src/cpu/ppc/vm/assembler_ppc.hpp

Thu, 17 Jul 2014 15:40:04 -0700

author
kvn
date
Thu, 17 Jul 2014 15:40:04 -0700
changeset 7132
b384ba33c9a0
parent 6538
56e7f5560e60
child 7222
f6bde7889409
permissions
-rw-r--r--

8050942: PPC64: implement template interpreter for ppc64le
Reviewed-by: kvn, goetz
Contributed-by: asmundak@google.com

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2013 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
    27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
    29 #include "asm/register.hpp"
    31 // Address is an abstraction used to represent a memory location
    32 // as used in assembler instructions.
    33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
    34 // So far we do not use this as simplification by this class is low
    35 // on PPC with its simple addressing mode. Use RegisterOrConstant to
    36 // represent an offset.
    37 class Address VALUE_OBJ_CLASS_SPEC {
    38 };
    40 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
    41  private:
    42   address          _address;
    43   RelocationHolder _rspec;
    45   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
    46     switch (rtype) {
    47     case relocInfo::external_word_type:
    48       return external_word_Relocation::spec(addr);
    49     case relocInfo::internal_word_type:
    50       return internal_word_Relocation::spec(addr);
    51     case relocInfo::opt_virtual_call_type:
    52       return opt_virtual_call_Relocation::spec();
    53     case relocInfo::static_call_type:
    54       return static_call_Relocation::spec();
    55     case relocInfo::runtime_call_type:
    56       return runtime_call_Relocation::spec();
    57     case relocInfo::none:
    58       return RelocationHolder();
    59     default:
    60       ShouldNotReachHere();
    61       return RelocationHolder();
    62     }
    63   }
    65  protected:
    66   // creation
    67   AddressLiteral() : _address(NULL), _rspec(NULL) {}
    69  public:
    70   AddressLiteral(address addr, RelocationHolder const& rspec)
    71     : _address(addr),
    72       _rspec(rspec) {}
    74   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
    75     : _address((address) addr),
    76       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
    78   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
    79     : _address((address) addr),
    80       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
    82   intptr_t value() const { return (intptr_t) _address; }
    84   const RelocationHolder& rspec() const { return _rspec; }
    85 };
    87 // Argument is an abstraction used to represent an outgoing
    88 // actual argument or an incoming formal parameter, whether
    89 // it resides in memory or in a register, in a manner consistent
    90 // with the PPC Application Binary Interface, or ABI. This is
    91 // often referred to as the native or C calling convention.
    93 class Argument VALUE_OBJ_CLASS_SPEC {
    94  private:
    95   int _number;  // The number of the argument.
    96  public:
    97   enum {
    98     // Only 8 registers may contain integer parameters.
    99     n_register_parameters = 8,
   100     // Can have up to 8 floating registers.
   101     n_float_register_parameters = 8,
   103     // PPC C calling conventions.
   104     // The first eight arguments are passed in int regs if they are int.
   105     n_int_register_parameters_c = 8,
   106     // The first thirteen float arguments are passed in float regs.
   107     n_float_register_parameters_c = 13,
   108     // Only the first 8 parameters are not placed on the stack. Aix disassembly
   109     // shows that xlC places all float args after argument 8 on the stack AND
   110     // in a register. This is not documented, but we follow this convention, too.
   111     n_regs_not_on_stack_c = 8,
   112   };
   113   // creation
   114   Argument(int number) : _number(number) {}
   116   int  number() const { return _number; }
   118   // Locating register-based arguments:
   119   bool is_register() const { return _number < n_register_parameters; }
   121   Register as_register() const {
   122     assert(is_register(), "must be a register argument");
   123     return as_Register(number() + R3_ARG1->encoding());
   124   }
   125 };
   127 #if !defined(ABI_ELFv2)
   128 // A ppc64 function descriptor.
   129 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
   130  private:
   131   address _entry;
   132   address _toc;
   133   address _env;
   135  public:
   136   inline address entry() const { return _entry; }
   137   inline address toc()   const { return _toc; }
   138   inline address env()   const { return _env; }
   140   inline void set_entry(address entry) { _entry = entry; }
   141   inline void set_toc(  address toc)   { _toc   = toc; }
   142   inline void set_env(  address env)   { _env   = env; }
   144   inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
   145   inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
   146   inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
   148   // Friend functions can be called without loading toc and env.
   149   enum {
   150     friend_toc = 0xcafe,
   151     friend_env = 0xc0de
   152   };
   154   inline bool is_friend_function() const {
   155     return (toc() == (address) friend_toc) && (env() == (address) friend_env);
   156   }
   158   // Constructor for stack-allocated instances.
   159   FunctionDescriptor() {
   160     _entry = (address) 0xbad;
   161     _toc   = (address) 0xbad;
   162     _env   = (address) 0xbad;
   163   }
   164 };
   165 #endif
   167 class Assembler : public AbstractAssembler {
   168  protected:
   169   // Displacement routines
   170   static void print_instruction(int inst);
   171   static int  patched_branch(int dest_pos, int inst, int inst_pos);
   172   static int  branch_destination(int inst, int pos);
   174   friend class AbstractAssembler;
   176   // Code patchers need various routines like inv_wdisp()
   177   friend class NativeInstruction;
   178   friend class NativeGeneralJump;
   179   friend class Relocation;
   181  public:
   183   enum shifts {
   184     XO_21_29_SHIFT = 2,
   185     XO_21_30_SHIFT = 1,
   186     XO_27_29_SHIFT = 2,
   187     XO_30_31_SHIFT = 0,
   188     SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
   189     SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
   190     RS_SHIFT       = 21u, // RS field in bits 21 -- 25
   191     OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
   192   };
   194   enum opcdxos_masks {
   195     XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
   196     ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   197     ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
   198     BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   199     BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   200     // trap instructions
   201     TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   202     TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   203     TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
   204     TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
   205     LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
   206     STD_OPCODE_MASK     = LD_OPCODE_MASK,
   207     STDU_OPCODE_MASK    = STD_OPCODE_MASK,
   208     STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
   209     STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
   210     STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   211     STWU_OPCODE_MASK    = STW_OPCODE_MASK,
   212     STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
   213     STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
   214     MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
   215     ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   216     ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   217     RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
   218   };
   220   enum opcdxos {
   221     ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
   222     ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
   223     ADDI_OPCODE   = (14u << OPCODE_SHIFT),
   224     ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
   225     ADDIC__OPCODE = (13u << OPCODE_SHIFT),
   226     ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
   227     SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
   228     SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
   229     SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
   230     SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
   231     SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
   232     DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
   233     MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
   234     MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
   235     MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
   236     MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
   237     AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
   238     ANDI_OPCODE   = (28u << OPCODE_SHIFT),
   239     ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
   240     ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
   241     ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
   242     OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
   243     ORI_OPCODE    = (24u << OPCODE_SHIFT),
   244     ORIS_OPCODE   = (25u << OPCODE_SHIFT),
   245     XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
   246     XORI_OPCODE   = (26u << OPCODE_SHIFT),
   247     XORIS_OPCODE  = (27u << OPCODE_SHIFT),
   249     NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
   251     RLWINM_OPCODE = (21u << OPCODE_SHIFT),
   252     CLRRWI_OPCODE = RLWINM_OPCODE,
   253     CLRLWI_OPCODE = RLWINM_OPCODE,
   255     RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
   257     SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
   258     SLWI_OPCODE   = RLWINM_OPCODE,
   259     SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
   260     SRWI_OPCODE   = RLWINM_OPCODE,
   261     SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
   262     SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
   264     CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
   265     CMPI_OPCODE   = (11u << OPCODE_SHIFT),
   266     CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
   267     CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
   269     ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
   271     MTLR_OPCODE   = (31u << OPCODE_SHIFT | 467u << 1 | 8 << SPR_0_4_SHIFT),
   272     MFLR_OPCODE   = (31u << OPCODE_SHIFT | 339u << 1 | 8 << SPR_0_4_SHIFT),
   274     MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
   275     MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
   276     MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
   278     // condition register logic instructions
   279     CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
   280     CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
   281     CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
   282     CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
   283     CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
   284     CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
   285     CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
   286     CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
   288     BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
   289     BXX_OPCODE      = (18u << OPCODE_SHIFT),
   290     BCXX_OPCODE     = (16u << OPCODE_SHIFT),
   292     // CTR-related opcodes
   293     BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
   294     MTCTR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1 | 9 << SPR_0_4_SHIFT),
   295     MFCTR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1 | 9 << SPR_0_4_SHIFT),
   298     LWZ_OPCODE   = (32u << OPCODE_SHIFT),
   299     LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
   300     LWZU_OPCODE  = (33u << OPCODE_SHIFT),
   301     LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
   303     LHA_OPCODE   = (42u << OPCODE_SHIFT),
   304     LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
   305     LHAU_OPCODE  = (43u << OPCODE_SHIFT),
   307     LHZ_OPCODE   = (40u << OPCODE_SHIFT),
   308     LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
   309     LHZU_OPCODE  = (41u << OPCODE_SHIFT),
   310     LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
   312     LBZ_OPCODE   = (34u << OPCODE_SHIFT),
   313     LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
   314     LBZU_OPCODE  = (35u << OPCODE_SHIFT),
   316     STW_OPCODE   = (36u << OPCODE_SHIFT),
   317     STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
   318     STWU_OPCODE  = (37u << OPCODE_SHIFT),
   319     STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
   321     STH_OPCODE   = (44u << OPCODE_SHIFT),
   322     STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
   323     STHU_OPCODE  = (45u << OPCODE_SHIFT),
   325     STB_OPCODE   = (38u << OPCODE_SHIFT),
   326     STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
   327     STBU_OPCODE  = (39u << OPCODE_SHIFT),
   329     EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
   330     EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
   331     EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
   333     // 32 bit opcode encodings
   335     LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
   336     LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
   338     CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
   340     // 64 bit opcode encodings
   342     LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
   343     LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
   344     LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
   346     STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
   347     STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
   348     STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
   349     STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
   351     RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
   352     RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
   353     RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
   354     RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
   356     SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
   358     SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
   359     SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
   360     SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
   362     MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
   363     MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
   364     MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
   365     DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
   367     CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
   368     NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
   369     NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
   372     // opcodes only used for floating arithmetic
   373     FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
