src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 20 Sep 2012 09:52:56 -0700

author
johnc
date
Thu, 20 Sep 2012 09:52:56 -0700
changeset 4067
b2ef234911c9
parent 4063
9646b7ff4d14
child 4130
2e6857353b2c
permissions
-rw-r--r--

7190666: G1: assert(_unused == 0) failed: Inconsistency in PLAB stats
Summary: Reset the fields in ParGCAllocBuffer, that are used for accumulating values for the ResizePLAB sensors in PLABStats, to zero after flushing the values to the PLABStats fields. Flush PLABStats values only when retiring the final allocation buffers prior to disposing of a G1ParScanThreadState object, rather than when retiring every allocation buffer.
Reviewed-by: jwilhelm, jmasa, ysr

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class GenerationSpec;
    49 class OopsInHeapRegionClosure;
    50 class G1KlassScanClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj<mtGC> {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   uint        _length;
    89   uint        _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   uint         length() { return _length; }
   105   uint         survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_G1CollectFull;
   194   friend class VM_G1IncCollectionPause;
   195   friend class VMStructs;
   196   friend class MutatorAllocRegion;
   197   friend class SurvivorGCAllocRegion;
   198   friend class OldGCAllocRegion;
   200   // Closures used in implementation.
   201   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
   202   friend class G1ParCopyClosure;
   203   friend class G1IsAliveClosure;
   204   friend class G1EvacuateFollowersClosure;
   205   friend class G1ParScanThreadState;
   206   friend class G1ParScanClosureSuper;
   207   friend class G1ParEvacuateFollowersClosure;
   208   friend class G1ParTask;
   209   friend class G1FreeGarbageRegionClosure;
   210   friend class RefineCardTableEntryClosure;
   211   friend class G1PrepareCompactClosure;
   212   friend class RegionSorter;
   213   friend class RegionResetter;
   214   friend class CountRCClosure;
   215   friend class EvacPopObjClosure;
   216   friend class G1ParCleanupCTTask;
   218   // Other related classes.
   219   friend class G1MarkSweep;
   221 private:
   222   // The one and only G1CollectedHeap, so static functions can find it.
   223   static G1CollectedHeap* _g1h;
   225   static size_t _humongous_object_threshold_in_words;
   227   // Storage for the G1 heap.
   228   VirtualSpace _g1_storage;
   229   MemRegion    _g1_reserved;
   231   // The part of _g1_storage that is currently committed.
   232   MemRegion _g1_committed;
   234   // The master free list. It will satisfy all new region allocations.
   235   MasterFreeRegionList      _free_list;
   237   // The secondary free list which contains regions that have been
   238   // freed up during the cleanup process. This will be appended to the
   239   // master free list when appropriate.
   240   SecondaryFreeRegionList   _secondary_free_list;
   242   // It keeps track of the old regions.
   243   MasterOldRegionSet        _old_set;
   245   // It keeps track of the humongous regions.
   246   MasterHumongousRegionSet  _humongous_set;
   248   // The number of regions we could create by expansion.
   249   uint _expansion_regions;
   251   // The block offset table for the G1 heap.
   252   G1BlockOffsetSharedArray* _bot_shared;
   254   // Tears down the region sets / lists so that they are empty and the
   255   // regions on the heap do not belong to a region set / list. The
   256   // only exception is the humongous set which we leave unaltered. If
   257   // free_list_only is true, it will only tear down the master free
   258   // list. It is called before a Full GC (free_list_only == false) or
   259   // before heap shrinking (free_list_only == true).
   260   void tear_down_region_sets(bool free_list_only);
   262   // Rebuilds the region sets / lists so that they are repopulated to
   263   // reflect the contents of the heap. The only exception is the
   264   // humongous set which was not torn down in the first place. If
   265   // free_list_only is true, it will only rebuild the master free
   266   // list. It is called after a Full GC (free_list_only == false) or
   267   // after heap shrinking (free_list_only == true).
   268   void rebuild_region_sets(bool free_list_only);
   270   // The sequence of all heap regions in the heap.
   271   HeapRegionSeq _hrs;
   273   // Alloc region used to satisfy mutator allocation requests.
   274   MutatorAllocRegion _mutator_alloc_region;
   276   // Alloc region used to satisfy allocation requests by the GC for
   277   // survivor objects.
   278   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   280   // PLAB sizing policy for survivors.
   281   PLABStats _survivor_plab_stats;
   283   // Alloc region used to satisfy allocation requests by the GC for
   284   // old objects.
   285   OldGCAllocRegion _old_gc_alloc_region;
   287   // PLAB sizing policy for tenured objects.
   288   PLABStats _old_plab_stats;
   290   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   291     PLABStats* stats = NULL;
   293     switch (purpose) {
   294     case GCAllocForSurvived:
   295       stats = &_survivor_plab_stats;
   296       break;
   297     case GCAllocForTenured:
   298       stats = &_old_plab_stats;
   299       break;
   300     default:
   301       assert(false, "unrecognized GCAllocPurpose");
   302     }
   304     return stats;
   305   }
   307   // The last old region we allocated to during the last GC.
   308   // Typically, it is not full so we should re-use it during the next GC.
   309   HeapRegion* _retained_old_gc_alloc_region;
   311   // It specifies whether we should attempt to expand the heap after a
   312   // region allocation failure. If heap expansion fails we set this to
   313   // false so that we don't re-attempt the heap expansion (it's likely
   314   // that subsequent expansion attempts will also fail if one fails).
   315   // Currently, it is only consulted during GC and it's reset at the
   316   // start of each GC.
   317   bool _expand_heap_after_alloc_failure;
   319   // It resets the mutator alloc region before new allocations can take place.
   320   void init_mutator_alloc_region();
   322   // It releases the mutator alloc region.
   323   void release_mutator_alloc_region();
   325   // It initializes the GC alloc regions at the start of a GC.
   326   void init_gc_alloc_regions();
   328   // It releases the GC alloc regions at the end of a GC.
   329   void release_gc_alloc_regions();
   331   // It does any cleanup that needs to be done on the GC alloc regions
   332   // before a Full GC.
   333   void abandon_gc_alloc_regions();
   335   // Helper for monitoring and management support.
   336   G1MonitoringSupport* _g1mm;
   338   // Determines PLAB size for a particular allocation purpose.
   339   size_t desired_plab_sz(GCAllocPurpose purpose);
   341   // Outside of GC pauses, the number of bytes used in all regions other
   342   // than the current allocation region.
   343   size_t _summary_bytes_used;
   345   // This is used for a quick test on whether a reference points into
   346   // the collection set or not. Basically, we have an array, with one
   347   // byte per region, and that byte denotes whether the corresponding
   348   // region is in the collection set or not. The entry corresponding
   349   // the bottom of the heap, i.e., region 0, is pointed to by
   350   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   351   // biased so that it actually points to address 0 of the address
   352   // space, to make the test as fast as possible (we can simply shift
   353   // the address to address into it, instead of having to subtract the
   354   // bottom of the heap from the address before shifting it; basically
   355   // it works in the same way the card table works).
   356   bool* _in_cset_fast_test;
   358   // The allocated array used for the fast test on whether a reference
   359   // points into the collection set or not. This field is also used to
   360   // free the array.
   361   bool* _in_cset_fast_test_base;
   363   // The length of the _in_cset_fast_test_base array.
   364   uint _in_cset_fast_test_length;
   366   volatile unsigned _gc_time_stamp;
   368   size_t* _surviving_young_words;
   370   G1HRPrinter _hr_printer;
   372   void setup_surviving_young_words();
   373   void update_surviving_young_words(size_t* surv_young_words);
   374   void cleanup_surviving_young_words();
   376   // It decides whether an explicit GC should start a concurrent cycle
   377   // instead of doing a STW GC. Currently, a concurrent cycle is
   378   // explicitly started if:
   379   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   380   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   381   // (c) cause == _g1_humongous_allocation
   382   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   384   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   385   // concurrent cycles) we have started.
   386   volatile unsigned int _old_marking_cycles_started;
   388   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   389   // concurrent cycles) we have completed.
