src/share/vm/opto/lcm.cpp

Tue, 22 Jan 2013 15:34:16 -0800

author
kvn
date
Tue, 22 Jan 2013 15:34:16 -0800
changeset 4479
b30b3c2a0cf2
parent 4315
2aff40cb4703
child 4691
571076d3c79d
permissions
-rw-r--r--

6896617: Optimize sun.nio.cs.ISO_8859_1$Encode.encodeArrayLoop() on x86
Summary: Use SSE4.2 and AVX2 instructions for encodeArray intrinsic.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    45 #ifdef TARGET_ARCH_MODEL_arm
    46 # include "adfiles/ad_arm.hpp"
    47 #endif
    48 #ifdef TARGET_ARCH_MODEL_ppc
    49 # include "adfiles/ad_ppc.hpp"
    50 #endif
    52 // Optimization - Graph Style
    54 //------------------------------implicit_null_check----------------------------
    55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    57 // I can generate a memory op if there is not one nearby.
    58 // The proj is the control projection for the not-null case.
    59 // The val is the pointer being checked for nullness or
    60 // decodeHeapOop_not_null node if it did not fold into address.
    61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    62   // Assume if null check need for 0 offset then always needed
    63   // Intel solaris doesn't support any null checks yet and no
    64   // mechanism exists (yet) to set the switches at an os_cpu level
    65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    67   // Make sure the ptr-is-null path appears to be uncommon!
    68   float f = end()->as_MachIf()->_prob;
    69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    70   if( f > PROB_UNLIKELY_MAG(4) ) return;
    72   uint bidx = 0;                // Capture index of value into memop
    73   bool was_store;               // Memory op is a store op
    75   // Get the successor block for if the test ptr is non-null
    76   Block* not_null_block;  // this one goes with the proj
    77   Block* null_block;
    78   if (_nodes[_nodes.size()-1] == proj) {
    79     null_block     = _succs[0];
    80     not_null_block = _succs[1];
    81   } else {
    82     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    83     not_null_block = _succs[0];
    84     null_block     = _succs[1];
    85   }
    86   while (null_block->is_Empty() == Block::empty_with_goto) {
    87     null_block     = null_block->_succs[0];
    88   }
    90   // Search the exception block for an uncommon trap.
    91   // (See Parse::do_if and Parse::do_ifnull for the reason
    92   // we need an uncommon trap.  Briefly, we need a way to
    93   // detect failure of this optimization, as in 6366351.)
    94   {
    95     bool found_trap = false;
    96     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    97       Node* nn = null_block->_nodes[i1];
    98       if (nn->is_MachCall() &&
    99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
   100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
   101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
   102           jint tr_con = trtype->is_int()->get_con();
   103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   105           assert((int)reason < (int)BitsPerInt, "recode bit map");
   106           if (is_set_nth_bit(allowed_reasons, (int) reason)
   107               && action != Deoptimization::Action_none) {
   108             // This uncommon trap is sure to recompile, eventually.
   109             // When that happens, C->too_many_traps will prevent
   110             // this transformation from happening again.
   111             found_trap = true;
   112           }
   113         }
   114         break;
   115       }
   116     }
   117     if (!found_trap) {
   118       // We did not find an uncommon trap.
   119       return;
   120     }
   121   }
   123   // Check for decodeHeapOop_not_null node which did not fold into address
   124   bool is_decoden = ((intptr_t)val) & 1;
   125   val = (Node*)(((intptr_t)val) & ~1);
   127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   130   // Search the successor block for a load or store who's base value is also
   131   // the tested value.  There may be several.
   132   Node_List *out = new Node_List(Thread::current()->resource_area());
   133   MachNode *best = NULL;        // Best found so far
   134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   135     Node *m = val->out(i);
   136     if( !m->is_Mach() ) continue;
   137     MachNode *mach = m->as_Mach();
   138     was_store = false;
   139     int iop = mach->ideal_Opcode();
   140     switch( iop ) {
   141     case Op_LoadB:
   142     case Op_LoadUB:
   143     case Op_LoadUS:
   144     case Op_LoadD:
   145     case Op_LoadF:
   146     case Op_LoadI:
   147     case Op_LoadL:
   148     case Op_LoadP:
   149     case Op_LoadN:
   150     case Op_LoadS:
   151     case Op_LoadKlass:
   152     case Op_LoadNKlass:
   153     case Op_LoadRange:
   154     case Op_LoadD_unaligned:
   155     case Op_LoadL_unaligned:
   156       assert(mach->in(2) == val, "should be address");
   157       break;
   158     case Op_StoreB:
   159     case Op_StoreC:
   160     case Op_StoreCM:
   161     case Op_StoreD:
   162     case Op_StoreF:
   163     case Op_StoreI:
   164     case Op_StoreL:
   165     case Op_StoreP:
   166     case Op_StoreN:
   167     case Op_StoreNKlass:
   168       was_store = true;         // Memory op is a store op
   169       // Stores will have their address in slot 2 (memory in slot 1).
