src/share/vm/runtime/sharedRuntime.cpp

Mon, 24 Oct 2011 07:53:17 -0700

author
twisti
date
Mon, 24 Oct 2011 07:53:17 -0700
changeset 3238
b20d64f83668
parent 3203
23a1c8de9d51
child 3240
2ec638646e86
permissions
-rw-r--r--

7090904: JSR 292: JRuby junit test crashes in PSScavengeRootsClosure::do_oop
Reviewed-by: kvn, never, jrose

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 // Shared stub locations
    84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    91 RicochetBlob*       SharedRuntime::_ricochet_blob;
    93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    96 #ifdef COMPILER2
    97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    98 #endif // COMPILER2
   101 //----------------------------generate_stubs-----------------------------------
   102 void SharedRuntime::generate_stubs() {
   103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
   104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
   105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
   106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
   107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
   109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
   110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
   112   generate_ricochet_blob();
   113   generate_deopt_blob();
   115 #ifdef COMPILER2
   116   generate_uncommon_trap_blob();
   117 #endif // COMPILER2
   118 }
   120 //----------------------------generate_ricochet_blob---------------------------
   121 void SharedRuntime::generate_ricochet_blob() {
   122   if (!EnableInvokeDynamic)  return;  // leave it as a null
   124 #ifndef TARGET_ARCH_NYI_6939861
   125   // allocate space for the code
   126   ResourceMark rm;
   127   // setup code generation tools
   128   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
   129   MacroAssembler* masm = new MacroAssembler(&buffer);
   131   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
   132   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
   134   // -------------
   135   // make sure all code is generated
   136   masm->flush();
   138   // failed to generate?
   139   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
   140     assert(false, "bad ricochet blob");
   141     return;
   142   }
   144   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
   145 #endif
   146 }
   149 #include <math.h>
   151 #ifndef USDT2
   152 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   153 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   154                       char*, int, char*, int, char*, int);
   155 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   156                       char*, int, char*, int, char*, int);
   157 #endif /* !USDT2 */
   159 // Implementation of SharedRuntime
   161 #ifndef PRODUCT
   162 // For statistics
   163 int SharedRuntime::_ic_miss_ctr = 0;
   164 int SharedRuntime::_wrong_method_ctr = 0;
   165 int SharedRuntime::_resolve_static_ctr = 0;
   166 int SharedRuntime::_resolve_virtual_ctr = 0;
   167 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   168 int SharedRuntime::_implicit_null_throws = 0;
   169 int SharedRuntime::_implicit_div0_throws = 0;
   170 int SharedRuntime::_throw_null_ctr = 0;
   172 int SharedRuntime::_nof_normal_calls = 0;
   173 int SharedRuntime::_nof_optimized_calls = 0;
   174 int SharedRuntime::_nof_inlined_calls = 0;
   175 int SharedRuntime::_nof_megamorphic_calls = 0;
   176 int SharedRuntime::_nof_static_calls = 0;
   177 int SharedRuntime::_nof_inlined_static_calls = 0;
   178 int SharedRuntime::_nof_interface_calls = 0;
   179 int SharedRuntime::_nof_optimized_interface_calls = 0;
   180 int SharedRuntime::_nof_inlined_interface_calls = 0;
   181 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   182 int SharedRuntime::_nof_removable_exceptions = 0;
   184 int SharedRuntime::_new_instance_ctr=0;
   185 int SharedRuntime::_new_array_ctr=0;
   186 int SharedRuntime::_multi1_ctr=0;
   187 int SharedRuntime::_multi2_ctr=0;
   188 int SharedRuntime::_multi3_ctr=0;
   189 int SharedRuntime::_multi4_ctr=0;
   190 int SharedRuntime::_multi5_ctr=0;
   191 int SharedRuntime::_mon_enter_stub_ctr=0;
   192 int SharedRuntime::_mon_exit_stub_ctr=0;
   193 int SharedRuntime::_mon_enter_ctr=0;
   194 int SharedRuntime::_mon_exit_ctr=0;
   195 int SharedRuntime::_partial_subtype_ctr=0;
   196 int SharedRuntime::_jbyte_array_copy_ctr=0;
   197 int SharedRuntime::_jshort_array_copy_ctr=0;
   198 int SharedRuntime::_jint_array_copy_ctr=0;
   199 int SharedRuntime::_jlong_array_copy_ctr=0;
   200 int SharedRuntime::_oop_array_copy_ctr=0;
   201 int SharedRuntime::_checkcast_array_copy_ctr=0;
   202 int SharedRuntime::_unsafe_array_copy_ctr=0;
   203 int SharedRuntime::_generic_array_copy_ctr=0;
   204 int SharedRuntime::_slow_array_copy_ctr=0;
   205 int SharedRuntime::_find_handler_ctr=0;
   206 int SharedRuntime::_rethrow_ctr=0;
   208 int     SharedRuntime::_ICmiss_index                    = 0;
   209 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   210 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   213 void SharedRuntime::trace_ic_miss(address at) {
   214   for (int i = 0; i < _ICmiss_index; i++) {
   215     if (_ICmiss_at[i] == at) {
   216       _ICmiss_count[i]++;
   217       return;
   218     }
   219   }
   220   int index = _ICmiss_index++;
   221   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   222   _ICmiss_at[index] = at;
   223   _ICmiss_count[index] = 1;
   224 }
   226 void SharedRuntime::print_ic_miss_histogram() {
   227   if (ICMissHistogram) {
   228     tty->print_cr ("IC Miss Histogram:");
   229     int tot_misses = 0;
   230     for (int i = 0; i < _ICmiss_index; i++) {
   231       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   232       tot_misses += _ICmiss_count[i];
   233     }
   234     tty->print_cr ("Total IC misses: %7d", tot_misses);
   235   }
   236 }
   237 #endif // PRODUCT
   239 #ifndef SERIALGC
   241 // G1 write-barrier pre: executed before a pointer store.
   242 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   243   if (orig == NULL) {
   244     assert(false, "should be optimized out");
   245     return;
   246   }
   247   assert(orig->is_oop(true /* ignore mark word */), "Error");
   248   // store the original value that was in the field reference
   249   thread->satb_mark_queue().enqueue(orig);
   250 JRT_END
   252 // G1 write-barrier post: executed after a pointer store.
   253 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   254   thread->dirty_card_queue().enqueue(card_addr);
   255 JRT_END
   257 #endif // !SERIALGC
   260 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   261   return x * y;
   262 JRT_END
   265 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   266   if (x == min_jlong && y == CONST64(-1)) {
   267     return x;
   268   } else {
   269     return x / y;
   270   }
   271 JRT_END
   274 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   275   if (x == min_jlong && y == CONST64(-1)) {
   276     return 0;
   277   } else {
   278     return x % y;
   279   }
   280 JRT_END
   283 const juint  float_sign_mask  = 0x7FFFFFFF;
   284 const juint  float_infinity   = 0x7F800000;
   285 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   286 const julong double_infinity  = CONST64(0x7FF0000000000000);
   288 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   289 #ifdef _WIN64
   290   // 64-bit Windows on amd64 returns the wrong values for
   291   // infinity operands.
   292   union { jfloat f; juint i; } xbits, ybits;
   293   xbits.f = x;
   294   ybits.f = y;
   295   // x Mod Infinity == x unless x is infinity
   296   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   297        ((ybits.i & float_sign_mask) == float_infinity) ) {
   298     return x;
   299   }
   300 #endif
   301   return ((jfloat)fmod((double)x,(double)y));
   302 JRT_END
   305 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   306 #ifdef _WIN64
   307   union { jdouble d; julong l; } xbits, ybits;
   308   xbits.d = x;
   309   ybits.d = y;
   310   // x Mod Infinity == x unless x is infinity
   311   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   312        ((ybits.l & double_sign_mask) == double_infinity) ) {
   313     return x;
   314   }
   315 #endif
   316   return ((jdouble)fmod((double)x,(double)y));
   317 JRT_END
   319 #ifdef __SOFTFP__
   320 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   321   return x + y;
   322 JRT_END
   324 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   325   return x - y;
   326 JRT_END
   328 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   329   return x * y;
   330 JRT_END
   332 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   333   return x / y;
   334 JRT_END
   336 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   337   return x + y;
   338 JRT_END
   340 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   341   return x - y;
   342 JRT_END
   344 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   345   return x * y;
   346 JRT_END
   348 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   349   return x / y;
   350 JRT_END
   352 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   353   return (jfloat)x;
   354 JRT_END
   356 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   357   return (jdouble)x;
   358 JRT_END
   360 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   361   return (jdouble)x;
   362 JRT_END
   364 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   365   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   366 JRT_END
   368 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   369   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   370 JRT_END
   372 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   373   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   374 JRT_END
   376 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   377   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   378 JRT_END
   380 // Functions to return the opposite of the aeabi functions for nan.
   381 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   382   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   383 JRT_END
   385 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   386   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   387 JRT_END
   389 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   390   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   391 JRT_END
   393 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   394   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   395 JRT_END
   397 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   398   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   399 JRT_END
   401 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   402   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   403 JRT_END
   405 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   406   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   407 JRT_END
   409 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   410   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   411 JRT_END
   413 // Intrinsics make gcc generate code for these.
   414 float  SharedRuntime::fneg(float f)   {
   415   return -f;
   416 }
   418 double SharedRuntime::dneg(double f)  {
   419   return -f;
   420 }
   422 #endif // __SOFTFP__
   424 #if defined(__SOFTFP__) || defined(E500V2)
   425 // Intrinsics make gcc generate code for these.
   426 double SharedRuntime::dabs(double f)  {
   427   return (f <= (double)0.0) ? (double)0.0 - f : f;
   428 }
   430 #endif
   432 #if defined(__SOFTFP__) || defined(PPC)
   433 double SharedRuntime::dsqrt(double f) {
   434   return sqrt(f);
   435 }
   436 #endif
   438 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   439   if (g_isnan(x))
   440     return 0;
   441   if (x >= (jfloat) max_jint)
   442     return max_jint;
   443   if (x <= (jfloat) min_jint)
   444     return min_jint;
   445   return (jint) x;
   446 JRT_END
   449 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   450   if (g_isnan(x))
   451     return 0;
   452   if (x >= (jfloat) max_jlong)
   453     return max_jlong;
   454   if (x <= (jfloat) min_jlong)
   455     return min_jlong;
   456   return (jlong) x;
   457 JRT_END
   460 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   461   if (g_isnan(x))
   462     return 0;
   463   if (x >= (jdouble) max_jint)
   464     return max_jint;
   465   if (x <= (jdouble) min_jint)
   466     return min_jint;
   467   return (jint) x;
   468 JRT_END
   471 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   472   if (g_isnan(x))
   473     return 0;
   474   if (x >= (jdouble) max_jlong)
   475     return max_jlong;
   476   if (x <= (jdouble) min_jlong)
   477     return min_jlong;
   478   return (jlong) x;
   479 JRT_END
   482 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   483   return (jfloat)x;
   484 JRT_END
   487 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   488   return (jfloat)x;
   489 JRT_END
   492 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   493   return (jdouble)x;
   494 JRT_END
   496 // Exception handling accross interpreter/compiler boundaries
   497 //
   498 // exception_handler_for_return_address(...) returns the continuation address.
