src/share/vm/code/compiledIC.cpp

Fri, 13 Sep 2013 22:38:02 -0400

author
drchase
date
Fri, 13 Sep 2013 22:38:02 -0400
changeset 5732
b2e698d2276c
parent 5000
a6e09d6dd8e5
child 5762
891687731b59
permissions
-rw-r--r--

8014013: CallInfo structure no longer accurately reports the result of a LinkResolver operation
Summary: Enhance method resolution and resulting data structures, plus some refactoring.
Reviewed-by: twisti, acorn, jrose

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "memory/metadataFactory.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "oops/method.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/icache.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "runtime/stubRoutines.hpp"
    42 #include "utilities/events.hpp"
    45 // Every time a compiled IC is changed or its type is being accessed,
    46 // either the CompiledIC_lock must be set or we must be at a safe point.
    48 //-----------------------------------------------------------------------------
    49 // Low-level access to an inline cache. Private, since they might not be
    50 // MT-safe to use.
    52 void* CompiledIC::cached_value() const {
    53   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    54   assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
    56   if (!is_in_transition_state()) {
    57     void* data = (void*)_value->data();
    58     // If we let the metadata value here be initialized to zero...
    59     assert(data != NULL || Universe::non_oop_word() == NULL,
    60            "no raw nulls in CompiledIC metadatas, because of patching races");
    61     return (data == (void*)Universe::non_oop_word()) ? NULL : data;
    62   } else {
    63     return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
    64   }
    65 }
    68 void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
    69   assert(entry_point != NULL, "must set legal entry point");
    70   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    71   assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
    72   assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
    74   assert(!is_icholder || is_icholder_entry(entry_point), "must be");
    76   // Don't use ic_destination for this test since that forwards
    77   // through ICBuffer instead of returning the actual current state of
    78   // the CompiledIC.
    79   if (is_icholder_entry(_ic_call->destination())) {
    80     // When patching for the ICStub case the cached value isn't
    81     // overwritten until the ICStub copied into the CompiledIC during
    82     // the next safepoint.  Make sure that the CompiledICHolder* is
    83     // marked for release at this point since it won't be identifiable
    84     // once the entry point is overwritten.
    85     InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
    86   }
    88   if (TraceCompiledIC) {
    89     tty->print("  ");
    90     print_compiled_ic();
    91     tty->print(" changing destination to " INTPTR_FORMAT, entry_point);
    92     if (!is_optimized()) {
    93       tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", (address)cache);
    94     }
    95     if (is_icstub) {
    96       tty->print(" (icstub)");
    97     }
    98     tty->cr();
    99   }
   101   {
   102   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   103 #ifdef ASSERT
   104   CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
   105   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   106 #endif
   107   _ic_call->set_destination_mt_safe(entry_point);
   108 }
   110   if (is_optimized() || is_icstub) {
   111     // Optimized call sites don't have a cache value and ICStub call
   112     // sites only change the entry point.  Changing the value in that
   113     // case could lead to MT safety issues.
   114     assert(cache == NULL, "must be null");
   115     return;
   116   }
   118   if (cache == NULL)  cache = (void*)Universe::non_oop_word();
   120   _value->set_data((intptr_t)cache);
   121 }
   124 void CompiledIC::set_ic_destination(ICStub* stub) {
   125   internal_set_ic_destination(stub->code_begin(), true, NULL, false);
   126 }
   130 address CompiledIC::ic_destination() const {
   131  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   132  if (!is_in_transition_state()) {
   133    return _ic_call->destination();
   134  } else {
   135    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
   136  }
   137 }
   140 bool CompiledIC::is_in_transition_state() const {
   141   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   142   return InlineCacheBuffer::contains(_ic_call->destination());
   143 }
   146 bool CompiledIC::is_icholder_call() const {
   147   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   148   return !_is_optimized && is_icholder_entry(ic_destination());
   149 }
   151 // Returns native address of 'call' instruction in inline-cache. Used by
   152 // the InlineCacheBuffer when it needs to find the stub.