   374     FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
   375     FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
   376     FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
   377     FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
   378     FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
   379     // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
   380     // on Power7.  Do not use.
   381     // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
   382     // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
   383     CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
   384     POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
   385     POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
   386     POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
   387     FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
   388     FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
   389     FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
   390     FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
   391     FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
   392     FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
   393     FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
   395     // PPC64-internal FPU conversion opcodes
   396     FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
   397     FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
   398     FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
   399     FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
   400     FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
   401     FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
   402     FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
   404     // WARNING: using fmadd results in a non-compliant vm. Some floating
   405     // point tck tests will fail.
   406     FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
   407     DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
   408     FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
   409     DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
   410     FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
   411     DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
   412     FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
   413     DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
   415     LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
   416     LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
   417     LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
   418     LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
   419     LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
   420     LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
   422     STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
   423     STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
   424     STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
   425     STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
   426     STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
   427     STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
   429     FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
   430     FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
   432     // Vector instruction support for >= Power6
   433     // Vector Storage Access
   434     LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
   435     LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
   436     LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
   437     LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
   438     LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
   439     STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
   440     STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
   441     STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
   442     STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
   443     STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
   444     LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
   445     LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
   447     // Vector Permute and Formatting
   448     VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
   449     VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
   450     VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
   451     VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
   452     VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
   453     VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
   454     VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
   455     VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
   456     VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
   457     VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
   458     VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
   459     VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
   460     VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
   461     VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
   462     VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
   464     VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
   465     VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
   466     VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
   467     VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
   468     VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
   469     VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
   471     VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
   472     VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
   473     VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
   474     VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
   475     VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
   476     VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
   478     VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
   479     VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
   481     VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
   482     VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
   483     VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
   484     VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
   485     VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
   487     // Vector Integer
   488     VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
   489     VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
   490     VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
   491     VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
   492     VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
   493     VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
   494     VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
   495     VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
   496     VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
   497     VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
   498     VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
   499     VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
   500     VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
   501     VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
   502     VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
   503     VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
   504     VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
   505     VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
   506     VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
   507     VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
   509     VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
   510     VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
   511     VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
   512     VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
   513     VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
   514     VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
   515     VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
   516     VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
   517     VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
   518     VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
   519     VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
   520     VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
   521     VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
   522     VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
   523     VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
   524     VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
   525     VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
   527     VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
   528     VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
   529     VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
   530     VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
   531     VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
   533     VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
   534     VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
   535     VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
   536     VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
   537     VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
   538     VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
   540     VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
   541     VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
   542     VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
   543     VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
   544     VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
   545     VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
   546     VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
   547     VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
   548     VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
   549     VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
   550     VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
   551     VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
   553     VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
   554     VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
   555     VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
   556     VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
   557     VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
   558     VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
   559     VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
   560     VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
   561     VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
   563     VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
   564     VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
   565     VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
   566     VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
   567     VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
   568     VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
   569     VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
   570     VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
   571     VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
   572     VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
   573     VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
   574     VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
   575     VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
   576     VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
   577     VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
   578     VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
   579     VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
   581     // Vector Floating-Point
   582     // not implemented yet
   584     // Vector Status and Control
   585     MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
   586     MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
   588     // Icache and dcache related instructions
   589     DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
   590     DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
   591     DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
   592     DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
   594     DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
   595     DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
   596     ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
   598     // Instruction synchronization
   599     ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
   600     // Memory barriers
   601     SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
   602     EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
   604     // Trap instructions
   605     TDI_OPCODE     = (2u  << OPCODE_SHIFT),
   606     TWI_OPCODE     = (3u  << OPCODE_SHIFT),
   607     TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
   608     TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
   610     // Atomics.
   611     LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
   612     LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
   613     STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
   614     STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1)
   616   };
   618   // Trap instructions TO bits
   619   enum trap_to_bits {
   620     // single bits
   621     traptoLessThanSigned      = 1 << 4, // 0, left end
   622     traptoGreaterThanSigned   = 1 << 3,
   623     traptoEqual               = 1 << 2,
   624     traptoLessThanUnsigned    = 1 << 1,
   625     traptoGreaterThanUnsigned = 1 << 0, // 4, right end
   627     // compound ones
   628     traptoUnconditional       = (traptoLessThanSigned |
   629                                  traptoGreaterThanSigned |
   630                                  traptoEqual |
   631                                  traptoLessThanUnsigned |
   632                                  traptoGreaterThanUnsigned)
   633   };
   635   // Branch hints BH field
   636   enum branch_hint_bh {
   637     // bclr cases:
   638     bhintbhBCLRisReturn            = 0,
   639     bhintbhBCLRisNotReturnButSame  = 1,
   640     bhintbhBCLRisNotPredictable    = 3,
   642     // bcctr cases:
   643     bhintbhBCCTRisNotReturnButSame = 0,
   644     bhintbhBCCTRisNotPredictable   = 3
   645   };
   647   // Branch prediction hints AT field
   648   enum branch_hint_at {
   649     bhintatNoHint     = 0,  // at=00
   650     bhintatIsNotTaken = 2,  // at=10
   651     bhintatIsTaken    = 3   // at=11
   652   };
   654   // Branch prediction hints
   655   enum branch_hint_concept {
   656     // Use the same encoding as branch_hint_at to simply code.
   657     bhintNoHint       = bhintatNoHint,
   658     bhintIsNotTaken   = bhintatIsNotTaken,
   659     bhintIsTaken      = bhintatIsTaken
   660   };
   662   // Used in BO field of branch instruction.