   390   volatile unsigned int _old_marking_cycles_completed;
   392   // This is a non-product method that is helpful for testing. It is
   393   // called at the end of a GC and artificially expands the heap by
   394   // allocating a number of dead regions. This way we can induce very
   395   // frequent marking cycles and stress the cleanup / concurrent
   396   // cleanup code more (as all the regions that will be allocated by
   397   // this method will be found dead by the marking cycle).
   398   void allocate_dummy_regions() PRODUCT_RETURN;
   400   // Clear RSets after a compaction. It also resets the GC time stamps.
   401   void clear_rsets_post_compaction();
   403   // If the HR printer is active, dump the state of the regions in the
   404   // heap after a compaction.
   405   void print_hrs_post_compaction();
   407   double verify(bool guard, const char* msg);
   408   void verify_before_gc();
   409   void verify_after_gc();
   411   void log_gc_header();
   412   void log_gc_footer(double pause_time_sec);
   414   // These are macros so that, if the assert fires, we get the correct
   415   // line number, file, etc.
   417 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   418   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   419           (_extra_message_),                                                  \
   420           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   421           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   422           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   424 #define assert_heap_locked()                                                  \
   425   do {                                                                        \
   426     assert(Heap_lock->owned_by_self(),                                        \
   427            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   428   } while (0)
   430 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   431   do {                                                                        \
   432     assert(Heap_lock->owned_by_self() ||                                      \
   433            (SafepointSynchronize::is_at_safepoint() &&                        \
   434              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   435            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   436                                         "should be at a safepoint"));         \
   437   } while (0)
   439 #define assert_heap_locked_and_not_at_safepoint()                             \
   440   do {                                                                        \
   441     assert(Heap_lock->owned_by_self() &&                                      \
   442                                     !SafepointSynchronize::is_at_safepoint(), \
   443           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   444                                        "should not be at a safepoint"));      \
   445   } while (0)
   447 #define assert_heap_not_locked()                                              \
   448   do {                                                                        \
   449     assert(!Heap_lock->owned_by_self(),                                       \
   450         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   451   } while (0)
   453 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   454   do {                                                                        \
   455     assert(!Heap_lock->owned_by_self() &&                                     \
   456                                     !SafepointSynchronize::is_at_safepoint(), \
   457       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   458                                    "should not be at a safepoint"));          \
   459   } while (0)
   461 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   462   do {                                                                        \
   463     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   464               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   465            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   466   } while (0)
   468 #define assert_not_at_safepoint()                                             \
   469   do {                                                                        \
   470     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   471            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   472   } while (0)
   474 protected:
   476   // The young region list.
   477   YoungList*  _young_list;
   479   // The current policy object for the collector.
   480   G1CollectorPolicy* _g1_policy;
   482   // This is the second level of trying to allocate a new region. If
   483   // new_region() didn't find a region on the free_list, this call will
   484   // check whether there's anything available on the
   485   // secondary_free_list and/or wait for more regions to appear on
   486   // that list, if _free_regions_coming is set.
   487   HeapRegion* new_region_try_secondary_free_list();
   489   // Try to allocate a single non-humongous HeapRegion sufficient for
   490   // an allocation of the given word_size. If do_expand is true,
   491   // attempt to expand the heap if necessary to satisfy the allocation
   492   // request.
   493   HeapRegion* new_region(size_t word_size, bool do_expand);
   495   // Attempt to satisfy a humongous allocation request of the given
   496   // size by finding a contiguous set of free regions of num_regions
   497   // length and remove them from the master free list. Return the
   498   // index of the first region or G1_NULL_HRS_INDEX if the search
   499   // was unsuccessful.
   500   uint humongous_obj_allocate_find_first(uint num_regions,
   501                                          size_t word_size);
   503   // Initialize a contiguous set of free regions of length num_regions
   504   // and starting at index first so that they appear as a single
   505   // humongous region.
   506   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   507                                                       uint num_regions,
   508                                                       size_t word_size);
   510   // Attempt to allocate a humongous object of the given size. Return
   511   // NULL if unsuccessful.
   512   HeapWord* humongous_obj_allocate(size_t word_size);
   514   // The following two methods, allocate_new_tlab() and
   515   // mem_allocate(), are the two main entry points from the runtime
   516   // into the G1's allocation routines. They have the following
   517   // assumptions:
   518   //
   519   // * They should both be called outside safepoints.
   520   //
   521   // * They should both be called without holding the Heap_lock.
   522   //
   523   // * All allocation requests for new TLABs should go to
   524   //   allocate_new_tlab().
   525   //
   526   // * All non-TLAB allocation requests should go to mem_allocate().
   527   //
   528   // * If either call cannot satisfy the allocation request using the
   529   //   current allocating region, they will try to get a new one. If
   530   //   this fails, they will attempt to do an evacuation pause and
   531   //   retry the allocation.
   532   //
   533   // * If all allocation attempts fail, even after trying to schedule
   534   //   an evacuation pause, allocate_new_tlab() will return NULL,
   535   //   whereas mem_allocate() will attempt a heap expansion and/or
   536   //   schedule a Full GC.
   537   //
   538   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   539   //   should never be called with word_size being humongous. All
   540   //   humongous allocation requests should go to mem_allocate() which
   541   //   will satisfy them with a special path.
   543   virtual HeapWord* allocate_new_tlab(size_t word_size);
   545   virtual HeapWord* mem_allocate(size_t word_size,
   546                                  bool*  gc_overhead_limit_was_exceeded);
   548   // The following three methods take a gc_count_before_ret
   549   // parameter which is used to return the GC count if the method
   550   // returns NULL. Given that we are required to read the GC count
   551   // while holding the Heap_lock, and these paths will take the
   552   // Heap_lock at some point, it's easier to get them to read the GC
   553   // count while holding the Heap_lock before they return NULL instead
   554   // of the caller (namely: mem_allocate()) having to also take the
   555   // Heap_lock just to read the GC count.
   557   // First-level mutator allocation attempt: try to allocate out of
   558   // the mutator alloc region without taking the Heap_lock. This
   559   // should only be used for non-humongous allocations.
   560   inline HeapWord* attempt_allocation(size_t word_size,
   561                                       unsigned int* gc_count_before_ret);
   563   // Second-level mutator allocation attempt: take the Heap_lock and
   564   // retry the allocation attempt, potentially scheduling a GC
   565   // pause. This should only be used for non-humongous allocations.
   566   HeapWord* attempt_allocation_slow(size_t word_size,
   567                                     unsigned int* gc_count_before_ret);
   569   // Takes the Heap_lock and attempts a humongous allocation. It can
   570   // potentially schedule a GC pause.
   571   HeapWord* attempt_allocation_humongous(size_t word_size,
   572                                          unsigned int* gc_count_before_ret);
   574   // Allocation attempt that should be called during safepoints (e.g.,
   575   // at the end of a successful GC). expect_null_mutator_alloc_region
   576   // specifies whether the mutator alloc region is expected to be NULL
   577   // or not.
   578   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   579                                        bool expect_null_mutator_alloc_region);
   581   // It dirties the cards that cover the block so that so that the post
   582   // write barrier never queues anything when updating objects on this
   583   // block. It is assumed (and in fact we assert) that the block
   584   // belongs to a young region.
   585   inline void dirty_young_block(HeapWord* start, size_t word_size);
   587   // Allocate blocks during garbage collection. Will ensure an
   588   // allocation region, either by picking one or expanding the
   589   // heap, and then allocate a block of the given size. The block
   590   // may not be a humongous - it must fit into a single heap region.
   591   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   593   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   594                                     HeapRegion*    alloc_region,
   595                                     bool           par,
   596                                     size_t         word_size);
   598   // Ensure that no further allocations can happen in "r", bearing in mind
   599   // that parallel threads might be attempting allocations.
   600   void par_allocate_remaining_space(HeapRegion* r);
   602   // Allocation attempt during GC for a survivor object / PLAB.
   603   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   605   // Allocation attempt during GC for an old object / PLAB.