   170       // If the value being nul-checked is in another slot, it means we
   171       // are storing the checked value, which does NOT check the value!
   172       if( mach->in(2) != val ) continue;
   173       break;                    // Found a memory op?
   174     case Op_StrComp:
   175     case Op_StrEquals:
   176     case Op_StrIndexOf:
   177     case Op_AryEq:
   178     case Op_EncodeISOArray:
   179       // Not a legit memory op for implicit null check regardless of
   180       // embedded loads
   181       continue;
   182     default:                    // Also check for embedded loads
   183       if( !mach->needs_anti_dependence_check() )
   184         continue;               // Not an memory op; skip it
   185       if( must_clone[iop] ) {
   186         // Do not move nodes which produce flags because
   187         // RA will try to clone it to place near branch and
   188         // it will cause recompilation, see clone_node().
   189         continue;
   190       }
   191       {
   192         // Check that value is used in memory address in
   193         // instructions with embedded load (CmpP val1,(val2+off)).
   194         Node* base;
   195         Node* index;
   196         const MachOper* oper = mach->memory_inputs(base, index);
   197         if (oper == NULL || oper == (MachOper*)-1) {
   198           continue;             // Not an memory op; skip it
   199         }
   200         if (val == base ||
   201             val == index && val->bottom_type()->isa_narrowoop()) {
   202           break;                // Found it
   203         } else {
   204           continue;             // Skip it
   205         }
   206       }
   207       break;
   208     }
   209     // check if the offset is not too high for implicit exception
   210     {
   211       intptr_t offset = 0;
   212       const TypePtr *adr_type = NULL;  // Do not need this return value here
   213       const Node* base = mach->get_base_and_disp(offset, adr_type);
   214       if (base == NULL || base == NodeSentinel) {
   215         // Narrow oop address doesn't have base, only index
   216         if( val->bottom_type()->isa_narrowoop() &&
   217             MacroAssembler::needs_explicit_null_check(offset) )
   218           continue;             // Give up if offset is beyond page size
   219         // cannot reason about it; is probably not implicit null exception
   220       } else {
   221         const TypePtr* tptr;
   222         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
   223           // 32-bits narrow oop can be the base of address expressions
   224           tptr = base->bottom_type()->make_ptr();
   225         } else {
   226           // only regular oops are expected here
   227           tptr = base->bottom_type()->is_ptr();
   228         }
   229         // Give up if offset is not a compile-time constant
   230         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   231           continue;
   232         offset += tptr->_offset; // correct if base is offseted
   233         if( MacroAssembler::needs_explicit_null_check(offset) )
   234           continue;             // Give up is reference is beyond 4K page size
   235       }
   236     }
   238     // Check ctrl input to see if the null-check dominates the memory op
   239     Block *cb = cfg->_bbs[mach->_idx];
   240     cb = cb->_idom;             // Always hoist at least 1 block
   241     if( !was_store ) {          // Stores can be hoisted only one block
   242       while( cb->_dom_depth > (_dom_depth + 1))
   243         cb = cb->_idom;         // Hoist loads as far as we want
   244       // The non-null-block should dominate the memory op, too. Live
   245       // range spilling will insert a spill in the non-null-block if it is
   246       // needs to spill the memory op for an implicit null check.
   247       if (cb->_dom_depth == (_dom_depth + 1)) {
   248         if (cb != not_null_block) continue;
   249         cb = cb->_idom;
   250       }
   251     }
   252     if( cb != this ) continue;
   254     // Found a memory user; see if it can be hoisted to check-block
   255     uint vidx = 0;              // Capture index of value into memop
   256     uint j;
   257     for( j = mach->req()-1; j > 0; j-- ) {
   258       if( mach->in(j) == val ) {
   259         vidx = j;
   260         // Ignore DecodeN val which could be hoisted to where needed.
   261         if( is_decoden ) continue;
   262       }
   263       // Block of memory-op input
   264       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   265       Block *b = this;          // Start from nul check
   266       while( b != inb && b->_dom_depth > inb->_dom_depth )
   267         b = b->_idom;           // search upwards for input
   268       // See if input dominates null check
   269       if( b != inb )
   270         break;
   271     }
   272     if( j > 0 )
   273       continue;
   274     Block *mb = cfg->_bbs[mach->_idx];
   275     // Hoisting stores requires more checks for the anti-dependence case.