   499 // The continuation address is the entry point of the exception handler of the
   500 // previous frame depending on the return address.
   502 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   503   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   505   // Reset method handle flag.
   506   thread->set_is_method_handle_return(false);
   508   // The fastest case first
   509   CodeBlob* blob = CodeCache::find_blob(return_address);
   510   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   511   if (nm != NULL) {
   512     // Set flag if return address is a method handle call site.
   513     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   514     // native nmethods don't have exception handlers
   515     assert(!nm->is_native_method(), "no exception handler");
   516     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   517     if (nm->is_deopt_pc(return_address)) {
   518       return SharedRuntime::deopt_blob()->unpack_with_exception();
   519     } else {
   520       return nm->exception_begin();
   521     }
   522   }
   524   // Entry code
   525   if (StubRoutines::returns_to_call_stub(return_address)) {
   526     return StubRoutines::catch_exception_entry();
   527   }
   528   // Interpreted code
   529   if (Interpreter::contains(return_address)) {
   530     return Interpreter::rethrow_exception_entry();
   531   }
   532   // Ricochet frame unwind code
   533   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
   534     return SharedRuntime::ricochet_blob()->exception_addr();
   535   }
   537   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   538   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   540 #ifndef PRODUCT
   541   { ResourceMark rm;
   542     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   543     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   544     tty->print_cr("b) other problem");
   545   }
   546 #endif // PRODUCT
   548   ShouldNotReachHere();
   549   return NULL;
   550 }
   553 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   554   return raw_exception_handler_for_return_address(thread, return_address);
   555 JRT_END
   558 address SharedRuntime::get_poll_stub(address pc) {
   559   address stub;
   560   // Look up the code blob
   561   CodeBlob *cb = CodeCache::find_blob(pc);
   563   // Should be an nmethod
   564   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   566   // Look up the relocation information
   567   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   568     "safepoint polling: type must be poll" );
   570   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   571     "Only polling locations are used for safepoint");
   573   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   574   if (at_poll_return) {
   575     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   576            "polling page return stub not created yet");
   577     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   578   } else {
   579     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   580            "polling page safepoint stub not created yet");
   581     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   582   }
   583 #ifndef PRODUCT
   584   if( TraceSafepoint ) {
   585     char buf[256];
   586     jio_snprintf(buf, sizeof(buf),
   587                  "... found polling page %s exception at pc = "
   588                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   589                  at_poll_return ? "return" : "loop",
   590                  (intptr_t)pc, (intptr_t)stub);
   591     tty->print_raw_cr(buf);
   592   }
   593 #endif // PRODUCT
   594   return stub;
   595 }
   598 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   599   assert(caller.is_interpreted_frame(), "");
   600   int args_size = ArgumentSizeComputer(sig).size() + 1;
   601   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   602   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   603   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   604   return result;
   605 }
   608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   609   if (JvmtiExport::can_post_on_exceptions()) {
   610     vframeStream vfst(thread, true);
   611     methodHandle method = methodHandle(thread, vfst.method());
   612     address bcp = method()->bcp_from(vfst.bci());
   613     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   614   }
   615   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   616 }
   618 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   619   Handle h_exception = Exceptions::new_exception(thread, name, message);
   620   throw_and_post_jvmti_exception(thread, h_exception);
   621 }
   623 // The interpreter code to call this tracing function is only
   624 // called/generated when TraceRedefineClasses has the right bits
   625 // set. Since obsolete methods are never compiled, we don't have
   626 // to modify the compilers to generate calls to this function.
   627 //
   628 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   629     JavaThread* thread, methodOopDesc* method))
   630   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   632   if (method->is_obsolete()) {
   633     // We are calling an obsolete method, but this is not necessarily
   634     // an error. Our method could have been redefined just after we
   635     // fetched the methodOop from the constant pool.
   637     // RC_TRACE macro has an embedded ResourceMark
   638     RC_TRACE_WITH_THREAD(0x00001000, thread,
   639                          ("calling obsolete method '%s'",
   640                           method->name_and_sig_as_C_string()));
   641     if (RC_TRACE_ENABLED(0x00002000)) {
   642       // this option is provided to debug calls to obsolete methods
   643       guarantee(false, "faulting at call to an obsolete method.");
   644     }
   645   }
   646   return 0;
   647 JRT_END
   649 // ret_pc points into caller; we are returning caller's exception handler
   650 // for given exception
   651 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   652                                                     bool force_unwind, bool top_frame_only) {
   653   assert(nm != NULL, "must exist");
   654   ResourceMark rm;
   656   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   657   // determine handler bci, if any
   658   EXCEPTION_MARK;
   660   int handler_bci = -1;
   661   int scope_depth = 0;
   662   if (!force_unwind) {
   663     int bci = sd->bci();
   664     bool recursive_exception = false;
   665     do {
   666       bool skip_scope_increment = false;
   667       // exception handler lookup
   668       KlassHandle ek (THREAD, exception->klass());
   669       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   670       if (HAS_PENDING_EXCEPTION) {
   671         recursive_exception = true;
   672         // We threw an exception while trying to find the exception handler.
   673         // Transfer the new exception to the exception handle which will
   674         // be set into thread local storage, and do another lookup for an
   675         // exception handler for this exception, this time starting at the
   676         // BCI of the exception handler which caused the exception to be
   677         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   678         // argument to ensure that the correct exception is thrown (4870175).
   679         exception = Handle(THREAD, PENDING_EXCEPTION);
   680         CLEAR_PENDING_EXCEPTION;
   681         if (handler_bci >= 0) {
   682           bci = handler_bci;
   683           handler_bci = -1;
   684           skip_scope_increment = true;
   685         }
   686       }
   687       else {
   688         recursive_exception = false;
   689       }
   690       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   691         sd = sd->sender();
   692         if (sd != NULL) {
   693           bci = sd->bci();
   694         }
   695         ++scope_depth;
   696       }
   697     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   698   }
   700   // found handling method => lookup exception handler
   701   int catch_pco = ret_pc - nm->code_begin();
   703   ExceptionHandlerTable table(nm);
   704   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   705   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   706     // Allow abbreviated catch tables.  The idea is to allow a method
   707     // to materialize its exceptions without committing to the exact
   708     // routing of exceptions.  In particular this is needed for adding
   709     // a synthethic handler to unlock monitors when inlining
   710     // synchonized methods since the unlock path isn't represented in
   711     // the bytecodes.
   712     t = table.entry_for(catch_pco, -1, 0);
   713   }
   715 #ifdef COMPILER1
   716   if (t == NULL && nm->is_compiled_by_c1()) {
   717     assert(nm->unwind_handler_begin() != NULL, "");
   718     return nm->unwind_handler_begin();
   719   }
   720 #endif
   722   if (t == NULL) {
   723     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   724     tty->print_cr("   Exception:");
   725     exception->print();
   726     tty->cr();
   727     tty->print_cr(" Compiled exception table :");
   728     table.print();
   729     nm->print_code();
   730     guarantee(false, "missing exception handler");
   731     return NULL;
   732   }
   734   return nm->code_begin() + t->pco();
   735 }
   737 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   738   // These errors occur only at call sites
   739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   740 JRT_END
   742 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   743   // These errors occur only at call sites
   744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   745 JRT_END
   747 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   749 JRT_END
   751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   753 JRT_END
   755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   756   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   757   // cache sites (when the callee activation is not yet set up) so we are at a call site
   758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   759 JRT_END
   761 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   762   // We avoid using the normal exception construction in this case because
   763   // it performs an upcall to Java, and we're already out of stack space.
   764   klassOop k = SystemDictionary::StackOverflowError_klass();
   765   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   766   Handle exception (thread, exception_oop);
   767   if (StackTraceInThrowable) {
   768     java_lang_Throwable::fill_in_stack_trace(exception);
   769   }
   770   throw_and_post_jvmti_exception(thread, exception);
   771 JRT_END
   773 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
   774   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
   775   ResourceMark rm;
   776   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
   777   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
   778 JRT_END
   780 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   781                                                            address pc,
   782                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   783 {
   784   address target_pc = NULL;
   786   if (Interpreter::contains(pc)) {
   787 #ifdef CC_INTERP
   788     // C++ interpreter doesn't throw implicit exceptions
   789     ShouldNotReachHere();
   790 #else
   791     switch (exception_kind) {
   792       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   793       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   794       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   795       default:                      ShouldNotReachHere();
   796     }
   797 #endif // !CC_INTERP
   798   } else {
   799     switch (exception_kind) {
   800       case STACK_OVERFLOW: {
   801         // Stack overflow only occurs upon frame setup; the callee is
   802         // going to be unwound. Dispatch to a shared runtime stub
   803         // which will cause the StackOverflowError to be fabricated
   804         // and processed.
   805         // For stack overflow in deoptimization blob, cleanup thread.
   806         if (thread->deopt_mark() != NULL) {
   807           Deoptimization::cleanup_deopt_info(thread, NULL);
   808         }
   809         return StubRoutines::throw_StackOverflowError_entry();
   810       }
   812       case IMPLICIT_NULL: {
   813         if (VtableStubs::contains(pc)) {
   814           // We haven't yet entered the callee frame. Fabricate an
   815           // exception and begin dispatching it in the caller. Since
   816           // the caller was at a call site, it's safe to destroy all
   817           // caller-saved registers, as these entry points do.
   818           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   820           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   821           if (vt_stub == NULL) return NULL;
   823           if (vt_stub->is_abstract_method_error(pc)) {
   824             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   825             return StubRoutines::throw_AbstractMethodError_entry();
   826           } else {
   827             return StubRoutines::throw_NullPointerException_at_call_entry();
   828           }
   829         } else {
   830           CodeBlob* cb = CodeCache::find_blob(pc);
   832           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   833           if (cb == NULL) return NULL;
   835           // Exception happened in CodeCache. Must be either:
   836           // 1. Inline-cache check in C2I handler blob,
   837           // 2. Inline-cache check in nmethod, or
   838           // 3. Implict null exception in nmethod
   840           if (!cb->is_nmethod()) {
   841             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   842                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   843             // There is no handler here, so we will simply unwind.
