src/os/solaris/vm/os_solaris.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2420
039eb4201e06
child 2425
84f36150fcc3
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_solaris.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_solaris.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_solaris.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef COMPILER1
    74 #include "c1/c1_Runtime1.hpp"
    75 #endif
    76 #ifdef COMPILER2
    77 #include "opto/runtime.hpp"
    78 #endif
    80 // put OS-includes here
    81 # include <dlfcn.h>
    82 # include <errno.h>
    83 # include <exception>
    84 # include <link.h>
    85 # include <poll.h>
    86 # include <pthread.h>
    87 # include <pwd.h>
    88 # include <schedctl.h>
    89 # include <setjmp.h>
    90 # include <signal.h>
    91 # include <stdio.h>
    92 # include <alloca.h>
    93 # include <sys/filio.h>
    94 # include <sys/ipc.h>
    95 # include <sys/lwp.h>
    96 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    97 # include <sys/mman.h>
    98 # include <sys/processor.h>
    99 # include <sys/procset.h>
   100 # include <sys/pset.h>
   101 # include <sys/resource.h>
   102 # include <sys/shm.h>
   103 # include <sys/socket.h>
   104 # include <sys/stat.h>
   105 # include <sys/systeminfo.h>
   106 # include <sys/time.h>
   107 # include <sys/times.h>
   108 # include <sys/types.h>
   109 # include <sys/wait.h>
   110 # include <sys/utsname.h>
   111 # include <thread.h>
   112 # include <unistd.h>
   113 # include <sys/priocntl.h>
   114 # include <sys/rtpriocntl.h>
   115 # include <sys/tspriocntl.h>
   116 # include <sys/iapriocntl.h>
   117 # include <sys/loadavg.h>
   118 # include <string.h>
   119 # include <stdio.h>
   121 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   122 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   124 #define MAX_PATH (2 * K)
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #ifdef _GNU_SOURCE
   130 // See bug #6514594
   131 extern "C" int madvise(caddr_t, size_t, int);
   132 extern "C"  int memcntl(caddr_t addr, size_t len, int cmd, caddr_t  arg,
   133      int attr, int mask);
   134 #endif //_GNU_SOURCE
   136 /*
   137   MPSS Changes Start.
   138   The JVM binary needs to be built and run on pre-Solaris 9
   139   systems, but the constants needed by MPSS are only in Solaris 9
   140   header files.  They are textually replicated here to allow
   141   building on earlier systems.  Once building on Solaris 8 is
   142   no longer a requirement, these #defines can be replaced by ordinary
   143   system .h inclusion.
   145   In earlier versions of the  JDK and Solaris, we used ISM for large pages.
   146   But ISM requires shared memory to achieve this and thus has many caveats.
   147   MPSS is a fully transparent and is a cleaner way to get large pages.
   148   Although we still require keeping ISM for backward compatiblitiy as well as
   149   giving the opportunity to use large pages on older systems it is
   150   recommended that MPSS be used for Solaris 9 and above.
   152 */
   154 #ifndef MC_HAT_ADVISE
   156 struct memcntl_mha {
   157   uint_t          mha_cmd;        /* command(s) */
   158   uint_t          mha_flags;
   159   size_t          mha_pagesize;
   160 };
   161 #define MC_HAT_ADVISE   7       /* advise hat map size */
   162 #define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
   163 #define MAP_ALIGN       0x200   /* addr specifies alignment */
   165 #endif
   166 // MPSS Changes End.
   169 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   170 // compile on older systems without this header file.
   172 #ifndef MADV_ACCESS_LWP
   173 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   174 #endif
   175 #ifndef MADV_ACCESS_MANY
   176 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   177 #endif
   179 #ifndef LGRP_RSRC_CPU
   180 # define LGRP_RSRC_CPU           0       /* CPU resources */
   181 #endif
   182 #ifndef LGRP_RSRC_MEM
   183 # define LGRP_RSRC_MEM           1       /* memory resources */
   184 #endif
   186 // Some more macros from sys/mman.h that are not present in Solaris 8.
   188 #ifndef MAX_MEMINFO_CNT
   189 /*
   190  * info_req request type definitions for meminfo
   191  * request types starting with MEMINFO_V are used for Virtual addresses
   192  * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
   193  * addresses
   194  */
   195 # define MEMINFO_SHIFT           16
   196 # define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
   197 # define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
   198 # define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
   199 # define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
   200 # define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
   201 # define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
   202 # define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
   203 # define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
   205 /* maximum number of addresses meminfo() can process at a time */
   206 # define MAX_MEMINFO_CNT 256
   208 /* maximum number of request types */
   209 # define MAX_MEMINFO_REQ 31
   210 #endif
   212 // see thr_setprio(3T) for the basis of these numbers
   213 #define MinimumPriority 0
   214 #define NormalPriority  64
   215 #define MaximumPriority 127
   217 // Values for ThreadPriorityPolicy == 1
   218 int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
   219                                         80, 96, 112, 124, 127 };
   221 // System parameters used internally
   222 static clock_t clock_tics_per_sec = 100;
   224 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   225 static bool enabled_extended_FILE_stdio = false;
   227 // For diagnostics to print a message once. see run_periodic_checks
   228 static bool check_addr0_done = false;
   229 static sigset_t check_signal_done;
   230 static bool check_signals = true;
   232 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   233 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   235 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   238 // "default" initializers for missing libc APIs
   239 extern "C" {
   240   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   241   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   243   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   244   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   245 }
   247 // "default" initializers for pthread-based synchronization
   248 extern "C" {
   249   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   250   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   251 }
   253 // Thread Local Storage
   254 // This is common to all Solaris platforms so it is defined here,
   255 // in this common file.
   256 // The declarations are in the os_cpu threadLS*.hpp files.
   257 //
   258 // Static member initialization for TLS
   259 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   261 #ifndef PRODUCT
   262 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   264 int ThreadLocalStorage::_tcacheHit = 0;
   265 int ThreadLocalStorage::_tcacheMiss = 0;
   267 void ThreadLocalStorage::print_statistics() {
   268   int total = _tcacheMiss+_tcacheHit;
   269   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   270                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   271 }
   272 #undef _PCT
   273 #endif // PRODUCT
   275 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   276                                                         int index) {
   277   Thread *thread = get_thread_slow();
   278   if (thread != NULL) {
   279     address sp = os::current_stack_pointer();
   280     guarantee(thread->_stack_base == NULL ||
   281               (sp <= thread->_stack_base &&
   282                  sp >= thread->_stack_base - thread->_stack_size) ||
   283                is_error_reported(),
   284               "sp must be inside of selected thread stack");
   286     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   287     _get_thread_cache[ index ] = thread;
   288   }
   289   return thread;
   290 }
   293 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   294 #define NO_CACHED_THREAD ((Thread*)all_zero)
   296 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   298   // Store the new value before updating the cache to prevent a race
   299   // between get_thread_via_cache_slowly() and this store operation.
