src/share/vm/opto/library_call.cpp

Mon, 05 Mar 2012 18:10:31 -0800

author
never
date
Mon, 05 Mar 2012 18:10:31 -0800
changeset 3631
b40ac3579043
parent 3529
f174909614bd
child 3637
61b82be3b1ff
permissions
-rw-r--r--

6658428: C2 doesn't inline java method if corresponding intrinsic failed to inline.
Summary: Allow fallback to non-intrinsic inline case
Reviewed-by: kvn, jrose, never
Contributed-by: nils.eliasson@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68  public:
    69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    70     : GraphKit(caller),
    71       _intrinsic(intrinsic)
    72   {
    73   }
    75   ciMethod*         caller()    const    { return jvms()->method(); }
    76   int               bci()       const    { return jvms()->bci(); }
    77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    79   ciMethod*         callee()    const    { return _intrinsic->method(); }
    80   ciSignature*      signature() const    { return callee()->signature(); }
    81   int               arg_size()  const    { return callee()->arg_size(); }
    83   bool try_to_inline();
    85   // Helper functions to inline natives
    86   void push_result(RegionNode* region, PhiNode* value);
    87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    88   Node* generate_slow_guard(Node* test, RegionNode* region);
    89   Node* generate_fair_guard(Node* test, RegionNode* region);
    90   Node* generate_negative_guard(Node* index, RegionNode* region,
    91                                 // resulting CastII of index:
    92                                 Node* *pos_index = NULL);
    93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    94                                    // resulting CastII of index:
    95                                    Node* *pos_index = NULL);
    96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    97                              Node* array_length,
    98                              RegionNode* region);
    99   Node* generate_current_thread(Node* &tls_output);
   100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   102   Node* load_mirror_from_klass(Node* klass);
   103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   104                                       int nargs,
   105                                       RegionNode* region, int null_path,
   106                                       int offset);
   107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   108                                RegionNode* region, int null_path) {
   109     int offset = java_lang_Class::klass_offset_in_bytes();
   110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   111                                          region, null_path,
   112                                          offset);
   113   }
   114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   115                                      int nargs,
   116                                      RegionNode* region, int null_path) {
   117     int offset = java_lang_Class::array_klass_offset_in_bytes();
   118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   119                                          region, null_path,
   120                                          offset);
   121   }
   122   Node* generate_access_flags_guard(Node* kls,
   123                                     int modifier_mask, int modifier_bits,
   124                                     RegionNode* region);
   125   Node* generate_interface_guard(Node* kls, RegionNode* region);
   126   Node* generate_array_guard(Node* kls, RegionNode* region) {
   127     return generate_array_guard_common(kls, region, false, false);
   128   }
   129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   130     return generate_array_guard_common(kls, region, false, true);
   131   }
   132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   133     return generate_array_guard_common(kls, region, true, false);
   134   }
   135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   136     return generate_array_guard_common(kls, region, true, true);
   137   }
   138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   139                                     bool obj_array, bool not_array);
   140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   142                                      bool is_virtual = false, bool is_static = false);
   143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   144     return generate_method_call(method_id, false, true);
   145   }
   146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   147     return generate_method_call(method_id, true, false);
   148   }
   150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   151   bool inline_string_compareTo();
   152   bool inline_string_indexOf();
   153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   154   bool inline_string_equals();
   155   Node* pop_math_arg();
   156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   157   bool inline_math_native(vmIntrinsics::ID id);
   158   bool inline_trig(vmIntrinsics::ID id);
   159   bool inline_trans(vmIntrinsics::ID id);
   160   bool inline_abs(vmIntrinsics::ID id);
   161   bool inline_sqrt(vmIntrinsics::ID id);
   162   bool inline_pow(vmIntrinsics::ID id);
   163   bool inline_exp(vmIntrinsics::ID id);
   164   bool inline_min_max(vmIntrinsics::ID id);
   165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   167   int classify_unsafe_addr(Node* &base, Node* &offset);
   168   Node* make_unsafe_address(Node* base, Node* offset);
   169   // Helper for inline_unsafe_access.
   170   // Generates the guards that check whether the result of
   171   // Unsafe.getObject should be recorded in an SATB log buffer.
   172   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
   173   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   174   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   175   bool inline_unsafe_allocate();
   176   bool inline_unsafe_copyMemory();
   177   bool inline_native_currentThread();
   178   bool inline_native_time_funcs(bool isNano);
   179   bool inline_native_isInterrupted();
   180   bool inline_native_Class_query(vmIntrinsics::ID id);
   181   bool inline_native_subtype_check();
   183   bool inline_native_newArray();
   184   bool inline_native_getLength();
   185   bool inline_array_copyOf(bool is_copyOfRange);
   186   bool inline_array_equals();
   187   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   188   bool inline_native_clone(bool is_virtual);
   189   bool inline_native_Reflection_getCallerClass();
   190   bool inline_native_AtomicLong_get();
   191   bool inline_native_AtomicLong_attemptUpdate();
   192   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   193   // Helper function for inlining native object hash method
   194   bool inline_native_hashcode(bool is_virtual, bool is_static);
   195   bool inline_native_getClass();
   197   // Helper functions for inlining arraycopy
   198   bool inline_arraycopy();
   199   void generate_arraycopy(const TypePtr* adr_type,
   200                           BasicType basic_elem_type,
   201                           Node* src,  Node* src_offset,
   202                           Node* dest, Node* dest_offset,
   203                           Node* copy_length,
   204                           bool disjoint_bases = false,
   205                           bool length_never_negative = false,
   206                           RegionNode* slow_region = NULL);
   207   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   208                                                 RegionNode* slow_region);
   209   void generate_clear_array(const TypePtr* adr_type,
   210                             Node* dest,
   211                             BasicType basic_elem_type,
   212                             Node* slice_off,
   213                             Node* slice_len,
   214                             Node* slice_end);
   215   bool generate_block_arraycopy(const TypePtr* adr_type,
   216                                 BasicType basic_elem_type,
   217                                 AllocateNode* alloc,
   218                                 Node* src,  Node* src_offset,
   219                                 Node* dest, Node* dest_offset,
   220                                 Node* dest_size, bool dest_uninitialized);
   221   void generate_slow_arraycopy(const TypePtr* adr_type,
   222                                Node* src,  Node* src_offset,
   223                                Node* dest, Node* dest_offset,
   224                                Node* copy_length, bool dest_uninitialized);
   225   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   226                                      Node* dest_elem_klass,
   227                                      Node* src,  Node* src_offset,
   228                                      Node* dest, Node* dest_offset,
   229                                      Node* copy_length, bool dest_uninitialized);
   230   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   231                                    Node* src,  Node* src_offset,
   232                                    Node* dest, Node* dest_offset,
   233                                    Node* copy_length, bool dest_uninitialized);
   234   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   235                                     BasicType basic_elem_type,
   236                                     bool disjoint_bases,
   237                                     Node* src,  Node* src_offset,
   238                                     Node* dest, Node* dest_offset,
   239                                     Node* copy_length, bool dest_uninitialized);
   240   bool inline_unsafe_CAS(BasicType type);
   241   bool inline_unsafe_ordered_store(BasicType type);
   242   bool inline_fp_conversions(vmIntrinsics::ID id);
   243   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   244   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   245   bool inline_bitCount(vmIntrinsics::ID id);
   246   bool inline_reverseBytes(vmIntrinsics::ID id);
   248   bool inline_reference_get();
   249 };
   252 //---------------------------make_vm_intrinsic----------------------------
   253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   254   vmIntrinsics::ID id = m->intrinsic_id();
   255   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   257   if (DisableIntrinsic[0] != '\0'
   258       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   259     // disabled by a user request on the command line:
   260     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   261     return NULL;
   262   }
   264   if (!m->is_loaded()) {
   265     // do not attempt to inline unloaded methods
   266     return NULL;
   267   }
   269   // Only a few intrinsics implement a virtual dispatch.
   270   // They are expensive calls which are also frequently overridden.
   271   if (is_virtual) {
   272     switch (id) {
   273     case vmIntrinsics::_hashCode:
   274     case vmIntrinsics::_clone:
   275       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   276       break;
   277     default:
   278       return NULL;
   279     }
   280   }
   282   // -XX:-InlineNatives disables nearly all intrinsics:
   283   if (!InlineNatives) {
   284     switch (id) {
   285     case vmIntrinsics::_indexOf:
   286     case vmIntrinsics::_compareTo:
   287     case vmIntrinsics::_equals:
   288     case vmIntrinsics::_equalsC:
   289       break;  // InlineNatives does not control String.compareTo
   290     default:
   291       return NULL;
   292     }
   293   }
   295   switch (id) {
   296   case vmIntrinsics::_compareTo:
   297     if (!SpecialStringCompareTo)  return NULL;
   298     break;
   299   case vmIntrinsics::_indexOf:
   300     if (!SpecialStringIndexOf)  return NULL;
   301     break;
   302   case vmIntrinsics::_equals:
   303     if (!SpecialStringEquals)  return NULL;
   304     break;
   305   case vmIntrinsics::_equalsC:
   306     if (!SpecialArraysEquals)  return NULL;
   307     break;
   308   case vmIntrinsics::_arraycopy:
   309     if (!InlineArrayCopy)  return NULL;
   310     break;
   311   case vmIntrinsics::_copyMemory:
   312     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   313     if (!InlineArrayCopy)  return NULL;
   314     break;
   315   case vmIntrinsics::_hashCode:
   316     if (!InlineObjectHash)  return NULL;
   317     break;
   318   case vmIntrinsics::_clone:
   319   case vmIntrinsics::_copyOf:
   320   case vmIntrinsics::_copyOfRange:
   321     if (!InlineObjectCopy)  return NULL;
   322     // These also use the arraycopy intrinsic mechanism:
   323     if (!InlineArrayCopy)  return NULL;
   324     break;
   325   case vmIntrinsics::_checkIndex:
   326     // We do not intrinsify this.  The optimizer does fine with it.
   327     return NULL;
   329   case vmIntrinsics::_get_AtomicLong:
   330   case vmIntrinsics::_attemptUpdate:
   331     if (!InlineAtomicLong)  return NULL;
   332     break;
   334   case vmIntrinsics::_getCallerClass:
   335     if (!UseNewReflection)  return NULL;
   336     if (!InlineReflectionGetCallerClass)  return NULL;
   337     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   338     break;
   340   case vmIntrinsics::_bitCount_i:
   341     if (!Matcher::has_match_rule(Op_PopCountI)) return NULL;
   342     break;
   344   case vmIntrinsics::_bitCount_l:
   345     if (!Matcher::has_match_rule(Op_PopCountL)) return NULL;
   346     break;
   348   case vmIntrinsics::_numberOfLeadingZeros_i:
   349     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   350     break;
   352   case vmIntrinsics::_numberOfLeadingZeros_l:
   353     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   354     break;
   356   case vmIntrinsics::_numberOfTrailingZeros_i:
   357     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   358     break;
   360   case vmIntrinsics::_numberOfTrailingZeros_l:
   361     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   362     break;
   364   case vmIntrinsics::_Reference_get:
   365     // It is only when G1 is enabled that we absolutely
   366     // need to use the intrinsic version of Reference.get()
   367     // so that the value in the referent field, if necessary,
   368     // can be registered by the pre-barrier code.
   369     if (!UseG1GC) return NULL;
   370     break;
   372  default:
   373     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   374     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   375     break;
   376   }
   378   // -XX:-InlineClassNatives disables natives from the Class class.
   379   // The flag applies to all reflective calls, notably Array.newArray
   380   // (visible to Java programmers as Array.newInstance).
   381   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   382       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   383     if (!InlineClassNatives)  return NULL;
   384   }
   386   // -XX:-InlineThreadNatives disables natives from the Thread class.
   387   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   388     if (!InlineThreadNatives)  return NULL;
   389   }
   391   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   392   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   393       m->holder()->name() == ciSymbol::java_lang_Float() ||
   394       m->holder()->name() == ciSymbol::java_lang_Double()) {
   395     if (!InlineMathNatives)  return NULL;
   396   }
   398   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   399   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   400     if (!InlineUnsafeOps)  return NULL;
   401   }
   403   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   404 }
   406 //----------------------register_library_intrinsics-----------------------
   407 // Initialize this file's data structures, for each Compile instance.
   408 void Compile::register_library_intrinsics() {
   409   // Nothing to do here.
   410 }
   412 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   413   LibraryCallKit kit(jvms, this);
   414   Compile* C = kit.C;
   415   int nodes = C->unique();
   416 #ifndef PRODUCT
   417   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   418     char buf[1000];
   419     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   420     tty->print_cr("Intrinsic %s", str);
   421   }
   422 #endif
   424   if (kit.try_to_inline()) {
   425     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   426       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   427     }
   428     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   429     if (C->log()) {
   430       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   431                      vmIntrinsics::name_at(intrinsic_id()),
   432                      (is_virtual() ? " virtual='1'" : ""),
   433                      C->unique() - nodes);
   434     }
   435     return kit.transfer_exceptions_into_jvms();
   436   }
   438   // The intrinsic bailed out
   439   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   440     if (jvms->has_method()) {
   441       // Not a root compile.
   442       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   443       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
   444     } else {
   445       // Root compile
   446       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   447                vmIntrinsics::name_at(intrinsic_id()),
   448                (is_virtual() ? " (virtual)" : ""), kit.bci());
   449     }
   450   }
   451   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   452   return NULL;
   453 }
   455 bool LibraryCallKit::try_to_inline() {
   456   // Handle symbolic names for otherwise undistinguished boolean switches:
   457   const bool is_store       = true;
   458   const bool is_native_ptr  = true;
   459   const bool is_static      = true;
   461   if (!jvms()->has_method()) {
   462     // Root JVMState has a null method.
   463     assert(map()->memory()->Opcode() == Op_Parm, "");
   464     // Insert the memory aliasing node
   465     set_all_memory(reset_memory());
   466   }
   467   assert(merged_memory(), "");
   469   switch (intrinsic_id()) {
   470   case vmIntrinsics::_hashCode:
   471     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   472   case vmIntrinsics::_identityHashCode:
   473     return inline_native_hashcode(/*!virtual*/ false, is_static);
   474   case vmIntrinsics::_getClass:
   475     return inline_native_getClass();
   477   case vmIntrinsics::_dsin:
   478   case vmIntrinsics::_dcos:
   479   case vmIntrinsics::_dtan:
   480   case vmIntrinsics::_dabs:
   481   case vmIntrinsics::_datan2:
   482   case vmIntrinsics::_dsqrt:
   483   case vmIntrinsics::_dexp:
   484   case vmIntrinsics::_dlog:
   485   case vmIntrinsics::_dlog10:
   486   case vmIntrinsics::_dpow:
   487     return inline_math_native(intrinsic_id());
   489   case vmIntrinsics::_min:
   490   case vmIntrinsics::_max:
   491     return inline_min_max(intrinsic_id());
   493   case vmIntrinsics::_arraycopy:
   494     return inline_arraycopy();
   496   case vmIntrinsics::_compareTo:
   497     return inline_string_compareTo();
   498   case vmIntrinsics::_indexOf:
   499     return inline_string_indexOf();
   500   case vmIntrinsics::_equals:
   501     return inline_string_equals();
   503   case vmIntrinsics::_getObject:
   504     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   505   case vmIntrinsics::_getBoolean:
   506     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   507   case vmIntrinsics::_getByte:
   508     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   509   case vmIntrinsics::_getShort:
   510     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   511   case vmIntrinsics::_getChar:
   512     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   513   case vmIntrinsics::_getInt:
   514     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   515   case vmIntrinsics::_getLong:
   516     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   517   case vmIntrinsics::_getFloat:
   518     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   519   case vmIntrinsics::_getDouble:
   520     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   522   case vmIntrinsics::_putObject:
   523     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   524   case vmIntrinsics::_putBoolean:
   525     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   526   case vmIntrinsics::_putByte:
   527     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   528   case vmIntrinsics::_putShort:
   529     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   530   case vmIntrinsics::_putChar:
   531     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   532   case vmIntrinsics::_putInt:
   533     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   534   case vmIntrinsics::_putLong:
   535     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   536   case vmIntrinsics::_putFloat:
   537     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   538   case vmIntrinsics::_putDouble:
   539     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   541   case vmIntrinsics::_getByte_raw:
   542     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   543   case vmIntrinsics::_getShort_raw:
   544     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   545   case vmIntrinsics::_getChar_raw:
   546     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   547   case vmIntrinsics::_getInt_raw:
   548     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   549   case vmIntrinsics::_getLong_raw:
   550     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   551   case vmIntrinsics::_getFloat_raw:
   552     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   553   case vmIntrinsics::_getDouble_raw:
   554     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   555   case vmIntrinsics::_getAddress_raw:
   556     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   558   case vmIntrinsics::_putByte_raw:
   559     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   560   case vmIntrinsics::_putShort_raw:
   561     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   562   case vmIntrinsics::_putChar_raw:
   563     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   564   case vmIntrinsics::_putInt_raw:
   565     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   566   case vmIntrinsics::_putLong_raw:
   567     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   568   case vmIntrinsics::_putFloat_raw:
   569     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   570   case vmIntrinsics::_putDouble_raw:
   571     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   572   case vmIntrinsics::_putAddress_raw:
   573     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   575   case vmIntrinsics::_getObjectVolatile:
   576     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   577   case vmIntrinsics::_getBooleanVolatile:
   578     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   579   case vmIntrinsics::_getByteVolatile:
   580     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   581   case vmIntrinsics::_getShortVolatile:
   582     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   583   case vmIntrinsics::_getCharVolatile:
   584     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   585   case vmIntrinsics::_getIntVolatile:
   586     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   587   case vmIntrinsics::_getLongVolatile:
   588     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   589   case vmIntrinsics::_getFloatVolatile:
   590     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   591   case vmIntrinsics::_getDoubleVolatile:
   592     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   594   case vmIntrinsics::_putObjectVolatile:
   595     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   596   case vmIntrinsics::_putBooleanVolatile:
   597     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   598   case vmIntrinsics::_putByteVolatile:
   599     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   600   case vmIntrinsics::_putShortVolatile:
   601     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   602   case vmIntrinsics::_putCharVolatile:
   603     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   604   case vmIntrinsics::_putIntVolatile:
   605     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   606   case vmIntrinsics::_putLongVolatile:
   607     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   608   case vmIntrinsics::_putFloatVolatile:
   609     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   610   case vmIntrinsics::_putDoubleVolatile:
   611     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   613   case vmIntrinsics::_prefetchRead:
   614     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   615   case vmIntrinsics::_prefetchWrite:
   616     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   617   case vmIntrinsics::_prefetchReadStatic:
   618     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   619   case vmIntrinsics::_prefetchWriteStatic:
   620     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   622   case vmIntrinsics::_compareAndSwapObject:
   623     return inline_unsafe_CAS(T_OBJECT);
   624   case vmIntrinsics::_compareAndSwapInt:
   625     return inline_unsafe_CAS(T_INT);
   626   case vmIntrinsics::_compareAndSwapLong:
   627     return inline_unsafe_CAS(T_LONG);
   629   case vmIntrinsics::_putOrderedObject:
   630     return inline_unsafe_ordered_store(T_OBJECT);
   631   case vmIntrinsics::_putOrderedInt:
   632     return inline_unsafe_ordered_store(T_INT);
   633   case vmIntrinsics::_putOrderedLong:
   634     return inline_unsafe_ordered_store(T_LONG);
   636   case vmIntrinsics::_currentThread:
   637     return inline_native_currentThread();
   638   case vmIntrinsics::_isInterrupted:
   639     return inline_native_isInterrupted();
   641   case vmIntrinsics::_currentTimeMillis:
   642     return inline_native_time_funcs(false);
   643   case vmIntrinsics::_nanoTime:
   644     return inline_native_time_funcs(true);
   645   case vmIntrinsics::_allocateInstance:
   646     return inline_unsafe_allocate();
   647   case vmIntrinsics::_copyMemory:
   648     return inline_unsafe_copyMemory();
   649   case vmIntrinsics::_newArray:
   650     return inline_native_newArray();
   651   case vmIntrinsics::_getLength:
   652     return inline_native_getLength();
   653   case vmIntrinsics::_copyOf:
   654     return inline_array_copyOf(false);
   655   case vmIntrinsics::_copyOfRange:
   656     return inline_array_copyOf(true);
   657   case vmIntrinsics::_equalsC:
   658     return inline_array_equals();
   659   case vmIntrinsics::_clone:
   660     return inline_native_clone(intrinsic()->is_virtual());
   662   case vmIntrinsics::_isAssignableFrom:
   663     return inline_native_subtype_check();
   665   case vmIntrinsics::_isInstance:
   666   case vmIntrinsics::_getModifiers:
   667   case vmIntrinsics::_isInterface:
   668   case vmIntrinsics::_isArray:
   669   case vmIntrinsics::_isPrimitive:
   670   case vmIntrinsics::_getSuperclass:
   671   case vmIntrinsics::_getComponentType:
   672   case vmIntrinsics::_getClassAccessFlags:
   673     return inline_native_Class_query(intrinsic_id());
   675   case vmIntrinsics::_floatToRawIntBits:
   676   case vmIntrinsics::_floatToIntBits:
   677   case vmIntrinsics::_intBitsToFloat:
   678   case vmIntrinsics::_doubleToRawLongBits:
   679   case vmIntrinsics::_doubleToLongBits:
   680   case vmIntrinsics::_longBitsToDouble:
   681     return inline_fp_conversions(intrinsic_id());
   683   case vmIntrinsics::_numberOfLeadingZeros_i:
   684   case vmIntrinsics::_numberOfLeadingZeros_l:
   685     return inline_numberOfLeadingZeros(intrinsic_id());
   687   case vmIntrinsics::_numberOfTrailingZeros_i:
   688   case vmIntrinsics::_numberOfTrailingZeros_l:
   689     return inline_numberOfTrailingZeros(intrinsic_id());
   691   case vmIntrinsics::_bitCount_i:
   692   case vmIntrinsics::_bitCount_l:
   693     return inline_bitCount(intrinsic_id());
   695   case vmIntrinsics::_reverseBytes_i:
   696   case vmIntrinsics::_reverseBytes_l:
   697   case vmIntrinsics::_reverseBytes_s:
   698   case vmIntrinsics::_reverseBytes_c:
   699     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   701   case vmIntrinsics::_get_AtomicLong:
   702     return inline_native_AtomicLong_get();
   703   case vmIntrinsics::_attemptUpdate:
   704     return inline_native_AtomicLong_attemptUpdate();
   706   case vmIntrinsics::_getCallerClass:
   707     return inline_native_Reflection_getCallerClass();
   709   case vmIntrinsics::_Reference_get:
   710     return inline_reference_get();
   712   default:
   713     // If you get here, it may be that someone has added a new intrinsic
   714     // to the list in vmSymbols.hpp without implementing it here.
