);
   473       } else {
   474         // This obj is an array that spans the boundary.
   475         // Stop at the boundary.
   476         obj->oop_iterate(cl, mr);
   477       }
   478     }
   479     cur = next;
   480   }
   481   return NULL;
   482 }
   484 // Code roots support
   486 void HeapRegion::add_strong_code_root(nmethod* nm) {
   487   HeapRegionRemSet* hrrs = rem_set();
   488   hrrs->add_strong_code_root(nm);
   489 }
   491 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
   492   assert_locked_or_safepoint(CodeCache_lock);
   493   HeapRegionRemSet* hrrs = rem_set();
   494   hrrs->add_strong_code_root_locked(nm);
   495 }
   497 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   498   HeapRegionRemSet* hrrs = rem_set();
   499   hrrs->remove_strong_code_root(nm);
   500 }
   502 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   503   HeapRegionRemSet* hrrs = rem_set();
   504   hrrs->strong_code_roots_do(blk);
   505 }
   507 class VerifyStrongCodeRootOopClosure: public OopClosure {
   508   const HeapRegion* _hr;
   509   nmethod* _nm;
   510   bool _failures;
   511   bool _has_oops_in_region;
   513   template <class T> void do_oop_work(T* p) {
   514     T heap_oop = oopDesc::load_heap_oop(p);
   515     if (!oopDesc::is_null(heap_oop)) {
   516       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   518       // Note: not all the oops embedded in the nmethod are in the
   519       // current region. We only look at those which are.
   520       if (_hr->is_in(obj)) {
   521         // Object is in the region. Check that its less than top
   522         if (_hr->top() <= (HeapWord*)obj) {
   523           // Object is above top
   524           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   525                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   526                                  "top "PTR_FORMAT,
   527                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   528           _failures = true;
   529           return;
   530         }
   531         // Nmethod has at least one oop in the current region
   532         _has_oops_in_region = true;
   533       }
   534     }
   535   }
   537 public:
   538   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   539     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   541   void do_oop(narrowOop* p) { do_oop_work(p); }
   542   void do_oop(oop* p)       { do_oop_work(p); }
   544   bool failures()           { return _failures; }
   545   bool has_oops_in_region() { return _has_oops_in_region; }
   546 };
   548 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   549   const HeapRegion* _hr;
   550   bool _failures;
   551 public:
   552   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   553     _hr(hr), _failures(false) {}
   555   void do_code_blob(CodeBlob* cb) {
   556     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   557     if (nm != NULL) {
   558       // Verify that the nemthod is live
   559       if (!nm->is_alive()) {
   560         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   561                                PTR_FORMAT" in its strong code roots",
   562                                _hr->bottom(), _hr->end(), nm);
   563         _failures = true;
   564       } else {
   565         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   566         nm->oops_do(&oop_cl);
   567         if (!oop_cl.has_oops_in_region()) {
   568           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   569                                  PTR_FORMAT" in its strong code roots "
   570                                  "with no pointers into region",
   571                                  _hr->bottom(), _hr->end(), nm);
   572           _failures = true;
   573         } else if (oop_cl.failures()) {
   574           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   575                                  "failures for nmethod "PTR_FORMAT,
   576                                  _hr->bottom(), _hr->end(), nm);
   577           _failures = true;
   578         }
   579       }
   580     }
   581   }
   583   bool failures()       { return _failures; }
   584 };
   586 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   587   if (!G1VerifyHeapRegionCodeRoots) {
   588     // We're not verifying code roots.
   589     return;
   590   }
   591   if (vo == VerifyOption_G1UseMarkWord) {
   592     // Marking verification during a full GC is performed after class
   593     // unloading, code cache unloading, etc so the strong code roots
   594     // attached to each heap region are in an inconsistent state. They won't
   595     // be consistent until the strong code roots are rebuilt after the
   596     // actual GC. Skip verifying the strong code roots in this particular
   597     // time.