   606   inline HeapWord* old_attempt_allocation(size_t word_size);
   608   // These methods are the "callbacks" from the G1AllocRegion class.
   610   // For mutator alloc regions.
   611   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   612   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   613                                    size_t allocated_bytes);
   615   // For GC alloc regions.
   616   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   617                                   GCAllocPurpose ap);
   618   void retire_gc_alloc_region(HeapRegion* alloc_region,
   619                               size_t allocated_bytes, GCAllocPurpose ap);
   621   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   622   //   inspection request and should collect the entire heap
   623   // - if clear_all_soft_refs is true, all soft references should be
   624   //   cleared during the GC
   625   // - if explicit_gc is false, word_size describes the allocation that
   626   //   the GC should attempt (at least) to satisfy
   627   // - it returns false if it is unable to do the collection due to the
   628   //   GC locker being active, true otherwise
   629   bool do_collection(bool explicit_gc,
   630                      bool clear_all_soft_refs,
   631                      size_t word_size);
   633   // Callback from VM_G1CollectFull operation.
   634   // Perform a full collection.
   635   virtual void do_full_collection(bool clear_all_soft_refs);
   637   // Resize the heap if necessary after a full collection.  If this is
   638   // after a collect-for allocation, "word_size" is the allocation size,
   639   // and will be considered part of the used portion of the heap.
   640   void resize_if_necessary_after_full_collection(size_t word_size);
   642   // Callback from VM_G1CollectForAllocation operation.
   643   // This function does everything necessary/possible to satisfy a
   644   // failed allocation request (including collection, expansion, etc.)
   645   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   647   // Attempting to expand the heap sufficiently
   648   // to support an allocation of the given "word_size".  If
   649   // successful, perform the allocation and return the address of the
   650   // allocated block, or else "NULL".
   651   HeapWord* expand_and_allocate(size_t word_size);
   653   // Process any reference objects discovered during
   654   // an incremental evacuation pause.
   655   void process_discovered_references();
   657   // Enqueue any remaining discovered references
   658   // after processing.
   659   void enqueue_discovered_references();
   661 public:
   663   G1MonitoringSupport* g1mm() {
   664     assert(_g1mm != NULL, "should have been initialized");
   665     return _g1mm;
   666   }
   668   // Expand the garbage-first heap by at least the given size (in bytes!).
   669   // Returns true if the heap was expanded by the requested amount;
   670   // false otherwise.
   671   // (Rounds up to a HeapRegion boundary.)
   672   bool expand(size_t expand_bytes);
   674   // Do anything common to GC's.
   675   virtual void gc_prologue(bool full);
   676   virtual void gc_epilogue(bool full);
   678   // We register a region with the fast "in collection set" test. We
   679   // simply set to true the array slot corresponding to this region.
   680   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   681     assert(_in_cset_fast_test_base != NULL, "sanity");
   682     assert(r->in_collection_set(), "invariant");
   683     uint index = r->hrs_index();
   684     assert(index < _in_cset_fast_test_length, "invariant");
   685     assert(!_in_cset_fast_test_base[index], "invariant");
   686     _in_cset_fast_test_base[index] = true;
   687   }
   689   // This is a fast test on whether a reference points into the
   690   // collection set or not. It does not assume that the reference
   691   // points into the heap; if it doesn't, it will return false.
   692   bool in_cset_fast_test(oop obj) {
   693     assert(_in_cset_fast_test != NULL, "sanity");
   694     if (_g1_committed.contains((HeapWord*) obj)) {
   695       // no need to subtract the bottom of the heap from obj,
   696       // _in_cset_fast_test is biased
   697       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
   698       bool ret = _in_cset_fast_test[index];
   699       // let's make sure the result is consistent with what the slower
   700       // test returns
   701       assert( ret || !obj_in_cs(obj), "sanity");
   702       assert(!ret ||  obj_in_cs(obj), "sanity");
   703       return ret;
   704     } else {
   705       return false;
   706     }
   707   }
   709   void clear_cset_fast_test() {
   710     assert(_in_cset_fast_test_base != NULL, "sanity");
   711     memset(_in_cset_fast_test_base, false,
   712            (size_t) _in_cset_fast_test_length * sizeof(bool));
   713   }
   715   // This is called at the start of either a concurrent cycle or a Full
   716   // GC to update the number of old marking cycles started.
   717   void increment_old_marking_cycles_started();
   719   // This is called at the end of either a concurrent cycle or a Full
   720   // GC to update the number of old marking cycles completed. Those two
   721   // can happen in a nested fashion, i.e., we start a concurrent
   722   // cycle, a Full GC happens half-way through it which ends first,
   723   // and then the cycle notices that a Full GC happened and ends
   724   // too. The concurrent parameter is a boolean to help us do a bit
   725   // tighter consistency checking in the method. If concurrent is
   726   // false, the caller is the inner caller in the nesting (i.e., the
   727   // Full GC). If concurrent is true, the caller is the outer caller
   728   // in this nesting (i.e., the concurrent cycle). Further nesting is
   729   // not currently supported. The end of this call also notifies
   730   // the FullGCCount_lock in case a Java thread is waiting for a full
   731   // GC to happen (e.g., it called System.gc() with
   732   // +ExplicitGCInvokesConcurrent).
   733   void increment_old_marking_cycles_completed(bool concurrent);
   735   unsigned int old_marking_cycles_completed() {
   736     return _old_marking_cycles_completed;
   737   }
   739   G1HRPrinter* hr_printer() { return &_hr_printer; }
   741 protected:
   743   // Shrink the garbage-first heap by at most the given size (in bytes!).
   744   // (Rounds down to a HeapRegion boundary.)
   745   virtual void shrink(size_t expand_bytes);
   746   void shrink_helper(size_t expand_bytes);
   748   #if TASKQUEUE_STATS
   749   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   750   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   751   void reset_taskqueue_stats();
   752   #endif // TASKQUEUE_STATS
   754   // Schedule the VM operation that will do an evacuation pause to
   755   // satisfy an allocation request of word_size. *succeeded will
   756   // return whether the VM operation was successful (it did do an
   757   // evacuation pause) or not (another thread beat us to it or the GC
   758   // locker was active). Given that we should not be holding the
   759   // Heap_lock when we enter this method, we will pass the
   760   // gc_count_before (i.e., total_collections()) as a parameter since
   761   // it has to be read while holding the Heap_lock. Currently, both
   762   // methods that call do_collection_pause() release the Heap_lock
   763   // before the call, so it's easy to read gc_count_before just before.
   764   HeapWord* do_collection_pause(size_t       word_size,
   765                                 unsigned int gc_count_before,
   766                                 bool*        succeeded);
   768   // The guts of the incremental collection pause, executed by the vm
   769   // thread. It returns false if it is unable to do the collection due
   770   // to the GC locker being active, true otherwise
   771   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   773   // Actually do the work of evacuating the collection set.
   774   void evacuate_collection_set();
   776   // The g1 remembered set of the heap.
   777   G1RemSet* _g1_rem_set;
   778   // And it's mod ref barrier set, used to track updates for the above.
   779   ModRefBarrierSet* _mr_bs;
   781   // A set of cards that cover the objects for which the Rsets should be updated
   782   // concurrently after the collection.
   783   DirtyCardQueueSet _dirty_card_queue_set;
   785   // The Heap Region Rem Set Iterator.
   786   HeapRegionRemSetIterator** _rem_set_iterator;
   788   // The closure used to refine a single card.
   789   RefineCardTableEntryClosure* _refine_cte_cl;
   791   // A function to check the consistency of dirty card logs.
   792   void check_ct_logs_at_safepoint();
   794   // A DirtyCardQueueSet that is used to hold cards that contain
   795   // references into the current collection set. This is used to
   796   // update the remembered sets of the regions in the collection
   797   // set in the event of an evacuation failure.
   798   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   800   // After a collection pause, make the regions in the CS into free
   801   // regions.
   802   void free_collection_set(HeapRegion* cs_head);
   804   // Abandon the current collection set without recording policy
   805   // statistics or updating free lists.
