src/share/vm/opto/coalesce.cpp

Wed, 10 Apr 2019 11:38:47 +0200

author
sgehwolf
date
Wed, 10 Apr 2019 11:38:47 +0200
changeset 9649
b2000ea410b0
parent 9514
d853bac073f8
child 9572
624a0741915c
permissions
-rw-r--r--

8221355: Performance regression after JDK-8155635 backport into 8u
Reviewed-by: shade, roland

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/chaitin.hpp"
    31 #include "opto/coalesce.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/indexSet.hpp"
    34 #include "opto/machnode.hpp"
    35 #include "opto/matcher.hpp"
    36 #include "opto/regmask.hpp"
    38 #ifndef PRODUCT
    39 void PhaseCoalesce::dump(Node *n) const {
    40   // Being a const function means I cannot use 'Find'
    41   uint r = _phc._lrg_map.find(n);
    42   tty->print("L%d/N%d ",r,n->_idx);
    43 }
    45 void PhaseCoalesce::dump() const {
    46   // I know I have a block layout now, so I can print blocks in a loop
    47   for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
    48     uint j;
    49     Block* b = _phc._cfg.get_block(i);
    50     // Print a nice block header
    51     tty->print("B%d: ",b->_pre_order);
    52     for( j=1; j<b->num_preds(); j++ )
    53       tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
    54     tty->print("-> ");
    55     for( j=0; j<b->_num_succs; j++ )
    56       tty->print("B%d ",b->_succs[j]->_pre_order);
    57     tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
    58     uint cnt = b->number_of_nodes();
    59     for( j=0; j<cnt; j++ ) {
    60       Node *n = b->get_node(j);
    61       dump( n );
    62       tty->print("\t%s\t",n->Name());
    64       // Dump the inputs
    65       uint k;                   // Exit value of loop
    66       for( k=0; k<n->req(); k++ ) // For all required inputs
    67         if( n->in(k) ) dump( n->in(k) );
    68         else tty->print("_ ");
    69       int any_prec = 0;
    70       for( ; k<n->len(); k++ )          // For all precedence inputs
    71         if( n->in(k) ) {
    72           if( !any_prec++ ) tty->print(" |");
    73           dump( n->in(k) );
    74         }
    76       // Dump node-specific info
    77       n->dump_spec(tty);
    78       tty->print("\n");
    80     }
    81     tty->print("\n");
    82   }
    83 }
    84 #endif
    86 // Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
    87 void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
    88   uint lr1 = _phc._lrg_map.find(n1);
    89   uint lr2 = _phc._lrg_map.find(n2);
    90   if( lr1 != lr2 &&             // Different live ranges already AND
    91       !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
    92     LRG *lrg1 = &_phc.lrgs(lr1);
    93     LRG *lrg2 = &_phc.lrgs(lr2);
    94     // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
    96     // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
    97     // and in general that's a bad thing.  However, int->oop conversions only
    98     // happen at GC points, so the lifetime of the misclassified raw-pointer
    99     // is from the CheckCastPP (that converts it to an oop) backwards up
   100     // through a merge point and into the slow-path call, and around the
   101     // diamond up to the heap-top check and back down into the slow-path call.
   102     // The misclassified raw pointer is NOT live across the slow-path call,
   103     // and so does not appear in any GC info, so the fact that it is
   104     // misclassified is OK.
   106     if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
   107         // Compatible final mask
   108         lrg1->mask().overlap( lrg2->mask() ) ) {
   109       // Merge larger into smaller.
   110       if( lr1 > lr2 ) {
   111         uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
   112         Node   *n =   n1;   n1 =   n2;   n2 =    n;
   113         LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
   114       }
   115       // Union lr2 into lr1
   116       _phc.Union( n1, n2 );
   117       if (lrg1->_maxfreq < lrg2->_maxfreq)
   118         lrg1->_maxfreq = lrg2->_maxfreq;
   119       // Merge in the IFG
   120       _phc._ifg->Union( lr1, lr2 );
   121       // Combine register restrictions
   122       lrg1->AND(lrg2->mask());
   123     }
   124   }
   125 }
   127 // Copy coalescing
   128 void PhaseCoalesce::coalesce_driver() {
   129   verify();
   130   // Coalesce from high frequency to low
   131   for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
   132     coalesce(_phc._blks[i]);
   133   }
   134 }
   136 // I am inserting copies to come out of SSA form.  In the general case, I am
   137 // doing a parallel renaming.  I'm in the Named world now, so I can't do a
   138 // general parallel renaming.  All the copies now use  "names" (live-ranges)
   139 // to carry values instead of the explicit use-def chains.  Suppose I need to
   140 // insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
   141 // If I insert them in the wrong order then L128 will get clobbered before it
   142 // can get used by the second copy.  This cannot happen in the SSA model;
   143 // direct use-def chains get me the right value.  It DOES happen in the named
   144 // model so I have to handle the reordering of copies.