   715 #ifndef PRODUCT
   716     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   717       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   718                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   719     }
   720 #endif
   721     return false;
   722   }
   723 }
   725 //------------------------------push_result------------------------------
   726 // Helper function for finishing intrinsics.
   727 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   728   record_for_igvn(region);
   729   set_control(_gvn.transform(region));
   730   BasicType value_type = value->type()->basic_type();
   731   push_node(value_type, _gvn.transform(value));
   732 }
   734 //------------------------------generate_guard---------------------------
   735 // Helper function for generating guarded fast-slow graph structures.
   736 // The given 'test', if true, guards a slow path.  If the test fails
   737 // then a fast path can be taken.  (We generally hope it fails.)
   738 // In all cases, GraphKit::control() is updated to the fast path.
   739 // The returned value represents the control for the slow path.
   740 // The return value is never 'top'; it is either a valid control
   741 // or NULL if it is obvious that the slow path can never be taken.
   742 // Also, if region and the slow control are not NULL, the slow edge
   743 // is appended to the region.
   744 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   745   if (stopped()) {
   746     // Already short circuited.
   747     return NULL;
   748   }
   750   // Build an if node and its projections.
   751   // If test is true we take the slow path, which we assume is uncommon.
   752   if (_gvn.type(test) == TypeInt::ZERO) {
   753     // The slow branch is never taken.  No need to build this guard.
   754     return NULL;
   755   }
   757   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   759   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   760   if (if_slow == top()) {
   761     // The slow branch is never taken.  No need to build this guard.
   762     return NULL;
   763   }
   765   if (region != NULL)
   766     region->add_req(if_slow);
   768   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   769   set_control(if_fast);
   771   return if_slow;
   772 }
   774 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   775   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   776 }
   777 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   778   return generate_guard(test, region, PROB_FAIR);
   779 }
   781 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   782                                                      Node* *pos_index) {
   783   if (stopped())
   784     return NULL;                // already stopped
   785   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   786     return NULL;                // index is already adequately typed
   787   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   788   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   789   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   790   if (is_neg != NULL && pos_index != NULL) {
   791     // Emulate effect of Parse::adjust_map_after_if.
   792     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   793     ccast->set_req(0, control());
   794     (*pos_index) = _gvn.transform(ccast);
   795   }
   796   return is_neg;
   797 }
   799 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   800                                                         Node* *pos_index) {
   801   if (stopped())
   802     return NULL;                // already stopped
   803   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   804     return NULL;                // index is already adequately typed
   805   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   806   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   807   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   808   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   809   if (is_notp != NULL && pos_index != NULL) {
   810     // Emulate effect of Parse::adjust_map_after_if.
   811     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   812     ccast->set_req(0, control());
   813     (*pos_index) = _gvn.transform(ccast);
   814   }
   815   return is_notp;
   816 }
   818 // Make sure that 'position' is a valid limit index, in [0..length].
   819 // There are two equivalent plans for checking this:
   820 //   A. (offset + copyLength)  unsigned<=  arrayLength
   821 //   B. offset  <=  (arrayLength - copyLength)
   822 // We require that all of the values above, except for the sum and
   823 // difference, are already known to be non-negative.
   824 // Plan A is robust in the face of overflow, if offset and copyLength
   825 // are both hugely positive.
   826 //
   827 // Plan B is less direct and intuitive, but it does not overflow at
   828 // all, since the difference of two non-negatives is always
   829 // representable.  Whenever Java methods must perform the equivalent
   830 // check they generally use Plan B instead of Plan A.
   831 // For the moment we use Plan A.
   832 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   833                                                   Node* subseq_length,
   834                                                   Node* array_length,
   835                                                   RegionNode* region) {
   836   if (stopped())
   837     return NULL;                // already stopped
   838   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   839   if (zero_offset && subseq_length->eqv_uncast(array_length))
   840     return NULL;                // common case of whole-array copy
   841   Node* last = subseq_length;
   842   if (!zero_offset)             // last += offset
   843     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   844   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   845   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   846   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   847   return is_over;
   848 }
   851 //--------------------------generate_current_thread--------------------
   852 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   853   ciKlass*    thread_klass = env()->Thread_klass();
   854   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   855   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   856   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   857   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   858   tls_output = thread;
   859   return threadObj;
   860 }
   863 //------------------------------make_string_method_node------------------------
   864 // Helper method for String intrinsic finctions.
   865 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   866   const int value_offset  = java_lang_String::value_offset_in_bytes();
   867   const int count_offset  = java_lang_String::count_offset_in_bytes();
   868   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   870   Node* no_ctrl = NULL;
   872   ciInstanceKlass* klass = env()->String_klass();
   873   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   875   const TypeAryPtr* value_type =
   876         TypeAryPtr::make(TypePtr::NotNull,
   877                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   878                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   880   // Get start addr of string and substring
   881   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   882   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   883   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   884   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   885   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   887   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   888   Node* str2_value   = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   889   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   890   Node* str2_offset  = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   891   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   893   Node* result = NULL;
   894   switch (opcode) {
   895   case Op_StrIndexOf:
   896     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   897                                        str1_start, cnt1, str2_start, cnt2);
   898     break;
   899   case Op_StrComp:
   900     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   901                                     str1_start, cnt1, str2_start, cnt2);
   902     break;
   903   case Op_StrEquals:
   904     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   905                                       str1_start, str2_start, cnt1);
   906     break;
   907   default:
   908     ShouldNotReachHere();
   909     return NULL;
   910   }
   912   // All these intrinsics have checks.
   913   C->set_has_split_ifs(true); // Has chance for split-if optimization
   915   return _gvn.transform(result);
   916 }
   918 //------------------------------inline_string_compareTo------------------------
   919 bool LibraryCallKit::inline_string_compareTo() {
   921   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   923   const int value_offset = java_lang_String::value_offset_in_bytes();
   924   const int count_offset = java_lang_String::count_offset_in_bytes();
   925   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   927   _sp += 2;
   928   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   929   Node *receiver = pop();
   931   // Null check on self without removing any arguments.  The argument
   932   // null check technically happens in the wrong place, which can lead to
   933   // invalid stack traces when string compare is inlined into a method
   934   // which handles NullPointerExceptions.
   935   _sp += 2;
   936   receiver = do_null_check(receiver, T_OBJECT);
   937   argument = do_null_check(argument, T_OBJECT);
   938   _sp -= 2;
   939   if (stopped()) {
   940     return true;
   941   }
   943   ciInstanceKlass* klass = env()->String_klass();
   944   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   945   Node* no_ctrl = NULL;
   947   // Get counts for string and argument
   948   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   949   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   951   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   952   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   954   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   955   push(compare);
   956   return true;
   957 }
   959 //------------------------------inline_string_equals------------------------
   960 bool LibraryCallKit::inline_string_equals() {
   962   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   964   const int value_offset = java_lang_String::value_offset_in_bytes();
   965   const int count_offset = java_lang_String::count_offset_in_bytes();
   966   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   968   int nargs = 2;
   969   _sp += nargs;
   970   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   971   Node* receiver = pop();
   973   // Null check on self without removing any arguments.  The argument
   974   // null check technically happens in the wrong place, which can lead to
   975   // invalid stack traces when string compare is inlined into a method
   976   // which handles NullPointerExceptions.
   977   _sp += nargs;
   978   receiver = do_null_check(receiver, T_OBJECT);
   979   //should not do null check for argument for String.equals(), because spec
   980   //allows to specify NULL as argument.
   981   _sp -= nargs;
   983   if (stopped()) {
   984     return true;
   985   }
   987   // paths (plus control) merge
   988   RegionNode* region = new (C, 5) RegionNode(5);
   989   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   991   // does source == target string?
   992   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   993   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   995   Node* if_eq = generate_slow_guard(bol, NULL);
   996   if (if_eq != NULL) {
   997     // receiver == argument
   998     phi->init_req(2, intcon(1));
   999     region->init_req(2, if_eq);
  1002   // get String klass for instanceOf
  1003   ciInstanceKlass* klass = env()->String_klass();
  1005   if (!stopped()) {
  1006     _sp += nargs;          // gen_instanceof might do an uncommon trap
  1007     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1008     _sp -= nargs;
  1009     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
  1010     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
  1012     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1013     //instanceOf == true, fallthrough
  1015     if (inst_false != NULL) {
  1016       phi->init_req(3, intcon(0));
  1017       region->init_req(3, inst_false);
  1021   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1023   Node* no_ctrl = NULL;
  1024   Node* receiver_cnt;
  1025   Node* argument_cnt;
  1027   if (!stopped()) {
  1028     // Properly cast the argument to String
  1029     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
  1030     // This path is taken only when argument's type is String:NotNull.
  1031     argument = cast_not_null(argument, false);
  1033     // Get counts for string and argument
  1034     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1035     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1037     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
  1038     argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1040     // Check for receiver count != argument count
  1041     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
  1042     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
  1043     Node* if_ne = generate_slow_guard(bol, NULL);
  1044     if (if_ne != NULL) {
  1045       phi->init_req(4, intcon(0));
  1046       region->init_req(4, if_ne);
  1050   // Check for count == 0 is done by mach node StrEquals.
  1052   if (!stopped()) {
  1053     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
  1054     phi->init_req(1, equals);
  1055     region->init_req(1, control());
  1058   // post merge
  1059   set_control(_gvn.transform(region));
  1060   record_for_igvn(region);
  1062   push(_gvn.transform(phi));
  1064   return true;
  1067 //------------------------------inline_array_equals----------------------------
  1068 bool LibraryCallKit::inline_array_equals() {
  1070   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1072   _sp += 2;
  1073   Node *argument2 = pop();
  1074   Node *argument1 = pop();
  1076   Node* equals =
  1077     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1078                                         argument1, argument2) );
  1079   push(equals);
  1080   return true;
  1083 // Java version of String.indexOf(constant string)
  1084 // class StringDecl {
  1085 //   StringDecl(char[] ca) {
  1086 //     offset = 0;
  1087 //     count = ca.length;
  1088 //     value = ca;
  1089 //   }
  1090 //   int offset;
  1091 //   int count;
  1092 //   char[] value;
  1093 // }
  1094 //
  1095 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1096 //                             int targetOffset, int cache_i, int md2) {
  1097 //   int cache = cache_i;
  1098 //   int sourceOffset = string_object.offset;
  1099 //   int sourceCount = string_object.count;
  1100 //   int targetCount = target_object.length;
  1101 //
  1102 //   int targetCountLess1 = targetCount - 1;
  1103 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1104 //
  1105 //   char[] source = string_object.value;
  1106 //   char[] target = target_object;
  1107 //   int lastChar = target[targetCountLess1];
  1108 //
  1109 //  outer_loop:
  1110 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1111 //     int src = source[i + targetCountLess1];
  1112 //     if (src == lastChar) {
  1113 //       // With random strings and a 4-character alphabet,
  1114 //       // reverse matching at this point sets up 0.8% fewer
  1115 //       // frames, but (paradoxically) makes 0.3% more probes.
  1116 //       // Since those probes are nearer the lastChar probe,
  1117 //       // there is may be a net D$ win with reverse matching.
  1118 //       // But, reversing loop inhibits unroll of inner loop
  1119 //       // for unknown reason.  So, does running outer loop from
  1120 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1121 //       for (int j = 0; j < targetCountLess1; j++) {
  1122 //         if (target[targetOffset + j] != source[i+j]) {
  1123 //           if ((cache & (1 << source[i+j])) == 0) {
  1124 //             if (md2 < j+1) {
  1125 //               i += j+1;
  1126 //               continue outer_loop;
  1127 //             }
  1128 //           }
  1129 //           i += md2;
  1130 //           continue outer_loop;
  1131 //         }
  1132 //       }
  1133 //       return i - sourceOffset;
  1134 //     }
  1135 //     if ((cache & (1 << src)) == 0) {
  1136 //       i += targetCountLess1;
  1137 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1138 //     i++;
  1139 //   }
  1140 //   return -1;
  1141 // }
  1143 //------------------------------string_indexOf------------------------
  1144 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1145                                      jint cache_i, jint md2_i) {
  1147   Node* no_ctrl  = NULL;
  1148   float likely   = PROB_LIKELY(0.9);
  1149   float unlikely = PROB_UNLIKELY(0.9);
  1151   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1153   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1154   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1155   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1157   ciInstanceKlass* klass = env()->String_klass();
  1158   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1159   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1161   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1162   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1163   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1164   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1165   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1166   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1168   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1169   jint target_length = target_array->length();
  1170   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1171   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1173   IdealKit kit(this, false, true);
  1174 #define __ kit.
  1175   Node* zero             = __ ConI(0);
  1176   Node* one              = __ ConI(1);
  1177   Node* cache            = __ ConI(cache_i);
  1178   Node* md2              = __ ConI(md2_i);
  1179   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1180   Node* targetCount      = __ ConI(target_length);
  1181   Node* targetCountLess1 = __ ConI(target_length - 1);
  1182   Node* targetOffset     = __ ConI(targetOffset_i);
  1183   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1185   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1186   Node* outer_loop = __ make_label(2 /* goto */);
  1187   Node* return_    = __ make_label(1);
  1189   __ set(rtn,__ ConI(-1));
  1190   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1191        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1192        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1193        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1194        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1195          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1196               Node* tpj = __ AddI(targetOffset, __ value(j));
  1197               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1198               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1199               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1200               __ if_then(targ, BoolTest::ne, src2); {
  1201                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1202                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1203                     __ increment(i, __ AddI(__ value(j), one));
  1204                     __ goto_(outer_loop);
  1205                   } __ end_if(); __ dead(j);
  1206                 }__ end_if(); __ dead(j);
  1207                 __ increment(i, md2);
  1208                 __ goto_(outer_loop);
  1209               }__ end_if();
  1210               __ increment(j, one);
  1211          }__ end_loop(); __ dead(j);
  1212          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1213          __ goto_(return_);
  1214        }__ end_if();
  1215        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1216          __ increment(i, targetCountLess1);
  1217        }__ end_if();
  1218        __ increment(i, one);
  1219        __ bind(outer_loop);
  1220   }__ end_loop(); __ dead(i);
  1221   __ bind(return_);
  1223   // Final sync IdealKit and GraphKit.
  1224   final_sync(kit);
  1225   Node* result = __ value(rtn);
  1226 #undef __
  1227   C->set_has_loops(true);
  1228   return result;
  1231 //------------------------------inline_string_indexOf------------------------
  1232 bool LibraryCallKit::inline_string_indexOf() {
  1234   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1235   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1236   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1238   _sp += 2;
  1239   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1240   Node *receiver = pop();
  1242   Node* result;
  1243   // Disable the use of pcmpestri until it can be guaranteed that
  1244   // the load doesn't cross into the uncommited space.
  1245   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1246       UseSSE42Intrinsics) {
  1247     // Generate SSE4.2 version of indexOf
  1248     // We currently only have match rules that use SSE4.2
  1250     // Null check on self without removing any arguments.  The argument
  1251     // null check technically happens in the wrong place, which can lead to
  1252     // invalid stack traces when string compare is inlined into a method
  1253     // which handles NullPointerExceptions.
  1254     _sp += 2;
  1255     receiver = do_null_check(receiver, T_OBJECT);
  1256     argument = do_null_check(argument, T_OBJECT);
  1257     _sp -= 2;
  1259     if (stopped()) {
  1260       return true;
  1263     ciInstanceKlass* str_klass = env()->String_klass();
  1264     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1266     // Make the merge point
  1267     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1268     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1269     Node* no_ctrl  = NULL;
  1271     // Get counts for string and substr
  1272     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1273     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1275     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1276     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1278     // Check for substr count > string count
  1279     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1280     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1281     Node* if_gt = generate_slow_guard(bol, NULL);
  1282     if (if_gt != NULL) {
  1283       result_phi->init_req(2, intcon(-1));
  1284       result_rgn->init_req(2, if_gt);
  1287     if (!stopped()) {
  1288       // Check for substr count == 0
  1289       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1290       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1291       Node* if_zero = generate_slow_guard(bol, NULL);
  1292       if (if_zero != NULL) {
  1293         result_phi->init_req(3, intcon(0));
  1294         result_rgn->init_req(3, if_zero);
  1298     if (!stopped()) {
  1299       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1300       result_phi->init_req(1, result);
  1301       result_rgn->init_req(1, control());
  1303     set_control(_gvn.transform(result_rgn));
  1304     record_for_igvn(result_rgn);
  1305     result = _gvn.transform(result_phi);
  1307   } else { // Use LibraryCallKit::string_indexOf
  1308     // don't intrinsify if argument isn't a constant string.
  1309     if (!argument->is_Con()) {
  1310      return false;
  1312     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1313     if (str_type == NULL) {
  1314       return false;
  1316     ciInstanceKlass* klass = env()->String_klass();
  1317     ciObject* str_const = str_type->const_oop();
  1318     if (str_const == NULL || str_const->klass() != klass) {
  1319       return false;
  1321     ciInstance* str = str_const->as_instance();
  1322     assert(str != NULL, "must be instance");
  1324     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1325     int       o = str->field_value_by_offset(offset_offset).as_int();
  1326     int       c = str->field_value_by_offset(count_offset).as_int();
  1327     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1329     // constant strings have no offset and count == length which
  1330     // simplifies the resulting code somewhat so lets optimize for that.
  1331     if (o != 0 || c != pat->length()) {
  1332      return false;
  1335     // Null check on self without removing any arguments.  The argument
  1336     // null check technically happens in the wrong place, which can lead to
  1337     // invalid stack traces when string compare is inlined into a method
  1338     // which handles NullPointerExceptions.
  1339     _sp += 2;
  1340     receiver = do_null_check(receiver, T_OBJECT);
  1341     // No null check on the argument is needed since it's a constant String oop.
  1342     _sp -= 2;
  1343     if (stopped()) {
  1344       return true;
  1347     // The null string as a pattern always returns 0 (match at beginning of string)
  1348     if (c == 0) {
  1349       push(intcon(0));
  1350       return true;
  1353     // Generate default indexOf
  1354     jchar lastChar = pat->char_at(o + (c - 1));
  1355     int cache = 0;
  1356     int i;
  1357     for (i = 0; i < c - 1; i++) {
  1358       assert(i < pat->length(), "out of range");
  1359       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1362     int md2 = c;
  1363     for (i = 0; i < c - 1; i++) {
  1364       assert(i < pat->length(), "out of range");
  1365       if (pat->char_at(o + i) == lastChar) {
  1366         md2 = (c - 1) - i;
  1370     result = string_indexOf(receiver, pat, o, cache, md2);
  1373   push(result);
  1374   return true;
  1377 //--------------------------pop_math_arg--------------------------------
  1378 // Pop a double argument to a math function from the stack
  1379 // rounding it if necessary.
  1380 Node * LibraryCallKit::pop_math_arg() {
  1381   Node *arg = pop_pair();
  1382   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1383     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1384   return arg;
  1387 //------------------------------inline_trig----------------------------------
  1388 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1389 // argument reduction which will turn into a fast/slow diamond.