   153 address CompiledIC::stub_address() const {
   154   assert(is_in_transition_state(), "should only be called when we are in a transition state");
   155   return _ic_call->destination();
   156 }
   159 //-----------------------------------------------------------------------------
   160 // High-level access to an inline cache. Guaranteed to be MT-safe.
   163 void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
   164   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   165   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
   166   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
   168   address entry;
   169   if (call_info->call_kind() == CallInfo::itable_call) {
   170     assert(bytecode == Bytecodes::_invokeinterface, "");
   171     int itable_index = call_info->itable_index();
   172     entry = VtableStubs::find_itable_stub(itable_index);
   173 #ifdef ASSERT
   174     assert(entry != NULL, "entry not computed");
   175     int index = call_info->resolved_method()->itable_index();
   176     assert(index == itable_index, "CallInfo pre-computes this");
   177 #endif //ASSERT
   178     InstanceKlass* k = call_info->resolved_method()->method_holder();
   179     assert(k->verify_itable_index(itable_index), "sanity check");
   180     InlineCacheBuffer::create_transition_stub(this, k, entry);
   181   } else {
   182     assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
   183     // Can be different than selected_method->vtable_index(), due to package-private etc.
   184     int vtable_index = call_info->vtable_index();
   185     assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
   186     entry = VtableStubs::find_vtable_stub(vtable_index);
   187     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   188   }
   190   if (TraceICs) {
   191     ResourceMark rm;
   192     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
   193                    instruction_address(), call_info->selected_method()->print_value_string(), entry);
   194   }
   196   // We can't check this anymore. With lazy deopt we could have already
   197   // cleaned this IC entry before we even return. This is possible if
   198   // we ran out of space in the inline cache buffer trying to do the
   199   // set_next and we safepointed to free up space. This is a benign
   200   // race because the IC entry was complete when we safepointed so
   201   // cleaning it immediately is harmless.
   202   // assert(is_megamorphic(), "sanity check");
   203 }
   206 // true if destination is megamorphic stub
   207 bool CompiledIC::is_megamorphic() const {
   208   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   209   assert(!is_optimized(), "an optimized call cannot be megamorphic");
   211   // Cannot rely on cached_value. It is either an interface or a method.
   212   return VtableStubs::is_entry_point(ic_destination());
   213 }
   215 bool CompiledIC::is_call_to_compiled() const {
   216   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   218   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
   219   // method is guaranteed to still exist, since we only remove methods after all inline caches
   220   // has been cleaned up
   221   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   222   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
   223   // Check that the cached_value is a klass for non-optimized monomorphic calls
   224   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
   225   // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
   226 #ifdef ASSERT
   227   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
   228   bool is_c1_method = caller->is_compiled_by_c1();
   229   assert( is_c1_method ||
   230          !is_monomorphic ||
   231          is_optimized() ||
   232          (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
   233 #endif // ASSERT
   234   return is_monomorphic;
   235 }
   238 bool CompiledIC::is_call_to_interpreted() const {
   239   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   240   // Call to interpreter if destination is either calling to a stub (if it
   241   // is optimized), or calling to an I2C blob
   242   bool is_call_to_interpreted = false;
   243   if (!is_optimized()) {
   244     // must use unsafe because the destination can be a zombie (and we're cleaning)
   245     // and the print_compiled_ic code wants to know if site (in the non-zombie)
   246     // is to the interpreter.