   806   void abandon_collection_set(HeapRegion* cs_head);
   808   // Applies "scan_non_heap_roots" to roots outside the heap,
   809   // "scan_rs" to roots inside the heap (having done "set_region" to
   810   // indicate the region in which the root resides),
   811   // and does "scan_metadata" If "scan_rs" is
   812   // NULL, then this step is skipped.  The "worker_i"
   813   // param is for use with parallel roots processing, and should be
   814   // the "i" of the calling parallel worker thread's work(i) function.
   815   // In the sequential case this param will be ignored.
   816   void g1_process_strong_roots(bool is_scavenging,
   817                                ScanningOption so,
   818                                OopClosure* scan_non_heap_roots,
   819                                OopsInHeapRegionClosure* scan_rs,
   820                                G1KlassScanClosure* scan_klasses,
   821                                int worker_i);
   823   // Apply "blk" to all the weak roots of the system.  These include
   824   // JNI weak roots, the code cache, system dictionary, symbol table,
   825   // string table, and referents of reachable weak refs.
   826   void g1_process_weak_roots(OopClosure* root_closure,
   827                              OopClosure* non_root_closure);
   829   // Frees a non-humongous region by initializing its contents and
   830   // adding it to the free list that's passed as a parameter (this is
   831   // usually a local list which will be appended to the master free
   832   // list later). The used bytes of freed regions are accumulated in
   833   // pre_used. If par is true, the region's RSet will not be freed
   834   // up. The assumption is that this will be done later.
   835   void free_region(HeapRegion* hr,
   836                    size_t* pre_used,
   837                    FreeRegionList* free_list,
   838                    bool par);
   840   // Frees a humongous region by collapsing it into individual regions
   841   // and calling free_region() for each of them. The freed regions
   842   // will be added to the free list that's passed as a parameter (this
   843   // is usually a local list which will be appended to the master free
   844   // list later). The used bytes of freed regions are accumulated in
   845   // pre_used. If par is true, the region's RSet will not be freed
   846   // up. The assumption is that this will be done later.
   847   void free_humongous_region(HeapRegion* hr,
   848                              size_t* pre_used,
   849                              FreeRegionList* free_list,
   850                              HumongousRegionSet* humongous_proxy_set,
   851                              bool par);
   853   // Notifies all the necessary spaces that the committed space has
   854   // been updated (either expanded or shrunk). It should be called
   855   // after _g1_storage is updated.
   856   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   858   // The concurrent marker (and the thread it runs in.)
   859   ConcurrentMark* _cm;
   860   ConcurrentMarkThread* _cmThread;
   861   bool _mark_in_progress;
   863   // The concurrent refiner.
   864   ConcurrentG1Refine* _cg1r;
   866   // The parallel task queues
   867   RefToScanQueueSet *_task_queues;
   869   // True iff a evacuation has failed in the current collection.
   870   bool _evacuation_failed;
   872   // Set the attribute indicating whether evacuation has failed in the
   873   // current collection.
   874   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   876   // Failed evacuations cause some logical from-space objects to have
   877   // forwarding pointers to themselves.  Reset them.
   878   void remove_self_forwarding_pointers();
   880   // When one is non-null, so is the other.  Together, they each pair is
   881   // an object with a preserved mark, and its mark value.
   882   GrowableArray<oop>*     _objs_with_preserved_marks;
   883   GrowableArray<markOop>* _preserved_marks_of_objs;
   885   // Preserve the mark of "obj", if necessary, in preparation for its mark
   886   // word being overwritten with a self-forwarding-pointer.
   887   void preserve_mark_if_necessary(oop obj, markOop m);
   889   // The stack of evac-failure objects left to be scanned.
   890   GrowableArray<oop>*    _evac_failure_scan_stack;
   891   // The closure to apply to evac-failure objects.
   893   OopsInHeapRegionClosure* _evac_failure_closure;
   894   // Set the field above.
   895   void
   896   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   897     _evac_failure_closure = evac_failure_closure;
   898   }
   900   // Push "obj" on the scan stack.
   901   void push_on_evac_failure_scan_stack(oop obj);
   902   // Process scan stack entries until the stack is empty.
   903   void drain_evac_failure_scan_stack();
   904   // True iff an invocation of "drain_scan_stack" is in progress; to
   905   // prevent unnecessary recursion.
   906   bool _drain_in_progress;
   908   // Do any necessary initialization for evacuation-failure handling.
   909   // "cl" is the closure that will be used to process evac-failure
   910   // objects.
   911   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   912   // Do any necessary cleanup for evacuation-failure handling data
   913   // structures.
   914   void finalize_for_evac_failure();
   916   // An attempt to evacuate "obj" has failed; take necessary steps.
   917   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   918   void handle_evacuation_failure_common(oop obj, markOop m);
   920 #ifndef PRODUCT
   921   // Support for forcing evacuation failures. Analogous to
   922   // PromotionFailureALot for the other collectors.
   924   // Records whether G1EvacuationFailureALot should be in effect
   925   // for the current GC
   926   bool _evacuation_failure_alot_for_current_gc;
   928   // Used to record the GC number for interval checking when
   929   // determining whether G1EvaucationFailureALot is in effect
   930   // for the current GC.
   931   size_t _evacuation_failure_alot_gc_number;
   933   // Count of the number of evacuations between failures.
   934   volatile size_t _evacuation_failure_alot_count;
   936   // Set whether G1EvacuationFailureALot should be in effect
   937   // for the current GC (based upon the type of GC and which
   938   // command line flags are set);
   939   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   940                                                   bool during_initial_mark,
   941                                                   bool during_marking);
   943   inline void set_evacuation_failure_alot_for_current_gc();
   945   // Return true if it's time to cause an evacuation failure.
   946   inline bool evacuation_should_fail();
   948   // Reset the G1EvacuationFailureALot counters.  Should be called at
   949   // the end of an evacuation pause in which an evacuation failure ocurred.
   950   inline void reset_evacuation_should_fail();
   951 #endif // !PRODUCT
   953   // ("Weak") Reference processing support.
   954   //
   955   // G1 has 2 instances of the referece processor class. One
   956   // (_ref_processor_cm) handles reference object discovery
   957   // and subsequent processing during concurrent marking cycles.
   958   //
   959   // The other (_ref_processor_stw) handles reference object
   960   // discovery and processing during full GCs and incremental
   961   // evacuation pauses.
   962   //
   963   // During an incremental pause, reference discovery will be
   964   // temporarily disabled for _ref_processor_cm and will be
   965   // enabled for _ref_processor_stw. At the end of the evacuation
   966   // pause references discovered by _ref_processor_stw will be
   967   // processed and discovery will be disabled. The previous
   968   // setting for reference object discovery for _ref_processor_cm
   969   // will be re-instated.
   970   //
   971   // At the start of marking:
   972   //  * Discovery by the CM ref processor is verified to be inactive
   973   //    and it's discovered lists are empty.
   974   //  * Discovery by the CM ref processor is then enabled.
   975   //
   976   // At the end of marking:
   977   //  * Any references on the CM ref processor's discovered
   978   //    lists are processed (possibly MT).
   979   //
   980   // At the start of full GC we:
   981   //  * Disable discovery by the CM ref processor and
   982   //    empty CM ref processor's discovered lists
   983   //    (without processing any entries).
   984   //  * Verify that the STW ref processor is inactive and it's
   985   //    discovered lists are empty.
   986   //  * Temporarily set STW ref processor discovery as single threaded.
   987   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   988   //    field.
   989   //  * Finally enable discovery by the STW ref processor.
   990   //
   991   // The STW ref processor is used to record any discovered
   992   // references during the full GC.
   993   //
   994   // At the end of a full GC we:
   995   //  * Enqueue any reference objects discovered by the STW ref processor
   996   //    that have non-live referents. This has the side-effect of
   997   //    making the STW ref processor inactive by disabling discovery.
   998   //  * Verify that the CM ref processor is still inactive
   999   //    and no references have been placed on it's discovered
  1000   //    lists (also checked as a precondition during initial marking).