   276     // Give up hoisting if we have to move the store past any load.
   277     if( was_store ) {
   278       Block *b = mb;            // Start searching here for a local load
   279       // mach use (faulting) trying to hoist
   280       // n might be blocker to hoisting
   281       while( b != this ) {
   282         uint k;
   283         for( k = 1; k < b->_nodes.size(); k++ ) {
   284           Node *n = b->_nodes[k];
   285           if( n->needs_anti_dependence_check() &&
   286               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   287             break;              // Found anti-dependent load
   288         }
   289         if( k < b->_nodes.size() )
   290           break;                // Found anti-dependent load
   291         // Make sure control does not do a merge (would have to check allpaths)
   292         if( b->num_preds() != 2 ) break;
   293         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   294       }
   295       if( b != this ) continue;
   296     }
   298     // Make sure this memory op is not already being used for a NullCheck
   299     Node *e = mb->end();
   300     if( e->is_MachNullCheck() && e->in(1) == mach )
   301       continue;                 // Already being used as a NULL check
   303     // Found a candidate!  Pick one with least dom depth - the highest
   304     // in the dom tree should be closest to the null check.
   305     if( !best ||
   306         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   307       best = mach;
   308       bidx = vidx;
   310     }
   311   }
   312   // No candidate!
   313   if( !best ) return;
   315   // ---- Found an implicit null check
   316   extern int implicit_null_checks;
   317   implicit_null_checks++;
   319   if( is_decoden ) {
   320     // Check if we need to hoist decodeHeapOop_not_null first.
   321     Block *valb = cfg->_bbs[val->_idx];
   322     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
   323       // Hoist it up to the end of the test block.
   324       valb->find_remove(val);
   325       this->add_inst(val);
   326       cfg->_bbs.map(val->_idx,this);
   327       // DecodeN on x86 may kill flags. Check for flag-killing projections
   328       // that also need to be hoisted.
   329       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   330         Node* n = val->fast_out(j);
   331         if( n->is_MachProj() ) {
   332           cfg->_bbs[n->_idx]->find_remove(n);
   333           this->add_inst(n);
   334           cfg->_bbs.map(n->_idx,this);
   335         }
   336       }
   337     }
   338   }
   339   // Hoist the memory candidate up to the end of the test block.
   340   Block *old_block = cfg->_bbs[best->_idx];
   341   old_block->find_remove(best);
   342   add_inst(best);
   343   cfg->_bbs.map(best->_idx,this);
   345   // Move the control dependence
   346   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   347     best->set_req(0, _nodes[0]);
   349   // Check for flag-killing projections that also need to be hoisted
   350   // Should be DU safe because no edge updates.
   351   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   352     Node* n = best->fast_out(j);
   353     if( n->is_MachProj() ) {
   354       cfg->_bbs[n->_idx]->find_remove(n);
   355       add_inst(n);
   356       cfg->_bbs.map(n->_idx,this);
   357     }
   358   }
   360   Compile *C = cfg->C;
   361   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   362   // One of two graph shapes got matched:
   363   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   364   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   365   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   366   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   367   // We need to flip the projections to keep the same semantics.
   368   if( proj->Opcode() == Op_IfTrue ) {
   369     // Swap order of projections in basic block to swap branch targets
   370     Node *tmp1 = _nodes[end_idx()+1];
   371     Node *tmp2 = _nodes[end_idx()+2];
   372     _nodes.map(end_idx()+1, tmp2);
   373     _nodes.map(end_idx()+2, tmp1);
   374     Node *tmp = new (C) Node(C->top()); // Use not NULL input
   375     tmp1->replace_by(tmp);
   376     tmp2->replace_by(tmp1);
   377     tmp->replace_by(tmp2);
   378     tmp->destruct();
   379   }
   381   // Remove the existing null check; use a new implicit null check instead.
   382   // Since schedule-local needs precise def-use info, we need to correct
   383   // it as well.
   384   Node *old_tst = proj->in(0);
   385   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   386   _nodes.map(end_idx(),nul_chk);
   387   cfg->_bbs.map(nul_chk->_idx,this);
   388   // Redirect users of old_test to nul_chk
   389   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   390     old_tst->last_out(i2)->set_req(0, nul_chk);
   391   // Clean-up any dead code
   392   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   393     old_tst->set_req(i3, NULL);
   395   cfg->latency_from_uses(nul_chk);
   396   cfg->latency_from_uses(best);
   397 }
   400 //------------------------------select-----------------------------------------
   401 // Select a nice fellow from the worklist to schedule next. If there is only
   402 // one choice, then use it. Projections take top priority for correctness
   403 // reasons - if I see a projection, then it is next.  There are a number of
   404 // other special cases, for instructions that consume condition codes, et al.