   247     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   248     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
   249     assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
   250   } else {
   251     // Check if we are calling into our own codeblob (i.e., to a stub)
   252     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
   253     address dest = ic_destination();
   254 #ifdef ASSERT
   255     {
   256       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
   257       assert(!db->is_adapter_blob(), "must use stub!");
   258     }
   259 #endif /* ASSERT */
   260     is_call_to_interpreted = cb->contains(dest);
   261   }
   262   return is_call_to_interpreted;
   263 }
   266 void CompiledIC::set_to_clean() {
   267   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
   268   if (TraceInlineCacheClearing || TraceICs) {
   269     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
   270     print();
   271   }
   273   address entry;
   274   if (is_optimized()) {
   275     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
   276   } else {
   277     entry = SharedRuntime::get_resolve_virtual_call_stub();
   278   }
   280   // A zombie transition will always be safe, since the metadata has already been set to NULL, so
   281   // we only need to patch the destination
   282   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
   284   if (safe_transition) {
   285     // Kill any leftover stub we might have too
   286     if (is_in_transition_state()) {
   287       ICStub* old_stub = ICStub_from_destination_address(stub_address());
   288       old_stub->clear();
   289     }
   290     if (is_optimized()) {
   291     set_ic_destination(entry);
   292   } else {
   293       set_ic_destination_and_value(entry, (void*)NULL);
   294     }
   295   } else {
   296     // Unsafe transition - create stub.
   297     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   298   }
   299   // We can't check this anymore. With lazy deopt we could have already
   300   // cleaned this IC entry before we even return. This is possible if
   301   // we ran out of space in the inline cache buffer trying to do the
   302   // set_next and we safepointed to free up space. This is a benign
   303   // race because the IC entry was complete when we safepointed so
   304   // cleaning it immediately is harmless.
   305   // assert(is_clean(), "sanity check");
   306 }
   309 bool CompiledIC::is_clean() const {
   310   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   311   bool is_clean = false;
   312   address dest = ic_destination();
   313   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
   314              dest == SharedRuntime::get_resolve_virtual_call_stub();
   315   assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
   316   return is_clean;
   317 }
   320 void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
   321   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   322   // Updating a cache to the wrong entry can cause bugs that are very hard
   323   // to track down - if cache entry gets invalid - we just clean it. In
   324   // this way it is always the same code path that is responsible for
   325   // updating and resolving an inline cache
   326   //
   327   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
   328   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
   329   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
   330   //
   331   // In both of these cases the only thing being modifed is the jump/call target and these
   332   // transitions are mt_safe
   334   Thread *thread = Thread::current();
   335   if (info.to_interpreter()) {
   336     // Call to interpreter
   337     if (info.is_optimized() && is_optimized()) {
   338        assert(is_clean(), "unsafe IC path");
   339        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   340       // the call analysis (callee structure) specifies that the call is optimized
   341       // (either because of CHA or the static target is final)
   342       // At code generation time, this call has been emitted as static call
   343       // Call via stub
   344       assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
   345       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
   346       methodHandle method (thread, (Method*)info.cached_metadata());
   347       csc->set_to_interpreted(method, info.entry());
   348       if (TraceICs) {
   349          ResourceMark rm(thread);
   350          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
   351            instruction_address(),
   352            method->print_value_string());
   353       }
   354     } else {
   355       // Call via method-klass-holder
   356       InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
   357       if (TraceICs) {
   358          ResourceMark rm(thread);
   359          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", instruction_address());
   360       }
   361     }
   362   } else {
   363     // Call to compiled code
   364     bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
   365 #ifdef ASSERT
   366     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
   367     assert (cb->is_nmethod(), "must be compiled!");
   368 #endif /* ASSERT */
   370     // This is MT safe if we come from a clean-cache and go through a
   371     // non-verified entry point
   372     bool safe = SafepointSynchronize::is_at_safepoint() ||
   373                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
   375     if (!safe) {
   376       InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
   377     } else {
   378       if (is_optimized()) {
   379       set_ic_destination(info.entry());
   380       } else {
   381         set_ic_destination_and_value(info.entry(), info.cached_metadata());
   382       }
   383     }
   385     if (TraceICs) {
   386       ResourceMark rm(thread);
   387       assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
   388       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
   389         instruction_address(),
   390         ((Klass*)info.cached_metadata())->print_value_string(),
   391         (safe) ? "" : "via stub");
   392     }
   393   }
   394   // We can't check this anymore. With lazy deopt we could have already
   395   // cleaned this IC entry before we even return. This is possible if
   396   // we ran out of space in the inline cache buffer trying to do the
   397   // set_next and we safepointed to free up space. This is a benign
   398   // race because the IC entry was complete when we safepointed so
   399   // cleaning it immediately is harmless.