  1002   // The (stw) reference processor...
  1003   ReferenceProcessor* _ref_processor_stw;
  1005   // During reference object discovery, the _is_alive_non_header
  1006   // closure (if non-null) is applied to the referent object to
  1007   // determine whether the referent is live. If so then the
  1008   // reference object does not need to be 'discovered' and can
  1009   // be treated as a regular oop. This has the benefit of reducing
  1010   // the number of 'discovered' reference objects that need to
  1011   // be processed.
  1012   //
  1013   // Instance of the is_alive closure for embedding into the
  1014   // STW reference processor as the _is_alive_non_header field.
  1015   // Supplying a value for the _is_alive_non_header field is
  1016   // optional but doing so prevents unnecessary additions to
  1017   // the discovered lists during reference discovery.
  1018   G1STWIsAliveClosure _is_alive_closure_stw;
  1020   // The (concurrent marking) reference processor...
  1021   ReferenceProcessor* _ref_processor_cm;
  1023   // Instance of the concurrent mark is_alive closure for embedding
  1024   // into the Concurrent Marking reference processor as the
  1025   // _is_alive_non_header field. Supplying a value for the
  1026   // _is_alive_non_header field is optional but doing so prevents
  1027   // unnecessary additions to the discovered lists during reference
  1028   // discovery.
  1029   G1CMIsAliveClosure _is_alive_closure_cm;
  1031   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1032   HeapRegion** _worker_cset_start_region;
  1034   // Time stamp to validate the regions recorded in the cache
  1035   // used by G1CollectedHeap::start_cset_region_for_worker().
  1036   // The heap region entry for a given worker is valid iff
  1037   // the associated time stamp value matches the current value
  1038   // of G1CollectedHeap::_gc_time_stamp.
  1039   unsigned int* _worker_cset_start_region_time_stamp;
  1041   enum G1H_process_strong_roots_tasks {
  1042     G1H_PS_filter_satb_buffers,
  1043     G1H_PS_refProcessor_oops_do,
  1044     // Leave this one last.
  1045     G1H_PS_NumElements
  1046   };
  1048   SubTasksDone* _process_strong_tasks;
  1050   volatile bool _free_regions_coming;
  1052 public:
  1054   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1056   void set_refine_cte_cl_concurrency(bool concurrent);
  1058   RefToScanQueue *task_queue(int i) const;
  1060   // A set of cards where updates happened during the GC
  1061   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1063   // A DirtyCardQueueSet that is used to hold cards that contain
  1064   // references into the current collection set. This is used to
  1065   // update the remembered sets of the regions in the collection
  1066   // set in the event of an evacuation failure.
  1067   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1068         { return _into_cset_dirty_card_queue_set; }
  1070   // Create a G1CollectedHeap with the specified policy.
  1071   // Must call the initialize method afterwards.
  1072   // May not return if something goes wrong.
  1073   G1CollectedHeap(G1CollectorPolicy* policy);
  1075   // Initialize the G1CollectedHeap to have the initial and
  1076   // maximum sizes and remembered and barrier sets
  1077   // specified by the policy object.
  1078   jint initialize();
  1080   // Initialize weak reference processing.
  1081   virtual void ref_processing_init();
  1083   void set_par_threads(uint t) {
  1084     SharedHeap::set_par_threads(t);
  1085     // Done in SharedHeap but oddly there are
  1086     // two _process_strong_tasks's in a G1CollectedHeap
  1087     // so do it here too.
  1088     _process_strong_tasks->set_n_threads(t);
  1091   // Set _n_par_threads according to a policy TBD.
  1092   void set_par_threads();
  1094   void set_n_termination(int t) {
  1095     _process_strong_tasks->set_n_threads(t);
  1098   virtual CollectedHeap::Name kind() const {
  1099     return CollectedHeap::G1CollectedHeap;
  1102   // The current policy object for the collector.
  1103   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1105   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1107   // Adaptive size policy.  No such thing for g1.
  1108   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1110   // The rem set and barrier set.
  1111   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1112   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1114   // The rem set iterator.
  1115   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1116     return _rem_set_iterator[i];
  1119   HeapRegionRemSetIterator* rem_set_iterator() {
  1120     return _rem_set_iterator[0];
  1123   unsigned get_gc_time_stamp() {
  1124     return _gc_time_stamp;
  1127   void reset_gc_time_stamp() {
  1128     _gc_time_stamp = 0;
  1129     OrderAccess::fence();
  1130     // Clear the cached CSet starting regions and time stamps.
  1131     // Their validity is dependent on the GC timestamp.
  1132     clear_cset_start_regions();
  1135   void check_gc_time_stamps() PRODUCT_RETURN;
  1137   void increment_gc_time_stamp() {
  1138     ++_gc_time_stamp;
  1139     OrderAccess::fence();
  1142   // Reset the given region's GC timestamp. If it's starts humongous,
  1143   // also reset the GC timestamp of its corresponding
  1144   // continues humongous regions too.
  1145   void reset_gc_time_stamps(HeapRegion* hr);
  1147   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1148                                   DirtyCardQueue* into_cset_dcq,
  1149                                   bool concurrent, int worker_i);
  1151   // The shared block offset table array.
  1152   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1154   // Reference Processing accessors
  1156   // The STW reference processor....
  1157   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1159   // The Concurent Marking reference processor...
  1160   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1162   virtual size_t capacity() const;
  1163   virtual size_t used() const;
  1164   // This should be called when we're not holding the heap lock. The
  1165   // result might be a bit inaccurate.
  1166   size_t used_unlocked() const;
  1167   size_t recalculate_used() const;
  1169   // These virtual functions do the actual allocation.
  1170   // Some heaps may offer a contiguous region for shared non-blocking
  1171   // allocation, via inlined code (by exporting the address of the top and
  1172   // end fields defining the extent of the contiguous allocation region.)
  1173   // But G1CollectedHeap doesn't yet support this.
  1175   // Return an estimate of the maximum allocation that could be performed
  1176   // without triggering any collection or expansion activity.  In a
  1177   // generational collector, for example, this is probably the largest
  1178   // allocation that could be supported (without expansion) in the youngest
  1179   // generation.  It is "unsafe" because no locks are taken; the result
  1180   // should be treated as an approximation, not a guarantee, for use in
  1181   // heuristic resizing decisions.
  1182   virtual size_t unsafe_max_alloc();
  1184   virtual bool is_maximal_no_gc() const {
  1185     return _g1_storage.uncommitted_size() == 0;
  1188   // The total number of regions in the heap.
  1189   uint n_regions() { return _hrs.length(); }
  1191   // The max number of regions in the heap.
  1192   uint max_regions() { return _hrs.max_length(); }
  1194   // The number of regions that are completely free.
  1195   uint free_regions() { return _free_list.length(); }
  1197   // The number of regions that are not completely free.
  1198   uint used_regions() { return n_regions() - free_regions(); }
  1200   // The number of regions available for "regular" expansion.
  1201   uint expansion_regions() { return _expansion_regions; }
  1203   // Factory method for HeapRegion instances. It will return NULL if
  1204   // the allocation fails.
  1205   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1207   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1208   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1209   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1210   void verify_dirty_young_regions() PRODUCT_RETURN;
  1212   // verify_region_sets() performs verification over the region
  1213   // lists. It will be compiled in the product code to be used when
  1214   // necessary (i.e., during heap verification).
  1215   void verify_region_sets();
  1217   // verify_region_sets_optional() is planted in the code for
  1218   // list verification in non-product builds (and it can be enabled in
  1219   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1220 #if HEAP_REGION_SET_FORCE_VERIFY
  1221   void verify_region_sets_optional() {
  1222     verify_region_sets();
  1224 #else // HEAP_REGION_SET_FORCE_VERIFY
  1225   void verify_region_sets_optional() { }
  1226 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1228 #ifdef ASSERT
  1229   bool is_on_master_free_list(HeapRegion* hr) {
  1230     return hr->containing_set() == &_free_list;
  1233   bool is_in_humongous_set(HeapRegion* hr) {
  1234     return hr->containing_set() == &_humongous_set;
  1236 #endif // ASSERT
  1238   // Wrapper for the region list operations that can be called from
  1239   // methods outside this class.