   663   enum branch_condition {
   664     bcondCRbiIs0      =  4, // bo=001at
   665     bcondCRbiIs1      = 12, // bo=011at
   666     bcondAlways       = 20  // bo=10100
   667   };
   669   // Branch condition with combined prediction hints.
   670   enum branch_condition_with_hint {
   671     bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
   672     bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
   673     bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
   674     bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
   675     bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
   676     bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
   677   };
   679   // Elemental Memory Barriers (>=Power 8)
   680   enum Elemental_Membar_mask_bits {
   681     StoreStore = 1 << 0,
   682     StoreLoad  = 1 << 1,
   683     LoadStore  = 1 << 2,
   684     LoadLoad   = 1 << 3
   685   };
   687   // Branch prediction hints.
   688   inline static int add_bhint_to_boint(const int bhint, const int boint) {
   689     switch (boint) {
   690       case bcondCRbiIs0:
   691       case bcondCRbiIs1:
   692         // branch_hint and branch_hint_at have same encodings
   693         assert(   (int)bhintNoHint     == (int)bhintatNoHint
   694                && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
   695                && (int)bhintIsTaken    == (int)bhintatIsTaken,
   696                "wrong encodings");
   697         assert((bhint & 0x03) == bhint, "wrong encodings");
   698         return (boint & ~0x03) | bhint;
   699       case bcondAlways:
   700         // no branch_hint
   701         return boint;
   702       default:
   703         ShouldNotReachHere();
   704         return 0;
   705     }
   706   }
   708   // Extract bcond from boint.
   709   inline static int inv_boint_bcond(const int boint) {
   710     int r_bcond = boint & ~0x03;
   711     assert(r_bcond == bcondCRbiIs0 ||
   712            r_bcond == bcondCRbiIs1 ||
   713            r_bcond == bcondAlways,
   714            "bad branch condition");
   715     return r_bcond;
   716   }
   718   // Extract bhint from boint.
   719   inline static int inv_boint_bhint(const int boint) {
   720     int r_bhint = boint & 0x03;
   721     assert(r_bhint == bhintatNoHint ||
   722            r_bhint == bhintatIsNotTaken ||
   723            r_bhint == bhintatIsTaken,
   724            "bad branch hint");
   725     return r_bhint;
   726   }
   728   // Calculate opposite of given bcond.
   729   inline static int opposite_bcond(const int bcond) {
   730     switch (bcond) {
   731       case bcondCRbiIs0:
   732         return bcondCRbiIs1;
   733       case bcondCRbiIs1:
   734         return bcondCRbiIs0;
   735       default:
   736         ShouldNotReachHere();
   737         return 0;
   738     }
   739   }
   741   // Calculate opposite of given bhint.
   742   inline static int opposite_bhint(const int bhint) {
   743     switch (bhint) {
   744       case bhintatNoHint:
   745         return bhintatNoHint;
   746       case bhintatIsNotTaken:
   747         return bhintatIsTaken;
   748       case bhintatIsTaken:
   749         return bhintatIsNotTaken;
   750       default:
   751         ShouldNotReachHere();
   752         return 0;
   753     }
   754   }
   756   // PPC branch instructions
   757   enum ppcops {
   758     b_op    = 18,
   759     bc_op   = 16,
   760     bcr_op  = 19
   761   };
   763   enum Condition {
   764     negative         = 0,
   765     less             = 0,
   766     positive         = 1,
   767     greater          = 1,
   768     zero             = 2,
   769     equal            = 2,
   770     summary_overflow = 3,
   771   };
   773  public:
   774   // Helper functions for groups of instructions
   776   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   778   // instruction must start at passed address
   779   static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
   781   // instruction must be left-justified in argument
   782   static int instr_len(unsigned long instr)  { return BytesPerInstWord; }
   784   // longest instructions
   785   static int instr_maxlen() { return BytesPerInstWord; }
   787   // Test if x is within signed immediate range for nbits.
   788   static bool is_simm(int x, unsigned int nbits) {
   789     assert(0 < nbits && nbits < 32, "out of bounds");
   790     const int   min      = -( ((int)1) << nbits-1 );
   791     const int   maxplus1 =  ( ((int)1) << nbits-1 );
   792     return min <= x && x < maxplus1;
   793   }
   795   static bool is_simm(jlong x, unsigned int nbits) {
   796     assert(0 < nbits && nbits < 64, "out of bounds");
   797     const jlong min      = -( ((jlong)1) << nbits-1 );
   798     const jlong maxplus1 =  ( ((jlong)1) << nbits-1 );
   799     return min <= x && x < maxplus1;
   800   }
   802   // Test if x is within unsigned immediate range for nbits
   803   static bool is_uimm(int x, unsigned int nbits) {
   804     assert(0 < nbits && nbits < 32, "out of bounds");
   805     const int   maxplus1 = ( ((int)1) << nbits );
   806     return 0 <= x && x < maxplus1;
   807   }
   809   static bool is_uimm(jlong x, unsigned int nbits) {
   810     assert(0 < nbits && nbits < 64, "out of bounds");
   811     const jlong maxplus1 =  ( ((jlong)1) << nbits );
   812     return 0 <= x && x < maxplus1;
   813   }
   815  protected:
   816   // helpers
   818   // X is supposed to fit in a field "nbits" wide
   819   // and be sign-extended. Check the range.
   820   static void assert_signed_range(intptr_t x, int nbits) {
   821     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
   822            "value out of range");
   823   }
   825   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   826     assert((x & 3) == 0, "not word aligned");
   827     assert_signed_range(x, nbits + 2);
   828   }
   830   static void assert_unsigned_const(int x, int nbits) {
   831     assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
   832   }
   834   static int fmask(juint hi_bit, juint lo_bit) {
   835     assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
   836     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   837   }
   839   // inverse of u_field
   840   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   841     juint r = juint(x) >> lo_bit;
   842     r &= fmask(hi_bit, lo_bit);
   843     return int(r);
   844   }
   846   // signed version: extract from field and sign-extend
   847   static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
   848     x = x << (31-hi_bit);
   849     x = x >> (31-hi_bit+lo_bit);
   850     return x;
   851   }
   853   static int u_field(int x, int hi_bit, int lo_bit) {
   854     assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
   855     int r = x << lo_bit;
   856     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   857     return r;
   858   }
   860   // Same as u_field for signed values
   861   static int s_field(int x, int hi_bit, int lo_bit) {
   862     int nbits = hi_bit - lo_bit + 1;
   863     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
   864       "value out of range");
   865     x &= fmask(hi_bit, lo_bit);
   866     int r = x << lo_bit;
   867     return r;
   868   }
   870   // inv_op for ppc instructions
   871   static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
   873   // Determine target address from li, bd field of branch instruction.
   874   static intptr_t inv_li_field(int x) {
   875     intptr_t r = inv_s_field_ppc(x, 25, 2);
   876     r = (r << 2);
   877     return r;
   878   }
   879   static intptr_t inv_bd_field(int x, intptr_t pos) {
   880     intptr_t r = inv_s_field_ppc(x, 15, 2);
   881     r = (r << 2) + pos;
   882     return r;
   883   }
   885   #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
   886   #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
   887   // Extract instruction fields from instruction words.
   888  public:
   889   static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
   890   static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
   891   static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   892   static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
   893   static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   894   // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
   895   // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
   896   static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
   897   static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
   898   static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
   899   static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
   900   static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
   901   static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   902   static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
   904   #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
   905   #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
   907   // instruction fields
   908   static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
   909   static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
   910   static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
   911   static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
   912   static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
   913   static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
   914   static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
   915   static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
   916   static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
   917   static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
   918   static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
   919   static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
   920   static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
   921   static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
   922   static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
   923   static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
   924   static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
   925   static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
   926   static int fra(    FloatRegister r)  { return  fra(r->encoding());}
   927   static int frb(    FloatRegister r)  { return  frb(r->encoding());}
   928   static int frc(    FloatRegister r)  { return  frc(r->encoding());}
   929   static int frs(    FloatRegister r)  { return  frs(r->encoding());}
   930   static int frt(    FloatRegister r)  { return  frt(r->encoding());}
   931   static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
   932   static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
   933   static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
   934   static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
   935   static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
   936   static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
   937   static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
   938   static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
   939   static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
   940   static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
   941   static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
   942   static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
   943   static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
   944   static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
   945   static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
   946   static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
   947   static int me2126(   int         x)  { return  mb2126(x); }
   948   static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
   949   //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
   950   static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
   951   static int ra(       Register    r)  { return  ra(r->encoding()); }
   952   static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
   953   static int rb(       Register    r)  { return  rb(r->encoding()); }
   954   static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
   955   static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
   956   static int rs(       Register    r)  { return  rs(r->encoding()); }
   957   static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
   958   // we don't want to use R0 in memory accesses, because it has value `0' then
   959   static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
   960   static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
   962   // register r is target
   963   static int rt(       Register    r)  { return rs(r); }
   964   static int rt(       int         x)  { return rs(x); }
   965   static int rta(      Register    r)  { return ra(r); }
   966   static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
   968   static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
   969   static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
   970   static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
   971   static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
   972   static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
   973   static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
   974   static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
   975   static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
   976   static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
   977   static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
   978   static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
   979   static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
   980   static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
   982   // Support vector instructions for >= Power6.
   983   static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
   984   static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
   985   static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
   986   static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
   987   static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
   989   static int vra(   VectorRegister r)  { return  vra(r->encoding());}
   990   static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
   991   static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
   992   static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
   993   static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
   995   static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
   996   static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
   997   static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
   998   static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
  1000   //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
  1001   //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
  1002   //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
  1003   //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
  1004   //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
  1005   //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
  1006   //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
  1008  protected:
  1009   // Compute relative address for branch.
  1010   static intptr_t disp(intptr_t x, intptr_t off) {
  1011     int xx = x - off;
  1012     xx = xx >> 2;
  1013     return xx;
  1016  public:
  1017   // signed immediate, in low bits, nbits long
  1018   static int simm(int x, int nbits) {
  1019     assert_signed_range(x, nbits);
  1020     return x & ((1 << nbits) - 1);
  1023   // unsigned immediate, in low bits, nbits long
  1024   static int uimm(int x, int nbits) {
  1025     assert_unsigned_const(x, nbits);
  1026     return x & ((1 << nbits) - 1);
  1029   static void set_imm(int* instr, short s) {
  1030     // imm is always in the lower 16 bits of the instruction,
  1031     // so this is endian-neutral. Same for the get_imm below.
  1032     uint32_t w = *(uint32_t *)instr;
  1033     *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
  1036   static int get_imm(address a, int instruction_number) {
  1037     return (short)((int *)a)[instruction_number];
  1040   static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
  1041   static inline int lo16_unsigned(int x) { return x & 0xffff; }
  1043  protected:
  1045   // Extract the top 32 bits in a 64 bit word.
  1046   static int32_t hi32(int64_t x) {
  1047     int32_t r = int32_t((uint64_t)x >> 32);
  1048     return r;
  1051  public:
  1053   static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
  1054     return ((addr + (a - 1)) & ~(a - 1));
  1057   static inline bool is_aligned(unsigned int addr, unsigned int a) {
  1058     return (0 == addr % a);
  1061   void flush() {
  1062     AbstractAssembler::flush();
  1065   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
  1066   inline void emit_data(int);
  1067   inline void emit_data(int, RelocationHolder const&);
  1068   inline void emit_data(int, relocInfo::relocType rtype);
  1070   // Emit an address.
  1071   inline address emit_addr(const address addr = NULL);
  1073 #if !defined(ABI_ELFv2)
  1074   // Emit a function descriptor with the specified entry point, TOC,
  1075   // and ENV. If the entry point is NULL, the descriptor will point
  1076   // just past the descriptor.
  1077   // Use values from friend functions as defaults.
  1078   inline address emit_fd(address entry = NULL,
  1079                          address toc = (address) FunctionDescriptor::friend_toc,
  1080                          address env = (address) FunctionDescriptor::friend_env);
  1081 #endif
  1083   /////////////////////////////////////////////////////////////////////////////////////
  1084   // PPC instructions
  1085   /////////////////////////////////////////////////////////////////////////////////////
  1087   // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
  1088   // immediates. The normal instruction encoders enforce that r0 is not
  1089   // passed to them. Use either extended mnemonics encoders or the special ra0
  1090   // versions.
  1092   // Issue an illegal instruction.
  1093   inline void illtrap();
  1094   static inline bool is_illtrap(int x);
  1096   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
  1097   inline void addi( Register d, Register a, int si16);
  1098   inline void addis(Register d, Register a, int si16);
  1099  private:
  1100   inline void addi_r0ok( Register d, Register a, int si16);
  1101   inline void addis_r0ok(Register d, Register a, int si16);
  1102  public:
  1103   inline void addic_( Register d, Register a, int si16);
  1104   inline void subfic( Register d, Register a, int si16);
  1105   inline void add(    Register d, Register a, Register b);
  1106   inline void add_(   Register d, Register a, Register b);
  1107   inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
  1108   inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
  1109   inline void subf_(  Register d, Register a, Register b);
  1110   inline void addc(   Register d, Register a, Register b);
  1111   inline void addc_(  Register d, Register a, Register b);
  1112   inline void subfc(  Register d, Register a, Register b);
  1113   inline void subfc_( Register d, Register a, Register b);
  1114   inline void adde(   Register d, Register a, Register b);
  1115   inline void adde_(  Register d, Register a, Register b);
  1116   inline void subfe(  Register d, Register a, Register b);
  1117   inline void subfe_( Register d, Register a, Register b);
  1118   inline void neg(    Register d, Register a);
  1119   inline void neg_(   Register d, Register a);
  1120   inline void mulli(  Register d, Register a, int si16);
  1121   inline void mulld(  Register d, Register a, Register b);
  1122   inline void mulld_( Register d, Register a, Register b);
  1123   inline void mullw(  Register d, Register a, Register b);
  1124   inline void mullw_( Register d, Register a, Register b);
  1125   inline void mulhw(  Register d, Register a, Register b);
  1126   inline void mulhw_( Register d, Register a, Register b);
  1127   inline void mulhd(  Register d, Register a, Register b);
  1128   inline void mulhd_( Register d, Register a, Register b);
  1129   inline void mulhdu( Register d, Register a, Register b);
  1130   inline void mulhdu_(Register d, Register a, Register b);
  1131   inline void divd(   Register d, Register a, Register b);
  1132   inline void divd_(  Register d, Register a, Register b);
  1133   inline void divw(   Register d, Register a, Register b);
  1134   inline void divw_(  Register d, Register a, Register b);
  1136   // extended mnemonics
  1137   inline void li(   Register d, int si16);
  1138   inline void lis(  Register d, int si16);
  1139   inline void addir(Register d, int si16, Register a);
  1141   static bool is_addi(int x) {
  1142      return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
  1144   static bool is_addis(int x) {
  1145      return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
  1147   static bool is_bxx(int x) {
  1148      return BXX_OPCODE == (x & BXX_OPCODE_MASK);
  1150   static bool is_b(int x) {
  1151      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
  1153   static bool is_bl(int x) {
  1154      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
  1156   static bool is_bcxx(int x) {
  1157      return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
  1159   static bool is_bxx_or_bcxx(int x) {
  1160      return is_bxx(x) || is_bcxx(x);
  1162   static bool is_bctrl(int x) {
  1163      return x == 0x4e800421;
  1165   static bool is_bctr(int x) {
  1166      return x == 0x4e800420;
  1168   static bool is_bclr(int x) {
  1169      return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
  1171   static bool is_li(int x) {
  1172      return is_addi(x) && inv_ra_field(x)==0;
  1174   static bool is_lis(int x) {
  1175      return is_addis(x) && inv_ra_field(x)==0;
  1177   static bool is_mtctr(int x) {
  1178      return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
  1180   static bool is_ld(int x) {
  1181      return LD_OPCODE == (x & LD_OPCODE_MASK);
  1183   static bool is_std(int x) {
  1184      return STD_OPCODE == (x & STD_OPCODE_MASK);
  1186   static bool is_stdu(int x) {
  1187      return STDU_OPCODE == (x & STDU_OPCODE_MASK);
  1189   static bool is_stdx(int x) {
  1190      return STDX_OPCODE == (x & STDX_OPCODE_MASK);
  1192   static bool is_stdux(int x) {
  1193      return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
  1195   static bool is_stwx(int x) {
  1196      return STWX_OPCODE == (x & STWX_OPCODE_MASK);
  1198   static bool is_stwux(int x) {
  1199      return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
  1201   static bool is_stw(int x) {
  1202      return STW_OPCODE == (x & STW_OPCODE_MASK);
  1204   static bool is_stwu(int x) {
  1205      return STWU_OPCODE == (x & STWU_OPCODE_MASK);
  1207   static bool is_ori(int x) {
  1208      return ORI_OPCODE == (x & ORI_OPCODE_MASK);
  1209   };
  1210   static bool is_oris(int x) {
  1211      return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
  1212   };
  1213   static bool is_rldicr(int x) {
  1214      return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
  1215   };
  1216   static bool is_nop(int x) {
  1217     return x == 0x60000000;
  1219   // endgroup opcode for Power6
  1220   static bool is_endgroup(int x) {
  1221     return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
  1225  private:
  1226   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
  1227   inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
  1228   inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
  1229   inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
  1230   inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
  1232  public:
  1233   // extended mnemonics of Compare Instructions
  1234   inline void cmpwi( ConditionRegister crx, Register a, int si16);
  1235   inline void cmpdi( ConditionRegister crx, Register a, int si16);
  1236   inline void cmpw(  ConditionRegister crx, Register a, Register b);
  1237   inline void cmpd(  ConditionRegister crx, Register a, Register b);
  1238   inline void cmplwi(ConditionRegister crx, Register a, int ui16);
  1239   inline void cmpldi(ConditionRegister crx, Register a, int ui16);
  1240   inline void cmplw( ConditionRegister crx, Register a, Register b);
  1241   inline void cmpld( ConditionRegister crx, Register a, Register b);
  1243   inline void isel(   Register d, Register a, Register b, int bc);
  1244   // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
  1245   inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
  1246   // Set d = 0 if (cr.cc) equals 1, otherwise b.
  1247   inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
  1249   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
  1250          void andi(   Register a, Register s, int ui16);   // optimized version
  1251   inline void andi_(  Register a, Register s, int ui16);
  1252   inline void andis_( Register a, Register s, int ui16);
  1253   inline void ori(    Register a, Register s, int ui16);
  1254   inline void oris(   Register a, Register s, int ui16);
  1255   inline void xori(   Register a, Register s, int ui16);
  1256   inline void xoris(  Register a, Register s, int ui16);
  1257   inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
  1258   inline void and_(   Register a, Register s, Register b);
  1259   // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
  1260   // SMT-priority change instruction (see SMT instructions below).
  1261   inline void or_unchecked(Register a, Register s, Register b);
  1262   inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
  1263   inline void or_(    Register a, Register s, Register b);
  1264   inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
  1265   inline void xor_(   Register a, Register s, Register b);
  1266   inline void nand(   Register a, Register s, Register b);
  1267   inline void nand_(  Register a, Register s, Register b);
  1268   inline void nor(    Register a, Register s, Register b);
  1269   inline void nor_(   Register a, Register s, Register b);
  1270   inline void andc(   Register a, Register s, Register b);
  1271   inline void andc_(  Register a, Register s, Register b);
  1272   inline void orc(    Register a, Register s, Register b);
  1273   inline void orc_(   Register a, Register s, Register b);
  1274   inline void extsb(  Register a, Register s);
  1275   inline void extsh(  Register a, Register s);
  1276   inline void extsw(  Register a, Register s);
  1278   // extended mnemonics
  1279   inline void nop();
  1280   // NOP for FP and BR units (different versions to allow them to be in one group)
  1281   inline void fpnop0();
  1282   inline void fpnop1();
  1283   inline void brnop0();
  1284   inline void brnop1();
  1285   inline void brnop2();
  1287   inline void mr(      Register d, Register s);
  1288   inline void ori_opt( Register d, int ui16);
  1289   inline void oris_opt(Register d, int ui16);
  1291   // endgroup opcode for Power6
  1292   inline void endgroup();
  1294   // count instructions
  1295   inline void cntlzw(  Register a, Register s);
  1296   inline void cntlzw_( Register a, Register s);
  1297   inline void cntlzd(  Register a, Register s);
  1298   inline void cntlzd_( Register a, Register s);
  1300   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
  1301   inline void sld(     Register a, Register s, Register b);
  1302   inline void sld_(    Register a, Register s, Register b);
  1303   inline void slw(     Register a, Register s, Register b);
  1304   inline void slw_(    Register a, Register s, Register b);
  1305   inline void srd(     Register a, Register s, Register b);
  1306   inline void srd_(    Register a, Register s, Register b);
  1307   inline void srw(     Register a, Register s, Register b);
  1308   inline void srw_(    Register a, Register s, Register b);
  1309   inline void srad(    Register a, Register s, Register b);
  1310   inline void srad_(   Register a, Register s, Register b);
  1311   inline void sraw(    Register a, Register s, Register b);
  1312   inline void sraw_(   Register a, Register s, Register b);
  1313   inline void sradi(   Register a, Register s, int sh6);
  1314   inline void sradi_(  Register a, Register s, int sh6);
  1315   inline void srawi(   Register a, Register s, int sh5);
  1316   inline void srawi_(  Register a, Register s, int sh5);
  1318   // extended mnemonics for Shift Instructions
  1319   inline void sldi(    Register a, Register s, int sh6);
  1320   inline void sldi_(   Register a, Register s, int sh6);
  1321   inline void slwi(    Register a, Register s, int sh5);
  1322   inline void slwi_(   Register a, Register s, int sh5);
  1323   inline void srdi(    Register a, Register s, int sh6);
  1324   inline void srdi_(   Register a, Register s, int sh6);
  1325   inline void srwi(    Register a, Register s, int sh5);
  1326   inline void srwi_(   Register a, Register s, int sh5);
  1328   inline void clrrdi(  Register a, Register s, int ui6);
  1329   inline void clrrdi_( Register a, Register s, int ui6);
  1330   inline void clrldi(  Register a, Register s, int ui6);
  1331   inline void clrldi_( Register a, Register s, int ui6);
  1332   inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
  1333   inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
  1334   inline void extrdi(  Register a, Register s, int n, int b);
  1335   // testbit with condition register
  1336   inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
  1338   // rotate instructions
  1339   inline void rotldi(  Register a, Register s, int n);
  1340   inline void rotrdi(  Register a, Register s, int n);
  1341   inline void rotlwi(  Register a, Register s, int n);
  1342   inline void rotrwi(  Register a, Register s, int n);
  1344   // Rotate Instructions
  1345   inline void rldic(   Register a, Register s, int sh6, int mb6);
  1346   inline void rldic_(  Register a, Register s, int sh6, int mb6);
  1347   inline void rldicr(  Register a, Register s, int sh6, int mb6);
  1348   inline void rldicr_( Register a, Register s, int sh6, int mb6);
  1349   inline void rldicl(  Register a, Register s, int sh6, int mb6);
  1350   inline void rldicl_( Register a, Register s, int sh6, int mb6);
  1351   inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
  1352   inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
  1353   inline void rldimi(  Register a, Register s, int sh6, int mb6);
  1354   inline void rldimi_( Register a, Register s, int sh6, int mb6);
  1355   inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
  1356   inline void insrdi(  Register a, Register s, int n,   int b);
  1357   inline void insrwi(  Register a, Register s, int n,   int b);
  1359   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
  1360   // 4 bytes
  1361   inline void lwzx( Register d, Register s1, Register s2);
  1362   inline void lwz(  Register d, int si16,    Register s1);
  1363   inline void lwzu( Register d, int si16,    Register s1);
  1365   // 4 bytes
  1366   inline void lwax( Register d, Register s1, Register s2);
  1367   inline void lwa(  Register d, int si16,    Register s1);
  1369   // 4 bytes reversed
  1370   inline void lwbrx( Register d, Register s1, Register s2);
  1372   // 2 bytes
  1373   inline void lhzx( Register d, Register s1, Register s2);
  1374   inline void lhz(  Register d, int si16,    Register s1);
  1375   inline void lhzu( Register d, int si16,    Register s1);
  1377   // 2 bytes reversed
  1378   inline void lhbrx( Register d, Register s1, Register s2);
  1380   // 2 bytes
  1381   inline void lhax( Register d, Register s1, Register s2);
  1382   inline void lha(  Register d, int si16,    Register s1);
  1383   inline void lhau( Register d, int si16,    Register s1);
  1385   // 1 byte
  1386   inline void lbzx( Register d, Register s1, Register s2);
  1387   inline void lbz(  Register d, int si16,    Register s1);
  1388   inline void lbzu( Register d, int si16,    Register s1);
  1390   // 8 bytes
  1391   inline void ldx(  Register d, Register s1, Register s2);
  1392   inline void ld(   Register d, int si16,    Register s1);
  1393   inline void ldu(  Register d, int si16,    Register s1);
  1395   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
  1396   inline void stwx( Register d, Register s1, Register s2);
  1397   inline void stw(  Register d, int si16,    Register s1);
  1398   inline void stwu( Register d, int si16,    Register s1);
  1400   inline void sthx( Register d, Register s1, Register s2);
  1401   inline void sth(  Register d, int si16,    Register s1);
  1402   inline void sthu( Register d, int si16,    Register s1);
  1404   inline void stbx( Register d, Register s1, Register s2);
  1405   inline void stb(  Register d, int si16,    Register s1);
  1406   inline void stbu( Register d, int si16,    Register s1);
  1408   inline void stdx( Register d, Register s1, Register s2);
  1409   inline void std(  Register d, int si16,    Register s1);
  1410   inline void stdu( Register d, int si16,    Register s1);
  1411   inline void stdux(Register s, Register a,  Register b);
  1413   // PPC 1, section 3.3.13 Move To/From System Register Instructions
  1414   inline void mtlr( Register s1);
  1415   inline void mflr( Register d);
  1416   inline void mtctr(Register s1);
  1417   inline void mfctr(Register d);
  1418   inline void mtcrf(int fxm, Register s);
  1419   inline void mfcr( Register d);
  1420   inline void mcrf( ConditionRegister crd, ConditionRegister cra);
  1421   inline void mtcr( Register s);
  1423   // PPC 1, section 2.4.1 Branch Instructions
  1424   inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
  1425   inline void b(  Label& L);
  1426   inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
  1427   inline void bl( Label& L);
  1428   inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  1429   inline void bc( int boint, int biint, Label& L);
  1430   inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  1431   inline void bcl(int boint, int biint, Label& L);
  1433   inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  1434   inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  1435   inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
  1436                          relocInfo::relocType rt = relocInfo::none);
  1437   inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
  1438                          relocInfo::relocType rt = relocInfo::none);
  1440   // helper function for b, bcxx
  1441   inline bool is_within_range_of_b(address a, address pc);
  1442   inline bool is_within_range_of_bcxx(address a, address pc);
  1444   // get the destination of a bxx branch (b, bl, ba, bla)
  1445   static inline address  bxx_destination(address baddr);
  1446   static inline address  bxx_destination(int instr, address pc);
  1447   static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
  1449   // extended mnemonics for branch instructions
  1450   inline void blt(ConditionRegister crx, Label& L);
  1451   inline void bgt(ConditionRegister crx, Label& L);
  1452   inline void beq(ConditionRegister crx, Label& L);
  1453   inline void bso(ConditionRegister crx, Label& L);
  1454   inline void bge(ConditionRegister crx, Label& L);
  1455   inline void ble(ConditionRegister crx, Label& L);
  1456   inline void bne(ConditionRegister crx, Label& L);
  1457   inline void bns(ConditionRegister crx, Label& L);
  1459   // Branch instructions with static prediction hints.
  1460   inline void blt_predict_taken(    ConditionRegister crx, Label& L);
  1461   inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
  1462   inline void beq_predict_taken(    ConditionRegister crx, Label& L);
  1463   inline void bso_predict_taken(    ConditionRegister crx, Label& L);
  1464   inline void bge_predict_taken(    ConditionRegister crx, Label& L);
  1465   inline void ble_predict_taken(    ConditionRegister crx, Label& L);
  1466   inline void bne_predict_taken(    ConditionRegister crx, Label& L);
  1467   inline void bns_predict_taken(    ConditionRegister crx, Label& L);
  1468   inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
  1469   inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
  1470   inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
  1471   inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
  1472   inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
  1473   inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
  1474   inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
  1475   inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
  1477   // for use in conjunction with testbitdi:
  1478   inline void btrue( ConditionRegister crx, Label& L);
  1479   inline void bfalse(ConditionRegister crx, Label& L);
  1481   inline void bltl(ConditionRegister crx, Label& L);
  1482   inline void bgtl(ConditionRegister crx, Label& L);
  1483   inline void beql(ConditionRegister crx, Label& L);
  1484   inline void bsol(ConditionRegister crx, Label& L);
  1485   inline void bgel(ConditionRegister crx, Label& L);
  1486   inline void blel(ConditionRegister crx, Label& L);
  1487   inline void bnel(ConditionRegister crx, Label& L);
  1488   inline void bnsl(ConditionRegister crx, Label& L);
  1490   // extended mnemonics for Branch Instructions via LR
  1491   // We use `blr' for returns.
  1492   inline void blr(relocInfo::relocType rt = relocInfo::none);
  1494   // extended mnemonics for Branch Instructions with CTR
  1495   // bdnz means `decrement CTR and jump to L if CTR is not zero'
  1496   inline void bdnz(Label& L);
  1497   // Decrement and branch if result is zero.
  1498   inline void bdz(Label& L);
  1499   // we use `bctr[l]' for jumps/calls in function descriptor glue
  1500   // code, e.g. calls to runtime functions
  1501   inline void bctr( relocInfo::relocType rt = relocInfo::none);
  1502   inline void bctrl(relocInfo::relocType rt = relocInfo::none);
  1503   // conditional jumps/branches via CTR
  1504   inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1505   inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1506   inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1507   inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1509   // condition register logic instructions
  1510   inline void crand( int d, int s1, int s2);
  1511   inline void crnand(int d, int s1, int s2);
  1512   inline void cror(  int d, int s1, int s2);
  1513   inline void crxor( int d, int s1, int s2);
  1514   inline void crnor( int d, int s1, int s2);
  1515   inline void creqv( int d, int s1, int s2);
  1516   inline void crandc(int d, int s1, int s2);
  1517   inline void crorc( int d, int s1, int s2);
  1519   // icache and dcache related instructions
  1520   inline void icbi(  Register s1, Register s2);
  1521   //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
  1522   inline void dcbz(  Register s1, Register s2);
  1523   inline void dcbst( Register s1, Register s2);
  1524   inline void dcbf(  Register s1, Register s2);
  1526   enum ct_cache_specification {
  1527     ct_primary_cache   = 0,
  1528     ct_secondary_cache = 2
  1529   };
  1530   // dcache read hint
  1531   inline void dcbt(    Register s1, Register s2);
  1532   inline void dcbtct(  Register s1, Register s2, int ct);
  1533   inline void dcbtds(  Register s1, Register s2, int ds);
  1534   // dcache write hint
  1535   inline void dcbtst(  Register s1, Register s2);
  1536   inline void dcbtstct(Register s1, Register s2, int ct);
  1538   //  machine barrier instructions:
  1539   //
  1540   //  - sync    two-way memory barrier, aka fence
  1541   //  - lwsync  orders  Store|Store,
  1542   //                     Load|Store,
  1543   //                     Load|Load,
  1544   //            but not Store|Load
  1545   //  - eieio   orders memory accesses for device memory (only)
  1546   //  - isync   invalidates speculatively executed instructions
  1547   //            From the Power ISA 2.06 documentation:
  1548   //             "[...] an isync instruction prevents the execution of
  1549   //            instructions following the isync until instructions
  1550   //            preceding the isync have completed, [...]"
  1551   //            From IBM's AIX assembler reference:
  1552   //             "The isync [...] instructions causes the processor to
  1553   //            refetch any instructions that might have been fetched
  1554   //            prior to the isync instruction. The instruction isync
  1555   //            causes the processor to wait for all previous instructions
  1556   //            to complete. Then any instructions already fetched are
  1557   //            discarded and instruction processing continues in the
  1558   //            environment established by the previous instructions."
  1559   //
  1560   //  semantic barrier instructions:
  1561   //  (as defined in orderAccess.hpp)
  1562   //
  1563   //  - release  orders Store|Store,       (maps to lwsync)
  1564   //                     Load|Store
  1565   //  - acquire  orders  Load|Store,       (maps to lwsync)
  1566   //                     Load|Load
  1567   //  - fence    orders Store|Store,       (maps to sync)
  1568   //                     Load|Store,
  1569   //                     Load|Load,
  1570   //                    Store|Load
  1571   //
  1572  private:
  1573   inline void sync(int l);
  1574  public:
  1575   inline void sync();
  1576   inline void lwsync();
  1577   inline void ptesync();
  1578   inline void eieio();
  1579   inline void isync();
  1580   inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
  1582   // atomics
  1583   inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1584   inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1585   inline bool lxarx_hint_exclusive_access();
  1586   inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1587   inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1588   inline void stwcx_( Register s, Register a, Register b);
  1589   inline void stdcx_( Register s, Register a, Register b);
  1591   // Instructions for adjusting thread priority for simultaneous
  1592   // multithreading (SMT) on Power5.
  1593  private:
  1594   inline void smt_prio_very_low();
  1595   inline void smt_prio_medium_high();
  1596   inline void smt_prio_high();
  1598  public:
  1599   inline void smt_prio_low();
  1600   inline void smt_prio_medium_low();
  1601   inline void smt_prio_medium();
  1603   // trap instructions
  1604   inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
  1605   // NOT FOR DIRECT USE!!
  1606  protected:
  1607   inline void tdi_unchecked(int tobits, Register a, int si16);
  1608   inline void twi_unchecked(int tobits, Register a, int si16);
  1609   inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  1610   inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  1611   inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  1612   inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  1614   static bool is_tdi(int x, int tobits, int ra, int si16) {
  1615      return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
  1616          && (tobits == inv_to_field(x))
  1617          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1618          && (si16 == inv_si_field(x));
  1621   static bool is_twi(int x, int tobits, int ra, int si16) {
  1622      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
  1623          && (tobits == inv_to_field(x))
  1624          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1625          && (si16 == inv_si_field(x));
  1628   static bool is_twi(int x, int tobits, int ra) {
  1629      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
  1630          && (tobits == inv_to_field(x))
  1631          && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
  1634   static bool is_td(int x, int tobits, int ra, int rb) {
  1635      return (TD_OPCODE == (x & TD_OPCODE_MASK))
  1636          && (tobits == inv_to_field(x))
  1637          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1638          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  1641   static bool is_tw(int x, int tobits, int ra, int rb) {
  1642      return (TW_OPCODE == (x & TW_OPCODE_MASK))
  1643          && (tobits == inv_to_field(x))
  1644          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1645          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  1648  public:
  1649   // PPC floating point instructions
  1650   // PPC 1, section 4.6.2 Floating-Point Load Instructions
  1651   inline void lfs(  FloatRegister d, int si16,   Register a);
  1652   inline void lfsu( FloatRegister d, int si16,   Register a);
  1653   inline void lfsx( FloatRegister d, Register a, Register b);
  1654   inline void lfd(  FloatRegister d, int si16,   Register a);
  1655   inline void lfdu( FloatRegister d, int si16,   Register a);
  1656   inline void lfdx( FloatRegister d, Register a, Register b);
  1658   // PPC 1, section 4.6.3 Floating-Point Store Instructions
  1659   inline void stfs(  FloatRegister s, int si16,   Register a);
  1660   inline void stfsu( FloatRegister s, int si16,   Register a);
  1661   inline void stfsx( FloatRegister s, Register a, Register b);
  1662   inline void stfd(  FloatRegister s, int si16,   Register a);
  1663   inline void stfdu( FloatRegister s, int si16,   Register a);
  1664   inline void stfdx( FloatRegister s, Register a, Register b);
  1666   // PPC 1, section 4.6.4 Floating-Point Move Instructions
  1667   inline void fmr(  FloatRegister d, FloatRegister b);
  1668   inline void fmr_( FloatRegister d, FloatRegister b);
  1670   //  inline void mffgpr( FloatRegister d, Register b);
  1671   //  inline void mftgpr( Register d, FloatRegister b);
  1672   inline void cmpb(   Register a, Register s, Register b);
  1673   inline void popcntb(Register a, Register s);
  1674   inline void popcntw(Register a, Register s);
  1675   inline void popcntd(Register a, Register s);
  1677   inline void fneg(  FloatRegister d, FloatRegister b);
  1678   inline void fneg_( FloatRegister d, FloatRegister b);
  1679   inline void fabs(  FloatRegister d, FloatRegister b);
  1680   inline void fabs_( FloatRegister d, FloatRegister b);
  1681   inline void fnabs( FloatRegister d, FloatRegister b);
  1682   inline void fnabs_(FloatRegister d, FloatRegister b);
  1684   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
  1685   inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
  1686   inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
  1687   inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
  1688   inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
  1689   inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
  1690   inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
  1691   inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
  1692   inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
  1693   inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
  1694   inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
  1695   inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
  1696   inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
  1697   inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
  1698   inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
  1699   inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
  1700   inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
  1702   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
  1703   inline void frsp(  FloatRegister d, FloatRegister b);
  1704   inline void fctid( FloatRegister d, FloatRegister b);
  1705   inline void fctidz(FloatRegister d, FloatRegister b);
  1706   inline void fctiw( FloatRegister d, FloatRegister b);
  1707   inline void fctiwz(FloatRegister d, FloatRegister b);
  1708   inline void fcfid( FloatRegister d, FloatRegister b);
  1709   inline void fcfids(FloatRegister d, FloatRegister b);
  1711   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
  1712   inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
  1714   inline void fsqrt( FloatRegister d, FloatRegister b);
  1715   inline void fsqrts(FloatRegister d, FloatRegister b);
  1717   // Vector instructions for >= Power6.
  1718   inline void lvebx(    VectorRegister d, Register s1, Register s2);
  1719   inline void lvehx(    VectorRegister d, Register s1, Register s2);
  1720   inline void lvewx(    VectorRegister d, Register s1, Register s2);
  1721   inline void lvx(      VectorRegister d, Register s1, Register s2);
  1722   inline void lvxl(     VectorRegister d, Register s1, Register s2);
  1723   inline void stvebx(   VectorRegister d, Register s1, Register s2);
  1724   inline void stvehx(   VectorRegister d, Register s1, Register s2);
  1725   inline void stvewx(   VectorRegister d, Register s1, Register s2);
  1726   inline void stvx(     VectorRegister d, Register s1, Register s2);
  1727   inline void stvxl(    VectorRegister d, Register s1, Register s2);
  1728   inline void lvsl(     VectorRegister d, Register s1, Register s2);
  1729   inline void lvsr(     VectorRegister d, Register s1, Register s2);
  1730   inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
  1731   inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
  1732   inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
  1733   inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1734   inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1735   inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
  1736   inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
  1737   inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1738   inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1739   inline void vupkhpx(  VectorRegister d, VectorRegister b);
  1740   inline void vupkhsb(  VectorRegister d, VectorRegister b);
  1741   inline void vupkhsh(  VectorRegister d, VectorRegister b);
  1742   inline void vupklpx(  VectorRegister d, VectorRegister b);
  1743   inline void vupklsb(  VectorRegister d, VectorRegister b);
  1744   inline void vupklsh(  VectorRegister d, VectorRegister b);
  1745   inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1746   inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1747   inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1748   inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1749   inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1750   inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1751   inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
  1752   inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
  1753   inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
  1754   inline void vspltisb( VectorRegister d, int si5);
  1755   inline void vspltish( VectorRegister d, int si5);
  1756   inline void vspltisw( VectorRegister d, int si5);
  1757   inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1758   inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1759   inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
  1760   inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int si4);
  1761   inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
  1762   inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
  1763   inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
  1764   inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1765   inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1766   inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1767   inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1768   inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1769   inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1770   inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1771   inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1772   inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1773   inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1774   inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1775   inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1776   inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1777   inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1778   inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1779   inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1780   inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1781   inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1782   inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1783   inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1784   inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1785   inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
  1786   inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1787   inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1788   inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1789   inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
  1790   inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1791   inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1792   inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1793   inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
  1794   inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1795   inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1796   inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1797   inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1798   inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1799   inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1800   inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1801   inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1802   inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
  1803   inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
  1804   inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
  1805   inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
  1806   inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1807   inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1808   inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1809   inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1810   inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1811   inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1812   inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1813   inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1814   inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1815   inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1816   inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1817   inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1818   inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1819   inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1820   inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1821   inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1822   inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1823   inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1824   inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
  1825   inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
  1826   inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
  1827   inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
  1828   inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
  1829   inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
  1830   inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
  1831   inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
  1832   inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
  1833   inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
  1834   inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1835   inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1836   inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1837   inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
  1838   inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1839   inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
  1840   inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1841   inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1842   inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
  1843   inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
  1844   inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
  1845   inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
  1846   inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
  1847   inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1848   inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1849   inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1850   inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1851   inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1852   inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1853   inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1854   inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1855   inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1856   inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
  1857   inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
  1858   inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
  1859   // Vector Floating-Point not implemented yet
  1860   inline void mtvscr(   VectorRegister b);
  1861   inline void mfvscr(   VectorRegister d);
  1863   // The following encoders use r0 as second operand. These instructions
  1864   // read r0 as '0'.
  1865   inline void lwzx( Register d, Register s2);
  1866   inline void lwz(  Register d, int si16);
  1867   inline void lwax( Register d, Register s2);
  1868   inline void lwa(  Register d, int si16);
  1869   inline void lwbrx(Register d, Register s2);
  1870   inline void lhzx( Register d, Register s2);
  1871   inline void lhz(  Register d, int si16);
  1872   inline void lhax( Register d, Register s2);
  1873   inline void lha(  Register d, int si16);
  1874   inline void lhbrx(Register d, Register s2);
  1875   inline void lbzx( Register d, Register s2);
  1876   inline void lbz(  Register d, int si16);
  1877   inline void ldx(  Register d, Register s2);
  1878   inline void ld(   Register d, int si16);
  1879   inline void stwx( Register d, Register s2);
  1880   inline void stw(  Register d, int si16);
  1881   inline void sthx( Register d, Register s2);
  1882   inline void sth(  Register d, int si16);
  1883   inline void stbx( Register d, Register s2);
  1884   inline void stb(  Register d, int si16);
  1885   inline void stdx( Register d, Register s2);
  1886   inline void std(  Register d, int si16);
  1888   // PPC 2, section 3.2.1 Instruction Cache Instructions
  1889   inline void icbi(    Register s2);
  1890   // PPC 2, section 3.2.2 Data Cache Instructions
  1891   //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
  1892   inline void dcbz(    Register s2);
  1893   inline void dcbst(   Register s2);
  1894   inline void dcbf(    Register s2);
  1895   // dcache read hint
  1896   inline void dcbt(    Register s2);
  1897   inline void dcbtct(  Register s2, int ct);
  1898   inline void dcbtds(  Register s2, int ds);
  1899   // dcache write hint
  1900   inline void dcbtst(  Register s2);
  1901   inline void dcbtstct(Register s2, int ct);
  1903   // Atomics: use ra0mem to disallow R0 as base.
  1904   inline void lwarx_unchecked(Register d, Register b, int eh1);
  1905   inline void ldarx_unchecked(Register d, Register b, int eh1);
  1906   inline void lwarx( Register d, Register b, bool hint_exclusive_access);
  1907   inline void ldarx( Register d, Register b, bool hint_exclusive_access);
  1908   inline void stwcx_(Register s, Register b);
  1909   inline void stdcx_(Register s, Register b);
  1910   inline void lfs(   FloatRegister d, int si16);
  1911   inline void lfsx(  FloatRegister d, Register b);
  1912   inline void lfd(   FloatRegister d, int si16);
  1913   inline void lfdx(  FloatRegister d, Register b);
  1914   inline void stfs(  FloatRegister s, int si16);
  1915   inline void stfsx( FloatRegister s, Register b);
  1916   inline void stfd(  FloatRegister s, int si16);
  1917   inline void stfdx( FloatRegister s, Register b);
  1918   inline void lvebx( VectorRegister d, Register s2);
  1919   inline void lvehx( VectorRegister d, Register s2);
  1920   inline void lvewx( VectorRegister d, Register s2);
  1921   inline void lvx(   VectorRegister d, Register s2);
  1922   inline void lvxl(  VectorRegister d, Register s2);
  1923   inline void stvebx(VectorRegister d, Register s2);
  1924   inline void stvehx(VectorRegister d, Register s2);
  1925   inline void stvewx(VectorRegister d, Register s2);
  1926   inline void stvx(  VectorRegister d, Register s2);
  1927   inline void stvxl( VectorRegister d, Register s2);
  1928   inline void lvsl(  VectorRegister d, Register s2);
  1929   inline void lvsr(  VectorRegister d, Register s2);
  1931   // RegisterOrConstant versions.
  1932   // These emitters choose between the versions using two registers and
  1933   // those with register and immediate, depending on the content of roc.
  1934   // If the constant is not encodable as immediate, instructions to
  1935   // load the constant are emitted beforehand. Store instructions need a
  1936   // tmp reg if the constant is not encodable as immediate.
  1937   // Size unpredictable.
  1938   void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
  1939   void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
  1940   void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  1941   void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
  1942   void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  1943   void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  1944   void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  1945   void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  1946   void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  1947   void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  1948   void add( Register d, RegisterOrConstant roc, Register s1);
  1949   void subf(Register d, RegisterOrConstant roc, Register s1);
  1950   void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
  1953   // Emit several instructions to load a 64 bit constant. This issues a fixed
  1954   // instruction pattern so that the constant can be patched later on.
  1955   enum {
  1956     load_const_size = 5 * BytesPerInstWord
  1957   };
  1958          void load_const(Register d, long a,            Register tmp = noreg);
  1959   inline void load_const(Register d, void* a,           Register tmp = noreg);
  1960   inline void load_const(Register d, Label& L,          Register tmp = noreg);
  1961   inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
  1963   // Load a 64 bit constant, optimized, not identifyable.
  1964   // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
  1965   // 16 bit immediate offset. This is useful if the offset can be encoded in
  1966   // a succeeding instruction.
  1967          int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
  1968   inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
  1969     return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
  1972   // Creation
  1973   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1974 #ifdef CHECK_DELAY
  1975     delay_state = no_delay;
  1976 #endif
  1979   // Testing
  1980 #ifndef PRODUCT
  1981   void test_asm();
  1982 #endif
  1983 };
  1986 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP

mercurial