  1390 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1391   _sp += arg_size();            // restore stack pointer
  1392   Node* arg = pop_math_arg();
  1393   Node* trig = NULL;
  1395   switch (id) {
  1396   case vmIntrinsics::_dsin:
  1397     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1398     break;
  1399   case vmIntrinsics::_dcos:
  1400     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1401     break;
  1402   case vmIntrinsics::_dtan:
  1403     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1404     break;
  1405   default:
  1406     assert(false, "bad intrinsic was passed in");
  1407     return false;
  1410   // Rounding required?  Check for argument reduction!
  1411   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1413     static const double     pi_4 =  0.7853981633974483;
  1414     static const double neg_pi_4 = -0.7853981633974483;
  1415     // pi/2 in 80-bit extended precision
  1416     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1417     // -pi/2 in 80-bit extended precision
  1418     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1419     // Cutoff value for using this argument reduction technique
  1420     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1421     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1423     // Pseudocode for sin:
  1424     // if (x <= Math.PI / 4.0) {
  1425     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1426     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1427     // } else {
  1428     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1429     // }
  1430     // return StrictMath.sin(x);
  1432     // Pseudocode for cos:
  1433     // if (x <= Math.PI / 4.0) {
  1434     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1435     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1436     // } else {
  1437     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1438     // }
  1439     // return StrictMath.cos(x);
  1441     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1442     // requires a special machine instruction to load it.  Instead we'll try
  1443     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1444     // probably do the math inside the SIN encoding.
  1446     // Make the merge point
  1447     RegionNode *r = new (C, 3) RegionNode(3);
  1448     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1450     // Flatten arg so we need only 1 test
  1451     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1452     // Node for PI/4 constant
  1453     Node *pi4 = makecon(TypeD::make(pi_4));
  1454     // Check PI/4 : abs(arg)
  1455     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1456     // Check: If PI/4 < abs(arg) then go slow
  1457     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1458     // Branch either way
  1459     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1460     set_control(opt_iff(r,iff));
  1462     // Set fast path result
  1463     phi->init_req(2,trig);
  1465     // Slow path - non-blocking leaf call
  1466     Node* call = NULL;
  1467     switch (id) {
  1468     case vmIntrinsics::_dsin:
  1469       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1470                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1471                                "Sin", NULL, arg, top());
  1472       break;
  1473     case vmIntrinsics::_dcos:
  1474       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1475                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1476                                "Cos", NULL, arg, top());
  1477       break;
  1478     case vmIntrinsics::_dtan:
  1479       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1480                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1481                                "Tan", NULL, arg, top());
  1482       break;
  1484     assert(control()->in(0) == call, "");
  1485     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1486     r->init_req(1,control());
  1487     phi->init_req(1,slow_result);
  1489     // Post-merge
  1490     set_control(_gvn.transform(r));
  1491     record_for_igvn(r);
  1492     trig = _gvn.transform(phi);
  1494     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1496   // Push result back on JVM stack
  1497   push_pair(trig);
  1498   return true;
  1501 //------------------------------inline_sqrt-------------------------------------
  1502 // Inline square root instruction, if possible.
  1503 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1504   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1505   _sp += arg_size();        // restore stack pointer
  1506   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1507   return true;
  1510 //------------------------------inline_abs-------------------------------------
  1511 // Inline absolute value instruction, if possible.
  1512 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1513   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1514   _sp += arg_size();        // restore stack pointer
  1515   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1516   return true;
  1519 //------------------------------inline_exp-------------------------------------
  1520 // Inline exp instructions, if possible.  The Intel hardware only misses
  1521 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1522 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1523   assert(id == vmIntrinsics::_dexp, "Not exp");
  1525   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1526   // every again.  NaN results requires StrictMath.exp handling.
  1527   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1529   // Do not intrinsify on older platforms which lack cmove.
  1530   if (ConditionalMoveLimit == 0)  return false;
  1532   _sp += arg_size();        // restore stack pointer
  1533   Node *x = pop_math_arg();
  1534   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1536   //-------------------
  1537   //result=(result.isNaN())? StrictMath::exp():result;
  1538   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1539   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1540   // Build the boolean node
  1541   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1543   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1544     // End the current control-flow path
  1545     push_pair(x);
  1546     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1547     // to handle.  Recompile without intrinsifying Math.exp
  1548     uncommon_trap(Deoptimization::Reason_intrinsic,
  1549                   Deoptimization::Action_make_not_entrant);
  1552   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1554   push_pair(result);
  1556   return true;
  1559 //------------------------------inline_pow-------------------------------------
  1560 // Inline power instructions, if possible.
  1561 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1562   assert(id == vmIntrinsics::_dpow, "Not pow");
  1564   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1565   // every again.  NaN results requires StrictMath.pow handling.
  1566   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1568   // Do not intrinsify on older platforms which lack cmove.
  1569   if (ConditionalMoveLimit == 0)  return false;
  1571   // Pseudocode for pow
  1572   // if (x <= 0.0) {
  1573   //   if ((double)((int)y)==y) { // if y is int
  1574   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1575   //   } else {
  1576   //     result = NaN;
  1577   //   }
  1578   // } else {
  1579   //   result = DPow(x,y);
  1580   // }
  1581   // if (result != result)?  {
  1582   //   uncommon_trap();
  1583   // }
  1584   // return result;
  1586   _sp += arg_size();        // restore stack pointer
  1587   Node* y = pop_math_arg();
  1588   Node* x = pop_math_arg();
  1590   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1592   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1593   // inside of something) then skip the fancy tests and just check for
  1594   // NaN result.
  1595   Node *result = NULL;
  1596   if( jvms()->depth() >= 1 ) {
  1597     result = fast_result;
  1598   } else {
  1600     // Set the merge point for If node with condition of (x <= 0.0)
  1601     // There are four possible paths to region node and phi node
  1602     RegionNode *r = new (C, 4) RegionNode(4);
  1603     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1605     // Build the first if node: if (x <= 0.0)
  1606     // Node for 0 constant
  1607     Node *zeronode = makecon(TypeD::ZERO);
  1608     // Check x:0
  1609     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1610     // Check: If (x<=0) then go complex path
  1611     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1612     // Branch either way
  1613     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1614     Node *opt_test = _gvn.transform(if1);
  1615     //assert( opt_test->is_If(), "Expect an IfNode");
  1616     IfNode *opt_if1 = (IfNode*)opt_test;
  1617     // Fast path taken; set region slot 3
  1618     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1619     r->init_req(3,fast_taken); // Capture fast-control
  1621     // Fast path not-taken, i.e. slow path
  1622     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1624     // Set fast path result
  1625     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1626     phi->init_req(3, fast_result);
  1628     // Complex path
  1629     // Build the second if node (if y is int)
  1630     // Node for (int)y
  1631     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1632     // Node for (double)((int) y)
  1633     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1634     // Check (double)((int) y) : y
  1635     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1636     // Check if (y isn't int) then go to slow path
  1638     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1639     // Branch either way
  1640     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1641     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1643     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1644     // Node for constant 1
  1645     Node *conone = intcon(1);
  1646     // 1& (int)y
  1647     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1648     // zero node
  1649     Node *conzero = intcon(0);
  1650     // Check (1&(int)y)==0?
  1651     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1652     // Check if (1&(int)y)!=0?, if so the result is negative
  1653     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1654     // abs(x)
  1655     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1656     // abs(x)^y
  1657     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1658     // -abs(x)^y
  1659     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1660     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1661     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1662     // Set complex path fast result
  1663     phi->init_req(2, signresult);
  1665     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1666     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1667     r->init_req(1,slow_path);
  1668     phi->init_req(1,slow_result);
  1670     // Post merge
  1671     set_control(_gvn.transform(r));
  1672     record_for_igvn(r);
  1673     result=_gvn.transform(phi);
  1676   //-------------------
  1677   //result=(result.isNaN())? uncommon_trap():result;
  1678   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1679   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1680   // Build the boolean node
  1681   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1683   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1684     // End the current control-flow path
  1685     push_pair(x);
  1686     push_pair(y);
  1687     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1688     // to handle.  Recompile without intrinsifying Math.pow.
  1689     uncommon_trap(Deoptimization::Reason_intrinsic,
  1690                   Deoptimization::Action_make_not_entrant);
  1693   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1695   push_pair(result);
  1697   return true;
  1700 //------------------------------inline_trans-------------------------------------
  1701 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1702 // these right, no funny corner cases missed.
  1703 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1704   _sp += arg_size();        // restore stack pointer
  1705   Node* arg = pop_math_arg();
  1706   Node* trans = NULL;
  1708   switch (id) {
  1709   case vmIntrinsics::_dlog:
  1710     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1711     break;
  1712   case vmIntrinsics::_dlog10:
  1713     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1714     break;
  1715   default:
  1716     assert(false, "bad intrinsic was passed in");
  1717     return false;
  1720   // Push result back on JVM stack
  1721   push_pair(trans);
  1722   return true;
  1725 //------------------------------runtime_math-----------------------------
  1726 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1727   Node* a = NULL;
  1728   Node* b = NULL;
  1730   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1731          "must be (DD)D or (D)D type");
  1733   // Inputs
  1734   _sp += arg_size();        // restore stack pointer
  1735   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1736     b = pop_math_arg();
  1738   a = pop_math_arg();
  1740   const TypePtr* no_memory_effects = NULL;
  1741   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1742                                  no_memory_effects,
  1743                                  a, top(), b, b ? top() : NULL);
  1744   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1745 #ifdef ASSERT
  1746   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1747   assert(value_top == top(), "second value must be top");
  1748 #endif
  1750   push_pair(value);
  1751   return true;
  1754 //------------------------------inline_math_native-----------------------------
  1755 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1756   switch (id) {
  1757     // These intrinsics are not properly supported on all hardware
  1758   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1759     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1760   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1761     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1762   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1763     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1765   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1766     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1767   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1768     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1770     // These intrinsics are supported on all hardware
  1771   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1772   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1774     // These intrinsics don't work on X86.  The ad implementation doesn't
  1775     // handle NaN's properly.  Instead of returning infinity, the ad
  1776     // implementation returns a NaN on overflow. See bug: 6304089
  1777     // Once the ad implementations are fixed, change the code below
  1778     // to match the intrinsics above
  1780   case vmIntrinsics::_dexp:  return
  1781     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1782   case vmIntrinsics::_dpow:  return
  1783     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1785    // These intrinsics are not yet correctly implemented
  1786   case vmIntrinsics::_datan2:
  1787     return false;
  1789   default:
  1790     ShouldNotReachHere();
  1791     return false;
  1795 static bool is_simple_name(Node* n) {
  1796   return (n->req() == 1         // constant
  1797           || (n->is_Type() && n->as_Type()->type()->singleton())
  1798           || n->is_Proj()       // parameter or return value
  1799           || n->is_Phi()        // local of some sort
  1800           );
  1803 //----------------------------inline_min_max-----------------------------------
  1804 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1805   push(generate_min_max(id, argument(0), argument(1)));
  1807   return true;
  1810 Node*
  1811 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1812   // These are the candidate return value:
  1813   Node* xvalue = x0;
  1814   Node* yvalue = y0;
  1816   if (xvalue == yvalue) {
  1817     return xvalue;
  1820   bool want_max = (id == vmIntrinsics::_max);
  1822   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1823   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1824   if (txvalue == NULL || tyvalue == NULL)  return top();
  1825   // This is not really necessary, but it is consistent with a
  1826   // hypothetical MaxINode::Value method:
  1827   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1829   // %%% This folding logic should (ideally) be in a different place.
  1830   // Some should be inside IfNode, and there to be a more reliable
  1831   // transformation of ?: style patterns into cmoves.  We also want
  1832   // more powerful optimizations around cmove and min/max.
  1834   // Try to find a dominating comparison of these guys.
  1835   // It can simplify the index computation for Arrays.copyOf
  1836   // and similar uses of System.arraycopy.
  1837   // First, compute the normalized version of CmpI(x, y).
  1838   int   cmp_op = Op_CmpI;
  1839   Node* xkey = xvalue;
  1840   Node* ykey = yvalue;
  1841   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1842   if (ideal_cmpxy->is_Cmp()) {
  1843     // E.g., if we have CmpI(length - offset, count),
  1844     // it might idealize to CmpI(length, count + offset)
  1845     cmp_op = ideal_cmpxy->Opcode();
  1846     xkey = ideal_cmpxy->in(1);
  1847     ykey = ideal_cmpxy->in(2);
  1850   // Start by locating any relevant comparisons.
  1851   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1852   Node* cmpxy = NULL;
  1853   Node* cmpyx = NULL;
  1854   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1855     Node* cmp = start_from->fast_out(k);
  1856     if (cmp->outcnt() > 0 &&            // must have prior uses
  1857         cmp->in(0) == NULL &&           // must be context-independent
  1858         cmp->Opcode() == cmp_op) {      // right kind of compare
  1859       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1860       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1864   const int NCMPS = 2;
  1865   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1866   int cmpn;
  1867   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1868     if (cmps[cmpn] != NULL)  break;     // find a result
  1870   if (cmpn < NCMPS) {
  1871     // Look for a dominating test that tells us the min and max.
  1872     int depth = 0;                // Limit search depth for speed
  1873     Node* dom = control();
  1874     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1875       if (++depth >= 100)  break;
  1876       Node* ifproj = dom;
  1877       if (!ifproj->is_Proj())  continue;
  1878       Node* iff = ifproj->in(0);
  1879       if (!iff->is_If())  continue;
  1880       Node* bol = iff->in(1);
  1881       if (!bol->is_Bool())  continue;
  1882       Node* cmp = bol->in(1);
  1883       if (cmp == NULL)  continue;
  1884       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1885         if (cmps[cmpn] == cmp)  break;
  1886       if (cmpn == NCMPS)  continue;
  1887       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1888       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1889       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1890       // At this point, we know that 'x btest y' is true.
  1891       switch (btest) {
  1892       case BoolTest::eq:
  1893         // They are proven equal, so we can collapse the min/max.
  1894         // Either value is the answer.  Choose the simpler.
  1895         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1896           return yvalue;
  1897         return xvalue;
  1898       case BoolTest::lt:          // x < y
  1899       case BoolTest::le:          // x <= y
  1900         return (want_max ? yvalue : xvalue);
  1901       case BoolTest::gt:          // x > y
  1902       case BoolTest::ge:          // x >= y
  1903         return (want_max ? xvalue : yvalue);
  1908   // We failed to find a dominating test.
  1909   // Let's pick a test that might GVN with prior tests.
  1910   Node*          best_bol   = NULL;
  1911   BoolTest::mask best_btest = BoolTest::illegal;
  1912   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1913     Node* cmp = cmps[cmpn];
  1914     if (cmp == NULL)  continue;
  1915     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1916       Node* bol = cmp->fast_out(j);
  1917       if (!bol->is_Bool())  continue;
  1918       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1919       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1920       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1921       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1922         best_bol   = bol->as_Bool();
  1923         best_btest = btest;
  1928   Node* answer_if_true  = NULL;
  1929   Node* answer_if_false = NULL;
  1930   switch (best_btest) {
  1931   default:
  1932     if (cmpxy == NULL)
  1933       cmpxy = ideal_cmpxy;
  1934     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1935     // and fall through:
  1936   case BoolTest::lt:          // x < y
  1937   case BoolTest::le:          // x <= y
  1938     answer_if_true  = (want_max ? yvalue : xvalue);
  1939     answer_if_false = (want_max ? xvalue : yvalue);
  1940     break;
  1941   case BoolTest::gt:          // x > y
  1942   case BoolTest::ge:          // x >= y
  1943     answer_if_true  = (want_max ? xvalue : yvalue);
  1944     answer_if_false = (want_max ? yvalue : xvalue);
  1945     break;
  1948   jint hi, lo;
  1949   if (want_max) {
  1950     // We can sharpen the minimum.
  1951     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1952     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1953   } else {
  1954     // We can sharpen the maximum.
  1955     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1956     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1959   // Use a flow-free graph structure, to avoid creating excess control edges
  1960   // which could hinder other optimizations.
  1961   // Since Math.min/max is often used with arraycopy, we want
  1962   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1963   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1964                                answer_if_false, answer_if_true,
  1965                                TypeInt::make(lo, hi, widen));
  1967   return _gvn.transform(cmov);
  1969   /*
  1970   // This is not as desirable as it may seem, since Min and Max
  1971   // nodes do not have a full set of optimizations.
  1972   // And they would interfere, anyway, with 'if' optimizations
  1973   // and with CMoveI canonical forms.
  1974   switch (id) {
  1975   case vmIntrinsics::_min:
  1976     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1977   case vmIntrinsics::_max:
  1978     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1979   default:
  1980     ShouldNotReachHere();
  1982   */
  1985 inline int
  1986 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1987   const TypePtr* base_type = TypePtr::NULL_PTR;
  1988   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1989   if (base_type == NULL) {
  1990     // Unknown type.
  1991     return Type::AnyPtr;
  1992   } else if (base_type == TypePtr::NULL_PTR) {
  1993     // Since this is a NULL+long form, we have to switch to a rawptr.
  1994     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1995     offset = MakeConX(0);
  1996     return Type::RawPtr;
  1997   } else if (base_type->base() == Type::RawPtr) {
  1998     return Type::RawPtr;
  1999   } else if (base_type->isa_oopptr()) {
  2000     // Base is never null => always a heap address.
  2001     if (base_type->ptr() == TypePtr::NotNull) {
  2002       return Type::OopPtr;
  2004     // Offset is small => always a heap address.
  2005     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2006     if (offset_type != NULL &&
  2007         base_type->offset() == 0 &&     // (should always be?)
  2008         offset_type->_lo >= 0 &&
  2009         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2010       return Type::OopPtr;
  2012     // Otherwise, it might either be oop+off or NULL+addr.
  2013     return Type::AnyPtr;
  2014   } else {
  2015     // No information:
  2016     return Type::AnyPtr;
  2020 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2021   int kind = classify_unsafe_addr(base, offset);
  2022   if (kind == Type::RawPtr) {
  2023     return basic_plus_adr(top(), base, offset);
  2024   } else {
  2025     return basic_plus_adr(base, offset);
  2029 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2030 // inline int Integer.numberOfLeadingZeros(int)
  2031 // inline int Long.numberOfLeadingZeros(long)
  2032 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2033   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2034   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2035   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2036   _sp += arg_size();  // restore stack pointer
  2037   switch (id) {
  2038   case vmIntrinsics::_numberOfLeadingZeros_i:
  2039     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  2040     break;
  2041   case vmIntrinsics::_numberOfLeadingZeros_l:
  2042     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  2043     break;
  2044   default:
  2045     ShouldNotReachHere();
  2047   return true;
  2050 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2051 // inline int Integer.numberOfTrailingZeros(int)
  2052 // inline int Long.numberOfTrailingZeros(long)
  2053 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2054   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2055   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2056   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2057   _sp += arg_size();  // restore stack pointer
  2058   switch (id) {
  2059   case vmIntrinsics::_numberOfTrailingZeros_i:
  2060     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2061     break;
  2062   case vmIntrinsics::_numberOfTrailingZeros_l:
  2063     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2064     break;
  2065   default:
  2066     ShouldNotReachHere();
  2068   return true;
  2071 //----------------------------inline_bitCount_int/long-----------------------
  2072 // inline int Integer.bitCount(int)
  2073 // inline int Long.bitCount(long)
  2074 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2075   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2076   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2077   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2078   _sp += arg_size();  // restore stack pointer
  2079   switch (id) {
  2080   case vmIntrinsics::_bitCount_i:
  2081     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2082     break;
  2083   case vmIntrinsics::_bitCount_l:
  2084     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2085     break;
  2086   default:
  2087     ShouldNotReachHere();
  2089   return true;
  2092 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2093 // inline Integer.reverseBytes(int)
  2094 // inline Long.reverseBytes(long)
  2095 // inline Character.reverseBytes(char)
  2096 // inline Short.reverseBytes(short)
  2097 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2098   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2099          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2100          "not reverse Bytes");
  2101   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2102   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2103   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2104   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2105   _sp += arg_size();        // restore stack pointer
  2106   switch (id) {
  2107   case vmIntrinsics::_reverseBytes_i:
  2108     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2109     break;
  2110   case vmIntrinsics::_reverseBytes_l:
  2111     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2112     break;
  2113   case vmIntrinsics::_reverseBytes_c:
  2114     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2115     break;
  2116   case vmIntrinsics::_reverseBytes_s:
  2117     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2118     break;
  2119   default:
  2122   return true;
  2125 //----------------------------inline_unsafe_access----------------------------
  2127 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2129 // Helper that guards and inserts a G1 pre-barrier.
  2130 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
  2131   assert(UseG1GC, "should not call this otherwise");
  2133   // We could be accessing the referent field of a reference object. If so, when G1
  2134   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2135   // This routine performs some compile time filters and generates suitable
  2136   // runtime filters that guard the pre-barrier code.
  2138   // Some compile time checks.
  2140   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2141   const TypeX* otype = offset->find_intptr_t_type();
  2142   if (otype != NULL && otype->is_con() &&
  2143       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2144     // Constant offset but not the reference_offset so just return
  2145     return;
  2148   // We only need to generate the runtime guards for instances.