   405 // These are chosen immediately. Some instructions are required to immediately
   406 // precede the last instruction in the block, and these are taken last. Of the
   407 // remaining cases (most), choose the instruction with the greatest latency
   408 // (that is, the most number of pseudo-cycles required to the end of the
   409 // routine). If there is a tie, choose the instruction with the most inputs.
   410 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
   412   // If only a single entry on the stack, use it
   413   uint cnt = worklist.size();
   414   if (cnt == 1) {
   415     Node *n = worklist[0];
   416     worklist.map(0,worklist.pop());
   417     return n;
   418   }
   420   uint choice  = 0; // Bigger is most important
   421   uint latency = 0; // Bigger is scheduled first
   422   uint score   = 0; // Bigger is better
   423   int idx = -1;     // Index in worklist
   425   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   426     // Order in worklist is used to break ties.
   427     // See caller for how this is used to delay scheduling
   428     // of induction variable increments to after the other
   429     // uses of the phi are scheduled.
   430     Node *n = worklist[i];      // Get Node on worklist
   432     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   433     if( n->is_Proj() ||         // Projections always win
   434         n->Opcode()== Op_Con || // So does constant 'Top'
   435         iop == Op_CreateEx ||   // Create-exception must start block
   436         iop == Op_CheckCastPP
   437         ) {
   438       worklist.map(i,worklist.pop());
   439       return n;
   440     }
   442     // Final call in a block must be adjacent to 'catch'
   443     Node *e = end();
   444     if( e->is_Catch() && e->in(0)->in(0) == n )
   445       continue;
   447     // Memory op for an implicit null check has to be at the end of the block
   448     if( e->is_MachNullCheck() && e->in(1) == n )
   449       continue;
   451     // Schedule IV increment last.
   452     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
   453         e->in(1)->in(1) == n && n->is_iteratively_computed())
   454       continue;
   456     uint n_choice  = 2;
   458     // See if this instruction is consumed by a branch. If so, then (as the
   459     // branch is the last instruction in the basic block) force it to the
   460     // end of the basic block
   461     if ( must_clone[iop] ) {
   462       // See if any use is a branch
   463       bool found_machif = false;
   465       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   466         Node* use = n->fast_out(j);
   468         // The use is a conditional branch, make them adjacent
   469         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   470           found_machif = true;
   471           break;
   472         }
   474         // More than this instruction pending for successor to be ready,
   475         // don't choose this if other opportunities are ready
   476         if (ready_cnt.at(use->_idx) > 1)
   477           n_choice = 1;
   478       }
   480       // loop terminated, prefer not to use this instruction
   481       if (found_machif)
   482         continue;
   483     }
   485     // See if this has a predecessor that is "must_clone", i.e. sets the
   486     // condition code. If so, choose this first
   487     for (uint j = 0; j < n->req() ; j++) {
   488       Node *inn = n->in(j);
   489       if (inn) {
   490         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   491           n_choice = 3;
   492           break;
   493         }
   494       }
   495     }
   497     // MachTemps should be scheduled last so they are near their uses
   498     if (n->is_MachTemp()) {
   499       n_choice = 1;
   500     }
   502     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
   503     uint n_score   = n->req();   // Many inputs get high score to break ties
   505     // Keep best latency found
   506     if( choice < n_choice ||
   507         ( choice == n_choice &&
   508           ( latency < n_latency ||
   509             ( latency == n_latency &&
   510               ( score < n_score ))))) {
   511       choice  = n_choice;
   512       latency = n_latency;
   513       score   = n_score;
   514       idx     = i;               // Also keep index in worklist
   515     }
   516   } // End of for all ready nodes in worklist
   518   assert(idx >= 0, "index should be set");
   519   Node *n = worklist[(uint)idx];      // Get the winner
   521   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   522   return n;
   523 }
   526 //------------------------------set_next_call----------------------------------
   527 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   528   if( next_call.test_set(n->_idx) ) return;
   529   for( uint i=0; i<n->len(); i++ ) {
   530     Node *m = n->in(i);
   531     if( !m ) continue;  // must see all nodes in block that precede call
   532     if( bbs[m->_idx] == this )
   533       set_next_call( m, next_call, bbs );
   534   }
   535 }
   537 //------------------------------needed_for_next_call---------------------------
   538 // Set the flag 'next_call' for each Node that is needed for the next call to
   539 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   540 // next subroutine call get priority - basically it moves things NOT needed
   541 // for the next call till after the call.  This prevents me from trying to
   542 // carry lots of stuff live across a call.