   844             return StubRoutines::throw_NullPointerException_at_call_entry();
   845           }
   847           // Otherwise, it's an nmethod.  Consult its exception handlers.
   848           nmethod* nm = (nmethod*)cb;
   849           if (nm->inlinecache_check_contains(pc)) {
   850             // exception happened inside inline-cache check code
   851             // => the nmethod is not yet active (i.e., the frame
   852             // is not set up yet) => use return address pushed by
   853             // caller => don't push another return address
   854             return StubRoutines::throw_NullPointerException_at_call_entry();
   855           }
   857 #ifndef PRODUCT
   858           _implicit_null_throws++;
   859 #endif
   860           target_pc = nm->continuation_for_implicit_exception(pc);
   861           // If there's an unexpected fault, target_pc might be NULL,
   862           // in which case we want to fall through into the normal
   863           // error handling code.
   864         }
   866         break; // fall through
   867       }
   870       case IMPLICIT_DIVIDE_BY_ZERO: {
   871         nmethod* nm = CodeCache::find_nmethod(pc);
   872         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   873 #ifndef PRODUCT
   874         _implicit_div0_throws++;
   875 #endif
   876         target_pc = nm->continuation_for_implicit_exception(pc);
   877         // If there's an unexpected fault, target_pc might be NULL,
   878         // in which case we want to fall through into the normal
   879         // error handling code.
   880         break; // fall through
   881       }
   883       default: ShouldNotReachHere();
   884     }
   886     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   888     // for AbortVMOnException flag
   889     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   890     if (exception_kind == IMPLICIT_NULL) {
   891       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   892     } else {
   893       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   894     }
   895     return target_pc;
   896   }
   898   ShouldNotReachHere();
   899   return NULL;
   900 }
   903 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   904 {
   905   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   906 }
   907 JNI_END
   910 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   911   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   912 }
   915 #ifndef PRODUCT
   916 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   917   const frame f = thread->last_frame();
   918   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   919 #ifndef PRODUCT
   920   methodHandle mh(THREAD, f.interpreter_frame_method());
   921   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   922 #endif // !PRODUCT
   923   return preserve_this_value;
   924 JRT_END
   925 #endif // !PRODUCT
   928 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   929   os::yield_all(attempts);
   930 JRT_END
   933 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   934   assert(obj->is_oop(), "must be a valid oop");
   935   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   936   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   937 JRT_END
   940 jlong SharedRuntime::get_java_tid(Thread* thread) {
   941   if (thread != NULL) {
   942     if (thread->is_Java_thread()) {
   943       oop obj = ((JavaThread*)thread)->threadObj();
   944       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   945     }
   946   }
   947   return 0;
   948 }
   950 /**
   951  * This function ought to be a void function, but cannot be because
   952  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   953  * 6254741.  Once that is fixed we can remove the dummy return value.
   954  */
   955 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   956   return dtrace_object_alloc_base(Thread::current(), o);
   957 }
   959 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   960   assert(DTraceAllocProbes, "wrong call");
   961   Klass* klass = o->blueprint();
   962   int size = o->size();
   963   Symbol* name = klass->name();
   964 #ifndef USDT2
   965   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   966                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   967 #else /* USDT2 */
   968   HOTSPOT_OBJECT_ALLOC(
   969                    get_java_tid(thread),
   970                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   971 #endif /* USDT2 */
   972   return 0;
   973 }
   975 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   976     JavaThread* thread, methodOopDesc* method))
   977   assert(DTraceMethodProbes, "wrong call");
   978   Symbol* kname = method->klass_name();
   979   Symbol* name = method->name();
   980   Symbol* sig = method->signature();
   981 #ifndef USDT2
   982   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   983       kname->bytes(), kname->utf8_length(),
   984       name->bytes(), name->utf8_length(),
   985       sig->bytes(), sig->utf8_length());
   986 #else /* USDT2 */
   987   HOTSPOT_METHOD_ENTRY(
   988       get_java_tid(thread),
   989       (char *) kname->bytes(), kname->utf8_length(),
   990       (char *) name->bytes(), name->utf8_length(),
   991       (char *) sig->bytes(), sig->utf8_length());
   992 #endif /* USDT2 */
   993   return 0;
   994 JRT_END
   996 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   997     JavaThread* thread, methodOopDesc* method))
   998   assert(DTraceMethodProbes, "wrong call");
   999   Symbol* kname = method->klass_name();
  1000   Symbol* name = method->name();
  1001   Symbol* sig = method->signature();
  1002 #ifndef USDT2
  1003   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
  1004       kname->bytes(), kname->utf8_length(),
  1005       name->bytes(), name->utf8_length(),
  1006       sig->bytes(), sig->utf8_length());
  1007 #else /* USDT2 */
  1008   HOTSPOT_METHOD_RETURN(
  1009       get_java_tid(thread),
  1010       (char *) kname->bytes(), kname->utf8_length(),
  1011       (char *) name->bytes(), name->utf8_length(),
  1012       (char *) sig->bytes(), sig->utf8_length());
  1013 #endif /* USDT2 */
  1014   return 0;
  1015 JRT_END
  1018 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1019 // for a call current in progress, i.e., arguments has been pushed on stack
  1020 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1021 // vtable updates, etc.  Caller frame must be compiled.
  1022 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1023   ResourceMark rm(THREAD);
  1025   // last java frame on stack (which includes native call frames)
  1026   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1028   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1032 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1033 // for a call current in progress, i.e., arguments has been pushed on stack
  1034 // but callee has not been invoked yet.  Caller frame must be compiled.
  1035 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1036                                               vframeStream& vfst,
  1037                                               Bytecodes::Code& bc,
  1038                                               CallInfo& callinfo, TRAPS) {
  1039   Handle receiver;
  1040   Handle nullHandle;  //create a handy null handle for exception returns
  1042   assert(!vfst.at_end(), "Java frame must exist");
  1044   // Find caller and bci from vframe
  1045   methodHandle caller (THREAD, vfst.method());
  1046   int          bci    = vfst.bci();
  1048   // Find bytecode
  1049   Bytecode_invoke bytecode(caller, bci);
  1050   bc = bytecode.java_code();
  1051   int bytecode_index = bytecode.index();
  1053   // Find receiver for non-static call
  1054   if (bc != Bytecodes::_invokestatic) {
  1055     // This register map must be update since we need to find the receiver for
  1056     // compiled frames. The receiver might be in a register.
  1057     RegisterMap reg_map2(thread);
  1058     frame stubFrame   = thread->last_frame();
  1059     // Caller-frame is a compiled frame
  1060     frame callerFrame = stubFrame.sender(&reg_map2);
  1062     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1063     if (callee.is_null()) {
  1064       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1066     // Retrieve from a compiled argument list
  1067     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1069     if (receiver.is_null()) {
  1070       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1074   // Resolve method. This is parameterized by bytecode.
  1075   constantPoolHandle constants (THREAD, caller->constants());
  1076   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1077   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1079 #ifdef ASSERT
  1080   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1081   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
  1082     assert(receiver.not_null(), "should have thrown exception");
  1083     KlassHandle receiver_klass (THREAD, receiver->klass());
  1084     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1085                             // klass is already loaded
  1086     KlassHandle static_receiver_klass (THREAD, rk);
  1087     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
  1088     if (receiver_klass->oop_is_instance()) {
  1089       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1090         tty->print_cr("ERROR: Klass not yet initialized!!");
  1091         receiver_klass.print();
  1093       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1096 #endif
  1098   return receiver;
  1101 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1102   ResourceMark rm(THREAD);
  1103   // We need first to check if any Java activations (compiled, interpreted)
  1104   // exist on the stack since last JavaCall.  If not, we need
  1105   // to get the target method from the JavaCall wrapper.
  1106   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1107   methodHandle callee_method;
  1108   if (vfst.at_end()) {
  1109     // No Java frames were found on stack since we did the JavaCall.
  1110     // Hence the stack can only contain an entry_frame.  We need to
  1111     // find the target method from the stub frame.
  1112     RegisterMap reg_map(thread, false);
  1113     frame fr = thread->last_frame();
  1114     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1115     fr = fr.sender(&reg_map);
  1116     assert(fr.is_entry_frame(), "must be");
  1117     // fr is now pointing to the entry frame.
  1118     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1119     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1120   } else {
  1121     Bytecodes::Code bc;
  1122     CallInfo callinfo;
  1123     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1124     callee_method = callinfo.selected_method();
  1126   assert(callee_method()->is_method(), "must be");
  1127   return callee_method;
  1130 // Resolves a call.
  1131 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1132                                            bool is_virtual,
  1133                                            bool is_optimized, TRAPS) {
  1134   methodHandle callee_method;
  1135   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1136   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1137     int retry_count = 0;
  1138     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1139            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1140       // If has a pending exception then there is no need to re-try to
  1141       // resolve this method.
  1142       // If the method has been redefined, we need to try again.
  1143       // Hack: we have no way to update the vtables of arrays, so don't
  1144       // require that java.lang.Object has been updated.
  1146       // It is very unlikely that method is redefined more than 100 times
  1147       // in the middle of resolve. If it is looping here more than 100 times
  1148       // means then there could be a bug here.
  1149       guarantee((retry_count++ < 100),
  1150                 "Could not resolve to latest version of redefined method");
  1151       // method is redefined in the middle of resolve so re-try.
  1152       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1155   return callee_method;
  1158 // Resolves a call.  The compilers generate code for calls that go here
  1159 // and are patched with the real destination of the call.
  1160 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1161                                            bool is_virtual,
  1162                                            bool is_optimized, TRAPS) {
  1164   ResourceMark rm(thread);
  1165   RegisterMap cbl_map(thread, false);
  1166   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1168   CodeBlob* caller_cb = caller_frame.cb();
  1169   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1170   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1171   // make sure caller is not getting deoptimized
  1172   // and removed before we are done with it.