  1241   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1242     _secondary_free_list.add_as_tail(list);
  1245   void append_secondary_free_list() {
  1246     _free_list.add_as_head(&_secondary_free_list);
  1249   void append_secondary_free_list_if_not_empty_with_lock() {
  1250     // If the secondary free list looks empty there's no reason to
  1251     // take the lock and then try to append it.
  1252     if (!_secondary_free_list.is_empty()) {
  1253       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1254       append_secondary_free_list();
  1258   void old_set_remove(HeapRegion* hr) {
  1259     _old_set.remove(hr);
  1262   size_t non_young_capacity_bytes() {
  1263     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1266   void set_free_regions_coming();
  1267   void reset_free_regions_coming();
  1268   bool free_regions_coming() { return _free_regions_coming; }
  1269   void wait_while_free_regions_coming();
  1271   // Determine whether the given region is one that we are using as an
  1272   // old GC alloc region.
  1273   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1274     return hr == _retained_old_gc_alloc_region;
  1277   // Perform a collection of the heap; intended for use in implementing
  1278   // "System.gc".  This probably implies as full a collection as the
  1279   // "CollectedHeap" supports.
  1280   virtual void collect(GCCause::Cause cause);
  1282   // The same as above but assume that the caller holds the Heap_lock.
  1283   void collect_locked(GCCause::Cause cause);
  1285   // True iff a evacuation has failed in the most-recent collection.
  1286   bool evacuation_failed() { return _evacuation_failed; }
  1288   // It will free a region if it has allocated objects in it that are
  1289   // all dead. It calls either free_region() or
  1290   // free_humongous_region() depending on the type of the region that
  1291   // is passed to it.
  1292   void free_region_if_empty(HeapRegion* hr,
  1293                             size_t* pre_used,
  1294                             FreeRegionList* free_list,
  1295                             OldRegionSet* old_proxy_set,
  1296                             HumongousRegionSet* humongous_proxy_set,
  1297                             HRRSCleanupTask* hrrs_cleanup_task,
  1298                             bool par);
  1300   // It appends the free list to the master free list and updates the
  1301   // master humongous list according to the contents of the proxy
  1302   // list. It also adjusts the total used bytes according to pre_used
  1303   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1304   void update_sets_after_freeing_regions(size_t pre_used,
  1305                                        FreeRegionList* free_list,
  1306                                        OldRegionSet* old_proxy_set,
  1307                                        HumongousRegionSet* humongous_proxy_set,
  1308                                        bool par);
  1310   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1311   virtual bool is_in(const void* p) const;
  1313   // Return "TRUE" iff the given object address is within the collection
  1314   // set.
  1315   inline bool obj_in_cs(oop obj);
  1317   // Return "TRUE" iff the given object address is in the reserved
  1318   // region of g1.
  1319   bool is_in_g1_reserved(const void* p) const {
  1320     return _g1_reserved.contains(p);
  1323   // Returns a MemRegion that corresponds to the space that has been
  1324   // reserved for the heap
  1325   MemRegion g1_reserved() {
  1326     return _g1_reserved;
  1329   // Returns a MemRegion that corresponds to the space that has been
  1330   // committed in the heap
  1331   MemRegion g1_committed() {
  1332     return _g1_committed;
  1335   virtual bool is_in_closed_subset(const void* p) const;
  1337   // This resets the card table to all zeros.  It is used after
  1338   // a collection pause which used the card table to claim cards.
  1339   void cleanUpCardTable();
  1341   // Iteration functions.
  1343   // Iterate over all the ref-containing fields of all objects, calling
  1344   // "cl.do_oop" on each.
  1345   virtual void oop_iterate(ExtendedOopClosure* cl);
  1347   // Same as above, restricted to a memory region.
  1348   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1350   // Iterate over all objects, calling "cl.do_object" on each.
  1351   virtual void object_iterate(ObjectClosure* cl);
  1353   virtual void safe_object_iterate(ObjectClosure* cl) {
  1354     object_iterate(cl);
  1357   // Iterate over all objects allocated since the last collection, calling
  1358   // "cl.do_object" on each.  The heap must have been initialized properly
  1359   // to support this function, or else this call will fail.
  1360   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1362   // Iterate over all spaces in use in the heap, in ascending address order.
  1363   virtual void space_iterate(SpaceClosure* cl);
  1365   // Iterate over heap regions, in address order, terminating the
  1366   // iteration early if the "doHeapRegion" method returns "true".
  1367   void heap_region_iterate(HeapRegionClosure* blk) const;
  1369   // Return the region with the given index. It assumes the index is valid.
  1370   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
  1372   // Divide the heap region sequence into "chunks" of some size (the number
  1373   // of regions divided by the number of parallel threads times some
  1374   // overpartition factor, currently 4).  Assumes that this will be called
  1375   // in parallel by ParallelGCThreads worker threads with discinct worker
  1376   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1377   // calls will use the same "claim_value", and that that claim value is
  1378   // different from the claim_value of any heap region before the start of
  1379   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1380   // attempting to claim the first region in each chunk, and, if
  1381   // successful, applying the closure to each region in the chunk (and
  1382   // setting the claim value of the second and subsequent regions of the
  1383   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1384   // i.e., that a closure never attempt to abort a traversal.
  1385   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1386                                        uint worker,
  1387                                        uint no_of_par_workers,
  1388                                        jint claim_value);
  1390   // It resets all the region claim values to the default.
  1391   void reset_heap_region_claim_values();
  1393   // Resets the claim values of regions in the current
  1394   // collection set to the default.
  1395   void reset_cset_heap_region_claim_values();
  1397 #ifdef ASSERT
  1398   bool check_heap_region_claim_values(jint claim_value);
  1400   // Same as the routine above but only checks regions in the
  1401   // current collection set.
  1402   bool check_cset_heap_region_claim_values(jint claim_value);
  1403 #endif // ASSERT
  1405   // Clear the cached cset start regions and (more importantly)
  1406   // the time stamps. Called when we reset the GC time stamp.
  1407   void clear_cset_start_regions();
  1409   // Given the id of a worker, obtain or calculate a suitable
  1410   // starting region for iterating over the current collection set.
  1411   HeapRegion* start_cset_region_for_worker(int worker_i);
  1413   // This is a convenience method that is used by the
  1414   // HeapRegionIterator classes to calculate the starting region for
  1415   // each worker so that they do not all start from the same region.
  1416   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1418   // Iterate over the regions (if any) in the current collection set.
  1419   void collection_set_iterate(HeapRegionClosure* blk);
  1421   // As above but starting from region r
  1422   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1424   // Returns the first (lowest address) compactible space in the heap.
  1425   virtual CompactibleSpace* first_compactible_space();
  1427   // A CollectedHeap will contain some number of spaces.  This finds the
  1428   // space containing a given address, or else returns NULL.
  1429   virtual Space* space_containing(const void* addr) const;
  1431   // A G1CollectedHeap will contain some number of heap regions.  This
  1432   // finds the region containing a given address, or else returns NULL.
  1433   template <class T>
  1434   inline HeapRegion* heap_region_containing(const T addr) const;
  1436   // Like the above, but requires "addr" to be in the heap (to avoid a
  1437   // null-check), and unlike the above, may return an continuing humongous
  1438   // region.
  1439   template <class T>
  1440   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1442   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1443   // each address in the (reserved) heap is a member of exactly
  1444   // one block.  The defining characteristic of a block is that it is
  1445   // possible to find its size, and thus to progress forward to the next
  1446   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1447   // represent Java objects, or they might be free blocks in a
  1448   // free-list-based heap (or subheap), as long as the two kinds are
  1449   // distinguishable and the size of each is determinable.
  1451   // Returns the address of the start of the "block" that contains the
  1452   // address "addr".  We say "blocks" instead of "object" since some heaps
  1453   // may not pack objects densely; a chunk may either be an object or a
  1454   // non-object.