   598     assert(VerifyDuringGC, "only way to get here");
   599     return;
   600   }
   602   HeapRegionRemSet* hrrs = rem_set();
   603   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   605   // if this region is empty then there should be no entries
   606   // on its strong code root list
   607   if (is_empty()) {
   608     if (strong_code_roots_length > 0) {
   609       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   610                              "but has "SIZE_FORMAT" code root entries",
   611                              bottom(), end(), strong_code_roots_length);
   612       *failures = true;
   613     }
   614     return;
   615   }
   617   if (continuesHumongous()) {
   618     if (strong_code_roots_length > 0) {
   619       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   620                              "region but has "SIZE_FORMAT" code root entries",
   621                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   622       *failures = true;
   623     }
   624     return;
   625   }
   627   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   628   strong_code_roots_do(&cb_cl);
   630   if (cb_cl.failures()) {
   631     *failures = true;
   632   }
   633 }
   635 void HeapRegion::print() const { print_on(gclog_or_tty); }
   636 void HeapRegion::print_on(outputStream* st) const {
   637   st->print("AC%4u", allocation_context());
   638   st->print(" %2s", get_short_type_str());
   639   if (in_collection_set())
   640     st->print(" CS");
   641   else
   642     st->print("   ");
   643   st->print(" TS %5d", _gc_time_stamp);
   644   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   645             prev_top_at_mark_start(), next_top_at_mark_start());
   646   G1OffsetTableContigSpace::print_on(st);
   647 }
   649 class VerifyLiveClosure: public OopClosure {
   650 private:
   651   G1CollectedHeap* _g1h;
   652   CardTableModRefBS* _bs;
   653   oop _containing_obj;
   654   bool _failures;
   655   int _n_failures;
   656   VerifyOption _vo;
   657 public:
   658   // _vo == UsePrevMarking -> use "prev" marking information,
   659   // _vo == UseNextMarking -> use "next" marking information,
   660   // _vo == UseMarkWord    -> use mark word from object header.
   661   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   662     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   663     _failures(false), _n_failures(0), _vo(vo)
   664   {
   665     BarrierSet* bs = _g1h->barrier_set();
   666     if (bs->is_a(BarrierSet::CardTableModRef))
   667       _bs = (CardTableModRefBS*)bs;
   668   }
   670   void set_containing_obj(oop obj) {
   671     _containing_obj = obj;
   672   }
   674   bool failures() { return _failures; }
   675   int n_failures() { return _n_failures; }
   677   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   678   virtual void do_oop(      oop* p) { do_oop_work(p); }
   680   void print_object(outputStream* out, oop obj) {
   681 #ifdef PRODUCT
   682     Klass* k = obj->klass();
   683     const char* class_name = InstanceKlass::cast(k)->external_name();
   684     out->print_cr("class name %s", class_name);
   685 #else // PRODUCT
   686     obj->print_on(out);
   687 #endif // PRODUCT
   688   }
   690   template <class T>
   691   void do_oop_work(T* p) {
   692     assert(_containing_obj != NULL, "Precondition");
   693     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   694            "Precondition");
   695     T heap_oop = oopDesc::load_heap_oop(p);
   696     if (!oopDesc::is_null(heap_oop)) {
   697       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   698       bool failed = false;
   699       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   700         MutexLockerEx x(ParGCRareEvent_lock,
   701                         Mutex::_no_safepoint_check_flag);
   703         if (!_failures) {
   704           gclog_or_tty->cr();
   705           gclog_or_tty->print_cr("----------");
   706         }
   707         if (!_g1h->is_in_closed_subset(obj)) {
   708           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   709           gclog_or_tty->print_cr("Field "PTR_FORMAT
   710                                  " of live obj "PTR_FORMAT" in region "
   711                                  "["PTR_FORMAT", "PTR_FORMAT")",
   712                                  p, (void*) _containing_obj,
   713                                  from->bottom(), from->end());
   714           print_object(gclog_or_tty, _containing_obj);
   715           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   716                                  (void*) obj);
   717         } else {
   718           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   719           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   720           gclog_or_tty->print_cr("Field "PTR_FORMAT
   721                                  " of live obj "PTR_FORMAT" in region "
   722                                  "["PTR_FORMAT", "PTR_FORMAT")",
   723                                  p, (void*) _containing_obj,
   724                                  from->bottom(), from->end());
   725           print_object(gclog_or_tty, _containing_obj);
   726           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   727                                  "["PTR_FORMAT", "PTR_FORMAT")",
   728                                  (void*) obj, to->bottom(), to->end());
   729           print_object(gclog_or_tty, obj);
   730         }
   731         gclog_or_tty->print_cr("----------");
   732         gclog_or_tty->flush();
   733         _failures = true;
   734         failed = true;
   735         _n_failures++;
   736       }
   738       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   739         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   740         HeapRegion* to   = _g1h->heap_region_containing(obj);
   741         if (from != NULL && to != NULL &&
   742             from != to &&
   743             !to->isHumongous()) {
   744           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   745           jbyte cv_field = *_bs->byte_for_const(p);
   746           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   748           bool is_bad = !(from->is_young()
   749                           || to->rem_set()->contains_reference(p)
   750                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   751                               (_containing_obj->is_objArray() ?