  1173   // CLEANUP - with lazy deopt shouldn't need this lock
  1174   nmethodLocker caller_lock(caller_nm);
  1177   // determine call info & receiver
  1178   // note: a) receiver is NULL for static calls
  1179   //       b) an exception is thrown if receiver is NULL for non-static calls
  1180   CallInfo call_info;
  1181   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1182   Handle receiver = find_callee_info(thread, invoke_code,
  1183                                      call_info, CHECK_(methodHandle()));
  1184   methodHandle callee_method = call_info.selected_method();
  1186   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
  1187          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
  1189 #ifndef PRODUCT
  1190   // tracing/debugging/statistics
  1191   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1192                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1193                                (&_resolve_static_ctr);
  1194   Atomic::inc(addr);
  1196   if (TraceCallFixup) {
  1197     ResourceMark rm(thread);
  1198     tty->print("resolving %s%s (%s) call to",
  1199       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1200       Bytecodes::name(invoke_code));
  1201     callee_method->print_short_name(tty);
  1202     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1204 #endif
  1206   // JSR 292
  1207   // If the resolved method is a MethodHandle invoke target the call
  1208   // site must be a MethodHandle call site.
  1209   if (callee_method->is_method_handle_invoke()) {
  1210     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1213   // Compute entry points. This might require generation of C2I converter
  1214   // frames, so we cannot be holding any locks here. Furthermore, the
  1215   // computation of the entry points is independent of patching the call.  We
  1216   // always return the entry-point, but we only patch the stub if the call has
  1217   // not been deoptimized.  Return values: For a virtual call this is an
  1218   // (cached_oop, destination address) pair. For a static call/optimized
  1219   // virtual this is just a destination address.
  1221   StaticCallInfo static_call_info;
  1222   CompiledICInfo virtual_call_info;
  1224   // Make sure the callee nmethod does not get deoptimized and removed before
  1225   // we are done patching the code.
  1226   nmethod* callee_nm = callee_method->code();
  1227   nmethodLocker nl_callee(callee_nm);
  1228 #ifdef ASSERT
  1229   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1230 #endif
  1232   if (is_virtual) {
  1233     assert(receiver.not_null(), "sanity check");
  1234     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1235     KlassHandle h_klass(THREAD, receiver->klass());
  1236     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1237                      is_optimized, static_bound, virtual_call_info,
  1238                      CHECK_(methodHandle()));
  1239   } else {
  1240     // static call
  1241     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1244   // grab lock, check for deoptimization and potentially patch caller
  1246     MutexLocker ml_patch(CompiledIC_lock);
  1248     // Now that we are ready to patch if the methodOop was redefined then
  1249     // don't update call site and let the caller retry.
  1251     if (!callee_method->is_old()) {
  1252 #ifdef ASSERT
  1253       // We must not try to patch to jump to an already unloaded method.
  1254       if (dest_entry_point != 0) {
  1255         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1256                "should not unload nmethod while locked");
  1258 #endif
  1259       if (is_virtual) {
  1260         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1261         if (inline_cache->is_clean()) {
  1262           inline_cache->set_to_monomorphic(virtual_call_info);
  1264       } else {
  1265         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1266         if (ssc->is_clean()) ssc->set(static_call_info);
  1270   } // unlock CompiledIC_lock
  1272   return callee_method;
  1276 // Inline caches exist only in compiled code
  1277 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1278 #ifdef ASSERT
  1279   RegisterMap reg_map(thread, false);
  1280   frame stub_frame = thread->last_frame();
  1281   assert(stub_frame.is_runtime_frame(), "sanity check");
  1282   frame caller_frame = stub_frame.sender(&reg_map);
  1283   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1284   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
  1285 #endif /* ASSERT */
  1287   methodHandle callee_method;
  1288   JRT_BLOCK
  1289     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1290     // Return methodOop through TLS
  1291     thread->set_vm_result(callee_method());
  1292   JRT_BLOCK_END
  1293   // return compiled code entry point after potential safepoints
  1294   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1295   return callee_method->verified_code_entry();
  1296 JRT_END
  1299 // Handle call site that has been made non-entrant
  1300 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1301   // 6243940 We might end up in here if the callee is deoptimized
  1302   // as we race to call it.  We don't want to take a safepoint if
  1303   // the caller was interpreted because the caller frame will look
  1304   // interpreted to the stack walkers and arguments are now
  1305   // "compiled" so it is much better to make this transition
  1306   // invisible to the stack walking code. The i2c path will
  1307   // place the callee method in the callee_target. It is stashed
  1308   // there because if we try and find the callee by normal means a
  1309   // safepoint is possible and have trouble gc'ing the compiled args.
  1310   RegisterMap reg_map(thread, false);
  1311   frame stub_frame = thread->last_frame();
  1312   assert(stub_frame.is_runtime_frame(), "sanity check");
  1313   frame caller_frame = stub_frame.sender(&reg_map);
  1315   // MethodHandle invokes don't have a CompiledIC and should always
  1316   // simply redispatch to the callee_target.
  1317   address   sender_pc = caller_frame.pc();
  1318   CodeBlob* sender_cb = caller_frame.cb();
  1319   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1320   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1321   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1322     // If the callee_target is set, then we have come here via an i2c
  1323     // adapter.
  1324     methodOop callee = thread->callee_target();
  1325     if (callee != NULL) {
  1326       assert(callee->is_method(), "sanity");
  1327       is_mh_invoke_via_adapter = true;
  1331   if (caller_frame.is_interpreted_frame() ||
  1332       caller_frame.is_entry_frame()       ||
  1333       caller_frame.is_ricochet_frame()    ||
  1334       is_mh_invoke_via_adapter) {
  1335     methodOop callee = thread->callee_target();
  1336     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1337     thread->set_vm_result(callee);
  1338     thread->set_callee_target(NULL);
  1339     return callee->get_c2i_entry();
  1342   // Must be compiled to compiled path which is safe to stackwalk
  1343   methodHandle callee_method;
  1344   JRT_BLOCK
  1345     // Force resolving of caller (if we called from compiled frame)
  1346     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1347     thread->set_vm_result(callee_method());
  1348   JRT_BLOCK_END
  1349   // return compiled code entry point after potential safepoints
  1350   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1351   return callee_method->verified_code_entry();
  1352 JRT_END
  1355 // resolve a static call and patch code
  1356 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1357   methodHandle callee_method;
  1358   JRT_BLOCK
  1359     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1360     thread->set_vm_result(callee_method());
  1361   JRT_BLOCK_END
  1362   // return compiled code entry point after potential safepoints
  1363   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1364   return callee_method->verified_code_entry();
  1365 JRT_END
  1368 // resolve virtual call and update inline cache to monomorphic
  1369 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1370   methodHandle callee_method;
  1371   JRT_BLOCK
  1372     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1373     thread->set_vm_result(callee_method());
  1374   JRT_BLOCK_END
  1375   // return compiled code entry point after potential safepoints
  1376   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1377   return callee_method->verified_code_entry();
  1378 JRT_END
  1381 // Resolve a virtual call that can be statically bound (e.g., always
  1382 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1383 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1384   methodHandle callee_method;
  1385   JRT_BLOCK
  1386     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1387     thread->set_vm_result(callee_method());
  1388   JRT_BLOCK_END
  1389   // return compiled code entry point after potential safepoints
  1390   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1391   return callee_method->verified_code_entry();
  1392 JRT_END
  1398 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1399   ResourceMark rm(thread);
  1400   CallInfo call_info;
  1401   Bytecodes::Code bc;
  1403   // receiver is NULL for static calls. An exception is thrown for NULL
  1404   // receivers for non-static calls
  1405   Handle receiver = find_callee_info(thread, bc, call_info,
  1406                                      CHECK_(methodHandle()));
  1407   // Compiler1 can produce virtual call sites that can actually be statically bound
  1408   // If we fell thru to below we would think that the site was going megamorphic
  1409   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1410   // we'd try and do a vtable dispatch however methods that can be statically bound
  1411   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1412   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1413   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1414   // never to miss again. I don't believe C2 will produce code like this but if it
  1415   // did this would still be the correct thing to do for it too, hence no ifdef.
  1416   //
  1417   if (call_info.resolved_method()->can_be_statically_bound()) {
  1418     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1419     if (TraceCallFixup) {
  1420       RegisterMap reg_map(thread, false);
  1421       frame caller_frame = thread->last_frame().sender(&reg_map);
  1422       ResourceMark rm(thread);
  1423       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1424       callee_method->print_short_name(tty);
  1425       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1426       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1428     return callee_method;
  1431   methodHandle callee_method = call_info.selected_method();
  1433   bool should_be_mono = false;
  1435 #ifndef PRODUCT
  1436   Atomic::inc(&_ic_miss_ctr);
  1438   // Statistics & Tracing
  1439   if (TraceCallFixup) {
  1440     ResourceMark rm(thread);
  1441     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1442     callee_method->print_short_name(tty);
  1443     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1446   if (ICMissHistogram) {
  1447     MutexLocker m(VMStatistic_lock);
  1448     RegisterMap reg_map(thread, false);
  1449     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1450     // produce statistics under the lock
  1451     trace_ic_miss(f.pc());
  1453 #endif
  1455   // install an event collector so that when a vtable stub is created the
  1456   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1457   // event can't be posted when the stub is created as locks are held
  1458   // - instead the event will be deferred until the event collector goes
  1459   // out of scope.
  1460   JvmtiDynamicCodeEventCollector event_collector;
  1462   // Update inline cache to megamorphic. Skip update if caller has been
  1463   // made non-entrant or we are called from interpreted.
  1464   { MutexLocker ml_patch (CompiledIC_lock);
  1465     RegisterMap reg_map(thread, false);
  1466     frame caller_frame = thread->last_frame().sender(&reg_map);
  1467     CodeBlob* cb = caller_frame.cb();
  1468     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1469       // Not a non-entrant nmethod, so find inline_cache
  1470       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1471       bool should_be_mono = false;
  1472       if (inline_cache->is_optimized()) {
  1473         if (TraceCallFixup) {
  1474           ResourceMark rm(thread);
  1475           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1476           callee_method->print_short_name(tty);
  1477           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1479         should_be_mono = true;
  1480       } else {
  1481         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1482         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1484           if (receiver()->klass() == ic_oop->holder_klass()) {
  1485             // This isn't a real miss. We must have seen that compiled code
  1486             // is now available and we want the call site converted to a
  1487             // monomorphic compiled call site.
  1488             // We can't assert for callee_method->code() != NULL because it
  1489             // could have been deoptimized in the meantime
  1490             if (TraceCallFixup) {
  1491               ResourceMark rm(thread);
  1492               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1493               callee_method->print_short_name(tty);
  1494               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1496             should_be_mono = true;
  1501       if (should_be_mono) {
  1503         // We have a path that was monomorphic but was going interpreted
  1504         // and now we have (or had) a compiled entry. We correct the IC
  1505         // by using a new icBuffer.