  1455   virtual HeapWord* block_start(const void* addr) const;
  1457   // Requires "addr" to be the start of a chunk, and returns its size.
  1458   // "addr + size" is required to be the start of a new chunk, or the end
  1459   // of the active area of the heap.
  1460   virtual size_t block_size(const HeapWord* addr) const;
  1462   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1463   // the block is an object.
  1464   virtual bool block_is_obj(const HeapWord* addr) const;
  1466   // Does this heap support heap inspection? (+PrintClassHistogram)
  1467   virtual bool supports_heap_inspection() const { return true; }
  1469   // Section on thread-local allocation buffers (TLABs)
  1470   // See CollectedHeap for semantics.
  1472   virtual bool supports_tlab_allocation() const;
  1473   virtual size_t tlab_capacity(Thread* thr) const;
  1474   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1476   // Can a compiler initialize a new object without store barriers?
  1477   // This permission only extends from the creation of a new object
  1478   // via a TLAB up to the first subsequent safepoint. If such permission
  1479   // is granted for this heap type, the compiler promises to call
  1480   // defer_store_barrier() below on any slow path allocation of
  1481   // a new object for which such initializing store barriers will
  1482   // have been elided. G1, like CMS, allows this, but should be
  1483   // ready to provide a compensating write barrier as necessary
  1484   // if that storage came out of a non-young region. The efficiency
  1485   // of this implementation depends crucially on being able to
  1486   // answer very efficiently in constant time whether a piece of
  1487   // storage in the heap comes from a young region or not.
  1488   // See ReduceInitialCardMarks.
  1489   virtual bool can_elide_tlab_store_barriers() const {
  1490     return true;
  1493   virtual bool card_mark_must_follow_store() const {
  1494     return true;
  1497   bool is_in_young(const oop obj) {
  1498     HeapRegion* hr = heap_region_containing(obj);
  1499     return hr != NULL && hr->is_young();
  1502 #ifdef ASSERT
  1503   virtual bool is_in_partial_collection(const void* p);
  1504 #endif
  1506   virtual bool is_scavengable(const void* addr);
  1508   // We don't need barriers for initializing stores to objects
  1509   // in the young gen: for the SATB pre-barrier, there is no
  1510   // pre-value that needs to be remembered; for the remembered-set
  1511   // update logging post-barrier, we don't maintain remembered set
  1512   // information for young gen objects.
  1513   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1514     return is_in_young(new_obj);
  1517   // Returns "true" iff the given word_size is "very large".
  1518   static bool isHumongous(size_t word_size) {
  1519     // Note this has to be strictly greater-than as the TLABs
  1520     // are capped at the humongous thresold and we want to
  1521     // ensure that we don't try to allocate a TLAB as
  1522     // humongous and that we don't allocate a humongous
  1523     // object in a TLAB.
  1524     return word_size > _humongous_object_threshold_in_words;
  1527   // Update mod union table with the set of dirty cards.
  1528   void updateModUnion();
  1530   // Set the mod union bits corresponding to the given memRegion.  Note
  1531   // that this is always a safe operation, since it doesn't clear any
  1532   // bits.
  1533   void markModUnionRange(MemRegion mr);
  1535   // Records the fact that a marking phase is no longer in progress.
  1536   void set_marking_complete() {
  1537     _mark_in_progress = false;
  1539   void set_marking_started() {
  1540     _mark_in_progress = true;
  1542   bool mark_in_progress() {
  1543     return _mark_in_progress;
  1546   // Print the maximum heap capacity.
  1547   virtual size_t max_capacity() const;
  1549   virtual jlong millis_since_last_gc();
  1551   // Perform any cleanup actions necessary before allowing a verification.
  1552   virtual void prepare_for_verify();
  1554   // Perform verification.
  1556   // vo == UsePrevMarking  -> use "prev" marking information,
  1557   // vo == UseNextMarking -> use "next" marking information
  1558   // vo == UseMarkWord    -> use the mark word in the object header
  1559   //
  1560   // NOTE: Only the "prev" marking information is guaranteed to be
  1561   // consistent most of the time, so most calls to this should use
  1562   // vo == UsePrevMarking.
  1563   // Currently, there is only one case where this is called with
  1564   // vo == UseNextMarking, which is to verify the "next" marking
  1565   // information at the end of remark.
  1566   // Currently there is only one place where this is called with
  1567   // vo == UseMarkWord, which is to verify the marking during a
  1568   // full GC.
  1569   void verify(bool silent, VerifyOption vo);
  1571   // Override; it uses the "prev" marking information
  1572   virtual void verify(bool silent);
  1573   virtual void print_on(outputStream* st) const;
  1574   virtual void print_extended_on(outputStream* st) const;
  1576   virtual void print_gc_threads_on(outputStream* st) const;
  1577   virtual void gc_threads_do(ThreadClosure* tc) const;
  1579   // Override
  1580   void print_tracing_info() const;
  1582   // The following two methods are helpful for debugging RSet issues.
  1583   void print_cset_rsets() PRODUCT_RETURN;
  1584   void print_all_rsets() PRODUCT_RETURN;
  1586   // Convenience function to be used in situations where the heap type can be
  1587   // asserted to be this type.
  1588   static G1CollectedHeap* heap();
  1590   void set_region_short_lived_locked(HeapRegion* hr);
  1591   // add appropriate methods for any other surv rate groups
  1593   YoungList* young_list() { return _young_list; }
  1595   // debugging
  1596   bool check_young_list_well_formed() {
  1597     return _young_list->check_list_well_formed();
  1600   bool check_young_list_empty(bool check_heap,
  1601                               bool check_sample = true);
  1603   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1604   // many of these need to be public.
  1606   // The functions below are helper functions that a subclass of
  1607   // "CollectedHeap" can use in the implementation of its virtual
  1608   // functions.
  1609   // This performs a concurrent marking of the live objects in a
  1610   // bitmap off to the side.
  1611   void doConcurrentMark();
  1613   bool isMarkedPrev(oop obj) const;
  1614   bool isMarkedNext(oop obj) const;
  1616   // Determine if an object is dead, given the object and also
  1617   // the region to which the object belongs. An object is dead
  1618   // iff a) it was not allocated since the last mark and b) it
  1619   // is not marked.
  1621   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1622     return
  1623       !hr->obj_allocated_since_prev_marking(obj) &&
  1624       !isMarkedPrev(obj);
  1627   // This function returns true when an object has been
  1628   // around since the previous marking and hasn't yet
  1629   // been marked during this marking.
  1631   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1632     return
  1633       !hr->obj_allocated_since_next_marking(obj) &&
  1634       !isMarkedNext(obj);
  1637   // Determine if an object is dead, given only the object itself.
  1638   // This will find the region to which the object belongs and
  1639   // then call the region version of the same function.
  1641   // Added if it is NULL it isn't dead.
  1643   bool is_obj_dead(const oop obj) const {
  1644     const HeapRegion* hr = heap_region_containing(obj);
  1645     if (hr == NULL) {
  1646       if (obj == NULL) return false;
  1647       else return true;
  1649     else return is_obj_dead(obj, hr);
  1652   bool is_obj_ill(const oop obj) const {
  1653     const HeapRegion* hr = heap_region_containing(obj);
  1654     if (hr == NULL) {
  1655       if (obj == NULL) return false;
  1656       else return true;
  1658     else return is_obj_ill(obj, hr);
  1661   // The methods below are here for convenience and dispatch the
  1662   // appropriate method depending on value of the given VerifyOption
  1663   // parameter. The options for that parameter are:
  1664   //
  1665   // vo == UsePrevMarking -> use "prev" marking information,
  1666   // vo == UseNextMarking -> use "next" marking information,
  1667   // vo == UseMarkWord    -> use mark word from object header
  1669   bool is_obj_dead_cond(const oop obj,
  1670                         const HeapRegion* hr,
  1671                         const VerifyOption vo) const {
  1672     switch (vo) {
  1673     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  1674     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  1675     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1676     default:                            ShouldNotReachHere();
  1678     return false; // keep some compilers happy
  1681   bool is_obj_dead_cond(const oop obj,
  1682                         const VerifyOption vo) const {
  1683     switch (vo) {
  1684     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  1685     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  1686     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1687     default:                            ShouldNotReachHere();
  1689     return false; // keep some compilers happy
  1692   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1693   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1694   bool is_marked(oop obj, VerifyOption vo);
  1695   const char* top_at_mark_start_str(VerifyOption vo);
  1697   // The following is just to alert the verification code
  1698   // that a full collection has occurred and that the
  1699   // remembered sets are no longer up to date.