   543 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   544   // Find the next control-defining Node in this block
   545   Node* call = NULL;
   546   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   547     Node* m = this_call->fast_out(i);
   548     if( bbs[m->_idx] == this && // Local-block user
   549         m != this_call &&       // Not self-start node
   550         m->is_MachCall() )
   551       call = m;
   552       break;
   553   }
   554   if (call == NULL)  return;    // No next call (e.g., block end is near)
   555   // Set next-call for all inputs to this call
   556   set_next_call(call, next_call, bbs);
   557 }
   559 //------------------------------add_call_kills-------------------------------------
   560 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
   561   // Fill in the kill mask for the call
   562   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   563     if( !regs.Member(r) ) {     // Not already defined by the call
   564       // Save-on-call register?
   565       if ((save_policy[r] == 'C') ||
   566           (save_policy[r] == 'A') ||
   567           ((save_policy[r] == 'E') && exclude_soe)) {
   568         proj->_rout.Insert(r);
   569       }
   570     }
   571   }
   572 }
   575 //------------------------------sched_call-------------------------------------
   576 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   577   RegMask regs;
   579   // Schedule all the users of the call right now.  All the users are
   580   // projection Nodes, so they must be scheduled next to the call.
   581   // Collect all the defined registers.
   582   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   583     Node* n = mcall->fast_out(i);
   584     assert( n->is_MachProj(), "" );
   585     int n_cnt = ready_cnt.at(n->_idx)-1;
   586     ready_cnt.at_put(n->_idx, n_cnt);
   587     assert( n_cnt == 0, "" );
   588     // Schedule next to call
   589     _nodes.map(node_cnt++, n);
   590     // Collect defined registers
   591     regs.OR(n->out_RegMask());
   592     // Check for scheduling the next control-definer
   593     if( n->bottom_type() == Type::CONTROL )
   594       // Warm up next pile of heuristic bits
   595       needed_for_next_call(n, next_call, bbs);
   597     // Children of projections are now all ready
   598     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   599       Node* m = n->fast_out(j); // Get user
   600       if( bbs[m->_idx] != this ) continue;
   601       if( m->is_Phi() ) continue;
   602       int m_cnt = ready_cnt.at(m->_idx)-1;
   603       ready_cnt.at_put(m->_idx, m_cnt);
   604       if( m_cnt == 0 )
   605         worklist.push(m);
   606     }
   608   }
   610   // Act as if the call defines the Frame Pointer.
   611   // Certainly the FP is alive and well after the call.
   612   regs.Insert(matcher.c_frame_pointer());
   614   // Set all registers killed and not already defined by the call.
   615   uint r_cnt = mcall->tf()->range()->cnt();
   616   int op = mcall->ideal_Opcode();
   617   MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   618   bbs.map(proj->_idx,this);
   619   _nodes.insert(node_cnt++, proj);
   621   // Select the right register save policy.
   622   const char * save_policy;
   623   switch (op) {
   624     case Op_CallRuntime:
   625     case Op_CallLeaf:
   626     case Op_CallLeafNoFP:
   627       // Calling C code so use C calling convention
   628       save_policy = matcher._c_reg_save_policy;
   629       break;
   631     case Op_CallStaticJava:
   632     case Op_CallDynamicJava:
   633       // Calling Java code so use Java calling convention
   634       save_policy = matcher._register_save_policy;
   635       break;
   637     default:
   638       ShouldNotReachHere();
   639   }
   641   // When using CallRuntime mark SOE registers as killed by the call
   642   // so values that could show up in the RegisterMap aren't live in a
   643   // callee saved register since the register wouldn't know where to
   644   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   645   // have debug info on them.  Strictly speaking this only needs to be
   646   // done for oops since idealreg2debugmask takes care of debug info
   647   // references but there no way to handle oops differently than other
   648   // pointers as far as the kill mask goes.
   649   bool exclude_soe = op == Op_CallRuntime;
   651   // If the call is a MethodHandle invoke, we need to exclude the
   652   // register which is used to save the SP value over MH invokes from
   653   // the mask.  Otherwise this register could be used for
   654   // deoptimization information.
   655   if (op == Op_CallStaticJava) {
   656     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   657     if (mcallstaticjava->_method_handle_invoke)
   658       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   659   }
   661   add_call_kills(proj, regs, save_policy, exclude_soe);
   663   return node_cnt;
   664 }
   667 //------------------------------schedule_local---------------------------------
   668 // Topological sort within a block.  Someday become a real scheduler.
   669 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
   670   // Already "sorted" are the block start Node (as the first entry), and
   671   // the block-ending Node and any trailing control projections.  We leave
   672   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   673   // Node.  Everything else gets topo-sorted.