  1506         CompiledICInfo info;
  1507         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1508         inline_cache->compute_monomorphic_entry(callee_method,
  1509                                                 receiver_klass,
  1510                                                 inline_cache->is_optimized(),
  1511                                                 false,
  1512                                                 info, CHECK_(methodHandle()));
  1513         inline_cache->set_to_monomorphic(info);
  1514       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1515         // Change to megamorphic
  1516         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1517       } else {
  1518         // Either clean or megamorphic
  1521   } // Release CompiledIC_lock
  1523   return callee_method;
  1526 //
  1527 // Resets a call-site in compiled code so it will get resolved again.
  1528 // This routines handles both virtual call sites, optimized virtual call
  1529 // sites, and static call sites. Typically used to change a call sites
  1530 // destination from compiled to interpreted.
  1531 //
  1532 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1533   ResourceMark rm(thread);
  1534   RegisterMap reg_map(thread, false);
  1535   frame stub_frame = thread->last_frame();
  1536   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1537   frame caller = stub_frame.sender(&reg_map);
  1539   // Do nothing if the frame isn't a live compiled frame.
  1540   // nmethod could be deoptimized by the time we get here
  1541   // so no update to the caller is needed.
  1543   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1545     address pc = caller.pc();
  1546     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1548     // Default call_addr is the location of the "basic" call.
  1549     // Determine the address of the call we a reresolving. With
  1550     // Inline Caches we will always find a recognizable call.
  1551     // With Inline Caches disabled we may or may not find a
  1552     // recognizable call. We will always find a call for static
  1553     // calls and for optimized virtual calls. For vanilla virtual
  1554     // calls it depends on the state of the UseInlineCaches switch.
  1555     //
  1556     // With Inline Caches disabled we can get here for a virtual call
  1557     // for two reasons:
  1558     //   1 - calling an abstract method. The vtable for abstract methods
  1559     //       will run us thru handle_wrong_method and we will eventually
  1560     //       end up in the interpreter to throw the ame.
  1561     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1562     //       call and between the time we fetch the entry address and
  1563     //       we jump to it the target gets deoptimized. Similar to 1
  1564     //       we will wind up in the interprter (thru a c2i with c2).
  1565     //
  1566     address call_addr = NULL;
  1568       // Get call instruction under lock because another thread may be
  1569       // busy patching it.
  1570       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1571       // Location of call instruction
  1572       if (NativeCall::is_call_before(pc)) {
  1573         NativeCall *ncall = nativeCall_before(pc);
  1574         call_addr = ncall->instruction_address();
  1578     // Check for static or virtual call
  1579     bool is_static_call = false;
  1580     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1581     // Make sure nmethod doesn't get deoptimized and removed until
  1582     // this is done with it.
  1583     // CLEANUP - with lazy deopt shouldn't need this lock
  1584     nmethodLocker nmlock(caller_nm);
  1586     if (call_addr != NULL) {
  1587       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1588       int ret = iter.next(); // Get item
  1589       if (ret) {
  1590         assert(iter.addr() == call_addr, "must find call");
  1591         if (iter.type() == relocInfo::static_call_type) {
  1592           is_static_call = true;
  1593         } else {
  1594           assert(iter.type() == relocInfo::virtual_call_type ||
  1595                  iter.type() == relocInfo::opt_virtual_call_type
  1596                 , "unexpected relocInfo. type");
  1598       } else {
  1599         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1602       // Cleaning the inline cache will force a new resolve. This is more robust
  1603       // than directly setting it to the new destination, since resolving of calls
  1604       // is always done through the same code path. (experience shows that it
  1605       // leads to very hard to track down bugs, if an inline cache gets updated
  1606       // to a wrong method). It should not be performance critical, since the
  1607       // resolve is only done once.
  1609       MutexLocker ml(CompiledIC_lock);
  1610       //
  1611       // We do not patch the call site if the nmethod has been made non-entrant
  1612       // as it is a waste of time
  1613       //
  1614       if (caller_nm->is_in_use()) {
  1615         if (is_static_call) {
  1616           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1617           ssc->set_to_clean();
  1618         } else {
  1619           // compiled, dispatched call (which used to call an interpreted method)
  1620           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1621           inline_cache->set_to_clean();
  1628   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1631 #ifndef PRODUCT
  1632   Atomic::inc(&_wrong_method_ctr);
  1634   if (TraceCallFixup) {
  1635     ResourceMark rm(thread);
  1636     tty->print("handle_wrong_method reresolving call to");
  1637     callee_method->print_short_name(tty);
  1638     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1640 #endif
  1642   return callee_method;
  1645 // ---------------------------------------------------------------------------
  1646 // We are calling the interpreter via a c2i. Normally this would mean that
  1647 // we were called by a compiled method. However we could have lost a race
  1648 // where we went int -> i2c -> c2i and so the caller could in fact be
  1649 // interpreted. If the caller is compiled we attempt to patch the caller
  1650 // so he no longer calls into the interpreter.
  1651 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1652   methodOop moop(method);
  1654   address entry_point = moop->from_compiled_entry();
  1656   // It's possible that deoptimization can occur at a call site which hasn't
  1657   // been resolved yet, in which case this function will be called from
  1658   // an nmethod that has been patched for deopt and we can ignore the
  1659   // request for a fixup.
  1660   // Also it is possible that we lost a race in that from_compiled_entry
  1661   // is now back to the i2c in that case we don't need to patch and if
  1662   // we did we'd leap into space because the callsite needs to use
  1663   // "to interpreter" stub in order to load up the methodOop. Don't
  1664   // ask me how I know this...
  1666   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1667   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1668     return;
  1671   // The check above makes sure this is a nmethod.
  1672   nmethod* nm = cb->as_nmethod_or_null();
  1673   assert(nm, "must be");
  1675   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
  1676   // to implement MethodHandle actions.
  1677   if (nm->is_method_handle_return(caller_pc)) {
  1678     return;
  1681   // There is a benign race here. We could be attempting to patch to a compiled
  1682   // entry point at the same time the callee is being deoptimized. If that is
  1683   // the case then entry_point may in fact point to a c2i and we'd patch the
  1684   // call site with the same old data. clear_code will set code() to NULL
  1685   // at the end of it. If we happen to see that NULL then we can skip trying
  1686   // to patch. If we hit the window where the callee has a c2i in the
  1687   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1688   // and patch the code with the same old data. Asi es la vida.
  1690   if (moop->code() == NULL) return;
  1692   if (nm->is_in_use()) {
  1694     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1695     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1696     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1697       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1698       //
  1699       // bug 6281185. We might get here after resolving a call site to a vanilla
  1700       // virtual call. Because the resolvee uses the verified entry it may then
  1701       // see compiled code and attempt to patch the site by calling us. This would
  1702       // then incorrectly convert the call site to optimized and its downhill from
  1703       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1704       // just made a call site that could be megamorphic into a monomorphic site
  1705       // for the rest of its life! Just another racing bug in the life of
  1706       // fixup_callers_callsite ...
  1707       //
  1708       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1709       iter.next();
  1710       assert(iter.has_current(), "must have a reloc at java call site");
  1711       relocInfo::relocType typ = iter.reloc()->type();
  1712       if ( typ != relocInfo::static_call_type &&
  1713            typ != relocInfo::opt_virtual_call_type &&
  1714            typ != relocInfo::static_stub_type) {
  1715         return;
  1717       address destination = call->destination();
  1718       if (destination != entry_point) {
  1719         CodeBlob* callee = CodeCache::find_blob(destination);
  1720         // callee == cb seems weird. It means calling interpreter thru stub.
  1721         if (callee == cb || callee->is_adapter_blob()) {
  1722           // static call or optimized virtual
  1723           if (TraceCallFixup) {
  1724             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1725             moop->print_short_name(tty);
  1726             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1728           call->set_destination_mt_safe(entry_point);
  1729         } else {
  1730           if (TraceCallFixup) {
  1731             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1732             moop->print_short_name(tty);
  1733             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1735           // assert is too strong could also be resolve destinations.
  1736           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1738       } else {
  1739           if (TraceCallFixup) {
  1740             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1741             moop->print_short_name(tty);
  1742             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1748 IRT_END
  1751 // same as JVM_Arraycopy, but called directly from compiled code
  1752 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1753                                                 oopDesc* dest, jint dest_pos,
  1754                                                 jint length,
  1755                                                 JavaThread* thread)) {
  1756 #ifndef PRODUCT
  1757   _slow_array_copy_ctr++;
  1758 #endif
  1759   // Check if we have null pointers
  1760   if (src == NULL || dest == NULL) {
  1761     THROW(vmSymbols::java_lang_NullPointerException());
  1763   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1764   // even though the copy_array API also performs dynamic checks to ensure
  1765   // that src and dest are truly arrays (and are conformable).
  1766   // The copy_array mechanism is awkward and could be removed, but
  1767   // the compilers don't call this function except as a last resort,
  1768   // so it probably doesn't matter.
  1769   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1770                                         (arrayOopDesc*)dest, dest_pos,
  1771                                         length, thread);
  1773 JRT_END
  1775 char* SharedRuntime::generate_class_cast_message(
  1776     JavaThread* thread, const char* objName) {
  1778   // Get target class name from the checkcast instruction
  1779   vframeStream vfst(thread, true);
  1780   assert(!vfst.at_end(), "Java frame must exist");
  1781   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1782   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1783     cc.index(), thread));
  1784   return generate_class_cast_message(objName, targetKlass->external_name());
  1787 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1788                                                         oopDesc* required,
  1789                                                         oopDesc* actual) {
  1790   if (TraceMethodHandles) {
  1791     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
  1792                   thread, required, actual);
  1794   assert(EnableInvokeDynamic, "");
  1795   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1796   char* message = NULL;
  1797   if (singleKlass != NULL) {
  1798     const char* objName = "argument or return value";
  1799     if (actual != NULL) {
  1800       // be flexible about the junk passed in:
  1801       klassOop ak = (actual->is_klass()
  1802                      ? (klassOop)actual
  1803                      : actual->klass());
  1804       objName = Klass::cast(ak)->external_name();
  1806     Klass* targetKlass = Klass::cast(required->is_klass()
  1807                                      ? (klassOop)required
  1808                                      : java_lang_Class::as_klassOop(required));
  1809     message = generate_class_cast_message(objName, targetKlass->external_name());
  1810   } else {
  1811     // %%% need to get the MethodType string, without messing around too much
  1812     const char* desc = NULL;
  1813     // Get a signature from the invoke instruction
  1814     const char* mhName = "method handle";
  1815     const char* targetType = "the required signature";
  1816     int targetArity = -1, mhArity = -1;
  1817     vframeStream vfst(thread, true);
  1818     if (!vfst.at_end()) {
  1819       Bytecode_invoke call(vfst.method(), vfst.bci());
  1820       methodHandle target;
  1822         EXCEPTION_MARK;
  1823         target = call.static_target(THREAD);
  1824         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1826       if (target.not_null()
  1827           && target->is_method_handle_invoke()
  1828           && required == target->method_handle_type()) {
  1829         targetType = target->signature()->as_C_string();
  1830         targetArity = ArgumentCount(target->signature()).size();
  1833     KlassHandle kignore; int dmf_flags = 0;
  1834     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
  1835     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
  1836                        MethodHandles::_dmf_does_dispatch |
  1837                        MethodHandles::_dmf_from_interface)) != 0)
  1838       actual_method = methodHandle();  // MH does extra binds, drops, etc.