   400   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
   401 }
   404 // is_optimized: Compiler has generated an optimized call (i.e., no inline
   405 // cache) static_bound: The call can be static bound (i.e, no need to use
   406 // inline cache)
   407 void CompiledIC::compute_monomorphic_entry(methodHandle method,
   408                                            KlassHandle receiver_klass,
   409                                            bool is_optimized,
   410                                            bool static_bound,
   411                                            CompiledICInfo& info,
   412                                            TRAPS) {
   413   nmethod* method_code = method->code();
   414   address entry = NULL;
   415   if (method_code != NULL) {
   416     // Call to compiled code
   417     if (static_bound || is_optimized) {
   418       entry      = method_code->verified_entry_point();
   419     } else {
   420       entry      = method_code->entry_point();
   421     }
   422   }
   423   if (entry != NULL) {
   424     // Call to compiled code
   425     info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
   426   } else {
   427     // Note: the following problem exists with Compiler1:
   428     //   - at compile time we may or may not know if the destination is final
   429     //   - if we know that the destination is final, we will emit an optimized
   430     //     virtual call (no inline cache), and need a Method* to make a call
   431     //     to the interpreter
   432     //   - if we do not know if the destination is final, we emit a standard
   433     //     virtual call, and use CompiledICHolder to call interpreted code
   434     //     (no static call stub has been generated)
   435     //     However in that case we will now notice it is static_bound
   436     //     and convert the call into what looks to be an optimized
   437     //     virtual call. This causes problems in verifying the IC because
   438     //     it look vanilla but is optimized. Code in is_call_to_interpreted
   439     //     is aware of this and weakens its asserts.
   441     // static_bound should imply is_optimized -- otherwise we have a
   442     // performance bug (statically-bindable method is called via
   443     // dynamically-dispatched call note: the reverse implication isn't
   444     // necessarily true -- the call may have been optimized based on compiler
   445     // analysis (static_bound is only based on "final" etc.)
   446 #ifdef COMPILER2
   447 #ifdef TIERED
   448 #if defined(ASSERT)
   449     // can't check the assert because we don't have the CompiledIC with which to
   450     // find the address if the call instruction.
   451     //
   452     // CodeBlob* cb = find_blob_unsafe(instruction_address());
   453     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
   454 #endif // ASSERT
   455 #else
   456     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
   457 #endif // TIERED
   458 #endif // COMPILER2
   459     if (is_optimized) {
   460       // Use stub entry
   461       info.set_interpreter_entry(method()->get_c2i_entry(), method());
   462     } else {
   463       // Use icholder entry
   464       CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
   465       info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
   466     }
   467   }
   468   assert(info.is_optimized() == is_optimized, "must agree");
   469 }
   472 bool CompiledIC::is_icholder_entry(address entry) {
   473   CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
   474   return (cb != NULL && cb->is_adapter_blob());
   475 }
   477 // ----------------------------------------------------------------------------
   479 void CompiledStaticCall::set_to_clean() {
   480   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   481   // Reset call site
   482   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   483 #ifdef ASSERT
   484   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
   485   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   486 #endif
   487   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
   489   // Do not reset stub here:  It is too expensive to call find_stub.
   490   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
   491   // both the call and its stub.