   145 //
   146 // In general, I need to topo-sort the placed copies to avoid conflicts.
   147 // Its possible to have a closed cycle of copies (e.g., recirculating the same
   148 // values around a loop).  In this case I need a temp to break the cycle.
   149 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
   151   // Scan backwards for the locations of the last use of the dst_name.
   152   // I am about to clobber the dst_name, so the copy must be inserted
   153   // after the last use.  Last use is really first-use on a backwards scan.
   154   uint i = b->end_idx()-1;
   155   while(1) {
   156     Node *n = b->get_node(i);
   157     // Check for end of virtual copies; this is also the end of the
   158     // parallel renaming effort.
   159     if (n->_idx < _unique) {
   160       break;
   161     }
   162     uint idx = n->is_Copy();
   163     assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
   164     if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
   165       break;
   166     }
   167     i--;
   168   }
   169   uint last_use_idx = i;
   171   // Also search for any kill of src_name that exits the block.
   172   // Since the copy uses src_name, I have to come before any kill.
   173   uint kill_src_idx = b->end_idx();
   174   // There can be only 1 kill that exits any block and that is
   175   // the last kill.  Thus it is the first kill on a backwards scan.
   176   i = b->end_idx()-1;
   177   while (1) {
   178     Node *n = b->get_node(i);
   179     // Check for end of virtual copies; this is also the end of the
   180     // parallel renaming effort.
   181     if (n->_idx < _unique) {
   182       break;
   183     }
   184     assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
   185     if (_phc._lrg_map.find(n) == src_name) {
   186       kill_src_idx = i;
   187       break;
   188     }
   189     i--;
   190   }
   191   // Need a temp?  Last use of dst comes after the kill of src?
   192   if (last_use_idx >= kill_src_idx) {
   193     // Need to break a cycle with a temp
   194     uint idx = copy->is_Copy();
   195     Node *tmp = copy->clone();
   196     uint max_lrg_id = _phc._lrg_map.max_lrg_id();
   197     _phc.new_lrg(tmp, max_lrg_id);
   198     _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
   200     // Insert new temp between copy and source
   201     tmp ->set_req(idx,copy->in(idx));
   202     copy->set_req(idx,tmp);
   203     // Save source in temp early, before source is killed
   204     b->insert_node(tmp, kill_src_idx);
   205     _phc._cfg.map_node_to_block(tmp, b);
   206     last_use_idx++;
   207   }
   209   // Insert just after last use
   210   b->insert_node(copy, last_use_idx + 1);
   211 }
   213 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
   214   // We do LRGs compressing and fix a liveout data only here since the other
   215   // place in Split() is guarded by the assert which we never hit.
   216   _phc._lrg_map.compress_uf_map_for_nodes();
   217   // Fix block's liveout data for compressed live ranges.
   218   for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
   219     uint compressed_lrg = _phc._lrg_map.find(lrg);
   220     if (lrg != compressed_lrg) {
   221       for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
   222         IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
   223         if (liveout->member(lrg)) {
   224           liveout->remove(lrg);
   225           liveout->insert(compressed_lrg);
   226         }
   227       }
   228     }
   229   }
   231   // All new nodes added are actual copies to replace virtual copies.
   232   // Nodes with index less than '_unique' are original, non-virtual Nodes.
   233   _unique = C->unique();
   235   for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
   236     C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
   237     if (C->failing()) return;
   238     Block *b = _phc._cfg.get_block(i);
   239     uint cnt = b->num_preds();  // Number of inputs to the Phi
   241     for( uint l = 1; l<b->number_of_nodes(); l++ ) {
   242       Node *n = b->get_node(l);
   244       // Do not use removed-copies, use copied value instead
   245       uint ncnt = n->req();
   246       for( uint k = 1; k<ncnt; k++ ) {
   247         Node *copy = n->in(k);
   248         uint cidx = copy->is_Copy();
   249         if( cidx ) {
   250           Node *def = copy->in(cidx);
   251           if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
   252             n->set_req(k, def);
   253           }
   254         }
   255       }
   257       // Remove any explicit copies that get coalesced.