  1839     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
  1840     if (actual_method.not_null()) {
  1841       mhName = actual_method->signature()->as_C_string();
  1842       mhArity = ArgumentCount(actual_method->signature()).size();
  1843       if (!actual_method->is_static())  mhArity += 1;
  1844     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
  1845       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
  1846       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
  1847       stringStream st;
  1848       java_lang_invoke_MethodType::print_signature(mhType, &st);
  1849       mhName = st.as_string();
  1851     if (targetArity != -1 && targetArity != mhArity) {
  1852       if (has_receiver && targetArity == mhArity-1)
  1853         desc = " cannot be called without a receiver argument as ";
  1854       else
  1855         desc = " cannot be called with a different arity as ";
  1857     message = generate_class_cast_message(mhName, targetType,
  1858                                           desc != NULL ? desc :
  1859                                           " cannot be called as ");
  1861   if (TraceMethodHandles) {
  1862     tty->print_cr("WrongMethodType => message=%s", message);
  1864   return message;
  1867 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1868                                                             oopDesc* required) {
  1869   if (required == NULL)  return NULL;
  1870   if (required->klass() == SystemDictionary::Class_klass())
  1871     return required;
  1872   if (required->is_klass())
  1873     return Klass::cast(klassOop(required))->java_mirror();
  1874   return NULL;
  1878 char* SharedRuntime::generate_class_cast_message(
  1879     const char* objName, const char* targetKlassName, const char* desc) {
  1880   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1882   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1883   if (NULL == message) {
  1884     // Shouldn't happen, but don't cause even more problems if it does
  1885     message = const_cast<char*>(objName);
  1886   } else {
  1887     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1889   return message;
  1892 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1893   (void) JavaThread::current()->reguard_stack();
  1894 JRT_END
  1897 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1898 #ifndef PRODUCT
  1899 int SharedRuntime::_monitor_enter_ctr=0;
  1900 #endif
  1901 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1902   oop obj(_obj);
  1903 #ifndef PRODUCT
  1904   _monitor_enter_ctr++;             // monitor enter slow
  1905 #endif
  1906   if (PrintBiasedLockingStatistics) {
  1907     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1909   Handle h_obj(THREAD, obj);
  1910   if (UseBiasedLocking) {
  1911     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1912     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1913   } else {
  1914     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1916   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1917 JRT_END
  1919 #ifndef PRODUCT
  1920 int SharedRuntime::_monitor_exit_ctr=0;
  1921 #endif
  1922 // Handles the uncommon cases of monitor unlocking in compiled code
  1923 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1924    oop obj(_obj);
  1925 #ifndef PRODUCT
  1926   _monitor_exit_ctr++;              // monitor exit slow
  1927 #endif
  1928   Thread* THREAD = JavaThread::current();
  1929   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1930   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1931   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1932 #undef MIGHT_HAVE_PENDING
  1933 #ifdef MIGHT_HAVE_PENDING
  1934   // Save and restore any pending_exception around the exception mark.
  1935   // While the slow_exit must not throw an exception, we could come into
  1936   // this routine with one set.
  1937   oop pending_excep = NULL;
  1938   const char* pending_file;
  1939   int pending_line;
  1940   if (HAS_PENDING_EXCEPTION) {
  1941     pending_excep = PENDING_EXCEPTION;
  1942     pending_file  = THREAD->exception_file();
  1943     pending_line  = THREAD->exception_line();
  1944     CLEAR_PENDING_EXCEPTION;
  1946 #endif /* MIGHT_HAVE_PENDING */
  1949     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1950     EXCEPTION_MARK;
  1951     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1954 #ifdef MIGHT_HAVE_PENDING
  1955   if (pending_excep != NULL) {
  1956     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1958 #endif /* MIGHT_HAVE_PENDING */
  1959 JRT_END
  1961 #ifndef PRODUCT
  1963 void SharedRuntime::print_statistics() {
  1964   ttyLocker ttyl;
  1965   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1967   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1968   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1969   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1971   SharedRuntime::print_ic_miss_histogram();
  1973   if (CountRemovableExceptions) {
  1974     if (_nof_removable_exceptions > 0) {
  1975       Unimplemented(); // this counter is not yet incremented
  1976       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1980   // Dump the JRT_ENTRY counters
  1981   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1982   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1983   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1984   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1985   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1986   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1987   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1989   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1990   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1991   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1992   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1993   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1995   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1996   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1997   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1998   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1999   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  2000   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  2001   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  2002   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  2003   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  2004   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  2005   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  2006   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  2007   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  2008   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  2009   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  2010   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  2012   AdapterHandlerLibrary::print_statistics();
  2014   if (xtty != NULL)  xtty->tail("statistics");
  2017 inline double percent(int x, int y) {
  2018   return 100.0 * x / MAX2(y, 1);
  2021 class MethodArityHistogram {
  2022  public:
  2023   enum { MAX_ARITY = 256 };
  2024  private:
  2025   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  2026   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  2027   static int _max_arity;                      // max. arity seen
  2028   static int _max_size;                       // max. arg size seen
  2030   static void add_method_to_histogram(nmethod* nm) {
  2031     methodOop m = nm->method();
  2032     ArgumentCount args(m->signature());
  2033     int arity   = args.size() + (m->is_static() ? 0 : 1);
  2034     int argsize = m->size_of_parameters();
  2035     arity   = MIN2(arity, MAX_ARITY-1);
  2036     argsize = MIN2(argsize, MAX_ARITY-1);
  2037     int count = nm->method()->compiled_invocation_count();
  2038     _arity_histogram[arity]  += count;
  2039     _size_histogram[argsize] += count;
  2040     _max_arity = MAX2(_max_arity, arity);
  2041     _max_size  = MAX2(_max_size, argsize);
  2044   void print_histogram_helper(int n, int* histo, const char* name) {
  2045     const int N = MIN2(5, n);
  2046     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2047     double sum = 0;
  2048     double weighted_sum = 0;
  2049     int i;
  2050     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2051     double rest = sum;
  2052     double percent = sum / 100;
  2053     for (i = 0; i <= N; i++) {
  2054       rest -= histo[i];
  2055       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2057     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2058     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2061   void print_histogram() {
  2062     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2063     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2064     tty->print_cr("\nSame for parameter size (in words):");
  2065     print_histogram_helper(_max_size, _size_histogram, "size");
  2066     tty->cr();
  2069  public:
  2070   MethodArityHistogram() {
  2071     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2072     _max_arity = _max_size = 0;
  2073     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2074     CodeCache::nmethods_do(add_method_to_histogram);
  2075     print_histogram();
  2077 };
  2079 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2080 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2081 int MethodArityHistogram::_max_arity;
  2082 int MethodArityHistogram::_max_size;
  2084 void SharedRuntime::print_call_statistics(int comp_total) {
  2085   tty->print_cr("Calls from compiled code:");
  2086   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2087   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2088   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2089   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2090   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2091   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2092   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2093   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2094   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2095   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2096   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2097   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2098   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2099   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2100   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2101   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2102   tty->cr();
  2103   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2104   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2105   tty->print_cr("        %% in nested categories are relative to their category");
  2106   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2107   tty->cr();
  2109   MethodArityHistogram h;
  2111 #endif
  2114 // A simple wrapper class around the calling convention information
  2115 // that allows sharing of adapters for the same calling convention.
  2116 class AdapterFingerPrint : public CHeapObj {
  2117  private:
  2118   union {
  2119     int  _compact[3];
  2120     int* _fingerprint;
  2121   } _value;
  2122   int _length; // A negative length indicates the fingerprint is in the compact form,
  2123                // Otherwise _value._fingerprint is the array.
  2125   // Remap BasicTypes that are handled equivalently by the adapters.
  2126   // These are correct for the current system but someday it might be
  2127   // necessary to make this mapping platform dependent.
  2128   static BasicType adapter_encoding(BasicType in) {
  2129     assert((~0xf & in) == 0, "must fit in 4 bits");
  2130     switch(in) {
  2131       case T_BOOLEAN:
  2132       case T_BYTE:
  2133       case T_SHORT:
  2134       case T_CHAR:
  2135         // There are all promoted to T_INT in the calling convention
  2136         return T_INT;
  2138       case T_OBJECT:
  2139       case T_ARRAY:
  2140 #ifdef _LP64
  2141         return T_LONG;
  2142 #else
  2143         return T_INT;
  2144 #endif
  2146       case T_INT:
  2147       case T_LONG:
  2148       case T_FLOAT:
  2149       case T_DOUBLE:
  2150       case T_VOID:
  2151         return in;
  2153       default:
  2154         ShouldNotReachHere();
  2155         return T_CONFLICT;
  2159  public:
  2160   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2161     // The fingerprint is based on the BasicType signature encoded
  2162     // into an array of ints with eight entries per int.
  2163     int* ptr;
  2164     int len = (total_args_passed + 7) >> 3;
  2165     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
  2166       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2167       // Storing the signature encoded as signed chars hits about 98%
  2168       // of the time.