   752                                   cv_field == dirty
   753                                : cv_obj == dirty || cv_field == dirty));
   754           if (is_bad) {
   755             MutexLockerEx x(ParGCRareEvent_lock,
   756                             Mutex::_no_safepoint_check_flag);
   758             if (!_failures) {
   759               gclog_or_tty->cr();
   760               gclog_or_tty->print_cr("----------");
   761             }
   762             gclog_or_tty->print_cr("Missing rem set entry:");
   763             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   764                                    "of obj "PTR_FORMAT", "
   765                                    "in region "HR_FORMAT,
   766                                    p, (void*) _containing_obj,
   767                                    HR_FORMAT_PARAMS(from));
   768             _containing_obj->print_on(gclog_or_tty);
   769             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   770                                    "in region "HR_FORMAT,
   771                                    (void*) obj,
   772                                    HR_FORMAT_PARAMS(to));
   773             obj->print_on(gclog_or_tty);
   774             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   775                           cv_obj, cv_field);
   776             gclog_or_tty->print_cr("----------");
   777             gclog_or_tty->flush();
   778             _failures = true;
   779             if (!failed) _n_failures++;
   780           }
   781         }
   782       }
   783     }
   784   }
   785 };
   787 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   788 // We would need a mechanism to make that code skip dead objects.
   790 void HeapRegion::verify(VerifyOption vo,
   791                         bool* failures) const {
   792   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   793   *failures = false;
   794   HeapWord* p = bottom();
   795   HeapWord* prev_p = NULL;
   796   VerifyLiveClosure vl_cl(g1, vo);
   797   bool is_humongous = isHumongous();
   798   bool do_bot_verify = !is_young();
   799   size_t object_num = 0;
   800   while (p < top()) {
   801     oop obj = oop(p);
   802     size_t obj_size = block_size(p);
   803     object_num += 1;
   805     if (is_humongous != g1->isHumongous(obj_size) &&
   806         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   807       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   808                              SIZE_FORMAT" words) in a %shumongous region",
   809                              p, g1->isHumongous(obj_size) ? "" : "non-",
   810                              obj_size, is_humongous ? "" : "non-");
   811        *failures = true;
   812        return;
   813     }
   815     // If it returns false, verify_for_object() will output the
   816     // appropriate message.
   817     if (do_bot_verify &&
   818         !g1->is_obj_dead(obj, this) &&
   819         !_offsets.verify_for_object(p, obj_size)) {
   820       *failures = true;
   821       return;
   822     }
   824     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   825       if (obj->is_oop()) {
   826         Klass* klass = obj->klass();
   827         bool is_metaspace_object = Metaspace::contains(klass) ||
   828                                    (vo == VerifyOption_G1UsePrevMarking &&
   829                                    ClassLoaderDataGraph::unload_list_contains(klass));
   830         if (!is_metaspace_object) {
   831           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   832                                  "not metadata", klass, (void *)obj);
   833           *failures = true;
   834           return;
   835         } else if (!klass->is_klass()) {
   836           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   837                                  "not a klass", klass, (void *)obj);
   838           *failures = true;
   839           return;
   840         } else {
   841           vl_cl.set_containing_obj(obj);
   842           obj->oop_iterate_no_header(&vl_cl);
   843           if (vl_cl.failures()) {
   844             *failures = true;
   845           }
   846           if (G1MaxVerifyFailures >= 0 &&
   847               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   848             return;
   849           }
   850         }
   851       } else {
   852         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   853         *failures = true;
   854         return;
   855       }
   856     }
   857     prev_p = p;
   858     p += obj_size;
   859   }
   861   if (p != top()) {
   862     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   863                            "does not match top "PTR_FORMAT, p, top());
   864     *failures = true;
   865     return;
   866   }
   868   HeapWord* the_end = end();
   869   assert(p == top(), "it should still hold");
   870   // Do some extra BOT consistency checking for addresses in the
   871   // range [top, end). BOT look-ups in this range should yield
   872   // top. No point in doing that if top == end (there's nothing there).