   258       uint cidx = n->is_Copy();
   259       if( cidx ) {
   260         Node *def = n->in(cidx);
   261         if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
   262           n->replace_by(def);
   263           n->set_req(cidx,NULL);
   264           b->remove_node(l);
   265           l--;
   266           continue;
   267         }
   268       }
   270       if (n->is_Phi()) {
   271         // Get the chosen name for the Phi
   272         uint phi_name = _phc._lrg_map.find(n);
   273         // Ignore the pre-allocated specials
   274         if (!phi_name) {
   275           continue;
   276         }
   277         // Check for mismatch inputs to Phi
   278         for (uint j = 1; j < cnt; j++) {
   279           Node *m = n->in(j);
   280           uint src_name = _phc._lrg_map.find(m);
   281           if (src_name != phi_name) {
   282             Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
   283             Node *copy;
   284             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
   285             // Rematerialize constants instead of copying them.
   286             // We do this only for immediate constants, we avoid constant table loads
   287             // because that will unsafely extend the live range of the constant table base.
   288             if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
   289                 m->as_Mach()->rematerialize()) {
   290               copy = m->clone();
   291               // Insert the copy in the predecessor basic block
   292               pred->add_inst(copy);
   293               // Copy any flags as well
   294               _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
   295             } else {
   296               int ireg = m->ideal_reg();
   297               if (ireg == 0 || ireg == Op_RegFlags) {
   298                 if (C->subsume_loads()) {
   299                   C->record_failure(C2Compiler::retry_no_subsuming_loads());
   300                 } else {
   301                   assert(false, err_msg("attempted to spill a non-spillable item: %d: %s, ireg = %d",
   302                                         m->_idx, m->Name(), ireg));
   303                   C->record_method_not_compilable("attempted to spill a non-spillable item");
   304                 }
   305                 return;
   306               }
   307               const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
   308               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
   309               // Find a good place to insert.  Kinda tricky, use a subroutine
   310               insert_copy_with_overlap(pred,copy,phi_name,src_name);
   311             }
   312             // Insert the copy in the use-def chain
   313             n->set_req(j, copy);
   314             _phc._cfg.map_node_to_block(copy, pred);
   315             // Extend ("register allocate") the names array for the copy.
   316             _phc._lrg_map.extend(copy->_idx, phi_name);
   317           } // End of if Phi names do not match
   318         } // End of for all inputs to Phi
   319       } else { // End of if Phi
   321         // Now check for 2-address instructions
   322         uint idx;
   323         if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
   324           // Get the chosen name for the Node
   325           uint name = _phc._lrg_map.find(n);
   326           assert (name, "no 2-address specials");
   327           // Check for name mis-match on the 2-address input
   328           Node *m = n->in(idx);
   329           if (_phc._lrg_map.find(m) != name) {
   330             Node *copy;
   331             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
   332             // At this point it is unsafe to extend live ranges (6550579).
   333             // Rematerialize only constants as we do for Phi above.
   334             if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
   335                 m->as_Mach()->rematerialize()) {
   336               copy = m->clone();
   337               // Insert the copy in the basic block, just before us
   338               b->insert_node(copy, l++);
   339               l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
   340             } else {
   341               int ireg = m->ideal_reg();
   342               if (ireg == 0 || ireg == Op_RegFlags) {
   343                 assert(false, err_msg("attempted to spill a non-spillable item: %d: %s, ireg = %d",
   344                                       m->_idx, m->Name(), ireg));
   345                 C->record_method_not_compilable("attempted to spill a non-spillable item");
   346                 return;
   347               }
   348               const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
   349               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
   350               // Insert the copy in the basic block, just before us
   351               b->insert_node(copy, l++);
   352             }
   353             // Insert the copy in the use-def chain
   354             n->set_req(idx, copy);
   355             // Extend ("register allocate") the names array for the copy.