  2169       _length = -len;
  2170       ptr = _value._compact;
  2171     } else {
  2172       _length = len;
  2173       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
  2174       ptr = _value._fingerprint;
  2177     // Now pack the BasicTypes with 8 per int
  2178     int sig_index = 0;
  2179     for (int index = 0; index < len; index++) {
  2180       int value = 0;
  2181       for (int byte = 0; byte < 8; byte++) {
  2182         if (sig_index < total_args_passed) {
  2183           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
  2186       ptr[index] = value;
  2190   ~AdapterFingerPrint() {
  2191     if (_length > 0) {
  2192       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  2196   int value(int index) {
  2197     if (_length < 0) {
  2198       return _value._compact[index];
  2200     return _value._fingerprint[index];
  2202   int length() {
  2203     if (_length < 0) return -_length;
  2204     return _length;
  2207   bool is_compact() {
  2208     return _length <= 0;
  2211   unsigned int compute_hash() {
  2212     int hash = 0;
  2213     for (int i = 0; i < length(); i++) {
  2214       int v = value(i);
  2215       hash = (hash << 8) ^ v ^ (hash >> 5);
  2217     return (unsigned int)hash;
  2220   const char* as_string() {
  2221     stringStream st;
  2222     st.print("0x");
  2223     for (int i = 0; i < length(); i++) {
  2224       st.print("%08x", value(i));
  2226     return st.as_string();
  2229   bool equals(AdapterFingerPrint* other) {
  2230     if (other->_length != _length) {
  2231       return false;
  2233     if (_length < 0) {
  2234       return _value._compact[0] == other->_value._compact[0] &&
  2235              _value._compact[1] == other->_value._compact[1] &&
  2236              _value._compact[2] == other->_value._compact[2];
  2237     } else {
  2238       for (int i = 0; i < _length; i++) {
  2239         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2240           return false;
  2244     return true;
  2246 };
  2249 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2250 class AdapterHandlerTable : public BasicHashtable {
  2251   friend class AdapterHandlerTableIterator;
  2253  private:
  2255 #ifndef PRODUCT
  2256   static int _lookups; // number of calls to lookup
  2257   static int _buckets; // number of buckets checked
  2258   static int _equals;  // number of buckets checked with matching hash
  2259   static int _hits;    // number of successful lookups
  2260   static int _compact; // number of equals calls with compact signature
  2261 #endif
  2263   AdapterHandlerEntry* bucket(int i) {
  2264     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  2267  public:
  2268   AdapterHandlerTable()
  2269     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  2271   // Create a new entry suitable for insertion in the table
  2272   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2273     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  2274     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2275     return entry;
  2278   // Insert an entry into the table
  2279   void add(AdapterHandlerEntry* entry) {
  2280     int index = hash_to_index(entry->hash());
  2281     add_entry(index, entry);
  2284   void free_entry(AdapterHandlerEntry* entry) {
  2285     entry->deallocate();
  2286     BasicHashtable::free_entry(entry);
  2289   // Find a entry with the same fingerprint if it exists
  2290   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2291     NOT_PRODUCT(_lookups++);
  2292     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2293     unsigned int hash = fp.compute_hash();
  2294     int index = hash_to_index(hash);
  2295     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2296       NOT_PRODUCT(_buckets++);
  2297       if (e->hash() == hash) {
  2298         NOT_PRODUCT(_equals++);
  2299         if (fp.equals(e->fingerprint())) {
  2300 #ifndef PRODUCT
  2301           if (fp.is_compact()) _compact++;
  2302           _hits++;
  2303 #endif
  2304           return e;
  2308     return NULL;
  2311 #ifndef PRODUCT
  2312   void print_statistics() {
  2313     ResourceMark rm;
  2314     int longest = 0;
  2315     int empty = 0;
  2316     int total = 0;
  2317     int nonempty = 0;
  2318     for (int index = 0; index < table_size(); index++) {
  2319       int count = 0;
  2320       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2321         count++;
  2323       if (count != 0) nonempty++;
  2324       if (count == 0) empty++;
  2325       if (count > longest) longest = count;
  2326       total += count;
  2328     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2329                   empty, longest, total, total / (double)nonempty);
  2330     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2331                   _lookups, _buckets, _equals, _hits, _compact);
  2333 #endif
  2334 };
  2337 #ifndef PRODUCT
  2339 int AdapterHandlerTable::_lookups;
  2340 int AdapterHandlerTable::_buckets;
  2341 int AdapterHandlerTable::_equals;
  2342 int AdapterHandlerTable::_hits;
  2343 int AdapterHandlerTable::_compact;
  2345 #endif
  2347 class AdapterHandlerTableIterator : public StackObj {
  2348  private:
  2349   AdapterHandlerTable* _table;
  2350   int _index;
  2351   AdapterHandlerEntry* _current;
  2353   void scan() {
  2354     while (_index < _table->table_size()) {
  2355       AdapterHandlerEntry* a = _table->bucket(_index);
  2356       _index++;
  2357       if (a != NULL) {
  2358         _current = a;
  2359         return;
  2364  public:
  2365   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2366     scan();
  2368   bool has_next() {
  2369     return _current != NULL;
  2371   AdapterHandlerEntry* next() {
  2372     if (_current != NULL) {
  2373       AdapterHandlerEntry* result = _current;
  2374       _current = _current->next();
  2375       if (_current == NULL) scan();
  2376       return result;
  2377     } else {
  2378       return NULL;
  2381 };
  2384 // ---------------------------------------------------------------------------
  2385 // Implementation of AdapterHandlerLibrary
  2386 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2387 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2388 const int AdapterHandlerLibrary_size = 16*K;
  2389 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2391 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2392   // Should be called only when AdapterHandlerLibrary_lock is active.
  2393   if (_buffer == NULL) // Initialize lazily
  2394       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2395   return _buffer;
  2398 void AdapterHandlerLibrary::initialize() {
  2399   if (_adapters != NULL) return;
  2400   _adapters = new AdapterHandlerTable();
  2402   // Create a special handler for abstract methods.  Abstract methods
  2403   // are never compiled so an i2c entry is somewhat meaningless, but
  2404   // fill it in with something appropriate just in case.  Pass handle
  2405   // wrong method for the c2i transitions.
  2406   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2407   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2408                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2409                                                               wrong_method, wrong_method);
  2412 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2413                                                       address i2c_entry,
  2414                                                       address c2i_entry,
  2415                                                       address c2i_unverified_entry) {
  2416   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2419 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2420   // Use customized signature handler.  Need to lock around updates to
  2421   // the AdapterHandlerTable (it is not safe for concurrent readers
  2422   // and a single writer: this could be fixed if it becomes a
  2423   // problem).
  2425   // Get the address of the ic_miss handlers before we grab the
  2426   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2427   // was caused by the initialization of the stubs happening
  2428   // while we held the lock and then notifying jvmti while
  2429   // holding it. This just forces the initialization to be a little
  2430   // earlier.
  2431   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2432   assert(ic_miss != NULL, "must have handler");
  2434   ResourceMark rm;
  2436   NOT_PRODUCT(int insts_size);
  2437   AdapterBlob* B = NULL;
  2438   AdapterHandlerEntry* entry = NULL;
  2439   AdapterFingerPrint* fingerprint = NULL;
  2441     MutexLocker mu(AdapterHandlerLibrary_lock);
  2442     // make sure data structure is initialized
  2443     initialize();
  2445     if (method->is_abstract()) {
  2446       return _abstract_method_handler;
  2449     // Fill in the signature array, for the calling-convention call.
  2450     int total_args_passed = method->size_of_parameters(); // All args on stack
  2452     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2453     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2454     int i = 0;
  2455     if (!method->is_static())  // Pass in receiver first
  2456       sig_bt[i++] = T_OBJECT;
  2457     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2458       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2459       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2460         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2462     assert(i == total_args_passed, "");
  2464     // Lookup method signature's fingerprint
  2465     entry = _adapters->lookup(total_args_passed, sig_bt);
  2467 #ifdef ASSERT
  2468     AdapterHandlerEntry* shared_entry = NULL;
  2469     if (VerifyAdapterSharing && entry != NULL) {
  2470       shared_entry = entry;
  2471       entry = NULL;
  2473 #endif
  2475     if (entry != NULL) {
  2476       return entry;
  2479     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2480     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2482     // Make a C heap allocated version of the fingerprint to store in the adapter
  2483     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2485     // Create I2C & C2I handlers
  2487     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2488     if (buf != NULL) {
  2489       CodeBuffer buffer(buf);
  2490       short buffer_locs[20];
  2491       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2492                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2493       MacroAssembler _masm(&buffer);
  2495       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2496                                                      total_args_passed,
  2497                                                      comp_args_on_stack,
  2498                                                      sig_bt,
  2499                                                      regs,
  2500                                                      fingerprint);
  2502 #ifdef ASSERT
  2503       if (VerifyAdapterSharing) {
  2504         if (shared_entry != NULL) {
  2505           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2506                  "code must match");
  2507           // Release the one just created and return the original
  2508           _adapters->free_entry(entry);
  2509           return shared_entry;
  2510         } else  {
  2511           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2514 #endif
  2516       B = AdapterBlob::create(&buffer);
  2517       NOT_PRODUCT(insts_size = buffer.insts_size());
  2519     if (B == NULL) {
  2520       // CodeCache is full, disable compilation
  2521       // Ought to log this but compile log is only per compile thread
  2522       // and we're some non descript Java thread.
  2523       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2524       CompileBroker::handle_full_code_cache();
  2525       return NULL; // Out of CodeCache space
  2527     entry->relocate(B->content_begin());
  2528 #ifndef PRODUCT
  2529     // debugging suppport
  2530     if (PrintAdapterHandlers) {
  2531       tty->cr();
  2532       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2533                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2534                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
  2535       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2536       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
  2538 #endif
  2540     _adapters->add(entry);
  2542   // Outside of the lock
  2543   if (B != NULL) {
  2544     char blob_id[256];
  2545     jio_snprintf(blob_id,
  2546                  sizeof(blob_id),
  2547                  "%s(%s)@" PTR_FORMAT,
  2548                  B->name(),
  2549                  fingerprint->as_string(),
  2550                  B->content_begin());
  2551     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2553     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2554       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2557   return entry;
  2560 void AdapterHandlerEntry::relocate(address new_base) {
  2561     ptrdiff_t delta = new_base - _i2c_entry;
  2562     _i2c_entry += delta;
  2563     _c2i_entry += delta;
  2564     _c2i_unverified_entry += delta;
  2568 void AdapterHandlerEntry::deallocate() {
  2569   delete _fingerprint;
  2570 #ifdef ASSERT
  2571   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
  2572   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
  2573 #endif
  2577 #ifdef ASSERT
  2578 // Capture the code before relocation so that it can be compared
  2579 // against other versions.  If the code is captured after relocation
  2580 // then relative instructions won't be equivalent.