   873   if (p < the_end) {
   874     // Look up top
   875     HeapWord* addr_1 = p;
   876     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   877     if (b_start_1 != p) {
   878       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   879                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   880                              addr_1, b_start_1, p);
   881       *failures = true;
   882       return;
   883     }
   885     // Look up top + 1
   886     HeapWord* addr_2 = p + 1;
   887     if (addr_2 < the_end) {
   888       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   889       if (b_start_2 != p) {
   890         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   891                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   892                                addr_2, b_start_2, p);
   893         *failures = true;
   894         return;
   895       }
   896     }
   898     // Look up an address between top and end
   899     size_t diff = pointer_delta(the_end, p) / 2;
   900     HeapWord* addr_3 = p + diff;
   901     if (addr_3 < the_end) {
   902       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   903       if (b_start_3 != p) {
   904         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   905                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   906                                addr_3, b_start_3, p);
   907         *failures = true;
   908         return;
   909       }
   910     }
   912     // Loook up end - 1
   913     HeapWord* addr_4 = the_end - 1;
   914     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   915     if (b_start_4 != p) {
   916       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
   917                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   918                              addr_4, b_start_4, p);
   919       *failures = true;
   920       return;
   921     }
   922   }
   924   if (is_humongous && object_num > 1) {
   925     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   926                            "but has "SIZE_FORMAT", objects",
   927                            bottom(), end(), object_num);
   928     *failures = true;
   929     return;
   930   }
   932   verify_strong_code_roots(vo, failures);
   933 }
   935 void HeapRegion::verify() const {
   936   bool dummy = false;
   937   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
   938 }
   940 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   941 // away eventually.
   943 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   944   set_top(bottom());
   945   set_saved_mark_word(bottom());
   946   CompactibleSpace::clear(mangle_space);
   947   reset_bot();
   948 }
   950 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   951   Space::set_bottom(new_bottom);
   952   _offsets.set_bottom(new_bottom);
   953 }
   955 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   956   Space::set_end(new_end);
   957   _offsets.resize(new_end - bottom());
   958 }
   960 void G1OffsetTableContigSpace::print() const {
   961   print_short();
   962   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   963                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   964                 bottom(), top(), _offsets.threshold(), end());
   965 }
   967 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
   968   return _offsets.initialize_threshold();
   969 }
   971 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
   972                                                     HeapWord* end) {
   973   _offsets.alloc_block(start, end);
   974   return _offsets.threshold();
   975 }
   977 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
   978   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   979   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
   980   HeapWord* local_top = top();
   981   OrderAccess::loadload();
   982   if (_gc_time_stamp < g1h->get_gc_time_stamp()) {
   983     return local_top;
   984   } else {
   985     return Space::saved_mark_word();
   986   }
   987 }
   989 void G1OffsetTableContigSpace::record_top_and_timestamp() {
   990   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   991   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
   993   if (_gc_time_stamp < curr_gc_time_stamp) {
   994     // The order of these is important, as another thread might be
   995     // about to start scanning this region. If it does so after
   996     // set_saved_mark and before _gc_time_stamp = ..., then the latter
   997     // will be false, and it will pick up top() as the high water mark
   998     // of region. If it does so after _gc_time_stamp = ..., then it
   999     // will pick up the right saved_mark_word() as the high water mark
  1000     // of the region. Either way, the behaviour will be correct.
  1001     Space::set_saved_mark_word(top());
  1002     OrderAccess::storestore();
  1003     _gc_time_stamp = curr_gc_time_stamp;
  1004     // No need to do another barrier to flush the writes above. If
  1005     // this is called in parallel with other threads trying to
  1006     // allocate into the region, the caller should call this while
  1007     // holding a lock and when the lock is released the writes will be
  1008     // flushed.
  1012 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1013   object_iterate(blk);
  1016 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1017   HeapWord* p = bottom();
  1018   while (p < top()) {
  1019     if (block_is_obj(p)) {
  1020       blk->do_object(oop(p));
  1022     p += block_size(p);
  1026 #define block_is_always_obj(q) true
  1027 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1028   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1030 #undef block_is_always_obj
  1032 G1OffsetTableContigSpace::
  1033 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1034                          MemRegion mr) :
  1035   _offsets(sharedOffsetArray, mr),
  1036   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1037   _gc_time_stamp(0)
  1039   _offsets.set_space(this);
  1042 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  1043   CompactibleSpace::initialize(mr, clear_space, mangle_space);
  1044   _top = bottom();
  1045   reset_bot();

mercurial