  2149   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2150   if (btype != NULL) {
  2151     if (btype->isa_aryptr()) {
  2152       // Array type so nothing to do
  2153       return;
  2156     const TypeInstPtr* itype = btype->isa_instptr();
  2157     if (itype != NULL) {
  2158       // Can the klass of base_oop be statically determined
  2159       // to be _not_ a sub-class of Reference?
  2160       ciKlass* klass = itype->klass();
  2161       if (klass->is_subtype_of(env()->Reference_klass()) &&
  2162           !env()->Reference_klass()->is_subtype_of(klass)) {
  2163         return;
  2168   // The compile time filters did not reject base_oop/offset so
  2169   // we need to generate the following runtime filters
  2170   //
  2171   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2172   //   if (base != null) {
  2173   //     if (instance_of(base, java.lang.ref.Reference)) {
  2174   //       pre_barrier(_, pre_val, ...);
  2175   //     }
  2176   //   }
  2177   // }
  2179   float likely  = PROB_LIKELY(0.999);
  2180   float unlikely  = PROB_UNLIKELY(0.999);
  2182   IdealKit ideal(this);
  2183 #define __ ideal.
  2185   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2187   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2188     __ if_then(base_oop, BoolTest::ne, null(), likely); {
  2190       // Update graphKit memory and control from IdealKit.
  2191       sync_kit(ideal);
  2193       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2194       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2196       // Update IdealKit memory and control from graphKit.
  2197       __ sync_kit(this);
  2199       Node* one = __ ConI(1);
  2201       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2203         // Update graphKit from IdeakKit.
  2204         sync_kit(ideal);
  2206         // Use the pre-barrier to record the value in the referent field
  2207         pre_barrier(false /* do_load */,
  2208                     __ ctrl(),
  2209                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2210                     pre_val /* pre_val */,
  2211                     T_OBJECT);
  2213         // Update IdealKit from graphKit.
  2214         __ sync_kit(this);
  2216       } __ end_if(); // _ref_type != ref_none
  2217     } __ end_if(); // base  != NULL
  2218   } __ end_if(); // offset == referent_offset
  2220   // Final sync IdealKit and GraphKit.
  2221   final_sync(ideal);
  2222 #undef __
  2226 // Interpret Unsafe.fieldOffset cookies correctly:
  2227 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2229 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2230   if (callee()->is_static())  return false;  // caller must have the capability!
  2232 #ifndef PRODUCT
  2234     ResourceMark rm;
  2235     // Check the signatures.
  2236     ciSignature* sig = signature();
  2237 #ifdef ASSERT
  2238     if (!is_store) {
  2239       // Object getObject(Object base, int/long offset), etc.
  2240       BasicType rtype = sig->return_type()->basic_type();
  2241       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2242           rtype = T_ADDRESS;  // it is really a C void*
  2243       assert(rtype == type, "getter must return the expected value");
  2244       if (!is_native_ptr) {
  2245         assert(sig->count() == 2, "oop getter has 2 arguments");
  2246         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2247         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2248       } else {
  2249         assert(sig->count() == 1, "native getter has 1 argument");
  2250         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2252     } else {
  2253       // void putObject(Object base, int/long offset, Object x), etc.
  2254       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2255       if (!is_native_ptr) {
  2256         assert(sig->count() == 3, "oop putter has 3 arguments");
  2257         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2258         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2259       } else {
  2260         assert(sig->count() == 2, "native putter has 2 arguments");
  2261         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2263       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2264       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2265         vtype = T_ADDRESS;  // it is really a C void*
  2266       assert(vtype == type, "putter must accept the expected value");
  2268 #endif // ASSERT
  2270 #endif //PRODUCT
  2272   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2274   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2276   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2277   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2279   debug_only(int saved_sp = _sp);
  2280   _sp += nargs;
  2282   Node* val;
  2283   debug_only(val = (Node*)(uintptr_t)-1);
  2286   if (is_store) {
  2287     // Get the value being stored.  (Pop it first; it was pushed last.)
  2288     switch (type) {
  2289     case T_DOUBLE:
  2290     case T_LONG:
  2291     case T_ADDRESS:
  2292       val = pop_pair();
  2293       break;
  2294     default:
  2295       val = pop();
  2299   // Build address expression.  See the code in inline_unsafe_prefetch.
  2300   Node *adr;
  2301   Node *heap_base_oop = top();
  2302   Node* offset = top();
  2304   if (!is_native_ptr) {
  2305     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2306     offset = pop_pair();
  2307     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2308     Node* base   = pop();
  2309     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2310     // to be plain byte offsets, which are also the same as those accepted
  2311     // by oopDesc::field_base.
  2312     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2313            "fieldOffset must be byte-scaled");
  2314     // 32-bit machines ignore the high half!
  2315     offset = ConvL2X(offset);
  2316     adr = make_unsafe_address(base, offset);
  2317     heap_base_oop = base;
  2318   } else {
  2319     Node* ptr = pop_pair();
  2320     // Adjust Java long to machine word:
  2321     ptr = ConvL2X(ptr);
  2322     adr = make_unsafe_address(NULL, ptr);
  2325   // Pop receiver last:  it was pushed first.
  2326   Node *receiver = pop();
  2328   assert(saved_sp == _sp, "must have correct argument count");
  2330   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2332   // First guess at the value type.
  2333   const Type *value_type = Type::get_const_basic_type(type);
  2335   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2336   // there was not enough information to nail it down.
  2337   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2338   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2340   // We will need memory barriers unless we can determine a unique
  2341   // alias category for this reference.  (Note:  If for some reason
  2342   // the barriers get omitted and the unsafe reference begins to "pollute"
  2343   // the alias analysis of the rest of the graph, either Compile::can_alias
  2344   // or Compile::must_alias will throw a diagnostic assert.)
  2345   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2347   // If we are reading the value of the referent field of a Reference
  2348   // object (either by using Unsafe directly or through reflection)
  2349   // then, if G1 is enabled, we need to record the referent in an
  2350   // SATB log buffer using the pre-barrier mechanism.
  2351   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
  2352                            offset != top() && heap_base_oop != top();
  2354   if (!is_store && type == T_OBJECT) {
  2355     // Attempt to infer a sharper value type from the offset and base type.
  2356     ciKlass* sharpened_klass = NULL;
  2358     // See if it is an instance field, with an object type.
  2359     if (alias_type->field() != NULL) {
  2360       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2361       if (alias_type->field()->type()->is_klass()) {
  2362         sharpened_klass = alias_type->field()->type()->as_klass();
  2366     // See if it is a narrow oop array.
  2367     if (adr_type->isa_aryptr()) {
  2368       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2369         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2370         if (elem_type != NULL) {
  2371           sharpened_klass = elem_type->klass();
  2376     if (sharpened_klass != NULL) {
  2377       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2379       // Sharpen the value type.
  2380       value_type = tjp;
  2382 #ifndef PRODUCT
  2383       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2384         tty->print("  from base type:  ");   adr_type->dump();
  2385         tty->print("  sharpened value: "); value_type->dump();
  2387 #endif
  2391   // Null check on self without removing any arguments.  The argument
  2392   // null check technically happens in the wrong place, which can lead to
  2393   // invalid stack traces when the primitive is inlined into a method
  2394   // which handles NullPointerExceptions.
  2395   _sp += nargs;
  2396   do_null_check(receiver, T_OBJECT);
  2397   _sp -= nargs;
  2398   if (stopped()) {
  2399     return true;
  2401   // Heap pointers get a null-check from the interpreter,
  2402   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2403   // and it is not possible to fully distinguish unintended nulls
  2404   // from intended ones in this API.
  2406   if (is_volatile) {
  2407     // We need to emit leading and trailing CPU membars (see below) in
  2408     // addition to memory membars when is_volatile. This is a little
  2409     // too strong, but avoids the need to insert per-alias-type
  2410     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2411     // we cannot do effectively here because we probably only have a
  2412     // rough approximation of type.
  2413     need_mem_bar = true;
  2414     // For Stores, place a memory ordering barrier now.
  2415     if (is_store)
  2416       insert_mem_bar(Op_MemBarRelease);
  2419   // Memory barrier to prevent normal and 'unsafe' accesses from
  2420   // bypassing each other.  Happens after null checks, so the
  2421   // exception paths do not take memory state from the memory barrier,
  2422   // so there's no problems making a strong assert about mixing users
  2423   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2424   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2425   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2427   if (!is_store) {
  2428     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2429     // load value and push onto stack
  2430     switch (type) {
  2431     case T_BOOLEAN:
  2432     case T_CHAR:
  2433     case T_BYTE:
  2434     case T_SHORT:
  2435     case T_INT:
  2436     case T_FLOAT:
  2437       push(p);
  2438       break;
  2439     case T_OBJECT:
  2440       if (need_read_barrier) {
  2441         insert_g1_pre_barrier(heap_base_oop, offset, p);
  2443       push(p);
  2444       break;
  2445     case T_ADDRESS:
  2446       // Cast to an int type.
  2447       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2448       p = ConvX2L(p);
  2449       push_pair(p);
  2450       break;
  2451     case T_DOUBLE:
  2452     case T_LONG:
  2453       push_pair( p );
  2454       break;
  2455     default: ShouldNotReachHere();
  2457   } else {
  2458     // place effect of store into memory
  2459     switch (type) {
  2460     case T_DOUBLE:
  2461       val = dstore_rounding(val);
  2462       break;
  2463     case T_ADDRESS:
  2464       // Repackage the long as a pointer.
  2465       val = ConvL2X(val);
  2466       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2467       break;
  2470     if (type != T_OBJECT ) {
  2471       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2472     } else {
  2473       // Possibly an oop being stored to Java heap or native memory
  2474       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2475         // oop to Java heap.
  2476         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2477       } else {
  2478         // We can't tell at compile time if we are storing in the Java heap or outside
  2479         // of it. So we need to emit code to conditionally do the proper type of
  2480         // store.
  2482         IdealKit ideal(this);
  2483 #define __ ideal.
  2484         // QQQ who knows what probability is here??
  2485         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2486           // Sync IdealKit and graphKit.
  2487           sync_kit(ideal);
  2488           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2489           // Update IdealKit memory.
  2490           __ sync_kit(this);
  2491         } __ else_(); {
  2492           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2493         } __ end_if();
  2494         // Final sync IdealKit and GraphKit.
  2495         final_sync(ideal);
  2496 #undef __
  2501   if (is_volatile) {
  2502     if (!is_store)
  2503       insert_mem_bar(Op_MemBarAcquire);
  2504     else
  2505       insert_mem_bar(Op_MemBarVolatile);
  2508   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2510   return true;
  2513 //----------------------------inline_unsafe_prefetch----------------------------
  2515 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2516 #ifndef PRODUCT
  2518     ResourceMark rm;
  2519     // Check the signatures.
  2520     ciSignature* sig = signature();
  2521 #ifdef ASSERT
  2522     // Object getObject(Object base, int/long offset), etc.
  2523     BasicType rtype = sig->return_type()->basic_type();
  2524     if (!is_native_ptr) {
  2525       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2526       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2527       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2528     } else {
  2529       assert(sig->count() == 1, "native prefetch has 1 argument");
  2530       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2532 #endif // ASSERT
  2534 #endif // !PRODUCT
  2536   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2538   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2539   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2541   debug_only(int saved_sp = _sp);
  2542   _sp += nargs;
  2544   // Build address expression.  See the code in inline_unsafe_access.
  2545   Node *adr;
  2546   if (!is_native_ptr) {
  2547     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2548     Node* offset = pop_pair();
  2549     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2550     Node* base   = pop();
  2551     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2552     // to be plain byte offsets, which are also the same as those accepted
  2553     // by oopDesc::field_base.
  2554     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2555            "fieldOffset must be byte-scaled");
  2556     // 32-bit machines ignore the high half!
  2557     offset = ConvL2X(offset);
  2558     adr = make_unsafe_address(base, offset);
  2559   } else {
  2560     Node* ptr = pop_pair();
  2561     // Adjust Java long to machine word:
  2562     ptr = ConvL2X(ptr);
  2563     adr = make_unsafe_address(NULL, ptr);
  2566   if (is_static) {
  2567     assert(saved_sp == _sp, "must have correct argument count");
  2568   } else {
  2569     // Pop receiver last:  it was pushed first.
  2570     Node *receiver = pop();
  2571     assert(saved_sp == _sp, "must have correct argument count");
  2573     // Null check on self without removing any arguments.  The argument
  2574     // null check technically happens in the wrong place, which can lead to
  2575     // invalid stack traces when the primitive is inlined into a method
  2576     // which handles NullPointerExceptions.
  2577     _sp += nargs;
  2578     do_null_check(receiver, T_OBJECT);
  2579     _sp -= nargs;
  2580     if (stopped()) {
  2581       return true;
  2585   // Generate the read or write prefetch
  2586   Node *prefetch;
  2587   if (is_store) {
  2588     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2589   } else {
  2590     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2592   prefetch->init_req(0, control());
  2593   set_i_o(_gvn.transform(prefetch));
  2595   return true;
  2598 //----------------------------inline_unsafe_CAS----------------------------
  2600 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2601   // This basic scheme here is the same as inline_unsafe_access, but
  2602   // differs in enough details that combining them would make the code
  2603   // overly confusing.  (This is a true fact! I originally combined
  2604   // them, but even I was confused by it!) As much code/comments as
  2605   // possible are retained from inline_unsafe_access though to make
  2606   // the correspondences clearer. - dl
  2608   if (callee()->is_static())  return false;  // caller must have the capability!
  2610 #ifndef PRODUCT
  2612     ResourceMark rm;
  2613     // Check the signatures.
  2614     ciSignature* sig = signature();
  2615 #ifdef ASSERT
  2616     BasicType rtype = sig->return_type()->basic_type();
  2617     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2618     assert(sig->count() == 4, "CAS has 4 arguments");
  2619     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2620     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2621 #endif // ASSERT
  2623 #endif //PRODUCT
  2625   // number of stack slots per value argument (1 or 2)
  2626   int type_words = type2size[type];
  2628   // Cannot inline wide CAS on machines that don't support it natively
  2629   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2630     return false;
  2632   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2634   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2635   int nargs = 1 + 1 + 2  + type_words + type_words;
  2637   // pop arguments: newval, oldval, offset, base, and receiver
  2638   debug_only(int saved_sp = _sp);
  2639   _sp += nargs;
  2640   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2641   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2642   Node *offset   = pop_pair();
  2643   Node *base     = pop();
  2644   Node *receiver = pop();
  2645   assert(saved_sp == _sp, "must have correct argument count");
  2647   //  Null check receiver.
  2648   _sp += nargs;
  2649   do_null_check(receiver, T_OBJECT);
  2650   _sp -= nargs;
  2651   if (stopped()) {
  2652     return true;
  2655   // Build field offset expression.
  2656   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2657   // to be plain byte offsets, which are also the same as those accepted
  2658   // by oopDesc::field_base.
  2659   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2660   // 32-bit machines ignore the high half of long offsets
  2661   offset = ConvL2X(offset);
  2662   Node* adr = make_unsafe_address(base, offset);
  2663   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2665   // (Unlike inline_unsafe_access, there seems no point in trying
  2666   // to refine types. Just use the coarse types here.
  2667   const Type *value_type = Type::get_const_basic_type(type);
  2668   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2669   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2670   int alias_idx = C->get_alias_index(adr_type);
  2672   // Memory-model-wise, a CAS acts like a little synchronized block,
  2673   // so needs barriers on each side.  These don't translate into
  2674   // actual barriers on most machines, but we still need rest of
  2675   // compiler to respect ordering.
  2677   insert_mem_bar(Op_MemBarRelease);
  2678   insert_mem_bar(Op_MemBarCPUOrder);
  2680   // 4984716: MemBars must be inserted before this
  2681   //          memory node in order to avoid a false
  2682   //          dependency which will confuse the scheduler.
  2683   Node *mem = memory(alias_idx);
  2685   // For now, we handle only those cases that actually exist: ints,
  2686   // longs, and Object. Adding others should be straightforward.
  2687   Node* cas;
  2688   switch(type) {
  2689   case T_INT:
  2690     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2691     break;
  2692   case T_LONG:
  2693     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2694     break;
  2695   case T_OBJECT:
  2696     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2697     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2698     // Execute transformation here to avoid barrier generation in such case.
  2699     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2700       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2702     // Reference stores need a store barrier.
  2703     // (They don't if CAS fails, but it isn't worth checking.)
  2704     pre_barrier(true /* do_load*/,
  2705                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2706                 NULL /* pre_val*/,
  2707                 T_OBJECT);
  2708 #ifdef _LP64
  2709     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2710       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2711       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2712       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2713                                                           newval_enc, oldval_enc));
  2714     } else
  2715 #endif
  2717       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2719     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2720     break;
  2721   default:
  2722     ShouldNotReachHere();
  2723     break;
  2726   // SCMemProjNodes represent the memory state of CAS. Their main
  2727   // role is to prevent CAS nodes from being optimized away when their
  2728   // results aren't used.
  2729   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2730   set_memory(proj, alias_idx);
  2732   // Add the trailing membar surrounding the access
  2733   insert_mem_bar(Op_MemBarCPUOrder);
  2734   insert_mem_bar(Op_MemBarAcquire);
  2736   push(cas);
  2737   return true;
  2740 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2741   // This is another variant of inline_unsafe_access, differing in
  2742   // that it always issues store-store ("release") barrier and ensures
  2743   // store-atomicity (which only matters for "long").
  2745   if (callee()->is_static())  return false;  // caller must have the capability!
  2747 #ifndef PRODUCT
  2749     ResourceMark rm;
  2750     // Check the signatures.
  2751     ciSignature* sig = signature();
  2752 #ifdef ASSERT
  2753     BasicType rtype = sig->return_type()->basic_type();
  2754     assert(rtype == T_VOID, "must return void");
  2755     assert(sig->count() == 3, "has 3 arguments");
  2756     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2757     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2758 #endif // ASSERT
  2760 #endif //PRODUCT
  2762   // number of stack slots per value argument (1 or 2)
  2763   int type_words = type2size[type];
  2765   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2767   // Argument words:  "this" plus oop plus offset plus value;
  2768   int nargs = 1 + 1 + 2 + type_words;
  2770   // pop arguments: val, offset, base, and receiver
  2771   debug_only(int saved_sp = _sp);
  2772   _sp += nargs;
  2773   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2774   Node *offset   = pop_pair();
  2775   Node *base     = pop();
  2776   Node *receiver = pop();
  2777   assert(saved_sp == _sp, "must have correct argument count");
  2779   //  Null check receiver.
  2780   _sp += nargs;
  2781   do_null_check(receiver, T_OBJECT);
  2782   _sp -= nargs;
  2783   if (stopped()) {
  2784     return true;
  2787   // Build field offset expression.
  2788   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2789   // 32-bit machines ignore the high half of long offsets
  2790   offset = ConvL2X(offset);
  2791   Node* adr = make_unsafe_address(base, offset);
  2792   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2793   const Type *value_type = Type::get_const_basic_type(type);
  2794   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2796   insert_mem_bar(Op_MemBarRelease);
  2797   insert_mem_bar(Op_MemBarCPUOrder);
  2798   // Ensure that the store is atomic for longs:
  2799   bool require_atomic_access = true;
  2800   Node* store;
  2801   if (type == T_OBJECT) // reference stores need a store barrier.
  2802     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2803   else {
  2804     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2806   insert_mem_bar(Op_MemBarCPUOrder);
  2807   return true;
  2810 bool LibraryCallKit::inline_unsafe_allocate() {
  2811   if (callee()->is_static())  return false;  // caller must have the capability!
  2812   int nargs = 1 + 1;
  2813   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2814   null_check_receiver(callee());  // check then ignore argument(0)
  2815   _sp += nargs;  // set original stack for use by uncommon_trap
  2816   Node* cls = do_null_check(argument(1), T_OBJECT);
  2817   _sp -= nargs;
  2818   if (stopped())  return true;
  2820   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2821   _sp += nargs;  // set original stack for use by uncommon_trap
  2822   kls = do_null_check(kls, T_OBJECT);
  2823   _sp -= nargs;
  2824   if (stopped())  return true;  // argument was like int.class
  2826   // Note:  The argument might still be an illegal value like
  2827   // Serializable.class or Object[].class.   The runtime will handle it.
  2828   // But we must make an explicit check for initialization.
  2829   Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
  2830   // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
  2831   // can generate code to load it as unsigned byte.
  2832   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2833   Node* bits = intcon(instanceKlass::fully_initialized);
  2834   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2835   // The 'test' is non-zero if we need to take a slow path.