   300   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   302   // Update thread cache with new thread if setting on thread create,
   303   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   304   uintptr_t raw = pd_raw_thread_id();
   305   int ix = pd_cache_index(raw);
   306   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   307 }
   309 void ThreadLocalStorage::pd_init() {
   310   for (int i = 0; i < _pd_cache_size; i++) {
   311     _get_thread_cache[i] = NO_CACHED_THREAD;
   312   }
   313 }
   315 // Invalidate all the caches (happens to be the same as pd_init).
   316 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   318 #undef NO_CACHED_THREAD
   320 // END Thread Local Storage
   322 static inline size_t adjust_stack_size(address base, size_t size) {
   323   if ((ssize_t)size < 0) {
   324     // 4759953: Compensate for ridiculous stack size.
   325     size = max_intx;
   326   }
   327   if (size > (size_t)base) {
   328     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   329     size = (size_t)base;
   330   }
   331   return size;
   332 }
   334 static inline stack_t get_stack_info() {
   335   stack_t st;
   336   int retval = thr_stksegment(&st);
   337   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   338   assert(retval == 0, "incorrect return value from thr_stksegment");
   339   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   340   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   341   return st;
   342 }
   344 address os::current_stack_base() {
   345   int r = thr_main() ;
   346   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   347   bool is_primordial_thread = r;
   349   // Workaround 4352906, avoid calls to thr_stksegment by
   350   // thr_main after the first one (it looks like we trash
   351   // some data, causing the value for ss_sp to be incorrect).
   352   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   353     stack_t st = get_stack_info();
   354     if (is_primordial_thread) {
   355       // cache initial value of stack base
   356       os::Solaris::_main_stack_base = (address)st.ss_sp;
   357     }
   358     return (address)st.ss_sp;
   359   } else {
   360     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   361     return os::Solaris::_main_stack_base;
   362   }
   363 }
   365 size_t os::current_stack_size() {
   366   size_t size;
   368   int r = thr_main() ;
   369   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   370   if(!r) {
   371     size = get_stack_info().ss_size;
   372   } else {
   373     struct rlimit limits;
   374     getrlimit(RLIMIT_STACK, &limits);
   375     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   376   }
   377   // base may not be page aligned
   378   address base = current_stack_base();
   379   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   380   return (size_t)(base - bottom);
   381 }
   383 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   384   return localtime_r(clock, res);
   385 }
   387 // interruptible infrastructure
   389 // setup_interruptible saves the thread state before going into an
   390 // interruptible system call.
   391 // The saved state is used to restore the thread to
   392 // its former state whether or not an interrupt is received.
   393 // Used by classloader os::read
   394 // os::restartable_read calls skip this layer and stay in _thread_in_native
   396 void os::Solaris::setup_interruptible(JavaThread* thread) {
   398   JavaThreadState thread_state = thread->thread_state();
   400   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   401   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   402   OSThread* osthread = thread->osthread();
   403   osthread->set_saved_interrupt_thread_state(thread_state);
   404   thread->frame_anchor()->make_walkable(thread);
   405   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   406 }
   408 // Version of setup_interruptible() for threads that are already in
   409 // _thread_blocked. Used by os_sleep().
   410 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   411   thread->frame_anchor()->make_walkable(thread);
   412 }
   414 JavaThread* os::Solaris::setup_interruptible() {
   415   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   416   setup_interruptible(thread);
   417   return thread;
   418 }
   420 void os::Solaris::try_enable_extended_io() {
   421   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   423   if (!UseExtendedFileIO) {
   424     return;
   425   }
   427   enable_extended_FILE_stdio_t enabler =
   428     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   429                                          "enable_extended_FILE_stdio");
   430   if (enabler) {
   431     enabler(-1, -1);
   432   }
   433 }
   436 #ifdef ASSERT
   438 JavaThread* os::Solaris::setup_interruptible_native() {
   439   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   440   JavaThreadState thread_state = thread->thread_state();
   441   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   442   return thread;
   443 }
   445 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   446   JavaThreadState thread_state = thread->thread_state();
   447   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   448 }
   449 #endif
   451 // cleanup_interruptible reverses the effects of setup_interruptible
   452 // setup_interruptible_already_blocked() does not need any cleanup.
   454 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   455   OSThread* osthread = thread->osthread();
   457   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   458 }
   460 // I/O interruption related counters called in _INTERRUPTIBLE
   462 void os::Solaris::bump_interrupted_before_count() {
   463   RuntimeService::record_interrupted_before_count();
   464 }
   466 void os::Solaris::bump_interrupted_during_count() {
   467   RuntimeService::record_interrupted_during_count();
   468 }
   470 static int _processors_online = 0;
   472          jint os::Solaris::_os_thread_limit = 0;
   473 volatile jint os::Solaris::_os_thread_count = 0;
   475 julong os::available_memory() {
   476   return Solaris::available_memory();
   477 }
   479 julong os::Solaris::available_memory() {
   480   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   481 }
   483 julong os::Solaris::_physical_memory = 0;
   485 julong os::physical_memory() {
   486    return Solaris::physical_memory();
   487 }
   489 julong os::allocatable_physical_memory(julong size) {
   490 #ifdef _LP64
   491    return size;
   492 #else
   493    julong result = MIN2(size, (julong)3835*M);
   494    if (!is_allocatable(result)) {
   495      // Memory allocations will be aligned but the alignment
   496      // is not known at this point.  Alignments will
   497      // be at most to LargePageSizeInBytes.  Protect
   498      // allocations from alignments up to illegal
   499      // values. If at this point 2G is illegal.
   500      julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
   501      result =  MIN2(size, reasonable_size);
   502    }
   503    return result;
   504 #endif
   505 }
   507 static hrtime_t first_hrtime = 0;
   508 static const hrtime_t hrtime_hz = 1000*1000*1000;
   509 const int LOCK_BUSY = 1;
   510 const int LOCK_FREE = 0;
   511 const int LOCK_INVALID = -1;
   512 static volatile hrtime_t max_hrtime = 0;
   513 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   516 void os::Solaris::initialize_system_info() {
   517   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   518   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   519   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   520 }
   522 int os::active_processor_count() {
   523   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   524   pid_t pid = getpid();
   525   psetid_t pset = PS_NONE;
   526   // Are we running in a processor set or is there any processor set around?
   527   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   528     uint_t pset_cpus;
   529     // Query the number of cpus available to us.
   530     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   531       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   532       _processors_online = pset_cpus;
   533       return pset_cpus;
   534     }
   535   }
   536   // Otherwise return number of online cpus
   537   return online_cpus;
   538 }
   540 static bool find_processors_in_pset(psetid_t        pset,
   541                                     processorid_t** id_array,
   542                                     uint_t*         id_length) {
   543   bool result = false;
   544   // Find the number of processors in the processor set.
   545   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   546     // Make up an array to hold their ids.
   547     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   548     // Fill in the array with their processor ids.