   356             _phc._lrg_map.extend(copy->_idx, name);
   357             _phc._cfg.map_node_to_block(copy, b);
   358           }
   360         } // End of is two-adr
   362         // Insert a copy at a debug use for a lrg which has high frequency
   363         if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
   364           // Walk the debug inputs to the node and check for lrg freq
   365           JVMState* jvms = n->jvms();
   366           uint debug_start = jvms ? jvms->debug_start() : 999999;
   367           uint debug_end   = jvms ? jvms->debug_end()   : 999999;
   368           for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
   369             // Do not split monitors; they are only needed for debug table
   370             // entries and need no code.
   371             if (jvms->is_monitor_use(inpidx)) {
   372               continue;
   373             }
   374             Node *inp = n->in(inpidx);
   375             uint nidx = _phc._lrg_map.live_range_id(inp);
   376             LRG &lrg = lrgs(nidx);
   378             // If this lrg has a high frequency use/def
   379             if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
   380               // If the live range is also live out of this block (like it
   381               // would be for a fast/slow idiom), the normal spill mechanism
   382               // does an excellent job.  If it is not live out of this block
   383               // (like it would be for debug info to uncommon trap) splitting
   384               // the live range now allows a better allocation in the high
   385               // frequency blocks.
   386               //   Build_IFG_virtual has converted the live sets to
   387               // live-IN info, not live-OUT info.
   388               uint k;
   389               for( k=0; k < b->_num_succs; k++ )
   390                 if( _phc._live->live(b->_succs[k])->member( nidx ) )
   391                   break;      // Live in to some successor block?
   392               if( k < b->_num_succs )
   393                 continue;     // Live out; do not pre-split
   394               // Split the lrg at this use
   395               int ireg = inp->ideal_reg();
   396               if (ireg == 0 || ireg == Op_RegFlags) {
   397                 assert(false, err_msg("attempted to spill a non-spillable item: %d: %s, ireg = %d",
   398                                       inp->_idx, inp->Name(), ireg));
   399                 C->record_method_not_compilable("attempted to spill a non-spillable item");
   400                 return;
   401               }
   402               const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
   403               Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
   404               // Insert the copy in the use-def chain
   405               n->set_req(inpidx, copy );
   406               // Insert the copy in the basic block, just before us
   407               b->insert_node(copy,  l++);
   408               // Extend ("register allocate") the names array for the copy.
   409               uint max_lrg_id = _phc._lrg_map.max_lrg_id();
   410               _phc.new_lrg(copy, max_lrg_id);
   411               _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
   412               _phc._cfg.map_node_to_block(copy, b);
   413               //tty->print_cr("Split a debug use in Aggressive Coalesce");
   414             }  // End of if high frequency use/def
   415           }  // End of for all debug inputs
   416         }  // End of if low frequency safepoint
   418       } // End of if Phi
   420     } // End of for all instructions
   421   } // End of for all blocks
   422 }
   425 // Aggressive (but pessimistic) copy coalescing of a single block
   427 // The following coalesce pass represents a single round of aggressive
   428 // pessimistic coalesce.  "Aggressive" means no attempt to preserve
   429 // colorability when coalescing.  This occasionally means more spills, but
   430 // it also means fewer rounds of coalescing for better code - and that means
   431 // faster compiles.
   433 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
   434 // reaching for the least fixed point to boot).  This is typically solved
   435 // with a few more rounds of coalescing, but the compiler must run fast.  We
   436 // could optimistically coalescing everything touching PhiNodes together
   437 // into one big live range, then check for self-interference.  Everywhere
   438 // the live range interferes with self it would have to be split.  Finding
   439 // the right split points can be done with some heuristics (based on
   440 // expected frequency of edges in the live range).  In short, it's a real
   441 // research problem and the timeline is too short to allow such research.
   442 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
   443 // in another pass, (3) per each self-conflict, split, (4) split by finding
   444 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
   445 // according to the GCM algorithm (or just exec freq on CFG edges).
   447 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
   448   // Copies are still "virtual" - meaning we have not made them explicitly
   449   // copies.  Instead, Phi functions of successor blocks have mis-matched
   450   // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
   451   // up the live-ranges.  Check for Phis in successor blocks.
   452   uint i;
   453   for( i=0; i<b->_num_succs; i++ ) {
   454     Block *bs = b->_succs[i];
   455     // Find index of 'b' in 'bs' predecessors
   456     uint j=1;
   457     while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
   458       j++;
   459     }
   461     // Visit all the Phis in successor block
   462     for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
   463       Node *n = bs->get_node(k);
   464       if( !n->is_Phi() ) break;
   465       combine_these_two( n, n->in(j) );
   466     }
   467   } // End of for all successor blocks
   470   // Check _this_ block for 2-address instructions and copies.