  1700   bool _full_collection;
  1701   void set_full_collection() { _full_collection = true;}
  1702   void clear_full_collection() {_full_collection = false;}
  1703   bool full_collection() {return _full_collection;}
  1705   ConcurrentMark* concurrent_mark() const { return _cm; }
  1706   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1708   // The dirty cards region list is used to record a subset of regions
  1709   // whose cards need clearing. The list if populated during the
  1710   // remembered set scanning and drained during the card table
  1711   // cleanup. Although the methods are reentrant, population/draining
  1712   // phases must not overlap. For synchronization purposes the last
  1713   // element on the list points to itself.
  1714   HeapRegion* _dirty_cards_region_list;
  1715   void push_dirty_cards_region(HeapRegion* hr);
  1716   HeapRegion* pop_dirty_cards_region();
  1718 public:
  1719   void stop_conc_gc_threads();
  1721   size_t pending_card_num();
  1722   size_t cards_scanned();
  1724 protected:
  1725   size_t _max_heap_capacity;
  1726 };
  1728 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1729 private:
  1730   bool        _retired;
  1732 public:
  1733   G1ParGCAllocBuffer(size_t gclab_word_size);
  1735   void set_buf(HeapWord* buf) {
  1736     ParGCAllocBuffer::set_buf(buf);
  1737     _retired = false;
  1740   void retire(bool end_of_gc, bool retain) {
  1741     if (_retired)
  1742       return;
  1743     ParGCAllocBuffer::retire(end_of_gc, retain);
  1744     _retired = true;
  1746 };
  1748 class G1ParScanThreadState : public StackObj {
  1749 protected:
  1750   G1CollectedHeap* _g1h;
  1751   RefToScanQueue*  _refs;
  1752   DirtyCardQueue   _dcq;
  1753   CardTableModRefBS* _ct_bs;
  1754   G1RemSet* _g1_rem;
  1756   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1757   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1758   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1759   ageTable            _age_table;
  1761   size_t           _alloc_buffer_waste;
  1762   size_t           _undo_waste;
  1764   OopsInHeapRegionClosure*      _evac_failure_cl;
  1765   G1ParScanHeapEvacClosure*     _evac_cl;
  1766   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1768   int _hash_seed;
  1769   uint _queue_num;
  1771   size_t _term_attempts;
  1773   double _start;
  1774   double _start_strong_roots;
  1775   double _strong_roots_time;
  1776   double _start_term;
  1777   double _term_time;
  1779   // Map from young-age-index (0 == not young, 1 is youngest) to
  1780   // surviving words. base is what we get back from the malloc call
  1781   size_t* _surviving_young_words_base;
  1782   // this points into the array, as we use the first few entries for padding
  1783   size_t* _surviving_young_words;
  1785 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1787   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1789   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1791   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1792   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1794   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1795     if (!from->is_survivor()) {
  1796       _g1_rem->par_write_ref(from, p, tid);
  1800   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1801     // If the new value of the field points to the same region or
  1802     // is the to-space, we don't need to include it in the Rset updates.
  1803     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1804       size_t card_index = ctbs()->index_for(p);
  1805       // If the card hasn't been added to the buffer, do it.
  1806       if (ctbs()->mark_card_deferred(card_index)) {
  1807         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1812 public:
  1813   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1815   ~G1ParScanThreadState() {
  1816     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1819   RefToScanQueue*   refs()            { return _refs;             }
  1820   ageTable*         age_table()       { return &_age_table;       }
  1822   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1823     return _alloc_buffers[purpose];
  1826   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1827   size_t undo_waste() const                      { return _undo_waste; }
  1829 #ifdef ASSERT
  1830   bool verify_ref(narrowOop* ref) const;
  1831   bool verify_ref(oop* ref) const;
  1832   bool verify_task(StarTask ref) const;
  1833 #endif // ASSERT
  1835   template <class T> void push_on_queue(T* ref) {
  1836     assert(verify_ref(ref), "sanity");
  1837     refs()->push(ref);
  1840   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1841     if (G1DeferredRSUpdate) {
  1842       deferred_rs_update(from, p, tid);
  1843     } else {
  1844       immediate_rs_update(from, p, tid);
  1848   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1849     HeapWord* obj = NULL;
  1850     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1851     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1852       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1853       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1854       alloc_buf->retire(false /* end_of_gc */, false /* retain */);
  1856       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1857       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1858       // Otherwise.
  1859       alloc_buf->set_word_size(gclab_word_size);
  1860       alloc_buf->set_buf(buf);
  1862       obj = alloc_buf->allocate(word_sz);
  1863       assert(obj != NULL, "buffer was definitely big enough...");
  1864     } else {
  1865       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1867     return obj;
  1870   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1871     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1872     if (obj != NULL) return obj;
  1873     return allocate_slow(purpose, word_sz);
  1876   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1877     if (alloc_buffer(purpose)->contains(obj)) {
  1878       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1879              "should contain whole object");
  1880       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1881     } else {
  1882       CollectedHeap::fill_with_object(obj, word_sz);
  1883       add_to_undo_waste(word_sz);
  1887   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1888     _evac_failure_cl = evac_failure_cl;
  1890   OopsInHeapRegionClosure* evac_failure_closure() {
  1891     return _evac_failure_cl;
  1894   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1895     _evac_cl = evac_cl;
  1898   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1899     _partial_scan_cl = partial_scan_cl;
  1902   int* hash_seed() { return &_hash_seed; }
  1903   uint queue_num() { return _queue_num; }
  1905   size_t term_attempts() const  { return _term_attempts; }
  1906   void note_term_attempt() { _term_attempts++; }
  1908   void start_strong_roots() {
  1909     _start_strong_roots = os::elapsedTime();
  1911   void end_strong_roots() {
  1912     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1914   double strong_roots_time() const { return _strong_roots_time; }
  1916   void start_term_time() {
  1917     note_term_attempt();
  1918     _start_term = os::elapsedTime();
  1920   void end_term_time() {
  1921     _term_time += (os::elapsedTime() - _start_term);
  1923   double term_time() const { return _term_time; }
  1925   double elapsed_time() const {
  1926     return os::elapsedTime() - _start;
  1929   static void
  1930     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1931   void
  1932     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1934   size_t* surviving_young_words() {
  1935     // We add on to hide entry 0 which accumulates surviving words for
  1936     // age -1 regions (i.e. non-young ones)
  1937     return _surviving_young_words;
  1940   void retire_alloc_buffers() {
  1941     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1942       size_t waste = _alloc_buffers[ap]->words_remaining();
  1943       add_to_alloc_buffer_waste(waste);
  1944       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
  1945                                                  true /* end_of_gc */,
  1946                                                  false /* retain */);
  1950   template <class T> void deal_with_reference(T* ref_to_scan) {
  1951     if (has_partial_array_mask(ref_to_scan)) {
  1952       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1953     } else {
  1954       // Note: we can use "raw" versions of "region_containing" because
  1955       // "obj_to_scan" is definitely in the heap, and is not in a
  1956       // humongous region.
  1957       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1958       _evac_cl->set_region(r);
  1959       _evac_cl->do_oop_nv(ref_to_scan);
  1963   void deal_with_reference(StarTask ref) {
  1964     assert(verify_task(ref), "sanity");
  1965     if (ref.is_narrow()) {
  1966       deal_with_reference((narrowOop*)ref);
  1967     } else {
  1968       deal_with_reference((oop*)ref);
  1972 public:
  1973   void trim_queue();
  1974 };
  1976 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial