src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 14 Feb 2012 09:43:25 +0100

author
roland
date
Tue, 14 Feb 2012 09:43:25 +0100
changeset 3568
b522995d91f0
parent 3522
c742b0b47fe5
child 3606
da4be62fb889
permissions
-rw-r--r--

7144405: JumbleGC002 assert(m->offset() == pc_offset) failed: oopmap not found
Summary: oop map needs pc stored in frame anchor in StubGenerator::generate_throw_exception()
Reviewed-by: twisti, never, kvn

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "thread_bsd.inline.hpp"
    52 #endif
    53 #ifdef COMPILER2
    54 #include "opto/runtime.hpp"
    55 #endif
    57 // Declaration and definition of StubGenerator (no .hpp file).
    58 // For a more detailed description of the stub routine structure
    59 // see the comment in stubRoutines.hpp
    61 #define __ _masm->
    62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    63 #define a__ ((Assembler*)_masm)->
    65 #ifdef PRODUCT
    66 #define BLOCK_COMMENT(str) /* nothing */
    67 #else
    68 #define BLOCK_COMMENT(str) __ block_comment(str)
    69 #endif
    71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    72 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    74 // Stub Code definitions
    76 static address handle_unsafe_access() {
    77   JavaThread* thread = JavaThread::current();
    78   address pc = thread->saved_exception_pc();
    79   // pc is the instruction which we must emulate
    80   // doing a no-op is fine:  return garbage from the load
    81   // therefore, compute npc
    82   address npc = Assembler::locate_next_instruction(pc);
    84   // request an async exception
    85   thread->set_pending_unsafe_access_error();
    87   // return address of next instruction to execute
    88   return npc;
    89 }
    91 class StubGenerator: public StubCodeGenerator {
    92  private:
    94 #ifdef PRODUCT
    95 #define inc_counter_np(counter) (0)
    96 #else
    97   void inc_counter_np_(int& counter) {
    98     // This can destroy rscratch1 if counter is far from the code cache
    99     __ incrementl(ExternalAddress((address)&counter));
   100   }
   101 #define inc_counter_np(counter) \
   102   BLOCK_COMMENT("inc_counter " #counter); \
   103   inc_counter_np_(counter);
   104 #endif
   106   // Call stubs are used to call Java from C
   107   //
   108   // Linux Arguments:
   109   //    c_rarg0:   call wrapper address                   address
   110   //    c_rarg1:   result                                 address
   111   //    c_rarg2:   result type                            BasicType
   112   //    c_rarg3:   method                                 methodOop
   113   //    c_rarg4:   (interpreter) entry point              address
   114   //    c_rarg5:   parameters                             intptr_t*
   115   //    16(rbp): parameter size (in words)              int
   116   //    24(rbp): thread                                 Thread*
   117   //
   118   //     [ return_from_Java     ] <--- rsp
   119   //     [ argument word n      ]
   120   //      ...
   121   // -12 [ argument word 1      ]
   122   // -11 [ saved r15            ] <--- rsp_after_call
   123   // -10 [ saved r14            ]
   124   //  -9 [ saved r13            ]
   125   //  -8 [ saved r12            ]
   126   //  -7 [ saved rbx            ]
   127   //  -6 [ call wrapper         ]
   128   //  -5 [ result               ]
   129   //  -4 [ result type          ]
   130   //  -3 [ method               ]
   131   //  -2 [ entry point          ]
   132   //  -1 [ parameters           ]
   133   //   0 [ saved rbp            ] <--- rbp
   134   //   1 [ return address       ]
   135   //   2 [ parameter size       ]
   136   //   3 [ thread               ]
   137   //
   138   // Windows Arguments:
   139   //    c_rarg0:   call wrapper address                   address
   140   //    c_rarg1:   result                                 address
   141   //    c_rarg2:   result type                            BasicType
   142   //    c_rarg3:   method                                 methodOop
   143   //    48(rbp): (interpreter) entry point              address
   144   //    56(rbp): parameters                             intptr_t*
   145   //    64(rbp): parameter size (in words)              int
   146   //    72(rbp): thread                                 Thread*
   147   //
   148   //     [ return_from_Java     ] <--- rsp
   149   //     [ argument word n      ]
   150   //      ...
   151   // -28 [ argument word 1      ]
   152   // -27 [ saved xmm15          ] <--- rsp_after_call
   153   //     [ saved xmm7-xmm14     ]
   154   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
   155   //  -7 [ saved r15            ]
   156   //  -6 [ saved r14            ]
   157   //  -5 [ saved r13            ]
   158   //  -4 [ saved r12            ]
   159   //  -3 [ saved rdi            ]
   160   //  -2 [ saved rsi            ]
   161   //  -1 [ saved rbx            ]
   162   //   0 [ saved rbp            ] <--- rbp
   163   //   1 [ return address       ]
   164   //   2 [ call wrapper         ]
   165   //   3 [ result               ]
   166   //   4 [ result type          ]
   167   //   5 [ method               ]
   168   //   6 [ entry point          ]
   169   //   7 [ parameters           ]
   170   //   8 [ parameter size       ]
   171   //   9 [ thread               ]
   172   //
   173   //    Windows reserves the callers stack space for arguments 1-4.
   174   //    We spill c_rarg0-c_rarg3 to this space.
   176   // Call stub stack layout word offsets from rbp
   177   enum call_stub_layout {
   178 #ifdef _WIN64
   179     xmm_save_first     = 6,  // save from xmm6
   180     xmm_save_last      = 15, // to xmm15
   181     xmm_save_base      = -9,
   182     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
   183     r15_off            = -7,
   184     r14_off            = -6,
   185     r13_off            = -5,
   186     r12_off            = -4,
   187     rdi_off            = -3,
   188     rsi_off            = -2,
   189     rbx_off            = -1,
   190     rbp_off            =  0,
   191     retaddr_off        =  1,
   192     call_wrapper_off   =  2,
   193     result_off         =  3,
   194     result_type_off    =  4,
   195     method_off         =  5,
   196     entry_point_off    =  6,
   197     parameters_off     =  7,
   198     parameter_size_off =  8,
   199     thread_off         =  9
   200 #else
   201     rsp_after_call_off = -12,
   202     mxcsr_off          = rsp_after_call_off,
   203     r15_off            = -11,
   204     r14_off            = -10,
   205     r13_off            = -9,
   206     r12_off            = -8,
   207     rbx_off            = -7,
   208     call_wrapper_off   = -6,
   209     result_off         = -5,
   210     result_type_off    = -4,
   211     method_off         = -3,
   212     entry_point_off    = -2,
   213     parameters_off     = -1,
   214     rbp_off            =  0,
   215     retaddr_off        =  1,
   216     parameter_size_off =  2,
   217     thread_off         =  3
   218 #endif
   219   };
   221 #ifdef _WIN64
   222   Address xmm_save(int reg) {
   223     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
   224     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
   225   }
   226 #endif
   228   address generate_call_stub(address& return_address) {
   229     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   230            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   231            "adjust this code");
   232     StubCodeMark mark(this, "StubRoutines", "call_stub");
   233     address start = __ pc();
   235     // same as in generate_catch_exception()!
   236     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   238     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   239     const Address result        (rbp, result_off         * wordSize);
   240     const Address result_type   (rbp, result_type_off    * wordSize);
   241     const Address method        (rbp, method_off         * wordSize);
   242     const Address entry_point   (rbp, entry_point_off    * wordSize);
   243     const Address parameters    (rbp, parameters_off     * wordSize);
   244     const Address parameter_size(rbp, parameter_size_off * wordSize);
   246     // same as in generate_catch_exception()!
   247     const Address thread        (rbp, thread_off         * wordSize);
   249     const Address r15_save(rbp, r15_off * wordSize);
   250     const Address r14_save(rbp, r14_off * wordSize);
   251     const Address r13_save(rbp, r13_off * wordSize);
   252     const Address r12_save(rbp, r12_off * wordSize);
   253     const Address rbx_save(rbp, rbx_off * wordSize);
   255     // stub code
   256     __ enter();
   257     __ subptr(rsp, -rsp_after_call_off * wordSize);
   259     // save register parameters
   260 #ifndef _WIN64
   261     __ movptr(parameters,   c_rarg5); // parameters
   262     __ movptr(entry_point,  c_rarg4); // entry_point
   263 #endif
   265     __ movptr(method,       c_rarg3); // method
   266     __ movl(result_type,  c_rarg2);   // result type
   267     __ movptr(result,       c_rarg1); // result
   268     __ movptr(call_wrapper, c_rarg0); // call wrapper
   270     // save regs belonging to calling function
   271     __ movptr(rbx_save, rbx);
   272     __ movptr(r12_save, r12);
   273     __ movptr(r13_save, r13);
   274     __ movptr(r14_save, r14);
   275     __ movptr(r15_save, r15);
   276 #ifdef _WIN64
   277     for (int i = 6; i <= 15; i++) {
   278       __ movdqu(xmm_save(i), as_XMMRegister(i));
   279     }
   281     const Address rdi_save(rbp, rdi_off * wordSize);
   282     const Address rsi_save(rbp, rsi_off * wordSize);
   284     __ movptr(rsi_save, rsi);
   285     __ movptr(rdi_save, rdi);
   286 #else
   287     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   288     {
   289       Label skip_ldmx;
   290       __ stmxcsr(mxcsr_save);
   291       __ movl(rax, mxcsr_save);
   292       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   293       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   294       __ cmp32(rax, mxcsr_std);
   295       __ jcc(Assembler::equal, skip_ldmx);
   296       __ ldmxcsr(mxcsr_std);
   297       __ bind(skip_ldmx);
   298     }
   299 #endif
   301     // Load up thread register
   302     __ movptr(r15_thread, thread);
   303     __ reinit_heapbase();
   305 #ifdef ASSERT
   306     // make sure we have no pending exceptions
   307     {
   308       Label L;
   309       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   310       __ jcc(Assembler::equal, L);
   311       __ stop("StubRoutines::call_stub: entered with pending exception");
   312       __ bind(L);
   313     }
   314 #endif
   316     // pass parameters if any
   317     BLOCK_COMMENT("pass parameters if any");
   318     Label parameters_done;
   319     __ movl(c_rarg3, parameter_size);
   320     __ testl(c_rarg3, c_rarg3);
   321     __ jcc(Assembler::zero, parameters_done);
   323     Label loop;
   324     __ movptr(c_rarg2, parameters);       // parameter pointer
   325     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   326     __ BIND(loop);
   327     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   328     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   329     __ decrementl(c_rarg1);             // decrement counter
   330     __ push(rax);                       // pass parameter
   331     __ jcc(Assembler::notZero, loop);
   333     // call Java function
   334     __ BIND(parameters_done);
   335     __ movptr(rbx, method);             // get methodOop
   336     __ movptr(c_rarg1, entry_point);    // get entry_point
   337     __ mov(r13, rsp);                   // set sender sp
   338     BLOCK_COMMENT("call Java function");
   339     __ call(c_rarg1);
   341     BLOCK_COMMENT("call_stub_return_address:");
   342     return_address = __ pc();
   344     // store result depending on type (everything that is not
   345     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   346     __ movptr(c_rarg0, result);
   347     Label is_long, is_float, is_double, exit;
   348     __ movl(c_rarg1, result_type);
   349     __ cmpl(c_rarg1, T_OBJECT);
   350     __ jcc(Assembler::equal, is_long);
   351     __ cmpl(c_rarg1, T_LONG);
   352     __ jcc(Assembler::equal, is_long);
   353     __ cmpl(c_rarg1, T_FLOAT);
   354     __ jcc(Assembler::equal, is_float);
   355     __ cmpl(c_rarg1, T_DOUBLE);
   356     __ jcc(Assembler::equal, is_double);
   358     // handle T_INT case
   359     __ movl(Address(c_rarg0, 0), rax);
   361     __ BIND(exit);
   363     // pop parameters
   364     __ lea(rsp, rsp_after_call);
   366 #ifdef ASSERT
   367     // verify that threads correspond
   368     {
   369       Label L, S;
   370       __ cmpptr(r15_thread, thread);
   371       __ jcc(Assembler::notEqual, S);
   372       __ get_thread(rbx);
   373       __ cmpptr(r15_thread, rbx);
   374       __ jcc(Assembler::equal, L);
   375       __ bind(S);
   376       __ jcc(Assembler::equal, L);
   377       __ stop("StubRoutines::call_stub: threads must correspond");
   378       __ bind(L);
   379     }
   380 #endif
   382     // restore regs belonging to calling function
   383 #ifdef _WIN64
   384     for (int i = 15; i >= 6; i--) {
   385       __ movdqu(as_XMMRegister(i), xmm_save(i));
   386     }
   387 #endif
   388     __ movptr(r15, r15_save);
   389     __ movptr(r14, r14_save);
   390     __ movptr(r13, r13_save);
   391     __ movptr(r12, r12_save);
   392     __ movptr(rbx, rbx_save);
   394 #ifdef _WIN64
   395     __ movptr(rdi, rdi_save);
   396     __ movptr(rsi, rsi_save);
   397 #else
   398     __ ldmxcsr(mxcsr_save);
   399 #endif
   401     // restore rsp
   402     __ addptr(rsp, -rsp_after_call_off * wordSize);
   404     // return
   405     __ pop(rbp);
   406     __ ret(0);
   408     // handle return types different from T_INT
   409     __ BIND(is_long);
   410     __ movq(Address(c_rarg0, 0), rax);
   411     __ jmp(exit);
   413     __ BIND(is_float);
   414     __ movflt(Address(c_rarg0, 0), xmm0);
   415     __ jmp(exit);
   417     __ BIND(is_double);
   418     __ movdbl(Address(c_rarg0, 0), xmm0);
   419     __ jmp(exit);
   421     return start;
   422   }
   424   // Return point for a Java call if there's an exception thrown in
   425   // Java code.  The exception is caught and transformed into a
   426   // pending exception stored in JavaThread that can be tested from
   427   // within the VM.
   428   //
   429   // Note: Usually the parameters are removed by the callee. In case
   430   // of an exception crossing an activation frame boundary, that is
   431   // not the case if the callee is compiled code => need to setup the
   432   // rsp.
   433   //
   434   // rax: exception oop
   436   address generate_catch_exception() {
   437     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   438     address start = __ pc();
   440     // same as in generate_call_stub():
   441     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   442     const Address thread        (rbp, thread_off         * wordSize);
   444 #ifdef ASSERT
   445     // verify that threads correspond
   446     {
   447       Label L, S;
   448       __ cmpptr(r15_thread, thread);
   449       __ jcc(Assembler::notEqual, S);
   450       __ get_thread(rbx);
   451       __ cmpptr(r15_thread, rbx);
   452       __ jcc(Assembler::equal, L);
   453       __ bind(S);
   454       __ stop("StubRoutines::catch_exception: threads must correspond");
   455       __ bind(L);
   456     }
   457 #endif
   459     // set pending exception
   460     __ verify_oop(rax);
   462     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   463     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   464     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   465     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   467     // complete return to VM
   468     assert(StubRoutines::_call_stub_return_address != NULL,
   469            "_call_stub_return_address must have been generated before");
   470     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   472     return start;
   473   }
   475   // Continuation point for runtime calls returning with a pending
   476   // exception.  The pending exception check happened in the runtime
   477   // or native call stub.  The pending exception in Thread is
   478   // converted into a Java-level exception.
   479   //
   480   // Contract with Java-level exception handlers:
   481   // rax: exception
   482   // rdx: throwing pc
   483   //
   484   // NOTE: At entry of this stub, exception-pc must be on stack !!
   486   address generate_forward_exception() {
   487     StubCodeMark mark(this, "StubRoutines", "forward exception");
   488     address start = __ pc();
   490     // Upon entry, the sp points to the return address returning into
   491     // Java (interpreted or compiled) code; i.e., the return address
   492     // becomes the throwing pc.
   493     //
   494     // Arguments pushed before the runtime call are still on the stack
   495     // but the exception handler will reset the stack pointer ->
   496     // ignore them.  A potential result in registers can be ignored as
   497     // well.
   499 #ifdef ASSERT
   500     // make sure this code is only executed if there is a pending exception
   501     {
   502       Label L;
   503       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   504       __ jcc(Assembler::notEqual, L);
   505       __ stop("StubRoutines::forward exception: no pending exception (1)");
   506       __ bind(L);
   507     }
   508 #endif
   510     // compute exception handler into rbx
   511     __ movptr(c_rarg0, Address(rsp, 0));
   512     BLOCK_COMMENT("call exception_handler_for_return_address");
   513     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   514                          SharedRuntime::exception_handler_for_return_address),
   515                     r15_thread, c_rarg0);
   516     __ mov(rbx, rax);
   518     // setup rax & rdx, remove return address & clear pending exception
   519     __ pop(rdx);
   520     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   521     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   523 #ifdef ASSERT
   524     // make sure exception is set
   525     {
   526       Label L;
   527       __ testptr(rax, rax);
   528       __ jcc(Assembler::notEqual, L);
   529       __ stop("StubRoutines::forward exception: no pending exception (2)");
   530       __ bind(L);
   531     }
   532 #endif
   534     // continue at exception handler (return address removed)
   535     // rax: exception
   536     // rbx: exception handler
   537     // rdx: throwing pc
   538     __ verify_oop(rax);
   539     __ jmp(rbx);
   541     return start;
   542   }
   544   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   545   //
   546   // Arguments :
   547   //    c_rarg0: exchange_value
   548   //    c_rarg0: dest
   549   //
   550   // Result:
   551   //    *dest <- ex, return (orig *dest)
   552   address generate_atomic_xchg() {
   553     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   554     address start = __ pc();
   556     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   557     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   558     __ ret(0);
   560     return start;
   561   }
   563   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   564   //
   565   // Arguments :
   566   //    c_rarg0: exchange_value
   567   //    c_rarg1: dest
   568   //
   569   // Result:
   570   //    *dest <- ex, return (orig *dest)
   571   address generate_atomic_xchg_ptr() {
   572     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   573     address start = __ pc();
   575     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   576     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   577     __ ret(0);
   579     return start;
   580   }
   582   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   583   //                                         jint compare_value)
   584   //
   585   // Arguments :
   586   //    c_rarg0: exchange_value
   587   //    c_rarg1: dest
   588   //    c_rarg2: compare_value
   589   //
   590   // Result:
   591   //    if ( compare_value == *dest ) {
   592   //       *dest = exchange_value
   593   //       return compare_value;
   594   //    else
   595   //       return *dest;
   596   address generate_atomic_cmpxchg() {
   597     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   598     address start = __ pc();
   600     __ movl(rax, c_rarg2);
   601    if ( os::is_MP() ) __ lock();
   602     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   603     __ ret(0);
   605     return start;
   606   }
   608   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   609   //                                             volatile jlong* dest,
   610   //                                             jlong compare_value)
   611   // Arguments :
   612   //    c_rarg0: exchange_value
   613   //    c_rarg1: dest
   614   //    c_rarg2: compare_value
   615   //
   616   // Result:
   617   //    if ( compare_value == *dest ) {
   618   //       *dest = exchange_value
   619   //       return compare_value;
   620   //    else
   621   //       return *dest;
   622   address generate_atomic_cmpxchg_long() {
   623     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   624     address start = __ pc();
   626     __ movq(rax, c_rarg2);
   627    if ( os::is_MP() ) __ lock();
   628     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   629     __ ret(0);
   631     return start;
   632   }
   634   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   635   //
   636   // Arguments :
   637   //    c_rarg0: add_value
   638   //    c_rarg1: dest
   639   //
   640   // Result:
   641   //    *dest += add_value
   642   //    return *dest;
   643   address generate_atomic_add() {
   644     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   645     address start = __ pc();
   647     __ movl(rax, c_rarg0);
   648    if ( os::is_MP() ) __ lock();
   649     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   650     __ addl(rax, c_rarg0);
   651     __ ret(0);
   653     return start;
   654   }
   656   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   657   //
   658   // Arguments :
   659   //    c_rarg0: add_value
   660   //    c_rarg1: dest
   661   //
   662   // Result:
   663   //    *dest += add_value
   664   //    return *dest;
   665   address generate_atomic_add_ptr() {
   666     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   667     address start = __ pc();
   669     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   670    if ( os::is_MP() ) __ lock();
   671     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   672     __ addptr(rax, c_rarg0);
   673     __ ret(0);
   675     return start;
   676   }
   678   // Support for intptr_t OrderAccess::fence()
   679   //
   680   // Arguments :
   681   //
   682   // Result:
   683   address generate_orderaccess_fence() {
   684     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   685     address start = __ pc();
   686     __ membar(Assembler::StoreLoad);
   687     __ ret(0);
   689     return start;
   690   }
   692   // Support for intptr_t get_previous_fp()
   693   //
   694   // This routine is used to find the previous frame pointer for the
   695   // caller (current_frame_guess). This is used as part of debugging
   696   // ps() is seemingly lost trying to find frames.
   697   // This code assumes that caller current_frame_guess) has a frame.
   698   address generate_get_previous_fp() {
   699     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   700     const Address old_fp(rbp, 0);
   701     const Address older_fp(rax, 0);
   702     address start = __ pc();
   704     __ enter();
   705     __ movptr(rax, old_fp); // callers fp
   706     __ movptr(rax, older_fp); // the frame for ps()
   707     __ pop(rbp);
   708     __ ret(0);
   710     return start;
   711   }
   713   //----------------------------------------------------------------------------------------------------
   714   // Support for void verify_mxcsr()
   715   //
   716   // This routine is used with -Xcheck:jni to verify that native
   717   // JNI code does not return to Java code without restoring the
   718   // MXCSR register to our expected state.
   720   address generate_verify_mxcsr() {
   721     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   722     address start = __ pc();
   724     const Address mxcsr_save(rsp, 0);
   726     if (CheckJNICalls) {
   727       Label ok_ret;
   728       __ push(rax);
   729       __ subptr(rsp, wordSize);      // allocate a temp location
   730       __ stmxcsr(mxcsr_save);
   731       __ movl(rax, mxcsr_save);
   732       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   733       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   734       __ jcc(Assembler::equal, ok_ret);
   736       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   738       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   740       __ bind(ok_ret);
   741       __ addptr(rsp, wordSize);
   742       __ pop(rax);
   743     }
   745     __ ret(0);
   747     return start;
   748   }
   750   address generate_f2i_fixup() {
   751     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   752     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   754     address start = __ pc();
   756     Label L;
   758     __ push(rax);
   759     __ push(c_rarg3);
   760     __ push(c_rarg2);
   761     __ push(c_rarg1);
   763     __ movl(rax, 0x7f800000);
   764     __ xorl(c_rarg3, c_rarg3);
   765     __ movl(c_rarg2, inout);
   766     __ movl(c_rarg1, c_rarg2);
   767     __ andl(c_rarg1, 0x7fffffff);
   768     __ cmpl(rax, c_rarg1); // NaN? -> 0
   769     __ jcc(Assembler::negative, L);
   770     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   771     __ movl(c_rarg3, 0x80000000);
   772     __ movl(rax, 0x7fffffff);
   773     __ cmovl(Assembler::positive, c_rarg3, rax);
   775     __ bind(L);
   776     __ movptr(inout, c_rarg3);
   778     __ pop(c_rarg1);
   779     __ pop(c_rarg2);
   780     __ pop(c_rarg3);
   781     __ pop(rax);
   783     __ ret(0);
   785     return start;
   786   }
   788   address generate_f2l_fixup() {
   789     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   790     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   791     address start = __ pc();
   793     Label L;
   795     __ push(rax);
   796     __ push(c_rarg3);
   797     __ push(c_rarg2);
   798     __ push(c_rarg1);
   800     __ movl(rax, 0x7f800000);
   801     __ xorl(c_rarg3, c_rarg3);
   802     __ movl(c_rarg2, inout);
   803     __ movl(c_rarg1, c_rarg2);
   804     __ andl(c_rarg1, 0x7fffffff);
   805     __ cmpl(rax, c_rarg1); // NaN? -> 0
   806     __ jcc(Assembler::negative, L);
   807     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   808     __ mov64(c_rarg3, 0x8000000000000000);
   809     __ mov64(rax, 0x7fffffffffffffff);
   810     __ cmov(Assembler::positive, c_rarg3, rax);
   812     __ bind(L);
   813     __ movptr(inout, c_rarg3);
   815     __ pop(c_rarg1);
   816     __ pop(c_rarg2);
   817     __ pop(c_rarg3);
   818     __ pop(rax);
   820     __ ret(0);
   822     return start;
   823   }
   825   address generate_d2i_fixup() {
   826     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   827     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   829     address start = __ pc();
   831     Label L;
   833     __ push(rax);
   834     __ push(c_rarg3);
   835     __ push(c_rarg2);
   836     __ push(c_rarg1);
   837     __ push(c_rarg0);
   839     __ movl(rax, 0x7ff00000);
   840     __ movq(c_rarg2, inout);
   841     __ movl(c_rarg3, c_rarg2);
   842     __ mov(c_rarg1, c_rarg2);
   843     __ mov(c_rarg0, c_rarg2);
   844     __ negl(c_rarg3);
   845     __ shrptr(c_rarg1, 0x20);
   846     __ orl(c_rarg3, c_rarg2);
   847     __ andl(c_rarg1, 0x7fffffff);
   848     __ xorl(c_rarg2, c_rarg2);
   849     __ shrl(c_rarg3, 0x1f);
   850     __ orl(c_rarg1, c_rarg3);
   851     __ cmpl(rax, c_rarg1);
   852     __ jcc(Assembler::negative, L); // NaN -> 0
   853     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   854     __ movl(c_rarg2, 0x80000000);
   855     __ movl(rax, 0x7fffffff);
   856     __ cmov(Assembler::positive, c_rarg2, rax);
   858     __ bind(L);
   859     __ movptr(inout, c_rarg2);
   861     __ pop(c_rarg0);
   862     __ pop(c_rarg1);
   863     __ pop(c_rarg2);
   864     __ pop(c_rarg3);
   865     __ pop(rax);
   867     __ ret(0);
   869     return start;
   870   }
   872   address generate_d2l_fixup() {
   873     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   874     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   876     address start = __ pc();
   878     Label L;
   880     __ push(rax);
   881     __ push(c_rarg3);
   882     __ push(c_rarg2);
   883     __ push(c_rarg1);
   884     __ push(c_rarg0);
   886     __ movl(rax, 0x7ff00000);
   887     __ movq(c_rarg2, inout);
   888     __ movl(c_rarg3, c_rarg2);
   889     __ mov(c_rarg1, c_rarg2);
   890     __ mov(c_rarg0, c_rarg2);
   891     __ negl(c_rarg3);
   892     __ shrptr(c_rarg1, 0x20);
   893     __ orl(c_rarg3, c_rarg2);
   894     __ andl(c_rarg1, 0x7fffffff);
   895     __ xorl(c_rarg2, c_rarg2);
   896     __ shrl(c_rarg3, 0x1f);
   897     __ orl(c_rarg1, c_rarg3);
   898     __ cmpl(rax, c_rarg1);
   899     __ jcc(Assembler::negative, L); // NaN -> 0
   900     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   901     __ mov64(c_rarg2, 0x8000000000000000);
   902     __ mov64(rax, 0x7fffffffffffffff);
   903     __ cmovq(Assembler::positive, c_rarg2, rax);
   905     __ bind(L);
   906     __ movq(inout, c_rarg2);
   908     __ pop(c_rarg0);
   909     __ pop(c_rarg1);
   910     __ pop(c_rarg2);
   911     __ pop(c_rarg3);
   912     __ pop(rax);
   914     __ ret(0);
   916     return start;
   917   }
   919   address generate_fp_mask(const char *stub_name, int64_t mask) {
   920     __ align(CodeEntryAlignment);
   921     StubCodeMark mark(this, "StubRoutines", stub_name);
   922     address start = __ pc();
   924     __ emit_data64( mask, relocInfo::none );
   925     __ emit_data64( mask, relocInfo::none );
   927     return start;
   928   }
   930   // The following routine generates a subroutine to throw an
   931   // asynchronous UnknownError when an unsafe access gets a fault that
   932   // could not be reasonably prevented by the programmer.  (Example:
   933   // SIGBUS/OBJERR.)
   934   address generate_handler_for_unsafe_access() {
   935     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   936     address start = __ pc();
   938     __ push(0);                       // hole for return address-to-be
   939     __ pusha();                       // push registers
   940     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   942     // FIXME: this probably needs alignment logic
   944     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   945     BLOCK_COMMENT("call handle_unsafe_access");
   946     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   947     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   949     __ movptr(next_pc, rax);          // stuff next address
   950     __ popa();
   951     __ ret(0);                        // jump to next address
   953     return start;
   954   }
   956   // Non-destructive plausibility checks for oops
   957   //
   958   // Arguments:
   959   //    all args on stack!
   960   //
   961   // Stack after saving c_rarg3:
   962   //    [tos + 0]: saved c_rarg3
   963   //    [tos + 1]: saved c_rarg2
   964   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   965   //    [tos + 3]: saved flags
   966   //    [tos + 4]: return address
   967   //  * [tos + 5]: error message (char*)
   968   //  * [tos + 6]: object to verify (oop)
   969   //  * [tos + 7]: saved rax - saved by caller and bashed
   970   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
   971   //  * = popped on exit
   972   address generate_verify_oop() {
   973     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   974     address start = __ pc();
   976     Label exit, error;
   978     __ pushf();
   979     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   981     __ push(r12);
   983     // save c_rarg2 and c_rarg3
   984     __ push(c_rarg2);
   985     __ push(c_rarg3);
   987     enum {
   988            // After previous pushes.
   989            oop_to_verify = 6 * wordSize,
   990            saved_rax     = 7 * wordSize,
   991            saved_r10     = 8 * wordSize,
   993            // Before the call to MacroAssembler::debug(), see below.
   994            return_addr   = 16 * wordSize,
   995            error_msg     = 17 * wordSize
   996     };
   998     // get object
   999     __ movptr(rax, Address(rsp, oop_to_verify));
  1001     // make sure object is 'reasonable'
  1002     __ testptr(rax, rax);
  1003     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
  1004     // Check if the oop is in the right area of memory
  1005     __ movptr(c_rarg2, rax);
  1006     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
  1007     __ andptr(c_rarg2, c_rarg3);
  1008     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
  1009     __ cmpptr(c_rarg2, c_rarg3);
  1010     __ jcc(Assembler::notZero, error);
  1012     // set r12 to heapbase for load_klass()
  1013     __ reinit_heapbase();
  1015     // make sure klass is 'reasonable'
  1016     __ load_klass(rax, rax);  // get klass
  1017     __ testptr(rax, rax);
  1018     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
  1019     // Check if the klass is in the right area of memory
  1020     __ mov(c_rarg2, rax);
  1021     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1022     __ andptr(c_rarg2, c_rarg3);
  1023     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1024     __ cmpptr(c_rarg2, c_rarg3);
  1025     __ jcc(Assembler::notZero, error);
  1027     // make sure klass' klass is 'reasonable'
  1028     __ load_klass(rax, rax);
  1029     __ testptr(rax, rax);
  1030     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
  1031     // Check if the klass' klass is in the right area of memory
  1032     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1033     __ andptr(rax, c_rarg3);
  1034     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1035     __ cmpptr(rax, c_rarg3);
  1036     __ jcc(Assembler::notZero, error);
  1038     // return if everything seems ok
  1039     __ bind(exit);
  1040     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1041     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1042     __ pop(c_rarg3);                             // restore c_rarg3
  1043     __ pop(c_rarg2);                             // restore c_rarg2
  1044     __ pop(r12);                                 // restore r12
  1045     __ popf();                                   // restore flags
  1046     __ ret(4 * wordSize);                        // pop caller saved stuff
  1048     // handle errors
  1049     __ bind(error);
  1050     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1051     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1052     __ pop(c_rarg3);                             // get saved c_rarg3 back
  1053     __ pop(c_rarg2);                             // get saved c_rarg2 back
  1054     __ pop(r12);                                 // get saved r12 back
  1055     __ popf();                                   // get saved flags off stack --
  1056                                                  // will be ignored
  1058     __ pusha();                                  // push registers
  1059                                                  // (rip is already
  1060                                                  // already pushed)
  1061     // debug(char* msg, int64_t pc, int64_t regs[])
  1062     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1063     // pushed all the registers, so now the stack looks like:
  1064     //     [tos +  0] 16 saved registers
  1065     //     [tos + 16] return address
  1066     //   * [tos + 17] error message (char*)
  1067     //   * [tos + 18] object to verify (oop)
  1068     //   * [tos + 19] saved rax - saved by caller and bashed
  1069     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
  1070     //   * = popped on exit
  1072     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1073     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1074     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1075     __ mov(r12, rsp);                               // remember rsp
  1076     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1077     __ andptr(rsp, -16);                            // align stack as required by ABI
  1078     BLOCK_COMMENT("call MacroAssembler::debug");
  1079     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1080     __ mov(rsp, r12);                               // restore rsp
  1081     __ popa();                                      // pop registers (includes r12)
  1082     __ ret(4 * wordSize);                           // pop caller saved stuff
  1084     return start;
  1087   //
  1088   // Verify that a register contains clean 32-bits positive value
  1089   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1090   //
  1091   //  Input:
  1092   //    Rint  -  32-bits value
  1093   //    Rtmp  -  scratch
  1094   //
  1095   void assert_clean_int(Register Rint, Register Rtmp) {
  1096 #ifdef ASSERT
  1097     Label L;
  1098     assert_different_registers(Rtmp, Rint);
  1099     __ movslq(Rtmp, Rint);
  1100     __ cmpq(Rtmp, Rint);
  1101     __ jcc(Assembler::equal, L);
  1102     __ stop("high 32-bits of int value are not 0");
  1103     __ bind(L);
  1104 #endif
  1107   //  Generate overlap test for array copy stubs
  1108   //
  1109   //  Input:
  1110   //     c_rarg0 - from
  1111   //     c_rarg1 - to
  1112   //     c_rarg2 - element count
  1113   //
  1114   //  Output:
  1115   //     rax   - &from[element count - 1]
  1116   //
  1117   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1118     assert(no_overlap_target != NULL, "must be generated");
  1119     array_overlap_test(no_overlap_target, NULL, sf);
  1121   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1122     array_overlap_test(NULL, &L_no_overlap, sf);
  1124   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1125     const Register from     = c_rarg0;
  1126     const Register to       = c_rarg1;
  1127     const Register count    = c_rarg2;
  1128     const Register end_from = rax;
  1130     __ cmpptr(to, from);
  1131     __ lea(end_from, Address(from, count, sf, 0));
  1132     if (NOLp == NULL) {
  1133       ExternalAddress no_overlap(no_overlap_target);
  1134       __ jump_cc(Assembler::belowEqual, no_overlap);
  1135       __ cmpptr(to, end_from);
  1136       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1137     } else {
  1138       __ jcc(Assembler::belowEqual, (*NOLp));
  1139       __ cmpptr(to, end_from);
  1140       __ jcc(Assembler::aboveEqual, (*NOLp));
  1144   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1145   //
  1146   // Outputs:
  1147   //    rdi - rcx
  1148   //    rsi - rdx
  1149   //    rdx - r8
  1150   //    rcx - r9
  1151   //
  1152   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1153   // are non-volatile.  r9 and r10 should not be used by the caller.
  1154   //
  1155   void setup_arg_regs(int nargs = 3) {
  1156     const Register saved_rdi = r9;
  1157     const Register saved_rsi = r10;
  1158     assert(nargs == 3 || nargs == 4, "else fix");
  1159 #ifdef _WIN64
  1160     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1161            "unexpected argument registers");
  1162     if (nargs >= 4)
  1163       __ mov(rax, r9);  // r9 is also saved_rdi
  1164     __ movptr(saved_rdi, rdi);
  1165     __ movptr(saved_rsi, rsi);
  1166     __ mov(rdi, rcx); // c_rarg0
  1167     __ mov(rsi, rdx); // c_rarg1
  1168     __ mov(rdx, r8);  // c_rarg2
  1169     if (nargs >= 4)
  1170       __ mov(rcx, rax); // c_rarg3 (via rax)
  1171 #else
  1172     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1173            "unexpected argument registers");
  1174 #endif
  1177   void restore_arg_regs() {
  1178     const Register saved_rdi = r9;
  1179     const Register saved_rsi = r10;
  1180 #ifdef _WIN64
  1181     __ movptr(rdi, saved_rdi);
  1182     __ movptr(rsi, saved_rsi);
  1183 #endif
  1186   // Generate code for an array write pre barrier
  1187   //
  1188   //     addr    -  starting address
  1189   //     count   -  element count
  1190   //     tmp     - scratch register
  1191   //
  1192   //     Destroy no registers!
  1193   //
  1194   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
  1195     BarrierSet* bs = Universe::heap()->barrier_set();
  1196     switch (bs->kind()) {
  1197       case BarrierSet::G1SATBCT:
  1198       case BarrierSet::G1SATBCTLogging:
  1199         // With G1, don't generate the call if we statically know that the target in uninitialized
  1200         if (!dest_uninitialized) {
  1201            __ pusha();                      // push registers
  1202            if (count == c_rarg0) {
  1203              if (addr == c_rarg1) {
  1204                // exactly backwards!!
  1205                __ xchgptr(c_rarg1, c_rarg0);
  1206              } else {
  1207                __ movptr(c_rarg1, count);
  1208                __ movptr(c_rarg0, addr);
  1210            } else {
  1211              __ movptr(c_rarg0, addr);
  1212              __ movptr(c_rarg1, count);
  1214            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
  1215            __ popa();
  1217          break;
  1218       case BarrierSet::CardTableModRef:
  1219       case BarrierSet::CardTableExtension:
  1220       case BarrierSet::ModRef:
  1221         break;
  1222       default:
  1223         ShouldNotReachHere();
  1228   //
  1229   // Generate code for an array write post barrier
  1230   //
  1231   //  Input:
  1232   //     start    - register containing starting address of destination array
  1233   //     end      - register containing ending address of destination array
  1234   //     scratch  - scratch register
  1235   //
  1236   //  The input registers are overwritten.
  1237   //  The ending address is inclusive.
  1238   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1239     assert_different_registers(start, end, scratch);
  1240     BarrierSet* bs = Universe::heap()->barrier_set();
  1241     switch (bs->kind()) {
  1242       case BarrierSet::G1SATBCT:
  1243       case BarrierSet::G1SATBCTLogging:
  1246           __ pusha();                      // push registers (overkill)
  1247           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1248           assert_different_registers(start, end, scratch);
  1249           __ lea(scratch, Address(end, BytesPerHeapOop));
  1250           __ subptr(scratch, start);               // subtract start to get #bytes
  1251           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
  1252           __ mov(c_rarg0, start);
  1253           __ mov(c_rarg1, scratch);
  1254           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
  1255           __ popa();
  1257         break;
  1258       case BarrierSet::CardTableModRef:
  1259       case BarrierSet::CardTableExtension:
  1261           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1262           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1264           Label L_loop;
  1266            __ shrptr(start, CardTableModRefBS::card_shift);
  1267            __ addptr(end, BytesPerHeapOop);
  1268            __ shrptr(end, CardTableModRefBS::card_shift);
  1269            __ subptr(end, start); // number of bytes to copy
  1271           intptr_t disp = (intptr_t) ct->byte_map_base;
  1272           if (Assembler::is_simm32(disp)) {
  1273             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1274             __ lea(scratch, cardtable);
  1275           } else {
  1276             ExternalAddress cardtable((address)disp);
  1277             __ lea(scratch, cardtable);
  1280           const Register count = end; // 'end' register contains bytes count now
  1281           __ addptr(start, scratch);
  1282         __ BIND(L_loop);
  1283           __ movb(Address(start, count, Address::times_1), 0);
  1284           __ decrement(count);
  1285           __ jcc(Assembler::greaterEqual, L_loop);
  1287         break;
  1288       default:
  1289         ShouldNotReachHere();
  1295   // Copy big chunks forward
  1296   //
  1297   // Inputs:
  1298   //   end_from     - source arrays end address
  1299   //   end_to       - destination array end address
  1300   //   qword_count  - 64-bits element count, negative
  1301   //   to           - scratch
  1302   //   L_copy_32_bytes - entry label
  1303   //   L_copy_8_bytes  - exit  label
  1304   //
  1305   void copy_32_bytes_forward(Register end_from, Register end_to,
  1306                              Register qword_count, Register to,
  1307                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1308     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1309     Label L_loop;
  1310     __ align(OptoLoopAlignment);
  1311   __ BIND(L_loop);
  1312     if(UseUnalignedLoadStores) {
  1313       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1314       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1315       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1316       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1318     } else {
  1319       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1320       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1321       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1322       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1323       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1324       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1325       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1326       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1328   __ BIND(L_copy_32_bytes);
  1329     __ addptr(qword_count, 4);
  1330     __ jcc(Assembler::lessEqual, L_loop);
  1331     __ subptr(qword_count, 4);
  1332     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1336   // Copy big chunks backward
  1337   //
  1338   // Inputs:
  1339   //   from         - source arrays address
  1340   //   dest         - destination array address
  1341   //   qword_count  - 64-bits element count
  1342   //   to           - scratch
  1343   //   L_copy_32_bytes - entry label
  1344   //   L_copy_8_bytes  - exit  label
  1345   //
  1346   void copy_32_bytes_backward(Register from, Register dest,
  1347                               Register qword_count, Register to,
  1348                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1349     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1350     Label L_loop;
  1351     __ align(OptoLoopAlignment);
  1352   __ BIND(L_loop);
  1353     if(UseUnalignedLoadStores) {
  1354       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1355       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1356       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1357       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1359     } else {
  1360       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1361       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1362       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1363       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1364       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1365       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1366       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1367       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1369   __ BIND(L_copy_32_bytes);
  1370     __ subptr(qword_count, 4);
  1371     __ jcc(Assembler::greaterEqual, L_loop);
  1372     __ addptr(qword_count, 4);
  1373     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1377   // Arguments:
  1378   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1379   //             ignored
  1380   //   name    - stub name string
  1381   //
  1382   // Inputs:
  1383   //   c_rarg0   - source array address
  1384   //   c_rarg1   - destination array address
  1385   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1386   //
  1387   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1388   // we let the hardware handle it.  The one to eight bytes within words,
  1389   // dwords or qwords that span cache line boundaries will still be loaded
  1390   // and stored atomically.
  1391   //
  1392   // Side Effects:
  1393   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1394   //   used by generate_conjoint_byte_copy().
  1395   //
  1396   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
  1397     __ align(CodeEntryAlignment);
  1398     StubCodeMark mark(this, "StubRoutines", name);
  1399     address start = __ pc();
  1401     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1402     Label L_copy_byte, L_exit;
  1403     const Register from        = rdi;  // source array address
  1404     const Register to          = rsi;  // destination array address
  1405     const Register count       = rdx;  // elements count
  1406     const Register byte_count  = rcx;
  1407     const Register qword_count = count;
  1408     const Register end_from    = from; // source array end address
  1409     const Register end_to      = to;   // destination array end address
  1410     // End pointers are inclusive, and if count is not zero they point
  1411     // to the last unit copied:  end_to[0] := end_from[0]
  1413     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1414     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1416     if (entry != NULL) {
  1417       *entry = __ pc();
  1418        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1419       BLOCK_COMMENT("Entry:");
  1422     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1423                       // r9 and r10 may be used to save non-volatile registers
  1425     // 'from', 'to' and 'count' are now valid
  1426     __ movptr(byte_count, count);
  1427     __ shrptr(count, 3); // count => qword_count
  1429     // Copy from low to high addresses.  Use 'to' as scratch.
  1430     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1431     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1432     __ negptr(qword_count); // make the count negative
  1433     __ jmp(L_copy_32_bytes);
  1435     // Copy trailing qwords
  1436   __ BIND(L_copy_8_bytes);
  1437     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1438     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1439     __ increment(qword_count);
  1440     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1442     // Check for and copy trailing dword
  1443   __ BIND(L_copy_4_bytes);
  1444     __ testl(byte_count, 4);
  1445     __ jccb(Assembler::zero, L_copy_2_bytes);
  1446     __ movl(rax, Address(end_from, 8));
  1447     __ movl(Address(end_to, 8), rax);
  1449     __ addptr(end_from, 4);
  1450     __ addptr(end_to, 4);
  1452     // Check for and copy trailing word
  1453   __ BIND(L_copy_2_bytes);
  1454     __ testl(byte_count, 2);
  1455     __ jccb(Assembler::zero, L_copy_byte);
  1456     __ movw(rax, Address(end_from, 8));
  1457     __ movw(Address(end_to, 8), rax);
  1459     __ addptr(end_from, 2);
  1460     __ addptr(end_to, 2);
  1462     // Check for and copy trailing byte
  1463   __ BIND(L_copy_byte);
  1464     __ testl(byte_count, 1);
  1465     __ jccb(Assembler::zero, L_exit);
  1466     __ movb(rax, Address(end_from, 8));
  1467     __ movb(Address(end_to, 8), rax);
  1469   __ BIND(L_exit);
  1470     restore_arg_regs();
  1471     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
  1472     __ xorptr(rax, rax); // return 0
  1473     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1474     __ ret(0);
  1476     // Copy in 32-bytes chunks
  1477     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1478     __ jmp(L_copy_4_bytes);
  1480     return start;
  1483   // Arguments:
  1484   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1485   //             ignored
  1486   //   name    - stub name string
  1487   //
  1488   // Inputs:
  1489   //   c_rarg0   - source array address
  1490   //   c_rarg1   - destination array address
  1491   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1492   //
  1493   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1494   // we let the hardware handle it.  The one to eight bytes within words,
  1495   // dwords or qwords that span cache line boundaries will still be loaded
  1496   // and stored atomically.
  1497   //
  1498   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
  1499                                       address* entry, const char *name) {
  1500     __ align(CodeEntryAlignment);
  1501     StubCodeMark mark(this, "StubRoutines", name);
  1502     address start = __ pc();
  1504     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1505     const Register from        = rdi;  // source array address
  1506     const Register to          = rsi;  // destination array address
  1507     const Register count       = rdx;  // elements count
  1508     const Register byte_count  = rcx;
  1509     const Register qword_count = count;
  1511     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1512     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1514     if (entry != NULL) {
  1515       *entry = __ pc();
  1516       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1517       BLOCK_COMMENT("Entry:");
  1520     array_overlap_test(nooverlap_target, Address::times_1);
  1521     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1522                       // r9 and r10 may be used to save non-volatile registers
  1524     // 'from', 'to' and 'count' are now valid
  1525     __ movptr(byte_count, count);
  1526     __ shrptr(count, 3);   // count => qword_count
  1528     // Copy from high to low addresses.
  1530     // Check for and copy trailing byte
  1531     __ testl(byte_count, 1);
  1532     __ jcc(Assembler::zero, L_copy_2_bytes);
  1533     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1534     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1535     __ decrement(byte_count); // Adjust for possible trailing word
  1537     // Check for and copy trailing word
  1538   __ BIND(L_copy_2_bytes);
  1539     __ testl(byte_count, 2);
  1540     __ jcc(Assembler::zero, L_copy_4_bytes);
  1541     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1542     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1544     // Check for and copy trailing dword
  1545   __ BIND(L_copy_4_bytes);
  1546     __ testl(byte_count, 4);
  1547     __ jcc(Assembler::zero, L_copy_32_bytes);
  1548     __ movl(rax, Address(from, qword_count, Address::times_8));
  1549     __ movl(Address(to, qword_count, Address::times_8), rax);
  1550     __ jmp(L_copy_32_bytes);
  1552     // Copy trailing qwords
  1553   __ BIND(L_copy_8_bytes);
  1554     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1555     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1556     __ decrement(qword_count);
  1557     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1559     restore_arg_regs();
  1560     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
  1561     __ xorptr(rax, rax); // return 0
  1562     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1563     __ ret(0);
  1565     // Copy in 32-bytes chunks
  1566     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1568     restore_arg_regs();
  1569     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
  1570     __ xorptr(rax, rax); // return 0
  1571     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1572     __ ret(0);
  1574     return start;
  1577   // Arguments:
  1578   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1579   //             ignored
  1580   //   name    - stub name string
  1581   //
  1582   // Inputs:
  1583   //   c_rarg0   - source array address
  1584   //   c_rarg1   - destination array address
  1585   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1586   //
  1587   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1588   // let the hardware handle it.  The two or four words within dwords
  1589   // or qwords that span cache line boundaries will still be loaded
  1590   // and stored atomically.
  1591   //
  1592   // Side Effects:
  1593   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1594   //   used by generate_conjoint_short_copy().
  1595   //
  1596   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
  1597     __ align(CodeEntryAlignment);
  1598     StubCodeMark mark(this, "StubRoutines", name);
  1599     address start = __ pc();
  1601     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1602     const Register from        = rdi;  // source array address
  1603     const Register to          = rsi;  // destination array address
  1604     const Register count       = rdx;  // elements count
  1605     const Register word_count  = rcx;
  1606     const Register qword_count = count;
  1607     const Register end_from    = from; // source array end address
  1608     const Register end_to      = to;   // destination array end address
  1609     // End pointers are inclusive, and if count is not zero they point
  1610     // to the last unit copied:  end_to[0] := end_from[0]
  1612     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1613     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1615     if (entry != NULL) {
  1616       *entry = __ pc();
  1617       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1618       BLOCK_COMMENT("Entry:");
  1621     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1622                       // r9 and r10 may be used to save non-volatile registers
  1624     // 'from', 'to' and 'count' are now valid
  1625     __ movptr(word_count, count);
  1626     __ shrptr(count, 2); // count => qword_count
  1628     // Copy from low to high addresses.  Use 'to' as scratch.
  1629     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1630     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1631     __ negptr(qword_count);
  1632     __ jmp(L_copy_32_bytes);
  1634     // Copy trailing qwords
  1635   __ BIND(L_copy_8_bytes);
  1636     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1637     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1638     __ increment(qword_count);
  1639     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1641     // Original 'dest' is trashed, so we can't use it as a
  1642     // base register for a possible trailing word copy
  1644     // Check for and copy trailing dword
  1645   __ BIND(L_copy_4_bytes);
  1646     __ testl(word_count, 2);
  1647     __ jccb(Assembler::zero, L_copy_2_bytes);
  1648     __ movl(rax, Address(end_from, 8));
  1649     __ movl(Address(end_to, 8), rax);
  1651     __ addptr(end_from, 4);
  1652     __ addptr(end_to, 4);
  1654     // Check for and copy trailing word
  1655   __ BIND(L_copy_2_bytes);
  1656     __ testl(word_count, 1);
  1657     __ jccb(Assembler::zero, L_exit);
  1658     __ movw(rax, Address(end_from, 8));
  1659     __ movw(Address(end_to, 8), rax);
  1661   __ BIND(L_exit);
  1662     restore_arg_regs();
  1663     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
  1664     __ xorptr(rax, rax); // return 0
  1665     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1666     __ ret(0);
  1668     // Copy in 32-bytes chunks
  1669     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1670     __ jmp(L_copy_4_bytes);
  1672     return start;
  1675   address generate_fill(BasicType t, bool aligned, const char *name) {
  1676     __ align(CodeEntryAlignment);
  1677     StubCodeMark mark(this, "StubRoutines", name);
  1678     address start = __ pc();
  1680     BLOCK_COMMENT("Entry:");
  1682     const Register to       = c_rarg0;  // source array address
  1683     const Register value    = c_rarg1;  // value
  1684     const Register count    = c_rarg2;  // elements count
  1686     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1688     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1690     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1691     __ ret(0);
  1692     return start;
  1695   // Arguments:
  1696   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1697   //             ignored
  1698   //   name    - stub name string
  1699   //
  1700   // Inputs:
  1701   //   c_rarg0   - source array address
  1702   //   c_rarg1   - destination array address
  1703   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1704   //
  1705   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1706   // let the hardware handle it.  The two or four words within dwords
  1707   // or qwords that span cache line boundaries will still be loaded
  1708   // and stored atomically.
  1709   //
  1710   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
  1711                                        address *entry, const char *name) {
  1712     __ align(CodeEntryAlignment);
  1713     StubCodeMark mark(this, "StubRoutines", name);
  1714     address start = __ pc();
  1716     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1717     const Register from        = rdi;  // source array address
  1718     const Register to          = rsi;  // destination array address
  1719     const Register count       = rdx;  // elements count
  1720     const Register word_count  = rcx;
  1721     const Register qword_count = count;
  1723     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1724     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1726     if (entry != NULL) {
  1727       *entry = __ pc();
  1728       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1729       BLOCK_COMMENT("Entry:");
  1732     array_overlap_test(nooverlap_target, Address::times_2);
  1733     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1734                       // r9 and r10 may be used to save non-volatile registers
  1736     // 'from', 'to' and 'count' are now valid
  1737     __ movptr(word_count, count);
  1738     __ shrptr(count, 2); // count => qword_count
  1740     // Copy from high to low addresses.  Use 'to' as scratch.
  1742     // Check for and copy trailing word
  1743     __ testl(word_count, 1);
  1744     __ jccb(Assembler::zero, L_copy_4_bytes);
  1745     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1746     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1748     // Check for and copy trailing dword
  1749   __ BIND(L_copy_4_bytes);
  1750     __ testl(word_count, 2);
  1751     __ jcc(Assembler::zero, L_copy_32_bytes);
  1752     __ movl(rax, Address(from, qword_count, Address::times_8));
  1753     __ movl(Address(to, qword_count, Address::times_8), rax);
  1754     __ jmp(L_copy_32_bytes);
  1756     // Copy trailing qwords
  1757   __ BIND(L_copy_8_bytes);
  1758     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1759     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1760     __ decrement(qword_count);
  1761     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1763     restore_arg_regs();
  1764     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
  1765     __ xorptr(rax, rax); // return 0
  1766     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1767     __ ret(0);
  1769     // Copy in 32-bytes chunks
  1770     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1772     restore_arg_regs();
  1773     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
  1774     __ xorptr(rax, rax); // return 0
  1775     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1776     __ ret(0);
  1778     return start;
  1781   // Arguments:
  1782   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1783   //             ignored
  1784   //   is_oop  - true => oop array, so generate store check code
  1785   //   name    - stub name string
  1786   //
  1787   // Inputs:
  1788   //   c_rarg0   - source array address
  1789   //   c_rarg1   - destination array address
  1790   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1791   //
  1792   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1793   // the hardware handle it.  The two dwords within qwords that span
  1794   // cache line boundaries will still be loaded and stored atomicly.
  1795   //
  1796   // Side Effects:
  1797   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1798   //   used by generate_conjoint_int_oop_copy().
  1799   //
  1800   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
  1801                                          const char *name, bool dest_uninitialized = false) {
  1802     __ align(CodeEntryAlignment);
  1803     StubCodeMark mark(this, "StubRoutines", name);
  1804     address start = __ pc();
  1806     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1807     const Register from        = rdi;  // source array address
  1808     const Register to          = rsi;  // destination array address
  1809     const Register count       = rdx;  // elements count
  1810     const Register dword_count = rcx;
  1811     const Register qword_count = count;
  1812     const Register end_from    = from; // source array end address
  1813     const Register end_to      = to;   // destination array end address
  1814     const Register saved_to    = r11;  // saved destination array address
  1815     // End pointers are inclusive, and if count is not zero they point
  1816     // to the last unit copied:  end_to[0] := end_from[0]
  1818     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1819     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1821     if (entry != NULL) {
  1822       *entry = __ pc();
  1823       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1824       BLOCK_COMMENT("Entry:");
  1827     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1828                       // r9 and r10 may be used to save non-volatile registers
  1829     if (is_oop) {
  1830       __ movq(saved_to, to);
  1831       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1834     // 'from', 'to' and 'count' are now valid
  1835     __ movptr(dword_count, count);
  1836     __ shrptr(count, 1); // count => qword_count
  1838     // Copy from low to high addresses.  Use 'to' as scratch.
  1839     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1840     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1841     __ negptr(qword_count);
  1842     __ jmp(L_copy_32_bytes);
  1844     // Copy trailing qwords
  1845   __ BIND(L_copy_8_bytes);
  1846     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1847     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1848     __ increment(qword_count);
  1849     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1851     // Check for and copy trailing dword
  1852   __ BIND(L_copy_4_bytes);
  1853     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1854     __ jccb(Assembler::zero, L_exit);
  1855     __ movl(rax, Address(end_from, 8));
  1856     __ movl(Address(end_to, 8), rax);
  1858   __ BIND(L_exit);
  1859     if (is_oop) {
  1860       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1861       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1863     restore_arg_regs();
  1864     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
  1865     __ xorptr(rax, rax); // return 0
  1866     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1867     __ ret(0);
  1869     // Copy 32-bytes chunks
  1870     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1871     __ jmp(L_copy_4_bytes);
  1873     return start;
  1876   // Arguments:
  1877   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1878   //             ignored
  1879   //   is_oop  - true => oop array, so generate store check code
  1880   //   name    - stub name string
  1881   //
  1882   // Inputs:
  1883   //   c_rarg0   - source array address
  1884   //   c_rarg1   - destination array address
  1885   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1886   //
  1887   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1888   // the hardware handle it.  The two dwords within qwords that span
  1889   // cache line boundaries will still be loaded and stored atomicly.
  1890   //
  1891   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
  1892                                          address *entry, const char *name,
  1893                                          bool dest_uninitialized = false) {
  1894     __ align(CodeEntryAlignment);
  1895     StubCodeMark mark(this, "StubRoutines", name);
  1896     address start = __ pc();
  1898     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1899     const Register from        = rdi;  // source array address
  1900     const Register to          = rsi;  // destination array address
  1901     const Register count       = rdx;  // elements count
  1902     const Register dword_count = rcx;
  1903     const Register qword_count = count;
  1905     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1906     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1908     if (entry != NULL) {
  1909       *entry = __ pc();
  1910        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1911       BLOCK_COMMENT("Entry:");
  1914     array_overlap_test(nooverlap_target, Address::times_4);
  1915     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1916                       // r9 and r10 may be used to save non-volatile registers
  1918     if (is_oop) {
  1919       // no registers are destroyed by this call
  1920       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1923     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1924     // 'from', 'to' and 'count' are now valid
  1925     __ movptr(dword_count, count);
  1926     __ shrptr(count, 1); // count => qword_count
  1928     // Copy from high to low addresses.  Use 'to' as scratch.
  1930     // Check for and copy trailing dword
  1931     __ testl(dword_count, 1);
  1932     __ jcc(Assembler::zero, L_copy_32_bytes);
  1933     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1934     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1935     __ jmp(L_copy_32_bytes);
  1937     // Copy trailing qwords
  1938   __ BIND(L_copy_8_bytes);
  1939     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1940     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1941     __ decrement(qword_count);
  1942     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1944     if (is_oop) {
  1945       __ jmp(L_exit);
  1947     restore_arg_regs();
  1948     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
  1949     __ xorptr(rax, rax); // return 0
  1950     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1951     __ ret(0);
  1953     // Copy in 32-bytes chunks
  1954     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1956    __ bind(L_exit);
  1957      if (is_oop) {
  1958        Register end_to = rdx;
  1959        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1960        gen_write_ref_array_post_barrier(to, end_to, rax);
  1962     restore_arg_regs();
  1963     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
  1964     __ xorptr(rax, rax); // return 0
  1965     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1966     __ ret(0);
  1968     return start;
  1971   // Arguments:
  1972   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1973   //             ignored
  1974   //   is_oop  - true => oop array, so generate store check code
  1975   //   name    - stub name string
  1976   //
  1977   // Inputs:
  1978   //   c_rarg0   - source array address
  1979   //   c_rarg1   - destination array address
  1980   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1981   //
  1982  // Side Effects:
  1983   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1984   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1985   //
  1986   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
  1987                                           const char *name, bool dest_uninitialized = false) {
  1988     __ align(CodeEntryAlignment);
  1989     StubCodeMark mark(this, "StubRoutines", name);
  1990     address start = __ pc();
  1992     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1993     const Register from        = rdi;  // source array address
  1994     const Register to          = rsi;  // destination array address
  1995     const Register qword_count = rdx;  // elements count
  1996     const Register end_from    = from; // source array end address
  1997     const Register end_to      = rcx;  // destination array end address
  1998     const Register saved_to    = to;
  1999     // End pointers are inclusive, and if count is not zero they point
  2000     // to the last unit copied:  end_to[0] := end_from[0]
  2002     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2003     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  2004     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2006     if (entry != NULL) {
  2007       *entry = __ pc();
  2008       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2009       BLOCK_COMMENT("Entry:");
  2012     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2013                       // r9 and r10 may be used to save non-volatile registers
  2014     // 'from', 'to' and 'qword_count' are now valid
  2015     if (is_oop) {
  2016       // no registers are destroyed by this call
  2017       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
  2020     // Copy from low to high addresses.  Use 'to' as scratch.