   471   uint cnt = b->end_idx();
   472   for( i = 1; i<cnt; i++ ) {
   473     Node *n = b->get_node(i);
   474     uint idx;
   475     // 2-address instructions have a virtual Copy matching their input
   476     // to their output
   477     if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
   478       MachNode *mach = n->as_Mach();
   479       combine_these_two(mach, mach->in(idx));
   480     }
   481   } // End of for all instructions in block
   482 }
   484 PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
   485   _ulr.initialize(_phc._lrg_map.max_lrg_id());
   486 }
   488 void PhaseConservativeCoalesce::verify() {
   489 #ifdef ASSERT
   490   _phc.set_was_low();
   491 #endif
   492 }
   494 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
   495   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
   496   // union-find tree
   497   _phc.Union( lr1_node, lr2_node );
   499   // Single-def live range ONLY if both live ranges are single-def.
   500   // If both are single def, then src_def powers one live range
   501   // and def_copy powers the other.  After merging, src_def powers
   502   // the combined live range.
   503   lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
   504                         lrgs(lr2).is_multidef() )
   505     ? NodeSentinel : src_def;
   506   lrgs(lr2)._def = NULL;    // No def for lrg 2
   507   lrgs(lr2).Clear();        // Force empty mask for LRG 2
   508   //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
   509   lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
   510   lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
   512   if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
   513     lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
   515   // Copy original value instead.  Intermediate copies go dead, and
   516   // the dst_copy becomes useless.
   517   int didx = dst_copy->is_Copy();
   518   dst_copy->set_req( didx, src_def );
   519   // Add copy to free list
   520   // _phc.free_spillcopy(b->_nodes[bindex]);
   521   assert( b->get_node(bindex) == dst_copy, "" );
   522   dst_copy->replace_by( dst_copy->in(didx) );
   523   dst_copy->set_req( didx, NULL);
   524   b->remove_node(bindex);
   525   if( bindex < b->_ihrp_index ) b->_ihrp_index--;
   526   if( bindex < b->_fhrp_index ) b->_fhrp_index--;
   528   // Stretched lr1; add it to liveness of intermediate blocks
   529   Block *b2 = _phc._cfg.get_block_for_node(src_copy);
   530   while( b != b2 ) {
   531     b = _phc._cfg.get_block_for_node(b->pred(1));
   532     _phc._live->live(b)->insert(lr1);
   533   }
   534 }
   536 // Factored code from copy_copy that computes extra interferences from
   537 // lengthening a live range by double-coalescing.
   538 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
   540   assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
   541   assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
   542   Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
   543   Block *b2 = b;
   544   uint bindex2 = bindex;
   545   while( 1 ) {
   546     // Find previous instruction
   547     bindex2--;                  // Chain backwards 1 instruction
   548     while( bindex2 == 0 ) {     // At block start, find prior block
   549       assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
   550       b2 = _phc._cfg.get_block_for_node(b2->pred(1));
   551       bindex2 = b2->end_idx()-1;
   552     }
   553     // Get prior instruction
   554     assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
   555     Node *x = b2->get_node(bindex2);
   556     if( x == prev_copy ) {      // Previous copy in copy chain?
   557       if( prev_copy == src_copy)// Found end of chain and all interferences
   558         break;                  // So break out of loop
   559       // Else work back one in copy chain
   560       prev_copy = prev_copy->in(prev_copy->is_Copy());
   561     } else {                    // Else collect interferences
   562       uint lidx = _phc._lrg_map.find(x);
   563       // Found another def of live-range being stretched?
   564       if(lidx == lr1) {
   565         return max_juint;
   566       }
   567       if(lidx == lr2) {
   568         return max_juint;
   569       }
   571       // If we attempt to coalesce across a bound def
   572       if( lrgs(lidx).is_bound() ) {
   573         // Do not let the coalesced LRG expect to get the bound color
   574         rm.SUBTRACT( lrgs(lidx).mask() );
   575         // Recompute rm_size
   576         rm_size = rm.Size();
   577         //if( rm._flags ) rm_size += 1000000;
   578         if( reg_degree >= rm_size ) return max_juint;
   579       }
   580       if( rm.overlap(lrgs(lidx).mask()) ) {
   581         // Insert lidx into union LRG; returns TRUE if actually inserted
   582         if( _ulr.insert(lidx) ) {
   583           // Infinite-stack neighbors do not alter colorability, as they
   584           // can always color to some other color.