  2581 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2582   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
  2583   _code_length = length;
  2584   memcpy(_saved_code, buffer, length);
  2585   _total_args_passed = total_args_passed;
  2586   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
  2587   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2591 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2592   if (length != _code_length) {
  2593     return false;
  2595   for (int i = 0; i < length; i++) {
  2596     if (buffer[i] != _saved_code[i]) {
  2597       return false;
  2600   return true;
  2602 #endif
  2605 // Create a native wrapper for this native method.  The wrapper converts the
  2606 // java compiled calling convention to the native convention, handlizes
  2607 // arguments, and transitions to native.  On return from the native we transition
  2608 // back to java blocking if a safepoint is in progress.
  2609 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2610   ResourceMark rm;
  2611   nmethod* nm = NULL;
  2613   assert(method->has_native_function(), "must have something valid to call!");
  2616     // perform the work while holding the lock, but perform any printing outside the lock
  2617     MutexLocker mu(AdapterHandlerLibrary_lock);
  2618     // See if somebody beat us to it
  2619     nm = method->code();
  2620     if (nm) {
  2621       return nm;
  2624     ResourceMark rm;
  2626     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2627     if (buf != NULL) {
  2628       CodeBuffer buffer(buf);
  2629       double locs_buf[20];
  2630       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2631       MacroAssembler _masm(&buffer);
  2633       // Fill in the signature array, for the calling-convention call.
  2634       int total_args_passed = method->size_of_parameters();
  2636       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2637       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2638       int i=0;
  2639       if( !method->is_static() )  // Pass in receiver first
  2640         sig_bt[i++] = T_OBJECT;
  2641       SignatureStream ss(method->signature());
  2642       for( ; !ss.at_return_type(); ss.next()) {
  2643         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2644         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2645           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2647       assert( i==total_args_passed, "" );
  2648       BasicType ret_type = ss.type();
  2650       // Now get the compiled-Java layout as input arguments
  2651       int comp_args_on_stack;
  2652       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2654       // Generate the compiled-to-native wrapper code
  2655       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2656                                                   method,
  2657                                                   compile_id,
  2658                                                   total_args_passed,
  2659                                                   comp_args_on_stack,
  2660                                                   sig_bt,regs,
  2661                                                   ret_type);
  2665   // Must unlock before calling set_code
  2667   // Install the generated code.
  2668   if (nm != NULL) {
  2669     if (PrintCompilation) {
  2670       ttyLocker ttyl;
  2671       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2673     method->set_code(method, nm);
  2674     nm->post_compiled_method_load_event();
  2675   } else {
  2676     // CodeCache is full, disable compilation
  2677     CompileBroker::handle_full_code_cache();
  2679   return nm;
  2682 #ifdef HAVE_DTRACE_H
  2683 // Create a dtrace nmethod for this method.  The wrapper converts the
  2684 // java compiled calling convention to the native convention, makes a dummy call
  2685 // (actually nops for the size of the call instruction, which become a trap if
  2686 // probe is enabled). The returns to the caller. Since this all looks like a
  2687 // leaf no thread transition is needed.
  2689 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2690   ResourceMark rm;
  2691   nmethod* nm = NULL;
  2693   if (PrintCompilation) {
  2694     ttyLocker ttyl;
  2695     tty->print("---   n%s  ");
  2696     method->print_short_name(tty);
  2697     if (method->is_static()) {
  2698       tty->print(" (static)");
  2700     tty->cr();
  2704     // perform the work while holding the lock, but perform any printing
  2705     // outside the lock
  2706     MutexLocker mu(AdapterHandlerLibrary_lock);
  2707     // See if somebody beat us to it
  2708     nm = method->code();
  2709     if (nm) {
  2710       return nm;
  2713     ResourceMark rm;
  2715     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2716     if (buf != NULL) {
  2717       CodeBuffer buffer(buf);
  2718       // Need a few relocation entries
  2719       double locs_buf[20];
  2720       buffer.insts()->initialize_shared_locs(
  2721         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2722       MacroAssembler _masm(&buffer);
  2724       // Generate the compiled-to-native wrapper code
  2725       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2728   return nm;
  2731 // the dtrace method needs to convert java lang string to utf8 string.
  2732 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2733   typeArrayOop jlsValue  = java_lang_String::value(src);
  2734   int          jlsOffset = java_lang_String::offset(src);
  2735   int          jlsLen    = java_lang_String::length(src);
  2736   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2737                                            jlsValue->char_at_addr(jlsOffset);
  2738   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2739   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2741 #endif // ndef HAVE_DTRACE_H
  2743 // -------------------------------------------------------------------------
  2744 // Java-Java calling convention
  2745 // (what you use when Java calls Java)
  2747 //------------------------------name_for_receiver----------------------------------
  2748 // For a given signature, return the VMReg for parameter 0.
  2749 VMReg SharedRuntime::name_for_receiver() {
  2750   VMRegPair regs;
  2751   BasicType sig_bt = T_OBJECT;
  2752   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2753   // Return argument 0 register.  In the LP64 build pointers
  2754   // take 2 registers, but the VM wants only the 'main' name.
  2755   return regs.first();
  2758 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2759   // This method is returning a data structure allocating as a
  2760   // ResourceObject, so do not put any ResourceMarks in here.
  2761   char *s = sig->as_C_string();
  2762   int len = (int)strlen(s);
  2763   *s++; len--;                  // Skip opening paren
  2764   char *t = s+len;
  2765   while( *(--t) != ')' ) ;      // Find close paren
  2767   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2768   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2769   int cnt = 0;
  2770   if (has_receiver) {
  2771     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2774   while( s < t ) {
  2775     switch( *s++ ) {            // Switch on signature character
  2776     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2777     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2778     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2779     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2780     case 'I': sig_bt[cnt++] = T_INT;     break;
  2781     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2782     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2783     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2784     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2785     case 'L':                   // Oop
  2786       while( *s++ != ';'  ) ;   // Skip signature
  2787       sig_bt[cnt++] = T_OBJECT;
  2788       break;
  2789     case '[': {                 // Array
  2790       do {                      // Skip optional size
  2791         while( *s >= '0' && *s <= '9' ) s++;
  2792       } while( *s++ == '[' );   // Nested arrays?
  2793       // Skip element type
  2794       if( s[-1] == 'L' )
  2795         while( *s++ != ';'  ) ; // Skip signature
  2796       sig_bt[cnt++] = T_ARRAY;
  2797       break;
  2799     default : ShouldNotReachHere();
  2802   assert( cnt < 256, "grow table size" );
  2804   int comp_args_on_stack;
  2805   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2807   // the calling convention doesn't count out_preserve_stack_slots so
  2808   // we must add that in to get "true" stack offsets.
  2810   if (comp_args_on_stack) {
  2811     for (int i = 0; i < cnt; i++) {
  2812       VMReg reg1 = regs[i].first();
  2813       if( reg1->is_stack()) {
  2814         // Yuck
  2815         reg1 = reg1->bias(out_preserve_stack_slots());
  2817       VMReg reg2 = regs[i].second();
  2818       if( reg2->is_stack()) {
  2819         // Yuck
  2820         reg2 = reg2->bias(out_preserve_stack_slots());
  2822       regs[i].set_pair(reg2, reg1);
  2826   // results
  2827   *arg_size = cnt;
  2828   return regs;
  2831 // OSR Migration Code
  2832 //
  2833 // This code is used convert interpreter frames into compiled frames.  It is
  2834 // called from very start of a compiled OSR nmethod.  A temp array is
  2835 // allocated to hold the interesting bits of the interpreter frame.  All
  2836 // active locks are inflated to allow them to move.  The displaced headers and
  2837 // active interpeter locals are copied into the temp buffer.  Then we return
  2838 // back to the compiled code.  The compiled code then pops the current
  2839 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2840 // copies the interpreter locals and displaced headers where it wants.
  2841 // Finally it calls back to free the temp buffer.
  2842 //
  2843 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2845 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2847 #ifdef IA64
  2848   ShouldNotReachHere(); // NYI
  2849 #endif /* IA64 */
  2851   //
  2852   // This code is dependent on the memory layout of the interpreter local
  2853   // array and the monitors. On all of our platforms the layout is identical
  2854   // so this code is shared. If some platform lays the their arrays out
  2855   // differently then this code could move to platform specific code or
  2856   // the code here could be modified to copy items one at a time using
  2857   // frame accessor methods and be platform independent.
  2859   frame fr = thread->last_frame();
  2860   assert( fr.is_interpreted_frame(), "" );
  2861   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2863   // Figure out how many monitors are active.
  2864   int active_monitor_count = 0;
  2865   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2866        kptr < fr.interpreter_frame_monitor_begin();
  2867        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2868     if( kptr->obj() != NULL ) active_monitor_count++;
  2871   // QQQ we could place number of active monitors in the array so that compiled code
  2872   // could double check it.
  2874   methodOop moop = fr.interpreter_frame_method();
  2875   int max_locals = moop->max_locals();
  2876   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2877   int buf_size_words = max_locals + active_monitor_count*2;
  2878   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2880   // Copy the locals.  Order is preserved so that loading of longs works.
  2881   // Since there's no GC I can copy the oops blindly.
  2882   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2883   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2884                        (HeapWord*)&buf[0],
  2885                        max_locals);
  2887   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2888   int i = max_locals;
  2889   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2890        kptr2 < fr.interpreter_frame_monitor_begin();
  2891        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2892     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2893       BasicLock *lock = kptr2->lock();
  2894       // Inflate so the displaced header becomes position-independent
  2895       if (lock->displaced_header()->is_unlocked())
  2896         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2897       // Now the displaced header is free to move
  2898       buf[i++] = (intptr_t)lock->displaced_header();
  2899       buf[i++] = (intptr_t)kptr2->obj();
  2902   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2904   return buf;
  2905 JRT_END
  2907 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2908   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2909 JRT_END
  2911 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2912   AdapterHandlerTableIterator iter(_adapters);
  2913   while (iter.has_next()) {
  2914     AdapterHandlerEntry* a = iter.next();
  2915     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2917   return false;
  2920 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2921   AdapterHandlerTableIterator iter(_adapters);
  2922   while (iter.has_next()) {
  2923     AdapterHandlerEntry* a = iter.next();
  2924     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2925       st->print("Adapter for signature: ");
  2926       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2927                    a->fingerprint()->as_string(),
  2928                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2930       return;
  2933   assert(false, "Should have found handler");
  2936 #ifndef PRODUCT
  2938 void AdapterHandlerLibrary::print_statistics() {
  2939   _adapters->print_statistics();
  2942 #endif /* PRODUCT */

mercurial