  2021     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  2022     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  2023     __ negptr(qword_count);
  2024     __ jmp(L_copy_32_bytes);
  2026     // Copy trailing qwords
  2027   __ BIND(L_copy_8_bytes);
  2028     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  2029     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  2030     __ increment(qword_count);
  2031     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2033     if (is_oop) {
  2034       __ jmp(L_exit);
  2035     } else {
  2036       restore_arg_regs();
  2037       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2038       __ xorptr(rax, rax); // return 0
  2039       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2040       __ ret(0);
  2043     // Copy 64-byte chunks
  2044     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2046     if (is_oop) {
  2047     __ BIND(L_exit);
  2048       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  2050     restore_arg_regs();
  2051     if (is_oop) {
  2052       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
  2053     } else {
  2054       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2056     __ xorptr(rax, rax); // return 0
  2057     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2058     __ ret(0);
  2060     return start;
  2063   // Arguments:
  2064   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  2065   //             ignored
  2066   //   is_oop  - true => oop array, so generate store check code
  2067   //   name    - stub name string
  2068   //
  2069   // Inputs:
  2070   //   c_rarg0   - source array address
  2071   //   c_rarg1   - destination array address
  2072   //   c_rarg2   - element count, treated as ssize_t, can be zero
  2073   //
  2074   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
  2075                                           address nooverlap_target, address *entry,
  2076                                           const char *name, bool dest_uninitialized = false) {
  2077     __ align(CodeEntryAlignment);
  2078     StubCodeMark mark(this, "StubRoutines", name);
  2079     address start = __ pc();
  2081     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2082     const Register from        = rdi;  // source array address
  2083     const Register to          = rsi;  // destination array address
  2084     const Register qword_count = rdx;  // elements count
  2085     const Register saved_count = rcx;
  2087     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2088     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2090     if (entry != NULL) {
  2091       *entry = __ pc();
  2092       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2093       BLOCK_COMMENT("Entry:");
  2096     array_overlap_test(nooverlap_target, Address::times_8);
  2097     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2098                       // r9 and r10 may be used to save non-volatile registers
  2099     // 'from', 'to' and 'qword_count' are now valid
  2100     if (is_oop) {
  2101       // Save to and count for store barrier
  2102       __ movptr(saved_count, qword_count);
  2103       // No registers are destroyed by this call
  2104       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
  2107     __ jmp(L_copy_32_bytes);
  2109     // Copy trailing qwords
  2110   __ BIND(L_copy_8_bytes);
  2111     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2112     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2113     __ decrement(qword_count);
  2114     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2116     if (is_oop) {
  2117       __ jmp(L_exit);
  2118     } else {
  2119       restore_arg_regs();
  2120       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2121       __ xorptr(rax, rax); // return 0
  2122       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2123       __ ret(0);
  2126     // Copy in 32-bytes chunks
  2127     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2129     if (is_oop) {
  2130     __ BIND(L_exit);
  2131       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2132       gen_write_ref_array_post_barrier(to, rcx, rax);
  2134     restore_arg_regs();
  2135     if (is_oop) {
  2136       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
  2137     } else {
  2138       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2140     __ xorptr(rax, rax); // return 0
  2141     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2142     __ ret(0);
  2144     return start;
  2148   // Helper for generating a dynamic type check.
  2149   // Smashes no registers.
  2150   void generate_type_check(Register sub_klass,
  2151                            Register super_check_offset,
  2152                            Register super_klass,
  2153                            Label& L_success) {
  2154     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2156     BLOCK_COMMENT("type_check:");
  2158     Label L_miss;
  2160     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
  2161                                      super_check_offset);
  2162     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
  2164     // Fall through on failure!
  2165     __ BIND(L_miss);
  2168   //
  2169   //  Generate checkcasting array copy stub
  2170   //
  2171   //  Input:
  2172   //    c_rarg0   - source array address
  2173   //    c_rarg1   - destination array address
  2174   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2175   //    c_rarg3   - size_t ckoff (super_check_offset)
  2176   // not Win64
  2177   //    c_rarg4   - oop ckval (super_klass)
  2178   // Win64
  2179   //    rsp+40    - oop ckval (super_klass)
  2180   //
  2181   //  Output:
  2182   //    rax ==  0  -  success
  2183   //    rax == -1^K - failure, where K is partial transfer count
  2184   //
  2185   address generate_checkcast_copy(const char *name, address *entry,
  2186                                   bool dest_uninitialized = false) {
  2188     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2190     // Input registers (after setup_arg_regs)
  2191     const Register from        = rdi;   // source array address
  2192     const Register to          = rsi;   // destination array address
  2193     const Register length      = rdx;   // elements count
  2194     const Register ckoff       = rcx;   // super_check_offset
  2195     const Register ckval       = r8;    // super_klass
  2197     // Registers used as temps (r13, r14 are save-on-entry)
  2198     const Register end_from    = from;  // source array end address
  2199     const Register end_to      = r13;   // destination array end address
  2200     const Register count       = rdx;   // -(count_remaining)
  2201     const Register r14_length  = r14;   // saved copy of length
  2202     // End pointers are inclusive, and if length is not zero they point
  2203     // to the last unit copied:  end_to[0] := end_from[0]
  2205     const Register rax_oop    = rax;    // actual oop copied
  2206     const Register r11_klass  = r11;    // oop._klass
  2208     //---------------------------------------------------------------
  2209     // Assembler stub will be used for this call to arraycopy
  2210     // if the two arrays are subtypes of Object[] but the
  2211     // destination array type is not equal to or a supertype
  2212     // of the source type.  Each element must be separately
  2213     // checked.
  2215     __ align(CodeEntryAlignment);
  2216     StubCodeMark mark(this, "StubRoutines", name);
  2217     address start = __ pc();
  2219     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2221 #ifdef ASSERT
  2222     // caller guarantees that the arrays really are different
  2223     // otherwise, we would have to make conjoint checks
  2224     { Label L;
  2225       array_overlap_test(L, TIMES_OOP);
  2226       __ stop("checkcast_copy within a single array");
  2227       __ bind(L);
  2229 #endif //ASSERT
  2231     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2232                        // ckoff => rcx, ckval => r8
  2233                        // r9 and r10 may be used to save non-volatile registers
  2234 #ifdef _WIN64
  2235     // last argument (#4) is on stack on Win64
  2236     __ movptr(ckval, Address(rsp, 6 * wordSize));
  2237 #endif
  2239     // Caller of this entry point must set up the argument registers.
  2240     if (entry != NULL) {
  2241       *entry = __ pc();
  2242       BLOCK_COMMENT("Entry:");
  2245     // allocate spill slots for r13, r14
  2246     enum {
  2247       saved_r13_offset,
  2248       saved_r14_offset,
  2249       saved_rbp_offset
  2250     };
  2251     __ subptr(rsp, saved_rbp_offset * wordSize);
  2252     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2253     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2255     // check that int operands are properly extended to size_t
  2256     assert_clean_int(length, rax);
  2257     assert_clean_int(ckoff, rax);
  2259 #ifdef ASSERT
  2260     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2261     // The ckoff and ckval must be mutually consistent,
  2262     // even though caller generates both.
  2263     { Label L;
  2264       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2265       __ cmpl(ckoff, Address(ckval, sco_offset));
  2266       __ jcc(Assembler::equal, L);
  2267       __ stop("super_check_offset inconsistent");
  2268       __ bind(L);
  2270 #endif //ASSERT
  2272     // Loop-invariant addresses.  They are exclusive end pointers.
  2273     Address end_from_addr(from, length, TIMES_OOP, 0);
  2274     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2275     // Loop-variant addresses.  They assume post-incremented count < 0.
  2276     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2277     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2279     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  2281     // Copy from low to high addresses, indexed from the end of each array.
  2282     __ lea(end_from, end_from_addr);
  2283     __ lea(end_to,   end_to_addr);
  2284     __ movptr(r14_length, length);        // save a copy of the length
  2285     assert(length == count, "");          // else fix next line:
  2286     __ negptr(count);                     // negate and test the length
  2287     __ jcc(Assembler::notZero, L_load_element);
  2289     // Empty array:  Nothing to do.
  2290     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2291     __ jmp(L_done);
  2293     // ======== begin loop ========
  2294     // (Loop is rotated; its entry is L_load_element.)
  2295     // Loop control:
  2296     //   for (count = -count; count != 0; count++)
  2297     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2298     __ align(OptoLoopAlignment);
  2300     __ BIND(L_store_element);
  2301     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2302     __ increment(count);               // increment the count toward zero
  2303     __ jcc(Assembler::zero, L_do_card_marks);
  2305     // ======== loop entry is here ========
  2306     __ BIND(L_load_element);
  2307     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2308     __ testptr(rax_oop, rax_oop);
  2309     __ jcc(Assembler::zero, L_store_element);
  2311     __ load_klass(r11_klass, rax_oop);// query the object klass
  2312     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2313     // ======== end loop ========
  2315     // It was a real error; we must depend on the caller to finish the job.
  2316     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2317     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2318     // and report their number to the caller.
  2319     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2320     __ lea(end_to, to_element_addr);
  2321     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
  2322     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2323     __ movptr(rax, r14_length);           // original oops
  2324     __ addptr(rax, count);                // K = (original - remaining) oops
  2325     __ notptr(rax);                       // report (-1^K) to caller
  2326     __ jmp(L_done);
  2328     // Come here on success only.
  2329     __ BIND(L_do_card_marks);
  2330     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
  2331     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2332     __ xorptr(rax, rax);                  // return 0 on success
  2334     // Common exit point (success or failure).
  2335     __ BIND(L_done);
  2336     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2337     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2338     restore_arg_regs();
  2339     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
  2340     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2341     __ ret(0);
  2343     return start;
  2346   //
  2347   //  Generate 'unsafe' array copy stub
  2348   //  Though just as safe as the other stubs, it takes an unscaled
  2349   //  size_t argument instead of an element count.
  2350   //
  2351   //  Input:
  2352   //    c_rarg0   - source array address
  2353   //    c_rarg1   - destination array address
  2354   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2355   //
  2356   // Examines the alignment of the operands and dispatches
  2357   // to a long, int, short, or byte copy loop.
  2358   //
  2359   address generate_unsafe_copy(const char *name,
  2360                                address byte_copy_entry, address short_copy_entry,
  2361                                address int_copy_entry, address long_copy_entry) {
  2363     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2365     // Input registers (before setup_arg_regs)
  2366     const Register from        = c_rarg0;  // source array address
  2367     const Register to          = c_rarg1;  // destination array address
  2368     const Register size        = c_rarg2;  // byte count (size_t)
  2370     // Register used as a temp
  2371     const Register bits        = rax;      // test copy of low bits
  2373     __ align(CodeEntryAlignment);
  2374     StubCodeMark mark(this, "StubRoutines", name);
  2375     address start = __ pc();
  2377     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2379     // bump this on entry, not on exit:
  2380     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2382     __ mov(bits, from);
  2383     __ orptr(bits, to);
  2384     __ orptr(bits, size);
  2386     __ testb(bits, BytesPerLong-1);
  2387     __ jccb(Assembler::zero, L_long_aligned);
  2389     __ testb(bits, BytesPerInt-1);
  2390     __ jccb(Assembler::zero, L_int_aligned);
  2392     __ testb(bits, BytesPerShort-1);
  2393     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2395     __ BIND(L_short_aligned);
  2396     __ shrptr(size, LogBytesPerShort); // size => short_count
  2397     __ jump(RuntimeAddress(short_copy_entry));
  2399     __ BIND(L_int_aligned);
  2400     __ shrptr(size, LogBytesPerInt); // size => int_count
  2401     __ jump(RuntimeAddress(int_copy_entry));
  2403     __ BIND(L_long_aligned);
  2404     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2405     __ jump(RuntimeAddress(long_copy_entry));
  2407     return start;
  2410   // Perform range checks on the proposed arraycopy.
  2411   // Kills temp, but nothing else.
  2412   // Also, clean the sign bits of src_pos and dst_pos.
  2413   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2414                               Register src_pos, // source position (c_rarg1)
  2415                               Register dst,     // destination array oo (c_rarg2)
  2416                               Register dst_pos, // destination position (c_rarg3)
  2417                               Register length,
  2418                               Register temp,
  2419                               Label& L_failed) {
  2420     BLOCK_COMMENT("arraycopy_range_checks:");
  2422     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2423     __ movl(temp, length);
  2424     __ addl(temp, src_pos);             // src_pos + length
  2425     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2426     __ jcc(Assembler::above, L_failed);
  2428     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2429     __ movl(temp, length);
  2430     __ addl(temp, dst_pos);             // dst_pos + length
  2431     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2432     __ jcc(Assembler::above, L_failed);
  2434     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2435     // Move with sign extension can be used since they are positive.
  2436     __ movslq(src_pos, src_pos);
  2437     __ movslq(dst_pos, dst_pos);
  2439     BLOCK_COMMENT("arraycopy_range_checks done");
  2442   //
  2443   //  Generate generic array copy stubs
  2444   //
  2445   //  Input:
  2446   //    c_rarg0    -  src oop
  2447   //    c_rarg1    -  src_pos (32-bits)
  2448   //    c_rarg2    -  dst oop
  2449   //    c_rarg3    -  dst_pos (32-bits)
  2450   // not Win64
  2451   //    c_rarg4    -  element count (32-bits)
  2452   // Win64
  2453   //    rsp+40     -  element count (32-bits)
  2454   //
  2455   //  Output:
  2456   //    rax ==  0  -  success
  2457   //    rax == -1^K - failure, where K is partial transfer count
  2458   //
  2459   address generate_generic_copy(const char *name,
  2460                                 address byte_copy_entry, address short_copy_entry,
  2461                                 address int_copy_entry, address oop_copy_entry,
  2462                                 address long_copy_entry, address checkcast_copy_entry) {
  2464     Label L_failed, L_failed_0, L_objArray;
  2465     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2467     // Input registers
  2468     const Register src        = c_rarg0;  // source array oop
  2469     const Register src_pos    = c_rarg1;  // source position
  2470     const Register dst        = c_rarg2;  // destination array oop
  2471     const Register dst_pos    = c_rarg3;  // destination position
  2472 #ifndef _WIN64
  2473     const Register length     = c_rarg4;
  2474 #else
  2475     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
  2476 #endif
  2478     { int modulus = CodeEntryAlignment;
  2479       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2480       int advance = target - (__ offset() % modulus);
  2481       if (advance < 0)  advance += modulus;
  2482       if (advance > 0)  __ nop(advance);
  2484     StubCodeMark mark(this, "StubRoutines", name);
  2486     // Short-hop target to L_failed.  Makes for denser prologue code.
  2487     __ BIND(L_failed_0);
  2488     __ jmp(L_failed);
  2489     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2491     __ align(CodeEntryAlignment);
  2492     address start = __ pc();
  2494     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2496     // bump this on entry, not on exit:
  2497     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2499     //-----------------------------------------------------------------------
  2500     // Assembler stub will be used for this call to arraycopy
  2501     // if the following conditions are met:
  2502     //
  2503     // (1) src and dst must not be null.
  2504     // (2) src_pos must not be negative.
  2505     // (3) dst_pos must not be negative.
  2506     // (4) length  must not be negative.
  2507     // (5) src klass and dst klass should be the same and not NULL.
  2508     // (6) src and dst should be arrays.
  2509     // (7) src_pos + length must not exceed length of src.
  2510     // (8) dst_pos + length must not exceed length of dst.
  2511     //
  2513     //  if (src == NULL) return -1;
  2514     __ testptr(src, src);         // src oop
  2515     size_t j1off = __ offset();
  2516     __ jccb(Assembler::zero, L_failed_0);
  2518     //  if (src_pos < 0) return -1;
  2519     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2520     __ jccb(Assembler::negative, L_failed_0);
  2522     //  if (dst == NULL) return -1;
  2523     __ testptr(dst, dst);         // dst oop
  2524     __ jccb(Assembler::zero, L_failed_0);
  2526     //  if (dst_pos < 0) return -1;
  2527     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2528     size_t j4off = __ offset();
  2529     __ jccb(Assembler::negative, L_failed_0);
  2531     // The first four tests are very dense code,
  2532     // but not quite dense enough to put four
  2533     // jumps in a 16-byte instruction fetch buffer.
  2534     // That's good, because some branch predicters
  2535     // do not like jumps so close together.
  2536     // Make sure of this.
  2537     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2539     // registers used as temp
  2540     const Register r11_length    = r11; // elements count to copy
  2541     const Register r10_src_klass = r10; // array klass
  2543     //  if (length < 0) return -1;
  2544     __ movl(r11_length, length);        // length (elements count, 32-bits value)
  2545     __ testl(r11_length, r11_length);
  2546     __ jccb(Assembler::negative, L_failed_0);
  2548     __ load_klass(r10_src_klass, src);
  2549 #ifdef ASSERT
  2550     //  assert(src->klass() != NULL);
  2552       BLOCK_COMMENT("assert klasses not null {");
  2553       Label L1, L2;
  2554       __ testptr(r10_src_klass, r10_src_klass);
  2555       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2556       __ bind(L1);
  2557       __ stop("broken null klass");
  2558       __ bind(L2);
  2559       __ load_klass(rax, dst);
  2560       __ cmpq(rax, 0);
  2561       __ jcc(Assembler::equal, L1);     // this would be broken also
  2562       BLOCK_COMMENT("} assert klasses not null done");
  2564 #endif
  2566     // Load layout helper (32-bits)
  2567     //
  2568     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2569     // 32        30    24            16              8     2                 0
  2570     //
  2571     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2572     //
  2574     const int lh_offset = in_bytes(Klass::layout_helper_offset());
  2576     // Handle objArrays completely differently...
  2577     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2578     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
  2579     __ jcc(Assembler::equal, L_objArray);
  2581     //  if (src->klass() != dst->klass()) return -1;
  2582     __ load_klass(rax, dst);
  2583     __ cmpq(r10_src_klass, rax);
  2584     __ jcc(Assembler::notEqual, L_failed);
  2586     const Register rax_lh = rax;  // layout helper
  2587     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2589     //  if (!src->is_Array()) return -1;
  2590     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2591     __ jcc(Assembler::greaterEqual, L_failed);
  2593     // At this point, it is known to be a typeArray (array_tag 0x3).
  2594 #ifdef ASSERT
  2596       BLOCK_COMMENT("assert primitive array {");
  2597       Label L;
  2598       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2599       __ jcc(Assembler::greaterEqual, L);
  2600       __ stop("must be a primitive array");
  2601       __ bind(L);
  2602       BLOCK_COMMENT("} assert primitive array done");
  2604 #endif
  2606     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2607                            r10, L_failed);
  2609     // typeArrayKlass
  2610     //
  2611     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2612     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2613     //
  2615     const Register r10_offset = r10;    // array offset
  2616     const Register rax_elsize = rax_lh; // element size
  2618     __ movl(r10_offset, rax_lh);
  2619     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2620     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2621     __ addptr(src, r10_offset);           // src array offset
  2622     __ addptr(dst, r10_offset);           // dst array offset
  2623     BLOCK_COMMENT("choose copy loop based on element size");
  2624     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2626     // next registers should be set before the jump to corresponding stub
  2627     const Register from     = c_rarg0;  // source array address
  2628     const Register to       = c_rarg1;  // destination array address
  2629     const Register count    = c_rarg2;  // elements count
  2631     // 'from', 'to', 'count' registers should be set in such order
  2632     // since they are the same as 'src', 'src_pos', 'dst'.
  2634   __ BIND(L_copy_bytes);
  2635     __ cmpl(rax_elsize, 0);
  2636     __ jccb(Assembler::notEqual, L_copy_shorts);
  2637     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2638     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2639     __ movl2ptr(count, r11_length); // length
  2640     __ jump(RuntimeAddress(byte_copy_entry));
  2642   __ BIND(L_copy_shorts);
  2643     __ cmpl(rax_elsize, LogBytesPerShort);
  2644     __ jccb(Assembler::notEqual, L_copy_ints);
  2645     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2646     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2647     __ movl2ptr(count, r11_length); // length
  2648     __ jump(RuntimeAddress(short_copy_entry));
  2650   __ BIND(L_copy_ints);
  2651     __ cmpl(rax_elsize, LogBytesPerInt);
  2652     __ jccb(Assembler::notEqual, L_copy_longs);
  2653     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2654     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2655     __ movl2ptr(count, r11_length); // length
  2656     __ jump(RuntimeAddress(int_copy_entry));
  2658   __ BIND(L_copy_longs);
  2659 #ifdef ASSERT
  2661       BLOCK_COMMENT("assert long copy {");
  2662       Label L;
  2663       __ cmpl(rax_elsize, LogBytesPerLong);
  2664       __ jcc(Assembler::equal, L);
  2665       __ stop("must be long copy, but elsize is wrong");
  2666       __ bind(L);
  2667       BLOCK_COMMENT("} assert long copy done");
  2669 #endif
  2670     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2671     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2672     __ movl2ptr(count, r11_length); // length
  2673     __ jump(RuntimeAddress(long_copy_entry));
  2675     // objArrayKlass
  2676   __ BIND(L_objArray);
  2677     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
  2679     Label L_plain_copy, L_checkcast_copy;
  2680     //  test array classes for subtyping
  2681     __ load_klass(rax, dst);
  2682     __ cmpq(r10_src_klass, rax); // usual case is exact equality
  2683     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2685     // Identically typed arrays can be copied without element-wise checks.
  2686     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2687                            r10, L_failed);
  2689     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2690                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2691     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2692                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2693     __ movl2ptr(count, r11_length); // length
  2694   __ BIND(L_plain_copy);
  2695     __ jump(RuntimeAddress(oop_copy_entry));
  2697   __ BIND(L_checkcast_copy);
  2698     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
  2700       // Before looking at dst.length, make sure dst is also an objArray.
  2701       __ cmpl(Address(rax, lh_offset), objArray_lh);
  2702       __ jcc(Assembler::notEqual, L_failed);
  2704       // It is safe to examine both src.length and dst.length.
  2705       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2706                              rax, L_failed);
  2708       const Register r11_dst_klass = r11;
  2709       __ load_klass(r11_dst_klass, dst); // reload
  2711       // Marshal the base address arguments now, freeing registers.
  2712       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2713                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2714       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2715                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2716       __ movl(count, length);           // length (reloaded)
  2717       Register sco_temp = c_rarg3;      // this register is free now
  2718       assert_different_registers(from, to, count, sco_temp,
  2719                                  r11_dst_klass, r10_src_klass);
  2720       assert_clean_int(count, sco_temp);
  2722       // Generate the type check.
  2723       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2724       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2725       assert_clean_int(sco_temp, rax);
  2726       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2728       // Fetch destination element klass from the objArrayKlass header.
  2729       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  2730       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2731       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
  2732       assert_clean_int(sco_temp, rax);
  2734       // the checkcast_copy loop needs two extra arguments:
  2735       assert(c_rarg3 == sco_temp, "#3 already in place");
  2736       // Set up arguments for checkcast_copy_entry.
  2737       setup_arg_regs(4);
  2738       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
  2739       __ jump(RuntimeAddress(checkcast_copy_entry));
  2742   __ BIND(L_failed);
  2743     __ xorptr(rax, rax);
  2744     __ notptr(rax); // return -1
  2745     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2746     __ ret(0);
  2748     return start;
  2751   void generate_arraycopy_stubs() {
  2752     address entry;
  2753     address entry_jbyte_arraycopy;
  2754     address entry_jshort_arraycopy;
  2755     address entry_jint_arraycopy;
  2756     address entry_oop_arraycopy;
  2757     address entry_jlong_arraycopy;
  2758     address entry_checkcast_arraycopy;
  2760     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
  2761                                                                            "jbyte_disjoint_arraycopy");
  2762     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
  2763                                                                            "jbyte_arraycopy");
  2765     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
  2766                                                                             "jshort_disjoint_arraycopy");
  2767     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
  2768                                                                             "jshort_arraycopy");
  2770     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
  2771                                                                               "jint_disjoint_arraycopy");
  2772     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
  2773                                                                               &entry_jint_arraycopy, "jint_arraycopy");
  2775     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
  2776                                                                                "jlong_disjoint_arraycopy");
  2777     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
  2778                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
  2781     if (UseCompressedOops) {
  2782       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
  2783                                                                               "oop_disjoint_arraycopy");
  2784       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
  2785                                                                               &entry_oop_arraycopy, "oop_arraycopy");
  2786       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
  2787                                                                                      "oop_disjoint_arraycopy_uninit",
  2788                                                                                      /*dest_uninitialized*/true);
  2789       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
  2790                                                                                      NULL, "oop_arraycopy_uninit",
  2791                                                                                      /*dest_uninitialized*/true);
  2792     } else {
  2793       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
  2794                                                                                "oop_disjoint_arraycopy");
  2795       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
  2796                                                                                &entry_oop_arraycopy, "oop_arraycopy");
  2797       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
  2798                                                                                       "oop_disjoint_arraycopy_uninit",
  2799                                                                                       /*dest_uninitialized*/true);
  2800       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
  2801                                                                                       NULL, "oop_arraycopy_uninit",
  2802                                                                                       /*dest_uninitialized*/true);
  2805     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2806     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
  2807                                                                         /*dest_uninitialized*/true);
  2809     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
  2810                                                               entry_jbyte_arraycopy,
  2811                                                               entry_jshort_arraycopy,
  2812                                                               entry_jint_arraycopy,
  2813                                                               entry_jlong_arraycopy);
  2814     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
  2815                                                                entry_jbyte_arraycopy,
  2816                                                                entry_jshort_arraycopy,
  2817                                                                entry_jint_arraycopy,
  2818                                                                entry_oop_arraycopy,
  2819                                                                entry_jlong_arraycopy,
  2820                                                                entry_checkcast_arraycopy);
  2822     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2823     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2824     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2825     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2826     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2827     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2829     // We don't generate specialized code for HeapWord-aligned source
  2830     // arrays, so just use the code we've already generated
  2831     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2832     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2834     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2835     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2837     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2838     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2840     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2841     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2843     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2844     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2846     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2847     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
  2850   void generate_math_stubs() {
  2852       StubCodeMark mark(this, "StubRoutines", "log");
  2853       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2855       __ subq(rsp, 8);
  2856       __ movdbl(Address(rsp, 0), xmm0);
  2857       __ fld_d(Address(rsp, 0));
  2858       __ flog();
  2859       __ fstp_d(Address(rsp, 0));
  2860       __ movdbl(xmm0, Address(rsp, 0));
  2861       __ addq(rsp, 8);
  2862       __ ret(0);
  2865       StubCodeMark mark(this, "StubRoutines", "log10");
  2866       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2868       __ subq(rsp, 8);
  2869       __ movdbl(Address(rsp, 0), xmm0);
  2870       __ fld_d(Address(rsp, 0));
  2871       __ flog10();
  2872       __ fstp_d(Address(rsp, 0));
  2873       __ movdbl(xmm0, Address(rsp, 0));
  2874       __ addq(rsp, 8);
  2875       __ ret(0);
  2878       StubCodeMark mark(this, "StubRoutines", "sin");
  2879       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
  2881       __ subq(rsp, 8);
  2882       __ movdbl(Address(rsp, 0), xmm0);
  2883       __ fld_d(Address(rsp, 0));
  2884       __ trigfunc('s');
  2885       __ fstp_d(Address(rsp, 0));
  2886       __ movdbl(xmm0, Address(rsp, 0));
  2887       __ addq(rsp, 8);
  2888       __ ret(0);
  2891       StubCodeMark mark(this, "StubRoutines", "cos");
  2892       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2894       __ subq(rsp, 8);
  2895       __ movdbl(Address(rsp, 0), xmm0);
  2896       __ fld_d(Address(rsp, 0));
  2897       __ trigfunc('c');
  2898       __ fstp_d(Address(rsp, 0));
  2899       __ movdbl(xmm0, Address(rsp, 0));
  2900       __ addq(rsp, 8);
  2901       __ ret(0);
  2904       StubCodeMark mark(this, "StubRoutines", "tan");
  2905       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2907       __ subq(rsp, 8);
  2908       __ movdbl(Address(rsp, 0), xmm0);
  2909       __ fld_d(Address(rsp, 0));
  2910       __ trigfunc('t');
  2911       __ fstp_d(Address(rsp, 0));
  2912       __ movdbl(xmm0, Address(rsp, 0));
  2913       __ addq(rsp, 8);
  2914       __ ret(0);
  2917     // The intrinsic version of these seem to return the same value as
  2918     // the strict version.
  2919     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2920     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2923 #undef __
  2924 #define __ masm->
  2926   // Continuation point for throwing of implicit exceptions that are
  2927   // not handled in the current activation. Fabricates an exception
  2928   // oop and initiates normal exception dispatching in this
  2929   // frame. Since we need to preserve callee-saved values (currently
  2930   // only for C2, but done for C1 as well) we need a callee-saved oop
  2931   // map and therefore have to make these stubs into RuntimeStubs
  2932   // rather than BufferBlobs.  If the compiler needs all registers to
  2933   // be preserved between the fault point and the exception handler
  2934   // then it must assume responsibility for that in
  2935   // AbstractCompiler::continuation_for_implicit_null_exception or
  2936   // continuation_for_implicit_division_by_zero_exception. All other
  2937   // implicit exceptions (e.g., NullPointerException or
  2938   // AbstractMethodError on entry) are either at call sites or
  2939   // otherwise assume that stack unwinding will be initiated, so
  2940   // caller saved registers were assumed volatile in the compiler.
  2941   address generate_throw_exception(const char* name,
  2942                                    address runtime_entry,
  2943                                    Register arg1 = noreg,
  2944                                    Register arg2 = noreg) {
  2945     // Information about frame layout at time of blocking runtime call.
  2946     // Note that we only have to preserve callee-saved registers since
  2947     // the compilers are responsible for supplying a continuation point
  2948     // if they expect all registers to be preserved.
  2949     enum layout {
  2950       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2951       rbp_off2,
  2952       return_off,
  2953       return_off2,
  2954       framesize // inclusive of return address
  2955     };
  2957     int insts_size = 512;
  2958     int locs_size  = 64;
  2960     CodeBuffer code(name, insts_size, locs_size);
  2961     OopMapSet* oop_maps  = new OopMapSet();
  2962     MacroAssembler* masm = new MacroAssembler(&code);
  2964     address start = __ pc();
  2966     // This is an inlined and slightly modified version of call_VM
  2967     // which has the ability to fetch the return PC out of
  2968     // thread-local storage and also sets up last_Java_sp slightly
  2969     // differently than the real call_VM
  2971     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2973     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2975     // return address and rbp are already in place
  2976     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2978     int frame_complete = __ pc() - start;
  2980     // Set up last_Java_sp and last_Java_fp
  2981     address the_pc = __ pc();
  2982     __ set_last_Java_frame(rsp, rbp, the_pc);
  2983     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  2985     // Call runtime
  2986     if (arg1 != noreg) {
  2987       assert(arg2 != c_rarg1, "clobbered");
  2988       __ movptr(c_rarg1, arg1);
  2990     if (arg2 != noreg) {
  2991       __ movptr(c_rarg2, arg2);
  2993     __ movptr(c_rarg0, r15_thread);
  2994     BLOCK_COMMENT("call runtime_entry");
  2995     __ call(RuntimeAddress(runtime_entry));
  2997     // Generate oop map
  2998     OopMap* map = new OopMap(framesize, 0);
  3000     oop_maps->add_gc_map(the_pc - start, map);
  3002     __ reset_last_Java_frame(true, true);
  3004     __ leave(); // required for proper stackwalking of RuntimeStub frame
  3006     // check for pending exceptions
  3007 #ifdef ASSERT
  3008     Label L;
  3009     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  3010             (int32_t) NULL_WORD);
  3011     __ jcc(Assembler::notEqual, L);
  3012     __ should_not_reach_here();
  3013     __ bind(L);
  3014 #endif // ASSERT
  3015     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3018     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  3019     RuntimeStub* stub =
  3020       RuntimeStub::new_runtime_stub(name,
  3021                                     &code,
  3022                                     frame_complete,
  3023                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  3024                                     oop_maps, false);
  3025     return stub->entry_point();
  3028   // Initialization
  3029   void generate_initial() {
  3030     // Generates all stubs and initializes the entry points
  3032     // This platform-specific stub is needed by generate_call_stub()
  3033     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  3035     // entry points that exist in all platforms Note: This is code
  3036     // that could be shared among different platforms - however the
  3037     // benefit seems to be smaller than the disadvantage of having a
  3038     // much more complicated generator structure. See also comment in
  3039     // stubRoutines.hpp.
  3041     StubRoutines::_forward_exception_entry = generate_forward_exception();
  3043     StubRoutines::_call_stub_entry =
  3044       generate_call_stub(StubRoutines::_call_stub_return_address);
  3046     // is referenced by megamorphic call
  3047     StubRoutines::_catch_exception_entry = generate_catch_exception();
  3049     // atomic calls
  3050     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  3051     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  3052     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  3053     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  3054     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  3055     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  3056     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  3058     StubRoutines::_handler_for_unsafe_access_entry =
  3059       generate_handler_for_unsafe_access();
  3061     // platform dependent
  3062     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  3064     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  3066     // Build this early so it's available for the interpreter.  Stub
  3067     // expects the required and actual types as register arguments in
  3068     // j_rarg0 and j_rarg1 respectively.
  3069     StubRoutines::_throw_WrongMethodTypeException_entry =
  3070       generate_throw_exception("WrongMethodTypeException throw_exception",
  3071                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
  3072                                rax, rcx);
  3074     // Build this early so it's available for the interpreter.
  3075     StubRoutines::_throw_StackOverflowError_entry =
  3076       generate_throw_exception("StackOverflowError throw_exception",
  3077                                CAST_FROM_FN_PTR(address,
  3078                                                 SharedRuntime::
  3079                                                 throw_StackOverflowError));
  3082   void generate_all() {
  3083     // Generates all stubs and initializes the entry points
  3085     // These entry points require SharedInfo::stack0 to be set up in
  3086     // non-core builds and need to be relocatable, so they each
  3087     // fabricate a RuntimeStub internally.
  3088     StubRoutines::_throw_AbstractMethodError_entry =
  3089       generate_throw_exception("AbstractMethodError throw_exception",
  3090                                CAST_FROM_FN_PTR(address,
  3091                                                 SharedRuntime::
  3092                                                 throw_AbstractMethodError));
  3094     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  3095       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  3096                                CAST_FROM_FN_PTR(address,
  3097                                                 SharedRuntime::
  3098                                                 throw_IncompatibleClassChangeError));
  3100     StubRoutines::_throw_NullPointerException_at_call_entry =
  3101       generate_throw_exception("NullPointerException at call throw_exception",
  3102                                CAST_FROM_FN_PTR(address,
  3103                                                 SharedRuntime::
  3104                                                 throw_NullPointerException_at_call));
  3106     // entry points that are platform specific
  3107     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  3108     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  3109     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  3110     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  3112     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  3113     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  3114     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  3115     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  3117     // support for verify_oop (must happen after universe_init)
  3118     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  3120     // arraycopy stubs used by compilers
  3121     generate_arraycopy_stubs();
  3123     generate_math_stubs();
  3126  public:
  3127   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3128     if (all) {
  3129       generate_all();
  3130     } else {
  3131       generate_initial();
  3134 }; // end class declaration
  3136 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3137   StubGenerator g(code, all);

mercurial