  2837   Node* obj = new_instance(kls, test);
  2838   push(obj);
  2840   return true;
  2843 //------------------------inline_native_time_funcs--------------
  2844 // inline code for System.currentTimeMillis() and System.nanoTime()
  2845 // these have the same type and signature
  2846 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2847   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2848                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2849   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2850   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2851   const TypePtr* no_memory_effects = NULL;
  2852   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2853   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2854 #ifdef ASSERT
  2855   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2856   assert(value_top == top(), "second value must be top");
  2857 #endif
  2858   push_pair(value);
  2859   return true;
  2862 //------------------------inline_native_currentThread------------------
  2863 bool LibraryCallKit::inline_native_currentThread() {
  2864   Node* junk = NULL;
  2865   push(generate_current_thread(junk));
  2866   return true;
  2869 //------------------------inline_native_isInterrupted------------------
  2870 bool LibraryCallKit::inline_native_isInterrupted() {
  2871   const int nargs = 1+1;  // receiver + boolean
  2872   assert(nargs == arg_size(), "sanity");
  2873   // Add a fast path to t.isInterrupted(clear_int):
  2874   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2875   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2876   // So, in the common case that the interrupt bit is false,
  2877   // we avoid making a call into the VM.  Even if the interrupt bit
  2878   // is true, if the clear_int argument is false, we avoid the VM call.
  2879   // However, if the receiver is not currentThread, we must call the VM,
  2880   // because there must be some locking done around the operation.
  2882   // We only go to the fast case code if we pass two guards.
  2883   // Paths which do not pass are accumulated in the slow_region.
  2884   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2885   record_for_igvn(slow_region);
  2886   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2887   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2888   enum { no_int_result_path   = 1,
  2889          no_clear_result_path = 2,
  2890          slow_result_path     = 3
  2891   };
  2893   // (a) Receiving thread must be the current thread.
  2894   Node* rec_thr = argument(0);
  2895   Node* tls_ptr = NULL;
  2896   Node* cur_thr = generate_current_thread(tls_ptr);
  2897   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2898   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2900   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2901   if (!known_current_thread)
  2902     generate_slow_guard(bol_thr, slow_region);
  2904   // (b) Interrupt bit on TLS must be false.
  2905   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2906   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2907   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2908   // Set the control input on the field _interrupted read to prevent it floating up.
  2909   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2910   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2911   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2913   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2915   // First fast path:  if (!TLS._interrupted) return false;
  2916   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2917   result_rgn->init_req(no_int_result_path, false_bit);
  2918   result_val->init_req(no_int_result_path, intcon(0));
  2920   // drop through to next case
  2921   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2923   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2924   Node* clr_arg = argument(1);
  2925   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2926   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2927   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2929   // Second fast path:  ... else if (!clear_int) return true;
  2930   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2931   result_rgn->init_req(no_clear_result_path, false_arg);
  2932   result_val->init_req(no_clear_result_path, intcon(1));
  2934   // drop through to next case
  2935   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2937   // (d) Otherwise, go to the slow path.
  2938   slow_region->add_req(control());
  2939   set_control( _gvn.transform(slow_region) );
  2941   if (stopped()) {
  2942     // There is no slow path.
  2943     result_rgn->init_req(slow_result_path, top());
  2944     result_val->init_req(slow_result_path, top());
  2945   } else {
  2946     // non-virtual because it is a private non-static
  2947     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2949     Node* slow_val = set_results_for_java_call(slow_call);
  2950     // this->control() comes from set_results_for_java_call
  2952     // If we know that the result of the slow call will be true, tell the optimizer!
  2953     if (known_current_thread)  slow_val = intcon(1);
  2955     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2956     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2957     // These two phis are pre-filled with copies of of the fast IO and Memory
  2958     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2959     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2961     result_rgn->init_req(slow_result_path, control());
  2962     io_phi    ->init_req(slow_result_path, i_o());
  2963     mem_phi   ->init_req(slow_result_path, reset_memory());
  2964     result_val->init_req(slow_result_path, slow_val);
  2966     set_all_memory( _gvn.transform(mem_phi) );
  2967     set_i_o(        _gvn.transform(io_phi) );
  2970   push_result(result_rgn, result_val);
  2971   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2973   return true;
  2976 //---------------------------load_mirror_from_klass----------------------------
  2977 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2978 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2979   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  2980   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2983 //-----------------------load_klass_from_mirror_common-------------------------
  2984 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2985 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2986 // and branch to the given path on the region.
  2987 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2988 // compile for the non-null case.
  2989 // If the region is NULL, force never_see_null = true.
  2990 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2991                                                     bool never_see_null,
  2992                                                     int nargs,
  2993                                                     RegionNode* region,
  2994                                                     int null_path,
  2995                                                     int offset) {
  2996   if (region == NULL)  never_see_null = true;
  2997   Node* p = basic_plus_adr(mirror, offset);
  2998   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2999   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3000   _sp += nargs; // any deopt will start just before call to enclosing method
  3001   Node* null_ctl = top();
  3002   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3003   if (region != NULL) {
  3004     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3005     region->init_req(null_path, null_ctl);
  3006   } else {
  3007     assert(null_ctl == top(), "no loose ends");
  3009   _sp -= nargs;
  3010   return kls;
  3013 //--------------------(inline_native_Class_query helpers)---------------------
  3014 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3015 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3016 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3017   // Branch around if the given klass has the given modifier bit set.
  3018   // Like generate_guard, adds a new path onto the region.
  3019   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3020   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3021   Node* mask = intcon(modifier_mask);
  3022   Node* bits = intcon(modifier_bits);
  3023   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  3024   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  3025   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  3026   return generate_fair_guard(bol, region);
  3028 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3029   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3032 //-------------------------inline_native_Class_query-------------------
  3033 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3034   int nargs = 1+0;  // just the Class mirror, in most cases
  3035   const Type* return_type = TypeInt::BOOL;
  3036   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3037   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3038   bool expect_prim = false;     // most of these guys expect to work on refs
  3040   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3042   switch (id) {
  3043   case vmIntrinsics::_isInstance:
  3044     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3045     // nothing is an instance of a primitive type
  3046     prim_return_value = intcon(0);
  3047     break;
  3048   case vmIntrinsics::_getModifiers:
  3049     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3050     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3051     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3052     break;
  3053   case vmIntrinsics::_isInterface:
  3054     prim_return_value = intcon(0);
  3055     break;
  3056   case vmIntrinsics::_isArray:
  3057     prim_return_value = intcon(0);
  3058     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3059     break;
  3060   case vmIntrinsics::_isPrimitive:
  3061     prim_return_value = intcon(1);
  3062     expect_prim = true;  // obviously
  3063     break;
  3064   case vmIntrinsics::_getSuperclass:
  3065     prim_return_value = null();
  3066     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3067     break;
  3068   case vmIntrinsics::_getComponentType:
  3069     prim_return_value = null();
  3070     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3071     break;
  3072   case vmIntrinsics::_getClassAccessFlags:
  3073     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3074     return_type = TypeInt::INT;  // not bool!  6297094
  3075     break;
  3076   default:
  3077     ShouldNotReachHere();
  3080   Node* mirror =                      argument(0);
  3081   Node* obj    = (nargs <= 1)? top(): argument(1);
  3083   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3084   if (mirror_con == NULL)  return false;  // cannot happen?
  3086 #ifndef PRODUCT
  3087   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3088     ciType* k = mirror_con->java_mirror_type();
  3089     if (k) {
  3090       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3091       k->print_name();
  3092       tty->cr();
  3095 #endif
  3097   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3098   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3099   record_for_igvn(region);
  3100   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  3102   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3103   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3104   // if it is. See bug 4774291.
  3106   // For Reflection.getClassAccessFlags(), the null check occurs in
  3107   // the wrong place; see inline_unsafe_access(), above, for a similar
  3108   // situation.
  3109   _sp += nargs;  // set original stack for use by uncommon_trap
  3110   mirror = do_null_check(mirror, T_OBJECT);
  3111   _sp -= nargs;
  3112   // If mirror or obj is dead, only null-path is taken.
  3113   if (stopped())  return true;
  3115   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3117   // Now load the mirror's klass metaobject, and null-check it.
  3118   // Side-effects region with the control path if the klass is null.
  3119   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3120                                      region, _prim_path);
  3121   // If kls is null, we have a primitive mirror.
  3122   phi->init_req(_prim_path, prim_return_value);
  3123   if (stopped()) { push_result(region, phi); return true; }
  3125   Node* p;  // handy temp
  3126   Node* null_ctl;
  3128   // Now that we have the non-null klass, we can perform the real query.
  3129   // For constant classes, the query will constant-fold in LoadNode::Value.
  3130   Node* query_value = top();
  3131   switch (id) {
  3132   case vmIntrinsics::_isInstance:
  3133     // nothing is an instance of a primitive type
  3134     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3135     query_value = gen_instanceof(obj, kls);
  3136     _sp -= nargs;
  3137     break;
  3139   case vmIntrinsics::_getModifiers:
  3140     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3141     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3142     break;
  3144   case vmIntrinsics::_isInterface:
  3145     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3146     if (generate_interface_guard(kls, region) != NULL)
  3147       // A guard was added.  If the guard is taken, it was an interface.
  3148       phi->add_req(intcon(1));
  3149     // If we fall through, it's a plain class.
  3150     query_value = intcon(0);
  3151     break;
  3153   case vmIntrinsics::_isArray:
  3154     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3155     if (generate_array_guard(kls, region) != NULL)
  3156       // A guard was added.  If the guard is taken, it was an array.
  3157       phi->add_req(intcon(1));
  3158     // If we fall through, it's a plain class.
  3159     query_value = intcon(0);
  3160     break;
  3162   case vmIntrinsics::_isPrimitive:
  3163     query_value = intcon(0); // "normal" path produces false
  3164     break;
  3166   case vmIntrinsics::_getSuperclass:
  3167     // The rules here are somewhat unfortunate, but we can still do better
  3168     // with random logic than with a JNI call.
  3169     // Interfaces store null or Object as _super, but must report null.
  3170     // Arrays store an intermediate super as _super, but must report Object.
  3171     // Other types can report the actual _super.
  3172     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3173     if (generate_interface_guard(kls, region) != NULL)
  3174       // A guard was added.  If the guard is taken, it was an interface.
  3175       phi->add_req(null());
  3176     if (generate_array_guard(kls, region) != NULL)
  3177       // A guard was added.  If the guard is taken, it was an array.
  3178       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3179     // If we fall through, it's a plain class.  Get its _super.
  3180     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3181     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3182     null_ctl = top();
  3183     kls = null_check_oop(kls, &null_ctl);
  3184     if (null_ctl != top()) {
  3185       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3186       region->add_req(null_ctl);
  3187       phi   ->add_req(null());
  3189     if (!stopped()) {
  3190       query_value = load_mirror_from_klass(kls);
  3192     break;
  3194   case vmIntrinsics::_getComponentType:
  3195     if (generate_array_guard(kls, region) != NULL) {
  3196       // Be sure to pin the oop load to the guard edge just created:
  3197       Node* is_array_ctrl = region->in(region->req()-1);
  3198       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
  3199       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3200       phi->add_req(cmo);
  3202     query_value = null();  // non-array case is null
  3203     break;
  3205   case vmIntrinsics::_getClassAccessFlags:
  3206     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3207     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3208     break;
  3210   default:
  3211     ShouldNotReachHere();
  3214   // Fall-through is the normal case of a query to a real class.
  3215   phi->init_req(1, query_value);
  3216   region->init_req(1, control());
  3218   push_result(region, phi);
  3219   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3221   return true;
  3224 //--------------------------inline_native_subtype_check------------------------
  3225 // This intrinsic takes the JNI calls out of the heart of
  3226 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3227 bool LibraryCallKit::inline_native_subtype_check() {
  3228   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3230   // Pull both arguments off the stack.
  3231   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3232   args[0] = argument(0);
  3233   args[1] = argument(1);
  3234   Node* klasses[2];             // corresponding Klasses: superk, subk
  3235   klasses[0] = klasses[1] = top();
  3237   enum {
  3238     // A full decision tree on {superc is prim, subc is prim}:
  3239     _prim_0_path = 1,           // {P,N} => false
  3240                                 // {P,P} & superc!=subc => false
  3241     _prim_same_path,            // {P,P} & superc==subc => true
  3242     _prim_1_path,               // {N,P} => false
  3243     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3244     _both_ref_path,             // {N,N} & subtype check loses => false
  3245     PATH_LIMIT
  3246   };
  3248   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3249   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3250   record_for_igvn(region);
  3252   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3253   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3254   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3256   // First null-check both mirrors and load each mirror's klass metaobject.
  3257   int which_arg;
  3258   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3259     Node* arg = args[which_arg];
  3260     _sp += nargs;  // set original stack for use by uncommon_trap
  3261     arg = do_null_check(arg, T_OBJECT);
  3262     _sp -= nargs;
  3263     if (stopped())  break;
  3264     args[which_arg] = _gvn.transform(arg);
  3266     Node* p = basic_plus_adr(arg, class_klass_offset);
  3267     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3268     klasses[which_arg] = _gvn.transform(kls);
  3271   // Having loaded both klasses, test each for null.
  3272   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3273   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3274     Node* kls = klasses[which_arg];
  3275     Node* null_ctl = top();
  3276     _sp += nargs;  // set original stack for use by uncommon_trap
  3277     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3278     _sp -= nargs;
  3279     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3280     region->init_req(prim_path, null_ctl);
  3281     if (stopped())  break;
  3282     klasses[which_arg] = kls;
  3285   if (!stopped()) {
  3286     // now we have two reference types, in klasses[0..1]
  3287     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3288     Node* superk = klasses[0];  // the receiver
  3289     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3290     // now we have a successful reference subtype check
  3291     region->set_req(_ref_subtype_path, control());
  3294   // If both operands are primitive (both klasses null), then
  3295   // we must return true when they are identical primitives.
  3296   // It is convenient to test this after the first null klass check.
  3297   set_control(region->in(_prim_0_path)); // go back to first null check
  3298   if (!stopped()) {
  3299     // Since superc is primitive, make a guard for the superc==subc case.
  3300     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3301     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3302     generate_guard(bol_eq, region, PROB_FAIR);
  3303     if (region->req() == PATH_LIMIT+1) {
  3304       // A guard was added.  If the added guard is taken, superc==subc.
  3305       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3306       region->del_req(PATH_LIMIT);
  3308     region->set_req(_prim_0_path, control()); // Not equal after all.
  3311   // these are the only paths that produce 'true':
  3312   phi->set_req(_prim_same_path,   intcon(1));
  3313   phi->set_req(_ref_subtype_path, intcon(1));
  3315   // pull together the cases:
  3316   assert(region->req() == PATH_LIMIT, "sane region");
  3317   for (uint i = 1; i < region->req(); i++) {
  3318     Node* ctl = region->in(i);
  3319     if (ctl == NULL || ctl == top()) {
  3320       region->set_req(i, top());
  3321       phi   ->set_req(i, top());
  3322     } else if (phi->in(i) == NULL) {
  3323       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3327   set_control(_gvn.transform(region));
  3328   push(_gvn.transform(phi));
  3330   return true;
  3333 //---------------------generate_array_guard_common------------------------
  3334 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3335                                                   bool obj_array, bool not_array) {
  3336   // If obj_array/non_array==false/false:
  3337   // Branch around if the given klass is in fact an array (either obj or prim).
  3338   // If obj_array/non_array==false/true:
  3339   // Branch around if the given klass is not an array klass of any kind.
  3340   // If obj_array/non_array==true/true:
  3341   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3342   // If obj_array/non_array==true/false:
  3343   // Branch around if the kls is an oop array (Object[] or subtype)
  3344   //
  3345   // Like generate_guard, adds a new path onto the region.
  3346   jint  layout_con = 0;
  3347   Node* layout_val = get_layout_helper(kls, layout_con);
  3348   if (layout_val == NULL) {
  3349     bool query = (obj_array
  3350                   ? Klass::layout_helper_is_objArray(layout_con)
  3351                   : Klass::layout_helper_is_javaArray(layout_con));
  3352     if (query == not_array) {
  3353       return NULL;                       // never a branch
  3354     } else {                             // always a branch
  3355       Node* always_branch = control();
  3356       if (region != NULL)
  3357         region->add_req(always_branch);
  3358       set_control(top());
  3359       return always_branch;
  3362   // Now test the correct condition.
  3363   jint  nval = (obj_array
  3364                 ? ((jint)Klass::_lh_array_tag_type_value
  3365                    <<    Klass::_lh_array_tag_shift)
  3366                 : Klass::_lh_neutral_value);
  3367   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3368   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3369   // invert the test if we are looking for a non-array
  3370   if (not_array)  btest = BoolTest(btest).negate();
  3371   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3372   return generate_fair_guard(bol, region);
  3376 //-----------------------inline_native_newArray--------------------------
  3377 bool LibraryCallKit::inline_native_newArray() {
  3378   int nargs = 2;
  3379   Node* mirror    = argument(0);
  3380   Node* count_val = argument(1);
  3382   _sp += nargs;  // set original stack for use by uncommon_trap
  3383   mirror = do_null_check(mirror, T_OBJECT);
  3384   _sp -= nargs;
  3385   // If mirror or obj is dead, only null-path is taken.
  3386   if (stopped())  return true;
  3388   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3389   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3390   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3391                                                       TypeInstPtr::NOTNULL);
  3392   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3393   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3394                                                       TypePtr::BOTTOM);
  3396   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3397   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3398                                                   nargs,
  3399                                                   result_reg, _slow_path);
  3400   Node* normal_ctl   = control();
  3401   Node* no_array_ctl = result_reg->in(_slow_path);
  3403   // Generate code for the slow case.  We make a call to newArray().
  3404   set_control(no_array_ctl);
  3405   if (!stopped()) {
  3406     // Either the input type is void.class, or else the
  3407     // array klass has not yet been cached.  Either the
  3408     // ensuing call will throw an exception, or else it
  3409     // will cache the array klass for next time.
  3410     PreserveJVMState pjvms(this);
  3411     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3412     Node* slow_result = set_results_for_java_call(slow_call);
  3413     // this->control() comes from set_results_for_java_call
  3414     result_reg->set_req(_slow_path, control());
  3415     result_val->set_req(_slow_path, slow_result);
  3416     result_io ->set_req(_slow_path, i_o());
  3417     result_mem->set_req(_slow_path, reset_memory());
  3420   set_control(normal_ctl);
  3421   if (!stopped()) {
  3422     // Normal case:  The array type has been cached in the java.lang.Class.
  3423     // The following call works fine even if the array type is polymorphic.
  3424     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3425     Node* obj = new_array(klass_node, count_val, nargs);
  3426     result_reg->init_req(_normal_path, control());
  3427     result_val->init_req(_normal_path, obj);
  3428     result_io ->init_req(_normal_path, i_o());
  3429     result_mem->init_req(_normal_path, reset_memory());
  3432   // Return the combined state.
  3433   set_i_o(        _gvn.transform(result_io)  );
  3434   set_all_memory( _gvn.transform(result_mem) );
  3435   push_result(result_reg, result_val);
  3436   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3438   return true;
  3441 //----------------------inline_native_getLength--------------------------
  3442 bool LibraryCallKit::inline_native_getLength() {
  3443   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3445   int nargs = 1;
  3446   Node* array = argument(0);
  3448   _sp += nargs;  // set original stack for use by uncommon_trap
  3449   array = do_null_check(array, T_OBJECT);
  3450   _sp -= nargs;
  3452   // If array is dead, only null-path is taken.
  3453   if (stopped())  return true;
  3455   // Deoptimize if it is a non-array.
  3456   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3458   if (non_array != NULL) {
  3459     PreserveJVMState pjvms(this);
  3460     set_control(non_array);
  3461     _sp += nargs;  // push the arguments back on the stack
  3462     uncommon_trap(Deoptimization::Reason_intrinsic,
  3463                   Deoptimization::Action_maybe_recompile);
  3466   // If control is dead, only non-array-path is taken.
  3467   if (stopped())  return true;
  3469   // The works fine even if the array type is polymorphic.
  3470   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3471   push( load_array_length(array) );
  3473   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3475   return true;
  3478 //------------------------inline_array_copyOf----------------------------
  3479 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3480   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3482   // Restore the stack and pop off the arguments.
  3483   int nargs = 3 + (is_copyOfRange? 1: 0);
  3484   Node* original          = argument(0);
  3485   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3486   Node* end               = is_copyOfRange? argument(2): argument(1);
  3487   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3489   Node* newcopy;
  3491   //set the original stack and the reexecute bit for the interpreter to reexecute
  3492   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3493   { PreserveReexecuteState preexecs(this);
  3494     _sp += nargs;
  3495     jvms()->set_should_reexecute(true);
  3497     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3498     original          = do_null_check(original, T_OBJECT);
  3500     // Check if a null path was taken unconditionally.
  3501     if (stopped())  return true;
  3503     Node* orig_length = load_array_length(original);
  3505     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3506                                               NULL, 0);
  3507     klass_node = do_null_check(klass_node, T_OBJECT);
  3509     RegionNode* bailout = new (C, 1) RegionNode(1);
  3510     record_for_igvn(bailout);
  3512     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3513     // Bail out if that is so.
  3514     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3515     if (not_objArray != NULL) {
  3516       // Improve the klass node's type from the new optimistic assumption:
  3517       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3518       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3519       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3520       cast->init_req(0, control());
  3521       klass_node = _gvn.transform(cast);
  3524     // Bail out if either start or end is negative.
  3525     generate_negative_guard(start, bailout, &start);
  3526     generate_negative_guard(end,   bailout, &end);
  3528     Node* length = end;
  3529     if (_gvn.type(start) != TypeInt::ZERO) {
  3530       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3533     // Bail out if length is negative.
  3534     // ...Not needed, since the new_array will throw the right exception.
  3535     //generate_negative_guard(length, bailout, &length);
  3537     if (bailout->req() > 1) {
  3538       PreserveJVMState pjvms(this);
  3539       set_control( _gvn.transform(bailout) );
  3540       uncommon_trap(Deoptimization::Reason_intrinsic,
  3541                     Deoptimization::Action_maybe_recompile);
  3544     if (!stopped()) {
  3546       // How many elements will we copy from the original?
  3547       // The answer is MinI(orig_length - start, length).
  3548       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3549       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3551       newcopy = new_array(klass_node, length, 0);
  3553       // Generate a direct call to the right arraycopy function(s).
  3554       // We know the copy is disjoint but we might not know if the
  3555       // oop stores need checking.
  3556       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3557       // This will fail a store-check if x contains any non-nulls.
  3558       bool disjoint_bases = true;
  3559       bool length_never_negative = true;
  3560       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3561                          original, start, newcopy, intcon(0), moved,
  3562                          disjoint_bases, length_never_negative);
  3564   } //original reexecute and sp are set back here
  3566   if(!stopped()) {
  3567     push(newcopy);
  3570   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3572   return true;
  3576 //----------------------generate_virtual_guard---------------------------
  3577 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3578 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3579                                              RegionNode* slow_region) {
  3580   ciMethod* method = callee();
  3581   int vtable_index = method->vtable_index();
  3582   // Get the methodOop out of the appropriate vtable entry.
  3583   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3584                      vtable_index*vtableEntry::size()) * wordSize +
  3585                      vtableEntry::method_offset_in_bytes();
  3586   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3587   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3589   // Compare the target method with the expected method (e.g., Object.hashCode).
  3590   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3592   Node* native_call = makecon(native_call_addr);
  3593   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3594   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3596   return generate_slow_guard(test_native, slow_region);
  3599 //-----------------------generate_method_call----------------------------
  3600 // Use generate_method_call to make a slow-call to the real
  3601 // method if the fast path fails.  An alternative would be to
  3602 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3603 // This only works for expanding the current library call,
  3604 // not another intrinsic.  (E.g., don't use this for making an
  3605 // arraycopy call inside of the copyOf intrinsic.)
  3606 CallJavaNode*
  3607 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3608   // When compiling the intrinsic method itself, do not use this technique.
  3609   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3611   ciMethod* method = callee();
  3612   // ensure the JVMS we have will be correct for this call
  3613   guarantee(method_id == method->intrinsic_id(), "must match");
  3615   const TypeFunc* tf = TypeFunc::make(method);
  3616   int tfdc = tf->domain()->cnt();
  3617   CallJavaNode* slow_call;
  3618   if (is_static) {
  3619     assert(!is_virtual, "");
  3620     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3621                                 SharedRuntime::get_resolve_static_call_stub(),
  3622                                 method, bci());
  3623   } else if (is_virtual) {
  3624     null_check_receiver(method);
  3625     int vtable_index = methodOopDesc::invalid_vtable_index;
  3626     if (UseInlineCaches) {
  3627       // Suppress the vtable call
  3628     } else {
  3629       // hashCode and clone are not a miranda methods,
  3630       // so the vtable index is fixed.
  3631       // No need to use the linkResolver to get it.
  3632        vtable_index = method->vtable_index();
  3634     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3635                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3636                                 method, vtable_index, bci());
  3637   } else {  // neither virtual nor static:  opt_virtual
  3638     null_check_receiver(method);
  3639     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3640                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3641                                 method, bci());
  3642     slow_call->set_optimized_virtual(true);
  3644   set_arguments_for_java_call(slow_call);
  3645   set_edges_for_java_call(slow_call);
  3646   return slow_call;
  3650 //------------------------------inline_native_hashcode--------------------
  3651 // Build special case code for calls to hashCode on an object.
  3652 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3653   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3654   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3656   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3658   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3659   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3660                                                       TypeInt::INT);
  3661   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3662   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3663                                                       TypePtr::BOTTOM);
  3664   Node* obj = NULL;
  3665   if (!is_static) {
  3666     // Check for hashing null object
  3667     obj = null_check_receiver(callee());
  3668     if (stopped())  return true;        // unconditionally null
  3669     result_reg->init_req(_null_path, top());
  3670     result_val->init_req(_null_path, top());
  3671   } else {
  3672     // Do a null check, and return zero if null.
  3673     // System.identityHashCode(null) == 0
  3674     obj = argument(0);
  3675     Node* null_ctl = top();
  3676     obj = null_check_oop(obj, &null_ctl);
  3677     result_reg->init_req(_null_path, null_ctl);
  3678     result_val->init_req(_null_path, _gvn.intcon(0));
  3681   // Unconditionally null?  Then return right away.
  3682   if (stopped()) {
  3683     set_control( result_reg->in(_null_path) );
  3684     if (!stopped())
  3685       push(      result_val ->in(_null_path) );
  3686     return true;
  3689   // After null check, get the object's klass.
  3690   Node* obj_klass = load_object_klass(obj);
  3692   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3693   // For each case we generate slightly different code.
  3695   // We only go to the fast case code if we pass a number of guards.  The
  3696   // paths which do not pass are accumulated in the slow_region.
  3697   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3698   record_for_igvn(slow_region);
  3700   // If this is a virtual call, we generate a funny guard.  We pull out
  3701   // the vtable entry corresponding to hashCode() from the target object.
  3702   // If the target method which we are calling happens to be the native
  3703   // Object hashCode() method, we pass the guard.  We do not need this
  3704   // guard for non-virtual calls -- the caller is known to be the native
  3705   // Object hashCode().
  3706   if (is_virtual) {
  3707     generate_virtual_guard(obj_klass, slow_region);
  3710   // Get the header out of the object, use LoadMarkNode when available
  3711   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3712   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3714   // Test the header to see if it is unlocked.
  3715   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3716   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3717   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3718   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3719   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3721   generate_slow_guard(test_unlocked, slow_region);
  3723   // Get the hash value and check to see that it has been properly assigned.
  3724   // We depend on hash_mask being at most 32 bits and avoid the use of
  3725   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3726   // vm: see markOop.hpp.
  3727   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3728   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3729   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3730   // This hack lets the hash bits live anywhere in the mark object now, as long
  3731   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3732   // Java spec says that HashCode is an int so there's no point in capturing
  3733   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3734   hshifted_header      = ConvX2I(hshifted_header);
  3735   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3737   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3738   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3739   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3741   generate_slow_guard(test_assigned, slow_region);
  3743   Node* init_mem = reset_memory();
  3744   // fill in the rest of the null path:
  3745   result_io ->init_req(_null_path, i_o());
  3746   result_mem->init_req(_null_path, init_mem);
  3748   result_val->init_req(_fast_path, hash_val);
  3749   result_reg->init_req(_fast_path, control());
  3750   result_io ->init_req(_fast_path, i_o());
  3751   result_mem->init_req(_fast_path, init_mem);
  3753   // Generate code for the slow case.  We make a call to hashCode().
  3754   set_control(_gvn.transform(slow_region));
  3755   if (!stopped()) {
  3756     // No need for PreserveJVMState, because we're using up the present state.
  3757     set_all_memory(init_mem);
  3758     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3759     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3760     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3761     Node* slow_result = set_results_for_java_call(slow_call);
  3762     // this->control() comes from set_results_for_java_call
  3763     result_reg->init_req(_slow_path, control());
  3764     result_val->init_req(_slow_path, slow_result);
  3765     result_io  ->set_req(_slow_path, i_o());
  3766     result_mem ->set_req(_slow_path, reset_memory());
  3769   // Return the combined state.
  3770   set_i_o(        _gvn.transform(result_io)  );
  3771   set_all_memory( _gvn.transform(result_mem) );
  3772   push_result(result_reg, result_val);
  3774   return true;
  3777 //---------------------------inline_native_getClass----------------------------
  3778 // Build special case code for calls to getClass on an object.
  3779 bool LibraryCallKit::inline_native_getClass() {
  3780   Node* obj = null_check_receiver(callee());
  3781   if (stopped())  return true;
  3782   push( load_mirror_from_klass(load_object_klass(obj)) );
  3783   return true;
  3786 //-----------------inline_native_Reflection_getCallerClass---------------------
  3787 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3788 //
  3789 // NOTE that this code must perform the same logic as
  3790 // vframeStream::security_get_caller_frame in that it must skip
  3791 // Method.invoke() and auxiliary frames.
  3796 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3797   ciMethod*       method = callee();
  3799 #ifndef PRODUCT
  3800   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3801     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3803 #endif
  3805   debug_only(int saved_sp = _sp);
  3807   // Argument words:  (int depth)
  3808   int nargs = 1;
  3810   _sp += nargs;
  3811   Node* caller_depth_node = pop();
  3813   assert(saved_sp == _sp, "must have correct argument count");
  3815   // The depth value must be a constant in order for the runtime call
  3816   // to be eliminated.
  3817   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3818   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3819 #ifndef PRODUCT
  3820     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3821       tty->print_cr("  Bailing out because caller depth was not a constant");
  3823 #endif
  3824     return false;
  3826   // Note that the JVM state at this point does not include the
  3827   // getCallerClass() frame which we are trying to inline. The
  3828   // semantics of getCallerClass(), however, are that the "first"
  3829   // frame is the getCallerClass() frame, so we subtract one from the
  3830   // requested depth before continuing. We don't inline requests of
  3831   // getCallerClass(0).
  3832   int caller_depth = caller_depth_type->get_con() - 1;
  3833   if (caller_depth < 0) {
  3834 #ifndef PRODUCT
  3835     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3836       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3838 #endif
  3839     return false;
  3842   if (!jvms()->has_method()) {
  3843 #ifndef PRODUCT
  3844     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3845       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3847 #endif
  3848     return false;
  3850   int _depth = jvms()->depth();  // cache call chain depth
  3852   // Walk back up the JVM state to find the caller at the required
  3853   // depth. NOTE that this code must perform the same logic as
  3854   // vframeStream::security_get_caller_frame in that it must skip
  3855   // Method.invoke() and auxiliary frames. Note also that depth is
  3856   // 1-based (1 is the bottom of the inlining).
  3857   int inlining_depth = _depth;
  3858   JVMState* caller_jvms = NULL;
  3860   if (inlining_depth > 0) {
  3861     caller_jvms = jvms();
  3862     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3863     do {
  3864       // The following if-tests should be performed in this order
  3865       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3866         // Skip a Method.invoke() or auxiliary frame
  3867       } else if (caller_depth > 0) {
  3868         // Skip real frame
  3869         --caller_depth;
  3870       } else {
  3871         // We're done: reached desired caller after skipping.
  3872         break;
  3874       caller_jvms = caller_jvms->caller();
  3875       --inlining_depth;
  3876     } while (inlining_depth > 0);
  3879   if (inlining_depth == 0) {
  3880 #ifndef PRODUCT
  3881     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3882       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3883       tty->print_cr("  JVM state at this point:");
  3884       for (int i = _depth; i >= 1; i--) {
  3885         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3888 #endif
  3889     return false; // Reached end of inlining
  3892   // Acquire method holder as java.lang.Class
  3893   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3894   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3895   // Push this as a constant
  3896   push(makecon(TypeInstPtr::make(caller_mirror)));
  3897 #ifndef PRODUCT
  3898   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3899     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3900     tty->print_cr("  JVM state at this point:");
  3901     for (int i = _depth; i >= 1; i--) {
  3902       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3905 #endif
  3906   return true;
  3909 // Helper routine for above
  3910 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3911   ciMethod* method = jvms->method();
  3913   // Is this the Method.invoke method itself?
  3914   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3915     return true;
  3917   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3918   ciKlass* k = method->holder();
  3919   if (k->is_instance_klass()) {
  3920     ciInstanceKlass* ik = k->as_instance_klass();
  3921     for (; ik != NULL; ik = ik->super()) {
  3922       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3923           ik == env()->find_system_klass(ik->name())) {
  3924         return true;
  3928   else if (method->is_method_handle_adapter()) {
  3929     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3930     return true;
  3933   return false;
  3936 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3937                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3938                                      // computing it since there is no lookup field by name function in the
  3939                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3940                                      // Using a static variable here is safe even if we have multiple compilation
  3941                                      // threads because the offset is constant.  At worst the same offset will be
  3942                                      // computed and  stored multiple
  3944 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3945   // Restore the stack and pop off the argument
  3946   _sp+=1;
  3947   Node *obj = pop();
  3949   // get the offset of the "value" field. Since the CI interfaces
  3950   // does not provide a way to look up a field by name, we scan the bytecodes
  3951   // to get the field index.  We expect the first 2 instructions of the method
  3952   // to be:
  3953   //    0 aload_0
  3954   //    1 getfield "value"
  3955   ciMethod* method = callee();
  3956   if (value_field_offset == -1)
  3958     ciField* value_field;
  3959     ciBytecodeStream iter(method);
  3960     Bytecodes::Code bc = iter.next();
  3962     if ((bc != Bytecodes::_aload_0) &&
  3963               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3964       return false;
  3965     bc = iter.next();
  3966     if (bc != Bytecodes::_getfield)
  3967       return false;
  3968     bool ignore;
  3969     value_field = iter.get_field(ignore);
  3970     value_field_offset = value_field->offset_in_bytes();
  3973   // Null check without removing any arguments.
  3974   _sp++;
  3975   obj = do_null_check(obj, T_OBJECT);
  3976   _sp--;
  3977   // Check for locking null object
  3978   if (stopped()) return true;
  3980   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3981   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3982   int alias_idx = C->get_alias_index(adr_type);
  3984   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3986   push_pair(result);
  3988   return true;
  3991 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3992   // Restore the stack and pop off the arguments
  3993   _sp+=5;
  3994   Node *newVal = pop_pair();
  3995   Node *oldVal = pop_pair();
  3996   Node *obj = pop();
  3998   // we need the offset of the "value" field which was computed when
  3999   // inlining the get() method.  Give up if we don't have it.
  4000   if (value_field_offset == -1)
  4001     return false;
  4003   // Null check without removing any arguments.
  4004   _sp+=5;
  4005   obj = do_null_check(obj, T_OBJECT);
  4006   _sp-=5;
  4007   // Check for locking null object
  4008   if (stopped()) return true;
  4010   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  4011   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  4012   int alias_idx = C->get_alias_index(adr_type);
  4014   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  4015   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  4016   set_memory(store_proj, alias_idx);
  4017   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  4019   Node *result;
  4020   // CMove node is not used to be able fold a possible check code
  4021   // after attemptUpdate() call. This code could be transformed
  4022   // into CMove node by loop optimizations.
  4024     RegionNode *r = new (C, 3) RegionNode(3);
  4025     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  4027     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  4028     Node *iftrue = opt_iff(r, iff);
  4029     r->init_req(1, iftrue);
  4030     result->init_req(1, intcon(1));
  4031     result->init_req(2, intcon(0));
  4033     set_control(_gvn.transform(r));
  4034     record_for_igvn(r);
  4036     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4039   push(_gvn.transform(result));
  4040   return true;
  4043 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4044   // restore the arguments
  4045   _sp += arg_size();
  4047   switch (id) {
  4048   case vmIntrinsics::_floatToRawIntBits:
  4049     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  4050     break;
  4052   case vmIntrinsics::_intBitsToFloat:
  4053     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  4054     break;
  4056   case vmIntrinsics::_doubleToRawLongBits:
  4057     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  4058     break;
  4060   case vmIntrinsics::_longBitsToDouble:
  4061     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  4062     break;
  4064   case vmIntrinsics::_doubleToLongBits: {
  4065     Node* value = pop_pair();
  4067     // two paths (plus control) merge in a wood
  4068     RegionNode *r = new (C, 3) RegionNode(3);
  4069     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  4071     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  4072     // Build the boolean node
  4073     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4075     // Branch either way.
  4076     // NaN case is less traveled, which makes all the difference.
  4077     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4078     Node *opt_isnan = _gvn.transform(ifisnan);
  4079     assert( opt_isnan->is_If(), "Expect an IfNode");
  4080     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4081     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4083     set_control(iftrue);
  4085     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4086     Node *slow_result = longcon(nan_bits); // return NaN
  4087     phi->init_req(1, _gvn.transform( slow_result ));
  4088     r->init_req(1, iftrue);
  4090     // Else fall through
  4091     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4092     set_control(iffalse);
  4094     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  4095     r->init_req(2, iffalse);
  4097     // Post merge
  4098     set_control(_gvn.transform(r));
  4099     record_for_igvn(r);
  4101     Node* result = _gvn.transform(phi);
  4102     assert(result->bottom_type()->isa_long(), "must be");
  4103     push_pair(result);
  4105     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4107     break;
  4110   case vmIntrinsics::_floatToIntBits: {
  4111     Node* value = pop();
  4113     // two paths (plus control) merge in a wood
  4114     RegionNode *r = new (C, 3) RegionNode(3);
  4115     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  4117     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  4118     // Build the boolean node
  4119     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4121     // Branch either way.
  4122     // NaN case is less traveled, which makes all the difference.
  4123     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4124     Node *opt_isnan = _gvn.transform(ifisnan);
  4125     assert( opt_isnan->is_If(), "Expect an IfNode");
  4126     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4127     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4129     set_control(iftrue);
  4131     static const jint nan_bits = 0x7fc00000;
  4132     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4133     phi->init_req(1, _gvn.transform( slow_result ));
  4134     r->init_req(1, iftrue);
  4136     // Else fall through
  4137     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4138     set_control(iffalse);
  4140     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  4141     r->init_req(2, iffalse);
  4143     // Post merge
  4144     set_control(_gvn.transform(r));
  4145     record_for_igvn(r);
  4147     Node* result = _gvn.transform(phi);
  4148     assert(result->bottom_type()->isa_int(), "must be");
  4149     push(result);
  4151     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4153     break;
  4156   default:
  4157     ShouldNotReachHere();
  4160   return true;
  4163 #ifdef _LP64
  4164 #define XTOP ,top() /*additional argument*/
  4165 #else  //_LP64
  4166 #define XTOP        /*no additional argument*/
  4167 #endif //_LP64
  4169 //----------------------inline_unsafe_copyMemory-------------------------
  4170 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4171   if (callee()->is_static())  return false;  // caller must have the capability!
  4172   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4173   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4174   null_check_receiver(callee());  // check then ignore argument(0)
  4175   if (stopped())  return true;
  4177   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4179   Node* src_ptr = argument(1);
  4180   Node* src_off = ConvL2X(argument(2));
  4181   assert(argument(3)->is_top(), "2nd half of long");
  4182   Node* dst_ptr = argument(4);
  4183   Node* dst_off = ConvL2X(argument(5));
  4184   assert(argument(6)->is_top(), "2nd half of long");
  4185   Node* size    = ConvL2X(argument(7));
  4186   assert(argument(8)->is_top(), "2nd half of long");
  4188   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4189          "fieldOffset must be byte-scaled");
  4191   Node* src = make_unsafe_address(src_ptr, src_off);
  4192   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4194   // Conservatively insert a memory barrier on all memory slices.
  4195   // Do not let writes of the copy source or destination float below the copy.
  4196   insert_mem_bar(Op_MemBarCPUOrder);
  4198   // Call it.  Note that the length argument is not scaled.
  4199   make_runtime_call(RC_LEAF|RC_NO_FP,
  4200                     OptoRuntime::fast_arraycopy_Type(),
  4201                     StubRoutines::unsafe_arraycopy(),
  4202                     "unsafe_arraycopy",
  4203                     TypeRawPtr::BOTTOM,
  4204                     src, dst, size XTOP);
  4206   // Do not let reads of the copy destination float above the copy.
  4207   insert_mem_bar(Op_MemBarCPUOrder);
  4209   return true;
  4212 //------------------------clone_coping-----------------------------------
  4213 // Helper function for inline_native_clone.
  4214 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4215   assert(obj_size != NULL, "");
  4216   Node* raw_obj = alloc_obj->in(1);
  4217   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4219   AllocateNode* alloc = NULL;
  4220   if (ReduceBulkZeroing) {
  4221     // We will be completely responsible for initializing this object -
  4222     // mark Initialize node as complete.
  4223     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4224     // The object was just allocated - there should be no any stores!
  4225     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4226     // Mark as complete_with_arraycopy so that on AllocateNode
  4227     // expansion, we know this AllocateNode is initialized by an array
  4228     // copy and a StoreStore barrier exists after the array copy.
  4229     alloc->initialization()->set_complete_with_arraycopy();
  4232   // Copy the fastest available way.
  4233   // TODO: generate fields copies for small objects instead.
  4234   Node* src  = obj;
  4235   Node* dest = alloc_obj;
  4236   Node* size = _gvn.transform(obj_size);
  4238   // Exclude the header but include array length to copy by 8 bytes words.
  4239   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4240   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4241                             instanceOopDesc::base_offset_in_bytes();
  4242   // base_off:
  4243   // 8  - 32-bit VM
  4244   // 12 - 64-bit VM, compressed oops
  4245   // 16 - 64-bit VM, normal oops
  4246   if (base_off % BytesPerLong != 0) {
  4247     assert(UseCompressedOops, "");
  4248     if (is_array) {
  4249       // Exclude length to copy by 8 bytes words.
  4250       base_off += sizeof(int);
  4251     } else {
  4252       // Include klass to copy by 8 bytes words.
  4253       base_off = instanceOopDesc::klass_offset_in_bytes();
  4255     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4257   src  = basic_plus_adr(src,  base_off);
  4258   dest = basic_plus_adr(dest, base_off);
  4260   // Compute the length also, if needed:
  4261   Node* countx = size;
  4262   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4263   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4265   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4266   bool disjoint_bases = true;
  4267   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4268                                src, NULL, dest, NULL, countx,
  4269                                /*dest_uninitialized*/true);
  4271   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4272   if (card_mark) {
  4273     assert(!is_array, "");
  4274     // Put in store barrier for any and all oops we are sticking
  4275     // into this object.  (We could avoid this if we could prove
  4276     // that the object type contains no oop fields at all.)
  4277     Node* no_particular_value = NULL;
  4278     Node* no_particular_field = NULL;
  4279     int raw_adr_idx = Compile::AliasIdxRaw;
  4280     post_barrier(control(),
  4281                  memory(raw_adr_type),
  4282                  alloc_obj,
  4283                  no_particular_field,
  4284                  raw_adr_idx,
  4285                  no_particular_value,
  4286                  T_OBJECT,
  4287                  false);
  4290   // Do not let reads from the cloned object float above the arraycopy.
  4291   if (alloc != NULL) {
  4292     // Do not let stores that initialize this object be reordered with
  4293     // a subsequent store that would make this object accessible by
  4294     // other threads.
  4295     // Record what AllocateNode this StoreStore protects so that
  4296     // escape analysis can go from the MemBarStoreStoreNode to the
  4297     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4298     // based on the escape status of the AllocateNode.
  4299     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4300   } else {
  4301     insert_mem_bar(Op_MemBarCPUOrder);
  4305 //------------------------inline_native_clone----------------------------
  4306 // Here are the simple edge cases:
  4307 //  null receiver => normal trap
  4308 //  virtual and clone was overridden => slow path to out-of-line clone
  4309 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4310 //
  4311 // The general case has two steps, allocation and copying.
  4312 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4313 //
  4314 // Copying also has two cases, oop arrays and everything else.
  4315 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4316 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4317 //
  4318 // These steps fold up nicely if and when the cloned object's klass
  4319 // can be sharply typed as an object array, a type array, or an instance.
  4320 //
  4321 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4322   int nargs = 1;
  4323   PhiNode* result_val;
  4325   //set the original stack and the reexecute bit for the interpreter to reexecute
  4326   //the bytecode that invokes Object.clone if deoptimization happens
  4327   { PreserveReexecuteState preexecs(this);
  4328     jvms()->set_should_reexecute(true);
  4330     //null_check_receiver will adjust _sp (push and pop)
  4331     Node* obj = null_check_receiver(callee());
  4332     if (stopped())  return true;
  4334     _sp += nargs;
  4336     Node* obj_klass = load_object_klass(obj);
  4337     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4338     const TypeOopPtr*   toop   = ((tklass != NULL)
  4339                                 ? tklass->as_instance_type()
  4340                                 : TypeInstPtr::NOTNULL);
  4342     // Conservatively insert a memory barrier on all memory slices.
  4343     // Do not let writes into the original float below the clone.
  4344     insert_mem_bar(Op_MemBarCPUOrder);
  4346     // paths into result_reg:
  4347     enum {
  4348       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4349       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4350       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4351       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4352       PATH_LIMIT
  4353     };
  4354     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4355     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4356                                                         TypeInstPtr::NOTNULL);
  4357     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4358     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4359                                                         TypePtr::BOTTOM);
  4360     record_for_igvn(result_reg);
  4362     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4363     int raw_adr_idx = Compile::AliasIdxRaw;
  4365     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4366     if (array_ctl != NULL) {
  4367       // It's an array.
  4368       PreserveJVMState pjvms(this);
  4369       set_control(array_ctl);
  4370       Node* obj_length = load_array_length(obj);
  4371       Node* obj_size  = NULL;
  4372       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
  4374       if (!use_ReduceInitialCardMarks()) {
  4375         // If it is an oop array, it requires very special treatment,
  4376         // because card marking is required on each card of the array.
  4377         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4378         if (is_obja != NULL) {
  4379           PreserveJVMState pjvms2(this);
  4380           set_control(is_obja);
  4381           // Generate a direct call to the right arraycopy function(s).
  4382           bool disjoint_bases = true;
  4383           bool length_never_negative = true;
  4384           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4385                              obj, intcon(0), alloc_obj, intcon(0),
  4386                              obj_length,
  4387                              disjoint_bases, length_never_negative);
  4388           result_reg->init_req(_objArray_path, control());
  4389           result_val->init_req(_objArray_path, alloc_obj);
  4390           result_i_o ->set_req(_objArray_path, i_o());
  4391           result_mem ->set_req(_objArray_path, reset_memory());
  4394       // Otherwise, there are no card marks to worry about.
  4395       // (We can dispense with card marks if we know the allocation
  4396       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4397       //  causes the non-eden paths to take compensating steps to
  4398       //  simulate a fresh allocation, so that no further
  4399       //  card marks are required in compiled code to initialize
  4400       //  the object.)
  4402       if (!stopped()) {
  4403         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4405         // Present the results of the copy.
  4406         result_reg->init_req(_array_path, control());
  4407         result_val->init_req(_array_path, alloc_obj);
  4408         result_i_o ->set_req(_array_path, i_o());
  4409         result_mem ->set_req(_array_path, reset_memory());
  4413     // We only go to the instance fast case code if we pass a number of guards.
  4414     // The paths which do not pass are accumulated in the slow_region.
  4415     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4416     record_for_igvn(slow_region);
  4417     if (!stopped()) {
  4418       // It's an instance (we did array above).  Make the slow-path tests.
  4419       // If this is a virtual call, we generate a funny guard.  We grab
  4420       // the vtable entry corresponding to clone() from the target object.
  4421       // If the target method which we are calling happens to be the
  4422       // Object clone() method, we pass the guard.  We do not need this
  4423       // guard for non-virtual calls; the caller is known to be the native
  4424       // Object clone().
  4425       if (is_virtual) {
  4426         generate_virtual_guard(obj_klass, slow_region);
  4429       // The object must be cloneable and must not have a finalizer.
  4430       // Both of these conditions may be checked in a single test.
  4431       // We could optimize the cloneable test further, but we don't care.
  4432       generate_access_flags_guard(obj_klass,
  4433                                   // Test both conditions:
  4434                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4435                                   // Must be cloneable but not finalizer:
  4436                                   JVM_ACC_IS_CLONEABLE,
  4437                                   slow_region);
  4440     if (!stopped()) {
  4441       // It's an instance, and it passed the slow-path tests.
  4442       PreserveJVMState pjvms(this);
  4443       Node* obj_size  = NULL;
  4444       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4446       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4448       // Present the results of the slow call.
  4449       result_reg->init_req(_instance_path, control());
  4450       result_val->init_req(_instance_path, alloc_obj);
  4451       result_i_o ->set_req(_instance_path, i_o());
  4452       result_mem ->set_req(_instance_path, reset_memory());
  4455     // Generate code for the slow case.  We make a call to clone().
  4456     set_control(_gvn.transform(slow_region));
  4457     if (!stopped()) {
  4458       PreserveJVMState pjvms(this);
  4459       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4460       Node* slow_result = set_results_for_java_call(slow_call);
  4461       // this->control() comes from set_results_for_java_call
  4462       result_reg->init_req(_slow_path, control());
  4463       result_val->init_req(_slow_path, slow_result);
  4464       result_i_o ->set_req(_slow_path, i_o());
  4465       result_mem ->set_req(_slow_path, reset_memory());
  4468     // Return the combined state.
  4469     set_control(    _gvn.transform(result_reg) );
  4470     set_i_o(        _gvn.transform(result_i_o) );
  4471     set_all_memory( _gvn.transform(result_mem) );
  4472   } //original reexecute and sp are set back here
  4474   push(_gvn.transform(result_val));
  4476   return true;
  4479 //------------------------------basictype2arraycopy----------------------------
  4480 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4481                                             Node* src_offset,
  4482                                             Node* dest_offset,
  4483                                             bool disjoint_bases,
  4484                                             const char* &name,
  4485                                             bool dest_uninitialized) {
  4486   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4487   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4489   bool aligned = false;
  4490   bool disjoint = disjoint_bases;
  4492   // if the offsets are the same, we can treat the memory regions as
  4493   // disjoint, because either the memory regions are in different arrays,
  4494   // or they are identical (which we can treat as disjoint.)  We can also
  4495   // treat a copy with a destination index  less that the source index
  4496   // as disjoint since a low->high copy will work correctly in this case.
  4497   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4498       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4499     // both indices are constants
  4500     int s_offs = src_offset_inttype->get_con();
  4501     int d_offs = dest_offset_inttype->get_con();
  4502     int element_size = type2aelembytes(t);
  4503     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4504               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4505     if (s_offs >= d_offs)  disjoint = true;
  4506   } else if (src_offset == dest_offset && src_offset != NULL) {
  4507     // This can occur if the offsets are identical non-constants.
  4508     disjoint = true;
  4511   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4515 //------------------------------inline_arraycopy-----------------------
  4516 bool LibraryCallKit::inline_arraycopy() {
  4517   // Restore the stack and pop off the arguments.
  4518   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4519   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4521   Node *src         = argument(0);
  4522   Node *src_offset  = argument(1);
  4523   Node *dest        = argument(2);
  4524   Node *dest_offset = argument(3);
  4525   Node *length      = argument(4);
  4527   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4528   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4529   // is.  The checks we choose to mandate at compile time are:
  4530   //
  4531   // (1) src and dest are arrays.
  4532   const Type* src_type = src->Value(&_gvn);
  4533   const Type* dest_type = dest->Value(&_gvn);
  4534   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4535   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4536   if (top_src  == NULL || top_src->klass()  == NULL ||
  4537       top_dest == NULL || top_dest->klass() == NULL) {
  4538     // Conservatively insert a memory barrier on all memory slices.
  4539     // Do not let writes into the source float below the arraycopy.
  4540     insert_mem_bar(Op_MemBarCPUOrder);
  4542     // Call StubRoutines::generic_arraycopy stub.
  4543     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4544                        src, src_offset, dest, dest_offset, length);
  4546     // Do not let reads from the destination float above the arraycopy.
  4547     // Since we cannot type the arrays, we don't know which slices
  4548     // might be affected.  We could restrict this barrier only to those
  4549     // memory slices which pertain to array elements--but don't bother.
  4550     if (!InsertMemBarAfterArraycopy)
  4551       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4552       insert_mem_bar(Op_MemBarCPUOrder);
  4553     return true;
  4556   // (2) src and dest arrays must have elements of the same BasicType
  4557   // Figure out the size and type of the elements we will be copying.
  4558   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4559   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4560   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4561   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4563   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4564     // The component types are not the same or are not recognized.  Punt.
  4565     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4566     generate_slow_arraycopy(TypePtr::BOTTOM,
  4567                             src, src_offset, dest, dest_offset, length,
  4568                             /*dest_uninitialized*/false);
  4569     return true;
  4572   //---------------------------------------------------------------------------
  4573   // We will make a fast path for this call to arraycopy.
  4575   // We have the following tests left to perform:
  4576   //
  4577   // (3) src and dest must not be null.
  4578   // (4) src_offset must not be negative.
  4579   // (5) dest_offset must not be negative.
  4580   // (6) length must not be negative.
  4581   // (7) src_offset + length must not exceed length of src.
  4582   // (8) dest_offset + length must not exceed length of dest.
  4583   // (9) each element of an oop array must be assignable
  4585   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4586   record_for_igvn(slow_region);
  4588   // (3) operands must not be null
  4589   // We currently perform our null checks with the do_null_check routine.
  4590   // This means that the null exceptions will be reported in the caller
  4591   // rather than (correctly) reported inside of the native arraycopy call.
  4592   // This should be corrected, given time.  We do our null check with the
  4593   // stack pointer restored.
  4594   _sp += nargs;
  4595   src  = do_null_check(src,  T_ARRAY);
  4596   dest = do_null_check(dest, T_ARRAY);
  4597   _sp -= nargs;
  4599   // (4) src_offset must not be negative.
  4600   generate_negative_guard(src_offset, slow_region);
  4602   // (5) dest_offset must not be negative.
  4603   generate_negative_guard(dest_offset, slow_region);
  4605   // (6) length must not be negative (moved to generate_arraycopy()).
  4606   // generate_negative_guard(length, slow_region);
  4608   // (7) src_offset + length must not exceed length of src.
  4609   generate_limit_guard(src_offset, length,
  4610                        load_array_length(src),
  4611                        slow_region);
  4613   // (8) dest_offset + length must not exceed length of dest.
  4614   generate_limit_guard(dest_offset, length,
  4615                        load_array_length(dest),
  4616                        slow_region);
  4618   // (9) each element of an oop array must be assignable
  4619   // The generate_arraycopy subroutine checks this.
  4621   // This is where the memory effects are placed:
  4622   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4623   generate_arraycopy(adr_type, dest_elem,
  4624                      src, src_offset, dest, dest_offset, length,
  4625                      false, false, slow_region);
  4627   return true;
  4630 //-----------------------------generate_arraycopy----------------------
  4631 // Generate an optimized call to arraycopy.
  4632 // Caller must guard against non-arrays.
  4633 // Caller must determine a common array basic-type for both arrays.
  4634 // Caller must validate offsets against array bounds.
  4635 // The slow_region has already collected guard failure paths
  4636 // (such as out of bounds length or non-conformable array types).
  4637 // The generated code has this shape, in general:
  4638 //
  4639 //     if (length == 0)  return   // via zero_path
  4640 //     slowval = -1
  4641 //     if (types unknown) {
  4642 //       slowval = call generic copy loop
  4643 //       if (slowval == 0)  return  // via checked_path
  4644 //     } else if (indexes in bounds) {
  4645 //       if ((is object array) && !(array type check)) {
  4646 //         slowval = call checked copy loop
  4647 //         if (slowval == 0)  return  // via checked_path
  4648 //       } else {
  4649 //         call bulk copy loop
  4650 //         return  // via fast_path
  4651 //       }
  4652 //     }
  4653 //     // adjust params for remaining work:
  4654 //     if (slowval != -1) {
  4655 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4656 //     }
  4657 //   slow_region:
  4658 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4659 //     return  // via slow_call_path
  4660 //
  4661 // This routine is used from several intrinsics:  System.arraycopy,
  4662 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4663 //
  4664 void
  4665 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4666                                    BasicType basic_elem_type,
  4667                                    Node* src,  Node* src_offset,
  4668                                    Node* dest, Node* dest_offset,
  4669                                    Node* copy_length,
  4670                                    bool disjoint_bases,
  4671                                    bool length_never_negative,
  4672                                    RegionNode* slow_region) {
  4674   if (slow_region == NULL) {
  4675     slow_region = new(C,1) RegionNode(1);
  4676     record_for_igvn(slow_region);
  4679   Node* original_dest      = dest;
  4680   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4681   bool  dest_uninitialized = false;
  4683   // See if this is the initialization of a newly-allocated array.
  4684   // If so, we will take responsibility here for initializing it to zero.
  4685   // (Note:  Because tightly_coupled_allocation performs checks on the
  4686   // out-edges of the dest, we need to avoid making derived pointers
  4687   // from it until we have checked its uses.)
  4688   if (ReduceBulkZeroing
  4689       && !ZeroTLAB              // pointless if already zeroed
  4690       && basic_elem_type != T_CONFLICT // avoid corner case
  4691       && !src->eqv_uncast(dest)
  4692       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4693           != NULL)
  4694       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4695       && alloc->maybe_set_complete(&_gvn)) {
  4696     // "You break it, you buy it."
  4697     InitializeNode* init = alloc->initialization();
  4698     assert(init->is_complete(), "we just did this");
  4699     init->set_complete_with_arraycopy();
  4700     assert(dest->is_CheckCastPP(), "sanity");
  4701     assert(dest->in(0)->in(0) == init, "dest pinned");
  4702     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4703     // From this point on, every exit path is responsible for
  4704     // initializing any non-copied parts of the object to zero.
  4705     // Also, if this flag is set we make sure that arraycopy interacts properly
  4706     // with G1, eliding pre-barriers. See CR 6627983.
  4707     dest_uninitialized = true;
  4708   } else {
  4709     // No zeroing elimination here.
  4710     alloc             = NULL;
  4711     //original_dest   = dest;
  4712     //dest_uninitialized = false;
  4715   // Results are placed here:
  4716   enum { fast_path        = 1,  // normal void-returning assembly stub
  4717          checked_path     = 2,  // special assembly stub with cleanup
  4718          slow_call_path   = 3,  // something went wrong; call the VM
  4719          zero_path        = 4,  // bypass when length of copy is zero
  4720          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4721          PATH_LIMIT       = 6
  4722   };
  4723   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4724   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4725   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4726   record_for_igvn(result_region);
  4727   _gvn.set_type_bottom(result_i_o);
  4728   _gvn.set_type_bottom(result_memory);
  4729   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4731   // The slow_control path:
  4732   Node* slow_control;
  4733   Node* slow_i_o = i_o();
  4734   Node* slow_mem = memory(adr_type);
  4735   debug_only(slow_control = (Node*) badAddress);
  4737   // Checked control path:
  4738   Node* checked_control = top();
  4739   Node* checked_mem     = NULL;
  4740   Node* checked_i_o     = NULL;
  4741   Node* checked_value   = NULL;
  4743   if (basic_elem_type == T_CONFLICT) {
  4744     assert(!dest_uninitialized, "");
  4745     Node* cv = generate_generic_arraycopy(adr_type,
  4746                                           src, src_offset, dest, dest_offset,
  4747                                           copy_length, dest_uninitialized);
  4748     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4749     checked_control = control();
  4750     checked_i_o     = i_o();
  4751     checked_mem     = memory(adr_type);
  4752     checked_value   = cv;
  4753     set_control(top());         // no fast path
  4756   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4757   if (not_pos != NULL) {
  4758     PreserveJVMState pjvms(this);
  4759     set_control(not_pos);
  4761     // (6) length must not be negative.
  4762     if (!length_never_negative) {
  4763       generate_negative_guard(copy_length, slow_region);
  4766     // copy_length is 0.
  4767     if (!stopped() && dest_uninitialized) {
  4768       Node* dest_length = alloc->in(AllocateNode::ALength);
  4769       if (copy_length->eqv_uncast(dest_length)
  4770           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4771         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4772       } else {
  4773         // Clear the whole thing since there are no source elements to copy.
  4774         generate_clear_array(adr_type, dest, basic_elem_type,
  4775                              intcon(0), NULL,
  4776                              alloc->in(AllocateNode::AllocSize));
  4777         // Use a secondary InitializeNode as raw memory barrier.
  4778         // Currently it is needed only on this path since other
  4779         // paths have stub or runtime calls as raw memory barriers.
  4780         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4781                                                        Compile::AliasIdxRaw,
  4782                                                        top())->as_Initialize();
  4783         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4787     // Present the results of the fast call.
  4788     result_region->init_req(zero_path, control());
  4789     result_i_o   ->init_req(zero_path, i_o());
  4790     result_memory->init_req(zero_path, memory(adr_type));
  4793   if (!stopped() && dest_uninitialized) {
  4794     // We have to initialize the *uncopied* part of the array to zero.
  4795     // The copy destination is the slice dest[off..off+len].  The other slices
  4796     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4797     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4798     Node* dest_length = alloc->in(AllocateNode::ALength);
  4799     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4800                                                           copy_length) );
  4802     // If there is a head section that needs zeroing, do it now.
  4803     if (find_int_con(dest_offset, -1) != 0) {
  4804       generate_clear_array(adr_type, dest, basic_elem_type,
  4805                            intcon(0), dest_offset,
  4806                            NULL);
  4809     // Next, perform a dynamic check on the tail length.
  4810     // It is often zero, and we can win big if we prove this.
  4811     // There are two wins:  Avoid generating the ClearArray
  4812     // with its attendant messy index arithmetic, and upgrade
  4813     // the copy to a more hardware-friendly word size of 64 bits.
  4814     Node* tail_ctl = NULL;
  4815     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4816       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4817       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4818       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4819       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4822     // At this point, let's assume there is no tail.
  4823     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4824       // There is no tail.  Try an upgrade to a 64-bit copy.
  4825       bool didit = false;
  4826       { PreserveJVMState pjvms(this);
  4827         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4828                                          src, src_offset, dest, dest_offset,
  4829                                          dest_size, dest_uninitialized);
  4830         if (didit) {
  4831           // Present the results of the block-copying fast call.
  4832           result_region->init_req(bcopy_path, control());
  4833           result_i_o   ->init_req(bcopy_path, i_o());
  4834           result_memory->init_req(bcopy_path, memory(adr_type));
  4837       if (didit)
  4838         set_control(top());     // no regular fast path
  4841     // Clear the tail, if any.
  4842     if (tail_ctl != NULL) {
  4843       Node* notail_ctl = stopped() ? NULL : control();
  4844       set_control(tail_ctl);
  4845       if (notail_ctl == NULL) {
  4846         generate_clear_array(adr_type, dest, basic_elem_type,
  4847                              dest_tail, NULL,
  4848                              dest_size);
  4849       } else {
  4850         // Make a local merge.
  4851         Node* done_ctl = new(C,3) RegionNode(3);
  4852         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4853         done_ctl->init_req(1, notail_ctl);
  4854         done_mem->init_req(1, memory(adr_type));
  4855         generate_clear_array(adr_type, dest, basic_elem_type,
  4856                              dest_tail, NULL,
  4857                              dest_size);
  4858         done_ctl->init_req(2, control());
  4859         done_mem->init_req(2, memory(adr_type));
  4860         set_control( _gvn.transform(done_ctl) );
  4861         set_memory(  _gvn.transform(done_mem), adr_type );
  4866   BasicType copy_type = basic_elem_type;
  4867   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4868   if (!stopped() && copy_type == T_OBJECT) {
  4869     // If src and dest have compatible element types, we can copy bits.
  4870     // Types S[] and D[] are compatible if D is a supertype of S.
  4871     //
  4872     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4873     // which performs a fast optimistic per-oop check, and backs off
  4874     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4875     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4877     // Get the klassOop for both src and dest
  4878     Node* src_klass  = load_object_klass(src);
  4879     Node* dest_klass = load_object_klass(dest);
  4881     // Generate the subtype check.
  4882     // This might fold up statically, or then again it might not.
  4883     //
  4884     // Non-static example:  Copying List<String>.elements to a new String[].
  4885     // The backing store for a List<String> is always an Object[],
  4886     // but its elements are always type String, if the generic types
  4887     // are correct at the source level.
  4888     //
  4889     // Test S[] against D[], not S against D, because (probably)
  4890     // the secondary supertype cache is less busy for S[] than S.
  4891     // This usually only matters when D is an interface.
  4892     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4893     // Plug failing path into checked_oop_disjoint_arraycopy
  4894     if (not_subtype_ctrl != top()) {
  4895       PreserveJVMState pjvms(this);
  4896       set_control(not_subtype_ctrl);
  4897       // (At this point we can assume disjoint_bases, since types differ.)
  4898       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  4899       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4900       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4901       Node* dest_elem_klass = _gvn.transform(n1);
  4902       Node* cv = generate_checkcast_arraycopy(adr_type,
  4903                                               dest_elem_klass,
  4904                                               src, src_offset, dest, dest_offset,
  4905                                               ConvI2X(copy_length), dest_uninitialized);
  4906       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4907       checked_control = control();
  4908       checked_i_o     = i_o();
  4909       checked_mem     = memory(adr_type);
  4910       checked_value   = cv;
  4912     // At this point we know we do not need type checks on oop stores.
  4914     // Let's see if we need card marks:
  4915     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4916       // If we do not need card marks, copy using the jint or jlong stub.
  4917       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4918       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4919              "sizes agree");
  4923   if (!stopped()) {
  4924     // Generate the fast path, if possible.
  4925     PreserveJVMState pjvms(this);
  4926     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4927                                  src, src_offset, dest, dest_offset,
  4928                                  ConvI2X(copy_length), dest_uninitialized);
  4930     // Present the results of the fast call.
  4931     result_region->init_req(fast_path, control());
  4932     result_i_o   ->init_req(fast_path, i_o());
  4933     result_memory->init_req(fast_path, memory(adr_type));
  4936   // Here are all the slow paths up to this point, in one bundle:
  4937   slow_control = top();
  4938   if (slow_region != NULL)
  4939     slow_control = _gvn.transform(slow_region);
  4940   debug_only(slow_region = (RegionNode*)badAddress);
  4942   set_control(checked_control);
  4943   if (!stopped()) {
  4944     // Clean up after the checked call.
  4945     // The returned value is either 0 or -1^K,
  4946     // where K = number of partially transferred array elements.
  4947     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4948     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4949     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4951     // If it is 0, we are done, so transfer to the end.
  4952     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4953     result_region->init_req(checked_path, checks_done);
  4954     result_i_o   ->init_req(checked_path, checked_i_o);
  4955     result_memory->init_req(checked_path, checked_mem);
  4957     // If it is not zero, merge into the slow call.
  4958     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4959     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4960     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4961     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4962     record_for_igvn(slow_reg2);
  4963     slow_reg2  ->init_req(1, slow_control);
  4964     slow_i_o2  ->init_req(1, slow_i_o);
  4965     slow_mem2  ->init_req(1, slow_mem);
  4966     slow_reg2  ->init_req(2, control());
  4967     slow_i_o2  ->init_req(2, checked_i_o);
  4968     slow_mem2  ->init_req(2, checked_mem);
  4970     slow_control = _gvn.transform(slow_reg2);
  4971     slow_i_o     = _gvn.transform(slow_i_o2);
  4972     slow_mem     = _gvn.transform(slow_mem2);
  4974     if (alloc != NULL) {
  4975       // We'll restart from the very beginning, after zeroing the whole thing.
  4976       // This can cause double writes, but that's OK since dest is brand new.
  4977       // So we ignore the low 31 bits of the value returned from the stub.
  4978     } else {
  4979       // We must continue the copy exactly where it failed, or else
  4980       // another thread might see the wrong number of writes to dest.
  4981       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4982       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4983       slow_offset->init_req(1, intcon(0));
  4984       slow_offset->init_req(2, checked_offset);
  4985       slow_offset  = _gvn.transform(slow_offset);
  4987       // Adjust the arguments by the conditionally incoming offset.
  4988       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4989       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4990       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4992       // Tweak the node variables to adjust the code produced below:
  4993       src_offset  = src_off_plus;
  4994       dest_offset = dest_off_plus;
  4995       copy_length = length_minus;
  4999   set_control(slow_control);
  5000   if (!stopped()) {
  5001     // Generate the slow path, if needed.
  5002     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5004     set_memory(slow_mem, adr_type);
  5005     set_i_o(slow_i_o);
  5007     if (dest_uninitialized) {
  5008       generate_clear_array(adr_type, dest, basic_elem_type,
  5009                            intcon(0), NULL,
  5010                            alloc->in(AllocateNode::AllocSize));
  5013     generate_slow_arraycopy(adr_type,
  5014                             src, src_offset, dest, dest_offset,
  5015                             copy_length, /*dest_uninitialized*/false);
  5017     result_region->init_req(slow_call_path, control());
  5018     result_i_o   ->init_req(slow_call_path, i_o());
  5019     result_memory->init_req(slow_call_path, memory(adr_type));
  5022   // Remove unused edges.
  5023   for (uint i = 1; i < result_region->req(); i++) {
  5024     if (result_region->in(i) == NULL)
  5025       result_region->init_req(i, top());
  5028   // Finished; return the combined state.
  5029   set_control( _gvn.transform(result_region) );
  5030   set_i_o(     _gvn.transform(result_i_o)    );
  5031   set_memory(  _gvn.transform(result_memory), adr_type );
  5033   // The memory edges above are precise in order to model effects around
  5034   // array copies accurately to allow value numbering of field loads around
  5035   // arraycopy.  Such field loads, both before and after, are common in Java
  5036   // collections and similar classes involving header/array data structures.
  5037   //
  5038   // But with low number of register or when some registers are used or killed
  5039   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5040   // The next memory barrier is added to avoid it. If the arraycopy can be
  5041   // optimized away (which it can, sometimes) then we can manually remove
  5042   // the membar also.
  5043   //
  5044   // Do not let reads from the cloned object float above the arraycopy.
  5045   if (alloc != NULL) {
  5046     // Do not let stores that initialize this object be reordered with
  5047     // a subsequent store that would make this object accessible by
  5048     // other threads.
  5049     // Record what AllocateNode this StoreStore protects so that
  5050     // escape analysis can go from the MemBarStoreStoreNode to the
  5051     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5052     // based on the escape status of the AllocateNode.
  5053     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5054   } else if (InsertMemBarAfterArraycopy)
  5055     insert_mem_bar(Op_MemBarCPUOrder);
  5059 // Helper function which determines if an arraycopy immediately follows
  5060 // an allocation, with no intervening tests or other escapes for the object.
  5061 AllocateArrayNode*
  5062 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5063                                            RegionNode* slow_region) {
  5064   if (stopped())             return NULL;  // no fast path
  5065   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5067   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5068   if (alloc == NULL)  return NULL;
  5070   Node* rawmem = memory(Compile::AliasIdxRaw);
  5071   // Is the allocation's memory state untouched?
  5072   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5073     // Bail out if there have been raw-memory effects since the allocation.
  5074     // (Example:  There might have been a call or safepoint.)
  5075     return NULL;
  5077   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5078   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5079     return NULL;
  5082   // There must be no unexpected observers of this allocation.
  5083   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5084     Node* obs = ptr->fast_out(i);
  5085     if (obs != this->map()) {
  5086       return NULL;
  5090   // This arraycopy must unconditionally follow the allocation of the ptr.
  5091   Node* alloc_ctl = ptr->in(0);
  5092   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5094   Node* ctl = control();
  5095   while (ctl != alloc_ctl) {
  5096     // There may be guards which feed into the slow_region.
  5097     // Any other control flow means that we might not get a chance
  5098     // to finish initializing the allocated object.
  5099     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5100       IfNode* iff = ctl->in(0)->as_If();
  5101       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5102       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5103       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5104         ctl = iff->in(0);       // This test feeds the known slow_region.
  5105         continue;
  5107       // One more try:  Various low-level checks bottom out in
  5108       // uncommon traps.  If the debug-info of the trap omits
  5109       // any reference to the allocation, as we've already
  5110       // observed, then there can be no objection to the trap.
  5111       bool found_trap = false;
  5112       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5113         Node* obs = not_ctl->fast_out(j);
  5114         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5115             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5116           found_trap = true; break;
  5119       if (found_trap) {
  5120         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5121         continue;
  5124     return NULL;
  5127   // If we get this far, we have an allocation which immediately
  5128   // precedes the arraycopy, and we can take over zeroing the new object.
  5129   // The arraycopy will finish the initialization, and provide
  5130   // a new control state to which we will anchor the destination pointer.
  5132   return alloc;
  5135 // Helper for initialization of arrays, creating a ClearArray.
  5136 // It writes zero bits in [start..end), within the body of an array object.
  5137 // The memory effects are all chained onto the 'adr_type' alias category.
  5138 //
  5139 // Since the object is otherwise uninitialized, we are free
  5140 // to put a little "slop" around the edges of the cleared area,
  5141 // as long as it does not go back into the array's header,
  5142 // or beyond the array end within the heap.
  5143 //
  5144 // The lower edge can be rounded down to the nearest jint and the
  5145 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5146 //
  5147 // Arguments:
  5148 //   adr_type           memory slice where writes are generated
  5149 //   dest               oop of the destination array
  5150 //   basic_elem_type    element type of the destination
  5151 //   slice_idx          array index of first element to store
  5152 //   slice_len          number of elements to store (or NULL)
  5153 //   dest_size          total size in bytes of the array object
  5154 //
  5155 // Exactly one of slice_len or dest_size must be non-NULL.
  5156 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5157 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5158 void
  5159 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5160                                      Node* dest,
  5161                                      BasicType basic_elem_type,
  5162                                      Node* slice_idx,
  5163                                      Node* slice_len,
  5164                                      Node* dest_size) {
  5165   // one or the other but not both of slice_len and dest_size:
  5166   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5167   if (slice_len == NULL)  slice_len = top();
  5168   if (dest_size == NULL)  dest_size = top();
  5170   // operate on this memory slice:
  5171   Node* mem = memory(adr_type); // memory slice to operate on
  5173   // scaling and rounding of indexes:
  5174   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5175   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5176   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5177   int bump_bit  = (-1 << scale) & BytesPerInt;
  5179   // determine constant starts and ends
  5180   const intptr_t BIG_NEG = -128;
  5181   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5182   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5183   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5184   if (slice_len_con == 0) {
  5185     return;                     // nothing to do here
  5187   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5188   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5189   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5190     assert(end_con < 0, "not two cons");
  5191     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5192                        BytesPerLong);
  5195   if (start_con >= 0 && end_con >= 0) {
  5196     // Constant start and end.  Simple.
  5197     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5198                                        start_con, end_con, &_gvn);
  5199   } else if (start_con >= 0 && dest_size != top()) {
  5200     // Constant start, pre-rounded end after the tail of the array.
  5201     Node* end = dest_size;
  5202     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5203                                        start_con, end, &_gvn);
  5204   } else if (start_con >= 0 && slice_len != top()) {
  5205     // Constant start, non-constant end.  End needs rounding up.
  5206     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5207     intptr_t end_base  = abase + (slice_idx_con << scale);
  5208     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5209     Node*    end       = ConvI2X(slice_len);
  5210     if (scale != 0)
  5211       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5212     end_base += end_round;
  5213     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5214     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5215     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5216                                        start_con, end, &_gvn);
  5217   } else if (start_con < 0 && dest_size != top()) {
  5218     // Non-constant start, pre-rounded end after the tail of the array.
  5219     // This is almost certainly a "round-to-end" operation.
  5220     Node* start = slice_idx;
  5221     start = ConvI2X(start);
  5222     if (scale != 0)
  5223       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5224     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5225     if ((bump_bit | clear_low) != 0) {
  5226       int to_clear = (bump_bit | clear_low);
  5227       // Align up mod 8, then store a jint zero unconditionally
  5228       // just before the mod-8 boundary.
  5229       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5230           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5231         bump_bit = 0;
  5232         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5233       } else {
  5234         // Bump 'start' up to (or past) the next jint boundary:
  5235         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5236         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5238       // Round bumped 'start' down to jlong boundary in body of array.
  5239       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5240       if (bump_bit != 0) {
  5241         // Store a zero to the immediately preceding jint:
  5242         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5243         Node* p1 = basic_plus_adr(dest, x1);
  5244         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5245         mem = _gvn.transform(mem);
  5248     Node* end = dest_size; // pre-rounded
  5249     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5250                                        start, end, &_gvn);
  5251   } else {
  5252     // Non-constant start, unrounded non-constant end.
  5253     // (Nobody zeroes a random midsection of an array using this routine.)
  5254     ShouldNotReachHere();       // fix caller
  5257   // Done.
  5258   set_memory(mem, adr_type);
  5262 bool
  5263 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5264                                          BasicType basic_elem_type,
  5265                                          AllocateNode* alloc,
  5266                                          Node* src,  Node* src_offset,
  5267                                          Node* dest, Node* dest_offset,
  5268                                          Node* dest_size, bool dest_uninitialized) {
  5269   // See if there is an advantage from block transfer.
  5270   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5271   if (scale >= LogBytesPerLong)
  5272     return false;               // it is already a block transfer
  5274   // Look at the alignment of the starting offsets.
  5275   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5277   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5278   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5279   if (src_off_con < 0 || dest_off_con < 0)
  5280     // At present, we can only understand constants.
  5281     return false;
  5283   intptr_t src_off  = abase + (src_off_con  << scale);
  5284   intptr_t dest_off = abase + (dest_off_con << scale);
  5286   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5287     // Non-aligned; too bad.
  5288     // One more chance:  Pick off an initial 32-bit word.
  5289     // This is a common case, since abase can be odd mod 8.
  5290     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5291         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5292       Node* sptr = basic_plus_adr(src,  src_off);
  5293       Node* dptr = basic_plus_adr(dest, dest_off);
  5294       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5295       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5296       src_off += BytesPerInt;
  5297       dest_off += BytesPerInt;
  5298     } else {
  5299       return false;
  5302   assert(src_off % BytesPerLong == 0, "");
  5303   assert(dest_off % BytesPerLong == 0, "");
  5305   // Do this copy by giant steps.
  5306   Node* sptr  = basic_plus_adr(src,  src_off);
  5307   Node* dptr  = basic_plus_adr(dest, dest_off);
  5308   Node* countx = dest_size;
  5309   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5310   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5312   bool disjoint_bases = true;   // since alloc != NULL
  5313   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5314                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5316   return true;
  5320 // Helper function; generates code for the slow case.
  5321 // We make a call to a runtime method which emulates the native method,
  5322 // but without the native wrapper overhead.
  5323 void
  5324 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5325                                         Node* src,  Node* src_offset,
  5326                                         Node* dest, Node* dest_offset,
  5327                                         Node* copy_length, bool dest_uninitialized) {
  5328   assert(!dest_uninitialized, "Invariant");
  5329   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5330                                  OptoRuntime::slow_arraycopy_Type(),
  5331                                  OptoRuntime::slow_arraycopy_Java(),
  5332                                  "slow_arraycopy", adr_type,
  5333                                  src, src_offset, dest, dest_offset,
  5334                                  copy_length);
  5336   // Handle exceptions thrown by this fellow:
  5337   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5340 // Helper function; generates code for cases requiring runtime checks.
  5341 Node*
  5342 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5343                                              Node* dest_elem_klass,
  5344                                              Node* src,  Node* src_offset,
  5345                                              Node* dest, Node* dest_offset,
  5346                                              Node* copy_length, bool dest_uninitialized) {
  5347   if (stopped())  return NULL;
  5349   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5350   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5351     return NULL;
  5354   // Pick out the parameters required to perform a store-check
  5355   // for the target array.  This is an optimistic check.  It will
  5356   // look in each non-null element's class, at the desired klass's
  5357   // super_check_offset, for the desired klass.
  5358   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5359   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5360   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5361   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5362   Node* check_value  = dest_elem_klass;
  5364   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5365   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5367   // (We know the arrays are never conjoint, because their types differ.)
  5368   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5369                                  OptoRuntime::checkcast_arraycopy_Type(),
  5370                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5371                                  // five arguments, of which two are
  5372                                  // intptr_t (jlong in LP64)
  5373                                  src_start, dest_start,
  5374                                  copy_length XTOP,
  5375                                  check_offset XTOP,
  5376                                  check_value);
  5378   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5382 // Helper function; generates code for cases requiring runtime checks.
  5383 Node*
  5384 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5385                                            Node* src,  Node* src_offset,
  5386                                            Node* dest, Node* dest_offset,
  5387                                            Node* copy_length, bool dest_uninitialized) {
  5388   assert(!dest_uninitialized, "Invariant");
  5389   if (stopped())  return NULL;
  5390   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5391   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5392     return NULL;
  5395   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5396                     OptoRuntime::generic_arraycopy_Type(),
  5397                     copyfunc_addr, "generic_arraycopy", adr_type,
  5398                     src, src_offset, dest, dest_offset, copy_length);
  5400   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5403 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5404 void
  5405 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5406                                              BasicType basic_elem_type,
  5407                                              bool disjoint_bases,
  5408                                              Node* src,  Node* src_offset,
  5409                                              Node* dest, Node* dest_offset,
  5410                                              Node* copy_length, bool dest_uninitialized) {
  5411   if (stopped())  return;               // nothing to do
  5413   Node* src_start  = src;
  5414   Node* dest_start = dest;
  5415   if (src_offset != NULL || dest_offset != NULL) {
  5416     assert(src_offset != NULL && dest_offset != NULL, "");
  5417     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5418     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5421   // Figure out which arraycopy runtime method to call.
  5422   const char* copyfunc_name = "arraycopy";
  5423   address     copyfunc_addr =
  5424       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5425                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5427   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5428   make_runtime_call(RC_LEAF|RC_NO_FP,
  5429                     OptoRuntime::fast_arraycopy_Type(),
  5430                     copyfunc_addr, copyfunc_name, adr_type,
  5431                     src_start, dest_start, copy_length XTOP);
  5434 //----------------------------inline_reference_get----------------------------
  5436 bool LibraryCallKit::inline_reference_get() {
  5437   const int nargs = 1; // self
  5439   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5440             "should have already been set");
  5442   int referent_offset = java_lang_ref_Reference::referent_offset;
  5444   // Restore the stack and pop off the argument
  5445   _sp += nargs;
  5446   Node *reference_obj = pop();
  5448   // Null check on self without removing any arguments.
  5449   _sp += nargs;
  5450   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5451   _sp -= nargs;;
  5453   if (stopped()) return true;
  5455   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5457   ciInstanceKlass* klass = env()->Object_klass();
  5458   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5460   Node* no_ctrl = NULL;
  5461   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5463   // Use the pre-barrier to record the value in the referent field
  5464   pre_barrier(false /* do_load */,
  5465               control(),
  5466               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5467               result /* pre_val */,
  5468               T_OBJECT);
  5470   push(result);
  5471   return true;

mercurial