   585           if( !lrgs(lidx).mask().is_AllStack() ) {
   586             // If this coalesce will make any new neighbor uncolorable,
   587             // do not coalesce.
   588             if( lrgs(lidx).just_lo_degree() )
   589               return max_juint;
   590             // Bump our degree
   591             if( ++reg_degree >= rm_size )
   592               return max_juint;
   593           } // End of if not infinite-stack neighbor
   594         } // End of if actually inserted
   595       } // End of if live range overlaps
   596     } // End of else collect interferences for 1 node
   597   } // End of while forever, scan back for interferences
   598   return reg_degree;
   599 }
   601 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
   602   // Some original neighbors of lr1 might have gone away
   603   // because the constrained register mask prevented them.
   604   // Remove lr1 from such neighbors.
   605   IndexSetIterator one(n_lr1);
   606   uint neighbor;
   607   LRG &lrg1 = lrgs(lr1);
   608   while ((neighbor = one.next()) != 0)
   609     if( !_ulr.member(neighbor) )
   610       if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
   611         lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
   614   // lr2 is now called (coalesced into) lr1.
   615   // Remove lr2 from the IFG.
   616   IndexSetIterator two(n_lr2);
   617   LRG &lrg2 = lrgs(lr2);
   618   while ((neighbor = two.next()) != 0)
   619     if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
   620       lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
   622   // Some neighbors of intermediate copies now interfere with the
   623   // combined live range.
   624   IndexSetIterator three(&_ulr);
   625   while ((neighbor = three.next()) != 0)
   626     if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
   627       lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
   628 }
   630 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
   631   // Tag copy bias here
   632   if( !ifg->lrgs(lr1)._copy_bias )
   633     ifg->lrgs(lr1)._copy_bias = lr2;
   634   if( !ifg->lrgs(lr2)._copy_bias )
   635     ifg->lrgs(lr2)._copy_bias = lr1;
   636 }
   638 // See if I can coalesce a series of multiple copies together.  I need the
   639 // final dest copy and the original src copy.  They can be the same Node.
   640 // Compute the compatible register masks.
   641 bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
   643   if (!dst_copy->is_SpillCopy()) {
   644     return false;
   645   }
   646   if (!src_copy->is_SpillCopy()) {
   647     return false;
   648   }
   649   Node *src_def = src_copy->in(src_copy->is_Copy());
   650   uint lr1 = _phc._lrg_map.find(dst_copy);
   651   uint lr2 = _phc._lrg_map.find(src_def);
   653   // Same live ranges already?
   654   if (lr1 == lr2) {
   655     return false;
   656   }
   658   // Interfere?
   659   if (_phc._ifg->test_edge_sq(lr1, lr2)) {
   660     return false;
   661   }
   663   // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
   664   if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
   665     return false;
   666   }
   668   // Coalescing between an aligned live range and a mis-aligned live range?
   669   // No, no!  Alignment changes how we count degree.
   670   if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
   671     return false;
   672   }
   674   // Sort; use smaller live-range number
   675   Node *lr1_node = dst_copy;
   676   Node *lr2_node = src_def;
   677   if (lr1 > lr2) {
   678     uint tmp = lr1; lr1 = lr2; lr2 = tmp;
   679     lr1_node = src_def;  lr2_node = dst_copy;
   680   }
   682   // Check for compatibility of the 2 live ranges by
   683   // intersecting their allowed register sets.
   684   RegMask rm = lrgs(lr1).mask();
   685   rm.AND(lrgs(lr2).mask());
   686   // Number of bits free
   687   uint rm_size = rm.Size();
   689   if (UseFPUForSpilling && rm.is_AllStack() ) {
   690     // Don't coalesce when frequency difference is large
   691     Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
   692     Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
   693     if (src_def_b->_freq > 10*dst_b->_freq )
   694       return false;
   695   }
   697   // If we can use any stack slot, then effective size is infinite
   698   if( rm.is_AllStack() ) rm_size += 1000000;
   699   // Incompatible masks, no way to coalesce
   700   if( rm_size == 0 ) return false;
   702   // Another early bail-out test is when we are double-coalescing and the
   703   // 2 copies are separated by some control flow.
   704   if( dst_copy != src_copy ) {
   705     Block *src_b = _phc._cfg.get_block_for_node(src_copy);
   706     Block *b2 = b;
   707     while( b2 != src_b ) {
   708       if( b2->num_preds() > 2 ){// Found merge-point
   709         _phc._lost_opp_cflow_coalesce++;
   710         // extra record_bias commented out because Chris believes it is not
   711         // productive.  Since we can record only 1 bias, we want to choose one
   712         // that stands a chance of working and this one probably does not.
   713         //record_bias( _phc._lrgs, lr1, lr2 );
   714         return false;           // To hard to find all interferences
   715       }
   716       b2 = _phc._cfg.get_block_for_node(b2->pred(1));
   717     }
   718   }
   720   // Union the two interference sets together into '_ulr'
   721   uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
   723   if( reg_degree >= rm_size ) {
   724     record_bias( _phc._ifg, lr1, lr2 );
   725     return false;
   726   }
   728   // Now I need to compute all the interferences between dst_copy and
   729   // src_copy.  I'm not willing visit the entire interference graph, so
   730   // I limit my search to things in dst_copy's block or in a straight
   731   // line of previous blocks.  I give up at merge points or when I get
   732   // more interferences than my degree.  I can stop when I find src_copy.
   733   if( dst_copy != src_copy ) {
   734     reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
   735     if( reg_degree == max_juint ) {
   736       record_bias( _phc._ifg, lr1, lr2 );
   737       return false;
   738     }
   739   } // End of if dst_copy & src_copy are different
   742   // ---- THE COMBINED LRG IS COLORABLE ----
   744   // YEAH - Now coalesce this copy away
   745   assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
   747   IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
   748   IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
   750   // Update the interference graph
   751   update_ifg(lr1, lr2, n_lr1, n_lr2);
   753   _ulr.remove(lr1);
   755   // Uncomment the following code to trace Coalescing in great detail.
   756   //
   757   //if (false) {
   758   //  tty->cr();
   759   //  tty->print_cr("#######################################");
   760   //  tty->print_cr("union %d and %d", lr1, lr2);
   761   //  n_lr1->dump();
   762   //  n_lr2->dump();
   763   //  tty->print_cr("resulting set is");
   764   //  _ulr.dump();
   765   //}
   767   // Replace n_lr1 with the new combined live range.  _ulr will use
   768   // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
   769   // send its internal memory to the free list.
   770   _ulr.swap(n_lr1);
   771   _ulr.clear();
   772   n_lr2->clear();
   774   lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
   775   lrgs(lr2).set_degree( 0 );
   777   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
   778   // union-find tree
   779   union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
   780   // Combine register restrictions
   781   lrgs(lr1).set_mask(rm);
   782   lrgs(lr1).compute_set_mask_size();
   783   lrgs(lr1)._cost += lrgs(lr2)._cost;
   784   lrgs(lr1)._area += lrgs(lr2)._area;
   786   // While its uncommon to successfully coalesce live ranges that started out
   787   // being not-lo-degree, it can happen.  In any case the combined coalesced
   788   // live range better Simplify nicely.
   789   lrgs(lr1)._was_lo = 1;
   791   // kinda expensive to do all the time
   792   //tty->print_cr("warning: slow verify happening");
   793   //_phc._ifg->verify( &_phc );
   794   return true;
   795 }
   797 // Conservative (but pessimistic) copy coalescing of a single block
   798 void PhaseConservativeCoalesce::coalesce( Block *b ) {
   799   // Bail out on infrequent blocks
   800   if (_phc._cfg.is_uncommon(b)) {
   801     return;
   802   }
   803   // Check this block for copies.
   804   for( uint i = 1; i<b->end_idx(); i++ ) {
   805     // Check for actual copies on inputs.  Coalesce a copy into its
   806     // input if use and copy's input are compatible.
   807     Node *copy1 = b->get_node(i);
   808     uint idx1 = copy1->is_Copy();
   809     if( !idx1 ) continue;       // Not a copy
   811     if( copy_copy(copy1,copy1,b,i) ) {
   812       i--;                      // Retry, same location in block
   813       PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
   814       continue;
   815     }
   816   }
   817 }

mercurial