   492 }
   495 bool CompiledStaticCall::is_clean() const {
   496   return destination() == SharedRuntime::get_resolve_static_call_stub();
   497 }
   499 bool CompiledStaticCall::is_call_to_compiled() const {
   500   return CodeCache::contains(destination());
   501 }
   504 bool CompiledStaticCall::is_call_to_interpreted() const {
   505   // It is a call to interpreted, if it calls to a stub. Hence, the destination
   506   // must be in the stub part of the nmethod that contains the call
   507   nmethod* nm = CodeCache::find_nmethod(instruction_address());
   508   return nm->stub_contains(destination());
   509 }
   511 void CompiledStaticCall::set(const StaticCallInfo& info) {
   512   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   513   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   514   // Updating a cache to the wrong entry can cause bugs that are very hard
   515   // to track down - if cache entry gets invalid - we just clean it. In
   516   // this way it is always the same code path that is responsible for
   517   // updating and resolving an inline cache
   518   assert(is_clean(), "do not update a call entry - use clean");
   520   if (info._to_interpreter) {
   521     // Call to interpreted code
   522     set_to_interpreted(info.callee(), info.entry());
   523   } else {
   524     if (TraceICs) {
   525       ResourceMark rm;
   526       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
   527                     instruction_address(),
   528                     info.entry());
   529     }
   530     // Call to compiled code
   531     assert (CodeCache::contains(info.entry()), "wrong entry point");
   532     set_destination_mt_safe(info.entry());
   533   }
   534 }
   537 // Compute settings for a CompiledStaticCall. Since we might have to set
   538 // the stub when calling to the interpreter, we need to return arguments.
   539 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
   540   nmethod* m_code = m->code();
   541   info._callee = m;
   542   if (m_code != NULL) {
   543     info._to_interpreter = false;
   544     info._entry  = m_code->verified_entry_point();
   545   } else {
   546     // Callee is interpreted code.  In any case entering the interpreter
   547     // puts a converter-frame on the stack to save arguments.
   548     info._to_interpreter = true;
   549     info._entry      = m()->get_c2i_entry();
   550   }
   551 }
   553 address CompiledStaticCall::find_stub() {
   554   // Find reloc. information containing this call-site
   555   RelocIterator iter((nmethod*)NULL, instruction_address());
   556   while (iter.next()) {
   557     if (iter.addr() == instruction_address()) {
   558       switch(iter.type()) {
   559         case relocInfo::static_call_type:
   560           return iter.static_call_reloc()->static_stub();
   561         // We check here for opt_virtual_call_type, since we reuse the code
   562         // from the CompiledIC implementation
   563         case relocInfo::opt_virtual_call_type:
   564           return iter.opt_virtual_call_reloc()->static_stub();
   565         case relocInfo::poll_type:
   566         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
   567         default:
   568           ShouldNotReachHere();
   569       }
   570     }
   571   }
   572   return NULL;
   573 }
   576 //-----------------------------------------------------------------------------
   577 // Non-product mode code
   578 #ifndef PRODUCT
   580 void CompiledIC::verify() {
   581   // make sure code pattern is actually a call imm32 instruction
   582   _ic_call->verify();
   583   if (os::is_MP()) {
   584     _ic_call->verify_alignment();
   585   }
   586   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
   587           || is_optimized() || is_megamorphic(), "sanity check");
   588 }
   590 void CompiledIC::print() {
   591   print_compiled_ic();
   592   tty->cr();
   593 }
   595 void CompiledIC::print_compiled_ic() {
   596   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
   597              instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination(), is_optimized() ? NULL : cached_value());
   598 }
   600 void CompiledStaticCall::print() {
   601   tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
   602   if (is_clean()) {
   603     tty->print("clean");
   604   } else if (is_call_to_compiled()) {
   605     tty->print("compiled");
   606   } else if (is_call_to_interpreted()) {
   607     tty->print("interpreted");
   608   }
   609   tty->cr();
   610 }
   612 #endif // !PRODUCT

mercurial