   675 #ifndef PRODUCT
   676     if (cfg->trace_opto_pipelining()) {
   677       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   678       for (uint i = 0;i < _nodes.size();i++) {
   679         tty->print("# ");
   680         _nodes[i]->fast_dump();
   681       }
   682       tty->print_cr("#");
   683     }
   684 #endif
   686   // RootNode is already sorted
   687   if( _nodes.size() == 1 ) return true;
   689   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   690   uint node_cnt = end_idx();
   691   uint phi_cnt = 1;
   692   uint i;
   693   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   694     Node *n = _nodes[i];
   695     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   696         (n->is_Proj()  && n->in(0) == head()) ) {
   697       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   698       _nodes.map(i,_nodes[phi_cnt]);
   699       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   700     } else {                    // All others
   701       // Count block-local inputs to 'n'
   702       uint cnt = n->len();      // Input count
   703       uint local = 0;
   704       for( uint j=0; j<cnt; j++ ) {
   705         Node *m = n->in(j);
   706         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   707           local++;              // One more block-local input
   708       }
   709       ready_cnt.at_put(n->_idx, local); // Count em up
   711 #ifdef ASSERT
   712       if( UseConcMarkSweepGC || UseG1GC ) {
   713         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   714           // Check the precedence edges
   715           for (uint prec = n->req(); prec < n->len(); prec++) {
   716             Node* oop_store = n->in(prec);
   717             if (oop_store != NULL) {
   718               assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   719             }
   720           }
   721         }
   722       }
   723 #endif
   725       // A few node types require changing a required edge to a precedence edge
   726       // before allocation.
   727       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   728           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   729            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   730         // MemBarAcquire could be created without Precedent edge.
   731         // del_req() replaces the specified edge with the last input edge
   732         // and then removes the last edge. If the specified edge > number of
   733         // edges the last edge will be moved outside of the input edges array
   734         // and the edge will be lost. This is why this code should be
   735         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   736         Node *x = n->in(TypeFunc::Parms);
   737         n->del_req(TypeFunc::Parms);
   738         n->add_prec(x);
   739       }
   740     }
   741   }
   742   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   743     ready_cnt.at_put(_nodes[i2]->_idx, 0);
   745   // All the prescheduled guys do not hold back internal nodes
   746   uint i3;
   747   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   748     Node *n = _nodes[i3];       // Get pre-scheduled
   749     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   750       Node* m = n->fast_out(j);
   751       if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
   752         int m_cnt = ready_cnt.at(m->_idx)-1;
   753         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
   754       }
   755     }
   756   }
   758   Node_List delay;
   759   // Make a worklist
   760   Node_List worklist;
   761   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   762     Node *m = _nodes[i4];
   763     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
   764       if (m->is_iteratively_computed()) {
   765         // Push induction variable increments last to allow other uses
   766         // of the phi to be scheduled first. The select() method breaks
   767         // ties in scheduling by worklist order.
   768         delay.push(m);
   769       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   770         // Force the CreateEx to the top of the list so it's processed
   771         // first and ends up at the start of the block.
   772         worklist.insert(0, m);
   773       } else {
   774         worklist.push(m);         // Then on to worklist!
   775       }
   776     }
   777   }
   778   while (delay.size()) {
   779     Node* d = delay.pop();
   780     worklist.push(d);
   781   }
   783   // Warm up the 'next_call' heuristic bits
   784   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   786 #ifndef PRODUCT
   787     if (cfg->trace_opto_pipelining()) {
   788       for (uint j=0; j<_nodes.size(); j++) {
   789         Node     *n = _nodes[j];
   790         int     idx = n->_idx;
   791         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
   792         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
   793         tty->print("%4d: %s\n", idx, n->Name());
   794       }
   795     }
   796 #endif
   798   uint max_idx = (uint)ready_cnt.length();
   799   // Pull from worklist and schedule
   800   while( worklist.size() ) {    // Worklist is not ready
   802 #ifndef PRODUCT
   803     if (cfg->trace_opto_pipelining()) {
   804       tty->print("#   ready list:");
   805       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   806         Node *n = worklist[i];      // Get Node on worklist
   807         tty->print(" %d", n->_idx);
   808       }
   809       tty->cr();
   810     }
   811 #endif
   813     // Select and pop a ready guy from worklist
   814     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   815     _nodes.map(phi_cnt++,n);    // Schedule him next
   817 #ifndef PRODUCT
   818     if (cfg->trace_opto_pipelining()) {
   819       tty->print("#    select %d: %s", n->_idx, n->Name());
   820       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
   821       n->dump();
   822       if (Verbose) {
   823         tty->print("#   ready list:");
   824         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   825           Node *n = worklist[i];      // Get Node on worklist
   826           tty->print(" %d", n->_idx);
   827         }
   828         tty->cr();
   829       }
   830     }
   832 #endif
   833     if( n->is_MachCall() ) {
   834       MachCallNode *mcall = n->as_MachCall();
   835       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   836       continue;
   837     }
   839     if (n->is_Mach() && n->as_Mach()->has_call()) {
   840       RegMask regs;
   841       regs.Insert(matcher.c_frame_pointer());
   842       regs.OR(n->out_RegMask());
   844       MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
   845       cfg->_bbs.map(proj->_idx,this);
   846       _nodes.insert(phi_cnt++, proj);
   848       add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
   849     }
   851     // Children are now all ready
   852     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   853       Node* m = n->fast_out(i5); // Get user
   854       if( cfg->_bbs[m->_idx] != this ) continue;
   855       if( m->is_Phi() ) continue;
   856       if (m->_idx >= max_idx) { // new node, skip it
   857         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
   858         continue;
   859       }
   860       int m_cnt = ready_cnt.at(m->_idx)-1;
   861       ready_cnt.at_put(m->_idx, m_cnt);
   862       if( m_cnt == 0 )
   863         worklist.push(m);
   864     }
   865   }
   867   if( phi_cnt != end_idx() ) {
   868     // did not schedule all.  Retry, Bailout, or Die
   869     Compile* C = matcher.C;
   870     if (C->subsume_loads() == true && !C->failing()) {
   871       // Retry with subsume_loads == false
   872       // If this is the first failure, the sentinel string will "stick"
   873       // to the Compile object, and the C2Compiler will see it and retry.
   874       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   875     }
   876     // assert( phi_cnt == end_idx(), "did not schedule all" );
   877     return false;
   878   }
   880 #ifndef PRODUCT
   881   if (cfg->trace_opto_pipelining()) {
   882     tty->print_cr("#");
   883     tty->print_cr("# after schedule_local");
   884     for (uint i = 0;i < _nodes.size();i++) {
   885       tty->print("# ");
   886       _nodes[i]->fast_dump();
   887     }
   888     tty->cr();
   889   }
   890 #endif
   893   return true;
   894 }
   896 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   897 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   898   for (uint l = 0; l < use->len(); l++) {
   899     if (use->in(l) == old_def) {
   900       if (l < use->req()) {
   901         use->set_req(l, new_def);
   902       } else {
   903         use->rm_prec(l);
   904         use->add_prec(new_def);
   905         l--;
   906       }
   907     }
   908   }
   909 }
   911 //------------------------------catch_cleanup_find_cloned_def------------------
   912 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   913   assert( use_blk != def_blk, "Inter-block cleanup only");
   915   // The use is some block below the Catch.  Find and return the clone of the def
   916   // that dominates the use. If there is no clone in a dominating block, then
   917   // create a phi for the def in a dominating block.
   919   // Find which successor block dominates this use.  The successor
   920   // blocks must all be single-entry (from the Catch only; I will have
   921   // split blocks to make this so), hence they all dominate.
   922   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   923     use_blk = use_blk->_idom;
   925   // Find the successor
   926   Node *fixup = NULL;
   928   uint j;
   929   for( j = 0; j < def_blk->_num_succs; j++ )
   930     if( use_blk == def_blk->_succs[j] )
   931       break;
   933   if( j == def_blk->_num_succs ) {
   934     // Block at same level in dom-tree is not a successor.  It needs a
   935     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   936     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   937     for(uint k = 1; k < use_blk->num_preds(); k++) {
   938       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   939     }
   941     // Check to see if the use_blk already has an identical phi inserted.
   942     // If it exists, it will be at the first position since all uses of a
   943     // def are processed together.
   944     Node *phi = use_blk->_nodes[1];
   945     if( phi->is_Phi() ) {
   946       fixup = phi;
   947       for (uint k = 1; k < use_blk->num_preds(); k++) {
   948         if (phi->in(k) != inputs[k]) {
   949           // Not a match
   950           fixup = NULL;
   951           break;
   952         }
   953       }
   954     }
   956     // If an existing PhiNode was not found, make a new one.
   957     if (fixup == NULL) {
   958       Node *new_phi = PhiNode::make(use_blk->head(), def);
   959       use_blk->_nodes.insert(1, new_phi);
   960       bbs.map(new_phi->_idx, use_blk);
   961       for (uint k = 1; k < use_blk->num_preds(); k++) {
   962         new_phi->set_req(k, inputs[k]);
   963       }
   964       fixup = new_phi;
   965     }
   967   } else {
   968     // Found the use just below the Catch.  Make it use the clone.
   969     fixup = use_blk->_nodes[n_clone_idx];
   970   }
   972   return fixup;
   973 }
   975 //--------------------------catch_cleanup_intra_block--------------------------
   976 // Fix all input edges in use that reference "def".  The use is in the same
   977 // block as the def and both have been cloned in each successor block.
   978 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   980   // Both the use and def have been cloned. For each successor block,
   981   // get the clone of the use, and make its input the clone of the def
   982   // found in that block.
   984   uint use_idx = blk->find_node(use);
   985   uint offset_idx = use_idx - beg;
   986   for( uint k = 0; k < blk->_num_succs; k++ ) {
   987     // Get clone in each successor block
   988     Block *sb = blk->_succs[k];
   989     Node *clone = sb->_nodes[offset_idx+1];
   990     assert( clone->Opcode() == use->Opcode(), "" );
   992     // Make use-clone reference the def-clone
   993     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   994   }
   995 }
   997 //------------------------------catch_cleanup_inter_block---------------------
   998 // Fix all input edges in use that reference "def".  The use is in a different
   999 // block than the def.
  1000 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
  1001   if( !use_blk ) return;        // Can happen if the use is a precedence edge
  1003   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
  1004   catch_cleanup_fix_all_inputs(use, def, new_def);
  1007 //------------------------------call_catch_cleanup-----------------------------
  1008 // If we inserted any instructions between a Call and his CatchNode,
  1009 // clone the instructions on all paths below the Catch.
  1010 void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
  1012   // End of region to clone
  1013   uint end = end_idx();
  1014   if( !_nodes[end]->is_Catch() ) return;
  1015   // Start of region to clone
  1016   uint beg = end;
  1017   while(!_nodes[beg-1]->is_MachProj() ||
  1018         !_nodes[beg-1]->in(0)->is_MachCall() ) {
  1019     beg--;
  1020     assert(beg > 0,"Catch cleanup walking beyond block boundary");
  1022   // Range of inserted instructions is [beg, end)
  1023   if( beg == end ) return;
  1025   // Clone along all Catch output paths.  Clone area between the 'beg' and
  1026   // 'end' indices.
  1027   for( uint i = 0; i < _num_succs; i++ ) {
  1028     Block *sb = _succs[i];
  1029     // Clone the entire area; ignoring the edge fixup for now.
  1030     for( uint j = end; j > beg; j-- ) {
  1031       // It is safe here to clone a node with anti_dependence
  1032       // since clones dominate on each path.
  1033       Node *clone = _nodes[j-1]->clone();
  1034       sb->_nodes.insert( 1, clone );
  1035       bbs.map(clone->_idx,sb);
  1040   // Fixup edges.  Check the def-use info per cloned Node
  1041   for(uint i2 = beg; i2 < end; i2++ ) {
  1042     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1043     Node *n = _nodes[i2];        // Node that got cloned
  1044     // Need DU safe iterator because of edge manipulation in calls.
  1045     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1046     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1047       out->push(n->fast_out(j1));
  1049     uint max = out->size();
  1050     for (uint j = 0; j < max; j++) {// For all users
  1051       Node *use = out->pop();
  1052       Block *buse = bbs[use->_idx];
  1053       if( use->is_Phi() ) {
  1054         for( uint k = 1; k < use->req(); k++ )
  1055           if( use->in(k) == n ) {
  1056             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
  1057             use->set_req(k, fixup);
  1059       } else {
  1060         if (this == buse) {
  1061           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
  1062         } else {
  1063           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
  1066     } // End for all users
  1068   } // End of for all Nodes in cloned area
  1070   // Remove the now-dead cloned ops
  1071   for(uint i3 = beg; i3 < end; i3++ ) {
  1072     _nodes[beg]->disconnect_inputs(NULL, C);
  1073     _nodes.remove(beg);
  1076   // If the successor blocks have a CreateEx node, move it back to the top
  1077   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
  1078     Block *sb = _succs[i4];
  1079     uint new_cnt = end - beg;
  1080     // Remove any newly created, but dead, nodes.
  1081     for( uint j = new_cnt; j > 0; j-- ) {
  1082       Node *n = sb->_nodes[j];
  1083       if (n->outcnt() == 0 &&
  1084           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1085         n->disconnect_inputs(NULL, C);
  1086         sb->_nodes.remove(j);
  1087         new_cnt--;
  1090     // If any newly created nodes remain, move the CreateEx node to the top
  1091     if (new_cnt > 0) {
  1092       Node *cex = sb->_nodes[1+new_cnt];
  1093       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1094         sb->_nodes.remove(1+new_cnt);
  1095         sb->_nodes.insert(1,cex);

mercurial