   549     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   550       result = true;
   551     }
   552   }
   553   return result;
   554 }
   556 // Callers of find_processors_online() must tolerate imprecise results --
   557 // the system configuration can change asynchronously because of DR
   558 // or explicit psradm operations.
   559 //
   560 // We also need to take care that the loop (below) terminates as the
   561 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   562 // request and the loop that builds the list of processor ids.   Unfortunately
   563 // there's no reliable way to determine the maximum valid processor id,
   564 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   565 // man pages, which claim the processor id set is "sparse, but
   566 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   567 // exit the loop.
   568 //
   569 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   570 // not available on S8.0.
   572 static bool find_processors_online(processorid_t** id_array,
   573                                    uint*           id_length) {
   574   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   575   // Find the number of processors online.
   576   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   577   // Make up an array to hold their ids.
   578   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   579   // Processors need not be numbered consecutively.
   580   long found = 0;
   581   processorid_t next = 0;
   582   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   583     processor_info_t info;
   584     if (processor_info(next, &info) == 0) {
   585       // NB, PI_NOINTR processors are effectively online ...
   586       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   587         (*id_array)[found] = next;
   588         found += 1;
   589       }
   590     }
   591     next += 1;
   592   }
   593   if (found < *id_length) {
   594       // The loop above didn't identify the expected number of processors.
   595       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   596       // and re-running the loop, above, but there's no guarantee of progress
   597       // if the system configuration is in flux.  Instead, we just return what
   598       // we've got.  Note that in the worst case find_processors_online() could
   599       // return an empty set.  (As a fall-back in the case of the empty set we
   600       // could just return the ID of the current processor).
   601       *id_length = found ;
   602   }
   604   return true;
   605 }
   607 static bool assign_distribution(processorid_t* id_array,
   608                                 uint           id_length,
   609                                 uint*          distribution,
   610                                 uint           distribution_length) {
   611   // We assume we can assign processorid_t's to uint's.
   612   assert(sizeof(processorid_t) == sizeof(uint),
   613          "can't convert processorid_t to uint");
   614   // Quick check to see if we won't succeed.
   615   if (id_length < distribution_length) {
   616     return false;
   617   }
   618   // Assign processor ids to the distribution.
   619   // Try to shuffle processors to distribute work across boards,
   620   // assuming 4 processors per board.
   621   const uint processors_per_board = ProcessDistributionStride;
   622   // Find the maximum processor id.
   623   processorid_t max_id = 0;
   624   for (uint m = 0; m < id_length; m += 1) {
   625     max_id = MAX2(max_id, id_array[m]);
   626   }
   627   // The next id, to limit loops.
   628   const processorid_t limit_id = max_id + 1;
   629   // Make up markers for available processors.
   630   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
   631   for (uint c = 0; c < limit_id; c += 1) {
   632     available_id[c] = false;
   633   }
   634   for (uint a = 0; a < id_length; a += 1) {
   635     available_id[id_array[a]] = true;
   636   }
   637   // Step by "boards", then by "slot", copying to "assigned".
   638   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   639   //                remembering which processors have been assigned by
   640   //                previous calls, etc., so as to distribute several
   641   //                independent calls of this method.  What we'd like is
   642   //                It would be nice to have an API that let us ask
   643   //                how many processes are bound to a processor,
   644   //                but we don't have that, either.
   645   //                In the short term, "board" is static so that
   646   //                subsequent distributions don't all start at board 0.
   647   static uint board = 0;
   648   uint assigned = 0;
   649   // Until we've found enough processors ....
   650   while (assigned < distribution_length) {
   651     // ... find the next available processor in the board.
   652     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   653       uint try_id = board * processors_per_board + slot;
   654       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   655         distribution[assigned] = try_id;
   656         available_id[try_id] = false;
   657         assigned += 1;
   658         break;
   659       }
   660     }
   661     board += 1;
   662     if (board * processors_per_board + 0 >= limit_id) {
   663       board = 0;
   664     }
   665   }
   666   if (available_id != NULL) {
   667     FREE_C_HEAP_ARRAY(bool, available_id);
   668   }
   669   return true;
   670 }
   672 bool os::distribute_processes(uint length, uint* distribution) {
   673   bool result = false;
   674   // Find the processor id's of all the available CPUs.
   675   processorid_t* id_array  = NULL;
   676   uint           id_length = 0;
   677   // There are some races between querying information and using it,
   678   // since processor sets can change dynamically.
   679   psetid_t pset = PS_NONE;
   680   // Are we running in a processor set?
   681   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   682     result = find_processors_in_pset(pset, &id_array, &id_length);
   683   } else {
   684     result = find_processors_online(&id_array, &id_length);
   685   }
   686   if (result == true) {
   687     if (id_length >= length) {
   688       result = assign_distribution(id_array, id_length, distribution, length);
   689     } else {
   690       result = false;
   691     }
   692   }
   693   if (id_array != NULL) {
   694     FREE_C_HEAP_ARRAY(processorid_t, id_array);
   695   }
   696   return result;
   697 }
   699 bool os::bind_to_processor(uint processor_id) {
   700   // We assume that a processorid_t can be stored in a uint.
   701   assert(sizeof(uint) == sizeof(processorid_t),
   702          "can't convert uint to processorid_t");
   703   int bind_result =
   704     processor_bind(P_LWPID,                       // bind LWP.
   705                    P_MYID,                        // bind current LWP.
   706                    (processorid_t) processor_id,  // id.
   707                    NULL);                         // don't return old binding.
   708   return (bind_result == 0);
   709 }
   711 bool os::getenv(const char* name, char* buffer, int len) {
   712   char* val = ::getenv( name );
   713   if ( val == NULL
   714   ||   strlen(val) + 1  >  len ) {
   715     if (len > 0)  buffer[0] = 0; // return a null string
   716     return false;
   717   }
   718   strcpy( buffer, val );
   719   return true;
   720 }
   723 // Return true if user is running as root.
   725 bool os::have_special_privileges() {
   726   static bool init = false;
   727   static bool privileges = false;
   728   if (!init) {
   729     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   730     init = true;
   731   }
   732   return privileges;
   733 }
   736 void os::init_system_properties_values() {
   737   char arch[12];
   738   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   740   // The next steps are taken in the product version:
   741   //
   742   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   743   // This library should be located at:
   744   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   745   //
   746   // If "/jre/lib/" appears at the right place in the path, then we
   747   // assume libjvm[_g].so is installed in a JDK and we use this path.
   748   //
   749   // Otherwise exit with message: "Could not create the Java virtual machine."
   750   //
   751   // The following extra steps are taken in the debugging version:
   752   //
   753   // If "/jre/lib/" does NOT appear at the right place in the path
   754   // instead of exit check for $JAVA_HOME environment variable.
   755   //
   756   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   757   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   758   // it looks like libjvm[_g].so is installed there
   759   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   760   //
   761   // Otherwise exit.
   762   //
   763   // Important note: if the location of libjvm.so changes this
   764   // code needs to be changed accordingly.
   766   // The next few definitions allow the code to be verbatim:
   767 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   768 #define free(p) FREE_C_HEAP_ARRAY(char, p)
   769 #define getenv(n) ::getenv(n)
   771 #define EXTENSIONS_DIR  "/lib/ext"
   772 #define ENDORSED_DIR    "/lib/endorsed"
   773 #define COMMON_DIR      "/usr/jdk/packages"
   775   {
   776     /* sysclasspath, java_home, dll_dir */
   777     {
   778         char *home_path;
   779         char *dll_path;
   780         char *pslash;
   781         char buf[MAXPATHLEN];
   782         os::jvm_path(buf, sizeof(buf));
   784         // Found the full path to libjvm.so.
   785         // Now cut the path to <java_home>/jre if we can.
   786         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   787         pslash = strrchr(buf, '/');
   788         if (pslash != NULL)
   789             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   790         dll_path = malloc(strlen(buf) + 1);
   791         if (dll_path == NULL)
   792             return;
   793         strcpy(dll_path, buf);
   794         Arguments::set_dll_dir(dll_path);
   796         if (pslash != NULL) {
   797             pslash = strrchr(buf, '/');
   798             if (pslash != NULL) {
   799                 *pslash = '\0';       /* get rid of /<arch> */
   800                 pslash = strrchr(buf, '/');
   801                 if (pslash != NULL)
   802                     *pslash = '\0';   /* get rid of /lib */
   803             }
   804         }
   806         home_path = malloc(strlen(buf) + 1);
   807         if (home_path == NULL)
   808             return;
   809         strcpy(home_path, buf);
   810         Arguments::set_java_home(home_path);
   812         if (!set_boot_path('/', ':'))
   813             return;
   814     }
   816     /*
   817      * Where to look for native libraries
   818      */
   819     {
   820       // Use dlinfo() to determine the correct java.library.path.
   821       //
   822       // If we're launched by the Java launcher, and the user
   823       // does not set java.library.path explicitly on the commandline,
   824       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   825       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   826       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   827       // /usr/lib), which is exactly what we want.
   828       //
   829       // If the user does set java.library.path, it completely
   830       // overwrites this setting, and always has.
   831       //
   832       // If we're not launched by the Java launcher, we may
   833       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   834       // settings.  Again, dlinfo does exactly what we want.
   836       Dl_serinfo     _info, *info = &_info;
   837       Dl_serpath     *path;
   838       char*          library_path;
   839       char           *common_path;
   840       int            i;
   842       // determine search path count and required buffer size
   843       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   844         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   845       }
   847       // allocate new buffer and initialize
   848       info = (Dl_serinfo*)malloc(_info.dls_size);
   849       if (info == NULL) {
   850         vm_exit_out_of_memory(_info.dls_size,
   851                               "init_system_properties_values info");
   852       }
   853       info->dls_size = _info.dls_size;
   854       info->dls_cnt = _info.dls_cnt;
   856       // obtain search path information
   857       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   858         free(info);
   859         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   860       }
   862       path = &info->dls_serpath[0];
   864       // Note: Due to a legacy implementation, most of the library path
   865       // is set in the launcher.  This was to accomodate linking restrictions
   866       // on legacy Solaris implementations (which are no longer supported).
   867       // Eventually, all the library path setting will be done here.
   868       //
   869       // However, to prevent the proliferation of improperly built native
   870       // libraries, the new path component /usr/jdk/packages is added here.
   872       // Determine the actual CPU architecture.
   873       char cpu_arch[12];
   874       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   875 #ifdef _LP64
   876       // If we are a 64-bit vm, perform the following translations:
   877       //   sparc   -> sparcv9
   878       //   i386    -> amd64
   879       if (strcmp(cpu_arch, "sparc") == 0)
   880         strcat(cpu_arch, "v9");
   881       else if (strcmp(cpu_arch, "i386") == 0)
   882         strcpy(cpu_arch, "amd64");
   883 #endif
   885       // Construct the invariant part of ld_library_path. Note that the
   886       // space for the colon and the trailing null are provided by the
   887       // nulls included by the sizeof operator.
   888       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   889       common_path = malloc(bufsize);
   890       if (common_path == NULL) {
   891         free(info);
   892         vm_exit_out_of_memory(bufsize,
   893                               "init_system_properties_values common_path");
   894       }
   895       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   897       // struct size is more than sufficient for the path components obtained
   898       // through the dlinfo() call, so only add additional space for the path
   899       // components explicitly added here.
   900       bufsize = info->dls_size + strlen(common_path);
   901       library_path = malloc(bufsize);
   902       if (library_path == NULL) {
   903         free(info);
   904         free(common_path);
   905         vm_exit_out_of_memory(bufsize,
   906                               "init_system_properties_values library_path");
   907       }
   908       library_path[0] = '\0';
   910       // Construct the desired Java library path from the linker's library
   911       // search path.
   912       //
   913       // For compatibility, it is optimal that we insert the additional path
   914       // components specific to the Java VM after those components specified
   915       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   916       // infrastructure.
   917       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   918         strcpy(library_path, common_path);
   919       } else {
   920         int inserted = 0;
   921         for (i = 0; i < info->dls_cnt; i++, path++) {
   922           uint_t flags = path->dls_flags & LA_SER_MASK;
   923           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   924             strcat(library_path, common_path);
   925             strcat(library_path, os::path_separator());
   926             inserted = 1;
   927           }
   928           strcat(library_path, path->dls_name);
   929           strcat(library_path, os::path_separator());
   930         }
   931         // eliminate trailing path separator
   932         library_path[strlen(library_path)-1] = '\0';
   933       }
   935       // happens before argument parsing - can't use a trace flag
   936       // tty->print_raw("init_system_properties_values: native lib path: ");
   937       // tty->print_raw_cr(library_path);
   939       // callee copies into its own buffer
   940       Arguments::set_library_path(library_path);
   942       free(common_path);
   943       free(library_path);
   944       free(info);
   945     }
   947     /*
   948      * Extensions directories.
   949      *
   950      * Note that the space for the colon and the trailing null are provided
   951      * by the nulls included by the sizeof operator (so actually one byte more
   952      * than necessary is allocated).
   953      */
   954     {
   955         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   956             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   957             sizeof(EXTENSIONS_DIR));
   958         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   959             Arguments::get_java_home());
   960         Arguments::set_ext_dirs(buf);
   961     }
   963     /* Endorsed standards default directory. */
   964     {
   965         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   966         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   967         Arguments::set_endorsed_dirs(buf);
   968     }
   969   }
   971 #undef malloc
   972 #undef free
   973 #undef getenv
   974 #undef EXTENSIONS_DIR
   975 #undef ENDORSED_DIR
   976 #undef COMMON_DIR
   978 }
   980 void os::breakpoint() {
   981   BREAKPOINT;
   982 }
   984 bool os::obsolete_option(const JavaVMOption *option)
   985 {
   986   if (!strncmp(option->optionString, "-Xt", 3)) {
   987     return true;
   988   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   989     return true;
   990   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   991     return true;
   992   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   993     return true;
   994   }
   995   return false;
   996 }
   998 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   999   address  stackStart  = (address)thread->stack_base();
  1000   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
  1001   if (sp < stackStart && sp >= stackEnd ) return true;
  1002   return false;
  1005 extern "C" void breakpoint() {
  1006   // use debugger to set breakpoint here
  1009 // Returns an estimate of the current stack pointer. Result must be guaranteed to
  1010 // point into the calling threads stack, and be no lower than the current stack
  1011 // pointer.
  1012 address os::current_stack_pointer() {
  1013   volatile int dummy;
  1014   address sp = (address)&dummy + 8;     // %%%% need to confirm if this is right
  1015   return sp;
  1018 static thread_t main_thread;
  1020 // Thread start routine for all new Java threads
  1021 extern "C" void* java_start(void* thread_addr) {
  1022   // Try to randomize the cache line index of hot stack frames.
  1023   // This helps when threads of the same stack traces evict each other's
  1024   // cache lines. The threads can be either from the same JVM instance, or
  1025   // from different JVM instances. The benefit is especially true for
  1026   // processors with hyperthreading technology.
  1027   static int counter = 0;
  1028   int pid = os::current_process_id();
  1029   alloca(((pid ^ counter++) & 7) * 128);
  1031   int prio;
  1032   Thread* thread = (Thread*)thread_addr;
  1033   OSThread* osthr = thread->osthread();
  1035   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
  1036   thread->_schedctl = (void *) schedctl_init () ;
  1038   if (UseNUMA) {
  1039     int lgrp_id = os::numa_get_group_id();
  1040     if (lgrp_id != -1) {
  1041       thread->set_lgrp_id(lgrp_id);
  1045   // If the creator called set priority before we started,
  1046   // we need to call set priority now that we have an lwp.
  1047   // Get the priority from libthread and set the priority
  1048   // for the new Solaris lwp.
  1049   if ( osthr->thread_id() != -1 ) {
  1050     if ( UseThreadPriorities ) {
  1051       thr_getprio(osthr->thread_id(), &prio);
  1052       if (ThreadPriorityVerbose) {
  1053         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
  1054                       osthr->thread_id(), osthr->lwp_id(), prio );
  1056       os::set_native_priority(thread, prio);
  1058   } else if (ThreadPriorityVerbose) {
  1059     warning("Can't set priority in _start routine, thread id hasn't been set\n");
  1062   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
  1064   // initialize signal mask for this thread
  1065   os::Solaris::hotspot_sigmask(thread);
  1067   thread->run();
  1069   // One less thread is executing
  1070   // When the VMThread gets here, the main thread may have already exited
  1071   // which frees the CodeHeap containing the Atomic::dec code
  1072   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
  1073     Atomic::dec(&os::Solaris::_os_thread_count);
  1076   if (UseDetachedThreads) {
  1077     thr_exit(NULL);
  1078     ShouldNotReachHere();
  1080   return NULL;
  1083 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
  1084   // Allocate the OSThread object
  1085   OSThread* osthread = new OSThread(NULL, NULL);
  1086   if (osthread == NULL) return NULL;
  1088   // Store info on the Solaris thread into the OSThread
  1089   osthread->set_thread_id(thread_id);
  1090   osthread->set_lwp_id(_lwp_self());
  1091   thread->_schedctl = (void *) schedctl_init () ;
  1093   if (UseNUMA) {
  1094     int lgrp_id = os::numa_get_group_id();
  1095     if (lgrp_id != -1) {
  1096       thread->set_lgrp_id(lgrp_id);
  1100   if ( ThreadPriorityVerbose ) {
  1101     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1102                   osthread->thread_id(), osthread->lwp_id() );
  1105   // Initial thread state is INITIALIZED, not SUSPENDED
  1106   osthread->set_state(INITIALIZED);
  1108   return osthread;
  1111 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1113   //Save caller's signal mask
  1114   sigset_t sigmask;
  1115   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1116   OSThread *osthread = thread->osthread();
  1117   osthread->set_caller_sigmask(sigmask);
  1119   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1120   if (!ReduceSignalUsage) {
  1121     if (thread->is_VM_thread()) {
  1122       // Only the VM thread handles BREAK_SIGNAL ...
  1123       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1124     } else {
  1125       // ... all other threads block BREAK_SIGNAL
  1126       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1127       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1132 bool os::create_attached_thread(JavaThread* thread) {
  1133 #ifdef ASSERT
  1134   thread->verify_not_published();
  1135 #endif
  1136   OSThread* osthread = create_os_thread(thread, thr_self());
  1137   if (osthread == NULL) {
  1138      return false;
  1141   // Initial thread state is RUNNABLE
  1142   osthread->set_state(RUNNABLE);
  1143   thread->set_osthread(osthread);
  1145   // initialize signal mask for this thread
  1146   // and save the caller's signal mask
  1147   os::Solaris::hotspot_sigmask(thread);
  1149   return true;
  1152 bool os::create_main_thread(JavaThread* thread) {
  1153 #ifdef ASSERT
  1154   thread->verify_not_published();
  1155 #endif
  1156   if (_starting_thread == NULL) {
  1157     _starting_thread = create_os_thread(thread, main_thread);
  1158      if (_starting_thread == NULL) {
  1159         return false;
  1163   // The primodial thread is runnable from the start
  1164   _starting_thread->set_state(RUNNABLE);
  1166   thread->set_osthread(_starting_thread);
  1168   // initialize signal mask for this thread
  1169   // and save the caller's signal mask
  1170   os::Solaris::hotspot_sigmask(thread);
  1172   return true;
  1175 // _T2_libthread is true if we believe we are running with the newer
  1176 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1177 bool os::Solaris::_T2_libthread = false;
  1179 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1180   // Allocate the OSThread object
  1181   OSThread* osthread = new OSThread(NULL, NULL);
  1182   if (osthread == NULL) {
  1183     return false;
  1186   if ( ThreadPriorityVerbose ) {
  1187     char *thrtyp;
  1188     switch ( thr_type ) {
  1189       case vm_thread:
  1190         thrtyp = (char *)"vm";
  1191         break;
  1192       case cgc_thread:
  1193         thrtyp = (char *)"cgc";
  1194         break;
  1195       case pgc_thread:
  1196         thrtyp = (char *)"pgc";
  1197         break;
  1198       case java_thread:
  1199         thrtyp = (char *)"java";
  1200         break;
  1201       case compiler_thread:
  1202         thrtyp = (char *)"compiler";
  1203         break;
  1204       case watcher_thread:
  1205         thrtyp = (char *)"watcher";
  1206         break;
  1207       default:
  1208         thrtyp = (char *)"unknown";
  1209         break;
  1211     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1214   // Calculate stack size if it's not specified by caller.
  1215   if (stack_size == 0) {
  1216     // The default stack size 1M (2M for LP64).
  1217     stack_size = (BytesPerWord >> 2) * K * K;
  1219     switch (thr_type) {
  1220     case os::java_thread:
  1221       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1222       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1223       break;
  1224     case os::compiler_thread:
  1225       if (CompilerThreadStackSize > 0) {
  1226         stack_size = (size_t)(CompilerThreadStackSize * K);
  1227         break;
  1228       } // else fall through:
  1229         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1230     case os::vm_thread:
  1231     case os::pgc_thread:
  1232     case os::cgc_thread:
  1233     case os::watcher_thread:
  1234       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1235       break;
  1238   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1240   // Initial state is ALLOCATED but not INITIALIZED
  1241   osthread->set_state(ALLOCATED);
  1243   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1244     // We got lots of threads. Check if we still have some address space left.
  1245     // Need to be at least 5Mb of unreserved address space. We do check by
  1246     // trying to reserve some.
  1247     const size_t VirtualMemoryBangSize = 20*K*K;
  1248     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1249     if (mem == NULL) {
  1250       delete osthread;
  1251       return false;
  1252     } else {
  1253       // Release the memory again
  1254       os::release_memory(mem, VirtualMemoryBangSize);
  1258   // Setup osthread because the child thread may need it.
  1259   thread->set_osthread(osthread);
  1261   // Create the Solaris thread
  1262   // explicit THR_BOUND for T2_libthread case in case
  1263   // that assumption is not accurate, but our alternate signal stack
  1264   // handling is based on it which must have bound threads
  1265   thread_t tid = 0;
  1266   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1267                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1268                        (thr_type == vm_thread) ||
  1269                        (thr_type == cgc_thread) ||
  1270                        (thr_type == pgc_thread) ||
  1271                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1272                       THR_BOUND : 0);
  1273   int      status;
  1275   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1276   //
  1277   // On multiprocessors systems, libthread sometimes under-provisions our
  1278   // process with LWPs.  On a 30-way systems, for instance, we could have
  1279   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1280   // to our process.  This can result in under utilization of PEs.
  1281   // I suspect the problem is related to libthread's LWP
  1282   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1283   // upcall policy.
  1284   //
  1285   // The following code is palliative -- it attempts to ensure that our
  1286   // process has sufficient LWPs to take advantage of multiple PEs.
  1287   // Proper long-term cures include using user-level threads bound to LWPs
  1288   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1289   // slight timing window with respect to sampling _os_thread_count, but
  1290   // the race is benign.  Also, we should periodically recompute
  1291   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1292   // the number of PEs in our partition.  You might be tempted to use
  1293   // THR_NEW_LWP here, but I'd recommend against it as that could
  1294   // result in undesirable growth of the libthread's LWP pool.
  1295   // The fix below isn't sufficient; for instance, it doesn't take into count
  1296   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1297   //
  1298   // Some pathologies this scheme doesn't handle:
  1299   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1300   //    When a large number of threads become ready again there aren't
  1301   //    enough LWPs available to service them.  This can occur when the
  1302   //    number of ready threads oscillates.
  1303   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1304   //
  1305   // Finally, we should call thr_setconcurrency() periodically to refresh
  1306   // the LWP pool and thwart the LWP age-out mechanism.
  1307   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1309   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1310     if (!(flags & THR_BOUND)) {
  1311       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1314   // Although this doesn't hurt, we should warn of undefined behavior
  1315   // when using unbound T1 threads with schedctl().  This should never
  1316   // happen, as the compiler and VM threads are always created bound
  1317   DEBUG_ONLY(
  1318       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1319           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1320           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1321            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1322          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1324   );
  1327   // Mark that we don't have an lwp or thread id yet.
  1328   // In case we attempt to set the priority before the thread starts.
  1329   osthread->set_lwp_id(-1);
  1330   osthread->set_thread_id(-1);
  1332   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1333   if (status != 0) {
  1334     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1335       perror("os::create_thread");
  1337     thread->set_osthread(NULL);
  1338     // Need to clean up stuff we've allocated so far
  1339     delete osthread;
  1340     return false;
  1343   Atomic::inc(&os::Solaris::_os_thread_count);
  1345   // Store info on the Solaris thread into the OSThread
  1346   osthread->set_thread_id(tid);
  1348   // Remember that we created this thread so we can set priority on it
  1349   osthread->set_vm_created();
  1351   // Set the default thread priority otherwise use NormalPriority
  1353   if ( UseThreadPriorities ) {
  1354      thr_setprio(tid, (DefaultThreadPriority == -1) ?
  1355                         java_to_os_priority[NormPriority] :
  1356                         DefaultThreadPriority);
  1359   // Initial thread state is INITIALIZED, not SUSPENDED
  1360   osthread->set_state(INITIALIZED);
  1362   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1363   return true;
  1366 /* defined for >= Solaris 10. This allows builds on earlier versions
  1367  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1368  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1369  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1370  */
  1371 #if !defined(SIGJVM1)
  1372 #define SIGJVM1 39
  1373 #define SIGJVM2 40
  1374 #endif
  1376 debug_only(static bool signal_sets_initialized = false);
  1377 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1378 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1379 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1381 bool os::Solaris::is_sig_ignored(int sig) {
  1382       struct sigaction oact;
  1383       sigaction(sig, (struct sigaction*)NULL, &oact);
  1384       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1385                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1386       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1387            return true;
  1388       else
  1389            return false;
  1392 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1393 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1394 static bool isJVM1available() {
  1395   return SIGJVM1 < SIGRTMIN;
  1398 void os::Solaris::signal_sets_init() {
  1399   // Should also have an assertion stating we are still single-threaded.
  1400   assert(!signal_sets_initialized, "Already initialized");
  1401   // Fill in signals that are necessarily unblocked for all threads in
  1402   // the VM. Currently, we unblock the following signals:
  1403   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1404   //                         by -Xrs (=ReduceSignalUsage));
  1405   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1406   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1407   // the dispositions or masks wrt these signals.
  1408   // Programs embedding the VM that want to use the above signals for their
  1409   // own purposes must, at this time, use the "-Xrs" option to prevent
  1410   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1411   // (See bug 4345157, and other related bugs).
  1412   // In reality, though, unblocking these signals is really a nop, since
  1413   // these signals are not blocked by default.
  1414   sigemptyset(&unblocked_sigs);
  1415   sigemptyset(&allowdebug_blocked_sigs);
  1416   sigaddset(&unblocked_sigs, SIGILL);
  1417   sigaddset(&unblocked_sigs, SIGSEGV);
  1418   sigaddset(&unblocked_sigs, SIGBUS);
  1419   sigaddset(&unblocked_sigs, SIGFPE);
  1421   if (isJVM1available) {
  1422     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1423     os::Solaris::set_SIGasync(SIGJVM2);
  1424   } else if (UseAltSigs) {
  1425     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1426     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1427   } else {
  1428     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1429     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1432   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1433   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1435   if (!ReduceSignalUsage) {
  1436    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1437       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1440    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1441       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1444    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1445       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1449   // Fill in signals that are blocked by all but the VM thread.
  1450   sigemptyset(&vm_sigs);
  1451   if (!ReduceSignalUsage)
  1452     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1453   debug_only(signal_sets_initialized = true);
  1455   // For diagnostics only used in run_periodic_checks
  1456   sigemptyset(&check_signal_done);
  1459 // These are signals that are unblocked while a thread is running Java.
  1460 // (For some reason, they get blocked by default.)
  1461 sigset_t* os::Solaris::unblocked_signals() {
  1462   assert(signal_sets_initialized, "Not initialized");
  1463   return &unblocked_sigs;
  1466 // These are the signals that are blocked while a (non-VM) thread is
  1467 // running Java. Only the VM thread handles these signals.
  1468 sigset_t* os::Solaris::vm_signals() {
  1469   assert(signal_sets_initialized, "Not initialized");
  1470   return &vm_sigs;
  1473 // These are signals that are blocked during cond_wait to allow debugger in
  1474 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1475   assert(signal_sets_initialized, "Not initialized");
  1476   return &allowdebug_blocked_sigs;
  1480 void _handle_uncaught_cxx_exception() {
  1481   VMError err("An uncaught C++ exception");
  1482   err.report_and_die();
  1486 // First crack at OS-specific initialization, from inside the new thread.
  1487 void os::initialize_thread() {
  1488   int r = thr_main() ;
  1489   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1490   if (r) {
  1491     JavaThread* jt = (JavaThread *)Thread::current();
  1492     assert(jt != NULL,"Sanity check");
  1493     size_t stack_size;
  1494     address base = jt->stack_base();
  1495     if (Arguments::created_by_java_launcher()) {
  1496       // Use 2MB to allow for Solaris 7 64 bit mode.
  1497       stack_size = JavaThread::stack_size_at_create() == 0
  1498         ? 2048*K : JavaThread::stack_size_at_create();
  1500       // There are rare cases when we may have already used more than
  1501       // the basic stack size allotment before this method is invoked.
  1502       // Attempt to allow for a normally sized java_stack.
  1503       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1504       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1505     } else {
  1506       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1507       // running embedded in a native application, treat the primordial thread
  1508       // as much like a native attached thread as possible.  This means using
  1509       // the current stack size from thr_stksegment(), unless it is too large
  1510       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1511       size_t current_size = current_stack_size();
  1512       // This should never happen, but just in case....
  1513       if (current_size == 0) current_size = 2 * K * K;
  1514       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1516     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1517     stack_size = (size_t)(base - bottom);
  1519     assert(stack_size > 0, "Stack size calculation problem");
  1521     if (stack_size > jt->stack_size()) {
  1522       NOT_PRODUCT(
  1523         struct rlimit limits;
  1524         getrlimit(RLIMIT_STACK, &limits);
  1525         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1526         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1528       tty->print_cr(
  1529         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1530         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1531         "See limit(1) to increase the stack size limit.",
  1532         stack_size / K, jt->stack_size() / K);
  1533       vm_exit(1);
  1535     assert(jt->stack_size() >= stack_size,
  1536           "Attempt to map more stack than was allocated");
  1537     jt->set_stack_size(stack_size);
  1540    // 5/22/01: Right now alternate signal stacks do not handle
  1541    // throwing stack overflow exceptions, see bug 4463178
  1542    // Until a fix is found for this, T2 will NOT imply alternate signal
  1543    // stacks.
  1544    // If using T2 libthread threads, install an alternate signal stack.
  1545    // Because alternate stacks associate with LWPs on Solaris,
  1546    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1547    // we prefer to explicitly stack bang.
  1548    // If not using T2 libthread, but using UseBoundThreads any threads
  1549    // (primordial thread, jni_attachCurrentThread) we do not create,
  1550    // probably are not bound, therefore they can not have an alternate
  1551    // signal stack. Since our stack banging code is generated and
  1552    // is shared across threads, all threads must be bound to allow
  1553    // using alternate signal stacks.  The alternative is to interpose
  1554    // on _lwp_create to associate an alt sig stack with each LWP,
  1555    // and this could be a problem when the JVM is embedded.
  1556    // We would prefer to use alternate signal stacks with T2
  1557    // Since there is currently no accurate way to detect T2
  1558    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1559    // on installing alternate signal stacks
  1562    // 05/09/03: removed alternate signal stack support for Solaris
  1563    // The alternate signal stack mechanism is no longer needed to
  1564    // handle stack overflow. This is now handled by allocating
  1565    // guard pages (red zone) and stackbanging.
  1566    // Initially the alternate signal stack mechanism was removed because
  1567    // it did not work with T1 llibthread. Alternate
  1568    // signal stacks MUST have all threads bound to lwps. Applications
  1569    // can create their own threads and attach them without their being
  1570    // bound under T1. This is frequently the case for the primordial thread.
  1571    // If we were ever to reenable this mechanism we would need to
  1572    // use the dynamic check for T2 libthread.
  1574   os::Solaris::init_thread_fpu_state();
  1575   std::set_terminate(_handle_uncaught_cxx_exception);
  1580 // Free Solaris resources related to the OSThread
  1581 void os::free_thread(OSThread* osthread) {
  1582   assert(osthread != NULL, "os::free_thread but osthread not set");
  1585   // We are told to free resources of the argument thread,
  1586   // but we can only really operate on the current thread.
  1587   // The main thread must take the VMThread down synchronously
  1588   // before the main thread exits and frees up CodeHeap
  1589   guarantee((Thread::current()->osthread() == osthread
  1590      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1591   if (Thread::current()->osthread() == osthread) {
  1592     // Restore caller's signal mask
  1593     sigset_t sigmask = osthread->caller_sigmask();
  1594     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1596   delete osthread;
  1599 void os::pd_start_thread(Thread* thread) {
  1600   int status = thr_continue(thread->osthread()->thread_id());
  1601   assert_status(status == 0, status, "thr_continue failed");
  1605 intx os::current_thread_id() {
  1606   return (intx)thr_self();
  1609 static pid_t _initial_pid = 0;
  1611 int os::current_process_id() {
  1612   return (int)(_initial_pid ? _initial_pid : getpid());
  1615 int os::allocate_thread_local_storage() {
  1616   // %%%       in Win32 this allocates a memory segment pointed to by a
  1617   //           register.  Dan Stein can implement a similar feature in
  1618   //           Solaris.  Alternatively, the VM can do the same thing
  1619   //           explicitly: malloc some storage and keep the pointer in a
  1620   //           register (which is part of the thread's context) (or keep it
  1621   //           in TLS).
  1622   // %%%       In current versions of Solaris, thr_self and TSD can
  1623   //           be accessed via short sequences of displaced indirections.
  1624   //           The value of thr_self is available as %g7(36).
  1625   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1626   //           assuming that the current thread already has a value bound to k.
  1627   //           It may be worth experimenting with such access patterns,
  1628   //           and later having the parameters formally exported from a Solaris
  1629   //           interface.  I think, however, that it will be faster to
  1630   //           maintain the invariant that %g2 always contains the
  1631   //           JavaThread in Java code, and have stubs simply
  1632   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1633   thread_key_t tk;
  1634   if (thr_keycreate( &tk, NULL ) )
  1635     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1636                   "(%s)", strerror(errno)));
  1637   return int(tk);
  1640 void os::free_thread_local_storage(int index) {
  1641   // %%% don't think we need anything here
  1642   // if ( pthread_key_delete((pthread_key_t) tk) )
  1643   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1646 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1647                       // small number - point is NO swap space available
  1648 void os::thread_local_storage_at_put(int index, void* value) {
  1649   // %%% this is used only in threadLocalStorage.cpp
  1650   if (thr_setspecific((thread_key_t)index, value)) {
  1651     if (errno == ENOMEM) {
  1652        vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
  1653     } else {
  1654       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1655                     "(%s)", strerror(errno)));
  1657   } else {
  1658       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1662 // This function could be called before TLS is initialized, for example, when
  1663 // VM receives an async signal or when VM causes a fatal error during
  1664 // initialization. Return NULL if thr_getspecific() fails.
  1665 void* os::thread_local_storage_at(int index) {
  1666   // %%% this is used only in threadLocalStorage.cpp
  1667   void* r = NULL;
  1668   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1672 const int NANOSECS_PER_MILLISECS = 1000000;
  1673 // gethrtime can move backwards if read from one cpu and then a different cpu
  1674 // getTimeNanos is guaranteed to not move backward on Solaris
  1675 // local spinloop created as faster for a CAS on an int than
  1676 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1677 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1678 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1679 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1680 inline hrtime_t oldgetTimeNanos() {
  1681   int gotlock = LOCK_INVALID;
  1682   hrtime_t newtime = gethrtime();
  1684   for (;;) {
  1685 // grab lock for max_hrtime
  1686     int curlock = max_hrtime_lock;
  1687     if (curlock & LOCK_BUSY)  continue;
  1688     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1689     if (newtime > max_hrtime) {
  1690       max_hrtime = newtime;
  1691     } else {
  1692       newtime = max_hrtime;
  1694     // release lock
  1695     max_hrtime_lock = LOCK_FREE;
  1696     return newtime;
  1699 // gethrtime can move backwards if read from one cpu and then a different cpu
  1700 // getTimeNanos is guaranteed to not move backward on Solaris
  1701 inline hrtime_t getTimeNanos() {
  1702   if (VM_Version::supports_cx8()) {
  1703     const hrtime_t now = gethrtime();
  1704     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1705     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1706     if (now <= prev)  return prev;   // same or retrograde time;
  1707     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1708     assert(obsv >= prev, "invariant");   // Monotonicity
  1709     // If the CAS succeeded then we're done and return "now".
  1710     // If the CAS failed and the observed value "obs" is >= now then
  1711     // we should return "obs".  If the CAS failed and now > obs > prv then
  1712     // some other thread raced this thread and installed a new value, in which case
  1713     // we could either (a) retry the entire operation, (b) retry trying to install now
  1714     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1715     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1716     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1717     // to (a) or (b) -- and greatly reduces coherence traffic.
  1718     // We might also condition (c) on the magnitude of the delta between obs and now.
  1719     // Avoiding excessive CAS operations to hot RW locations is critical.
  1720     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1721     return (prev == obsv) ? now : obsv ;
  1722   } else {
  1723     return oldgetTimeNanos();
  1727 // Time since start-up in seconds to a fine granularity.
  1728 // Used by VMSelfDestructTimer and the MemProfiler.
  1729 double os::elapsedTime() {
  1730   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1733 jlong os::elapsed_counter() {
  1734   return (jlong)(getTimeNanos() - first_hrtime);
  1737 jlong os::elapsed_frequency() {
  1738    return hrtime_hz;
  1741 // Return the real, user, and system times in seconds from an
  1742 // arbitrary fixed point in the past.
  1743 bool os::getTimesSecs(double* process_real_time,
  1744                   double* process_user_time,
  1745                   double* process_system_time) {
  1746   struct tms ticks;
  1747   clock_t real_ticks = times(&ticks);
  1749   if (real_ticks == (clock_t) (-1)) {
  1750     return false;
  1751   } else {
  1752     double ticks_per_second = (double) clock_tics_per_sec;
  1753     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1754     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1755     // For consistency return the real time from getTimeNanos()
  1756     // converted to seconds.
  1757     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1759     return true;
  1763 bool os::supports_vtime() { return true; }
  1765 bool os::enable_vtime() {
  1766   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1767   if (fd == -1)
  1768     return false;
  1770   long cmd[] = { PCSET, PR_MSACCT };
  1771   int res = ::write(fd, cmd, sizeof(long) * 2);
  1772   ::close(fd);
  1773   if (res != sizeof(long) * 2)
  1774     return false;
  1776   return true;
  1779 bool os::vtime_enabled() {
  1780   int fd = ::open("/proc/self/status", O_RDONLY);
  1781   if (fd == -1)
  1782     return false;
  1784   pstatus_t status;
  1785   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1786   ::close(fd);
  1787   if (res != sizeof(pstatus_t))
  1788     return false;
  1790   return status.pr_flags & PR_MSACCT;
  1793 double os::elapsedVTime() {
  1794   return (double)gethrvtime() / (double)hrtime_hz;
  1797 // Used internally for comparisons only
  1798 // getTimeMillis guaranteed to not move backwards on Solaris
  1799 jlong getTimeMillis() {
  1800   jlong nanotime = getTimeNanos();
  1801   return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
  1804 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1805 jlong os::javaTimeMillis() {
  1806   timeval t;
  1807   if (gettimeofday( &t, NULL) == -1)
  1808     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1809   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1812 jlong os::javaTimeNanos() {
  1813   return (jlong)getTimeNanos();
  1816 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1817   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1818   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1819   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1820   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1823 char * os::local_time_string(char *buf, size_t buflen) {
  1824   struct tm t;
  1825   time_t long_time;
  1826   time(&long_time);
  1827   localtime_r(&long_time, &t);
  1828   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1829                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1830                t.tm_hour, t.tm_min, t.tm_sec);
  1831   return buf;
  1834 // Note: os::shutdown() might be called very early during initialization, or
  1835 // called from signal handler. Before adding something to os::shutdown(), make
  1836 // sure it is async-safe and can handle partially initialized VM.
  1837 void os::shutdown() {
  1839   // allow PerfMemory to attempt cleanup of any persistent resources
  1840   perfMemory_exit();
  1842   // needs to remove object in file system
  1843   AttachListener::abort();
  1845   // flush buffered output, finish log files
  1846   ostream_abort();
  1848   // Check for abort hook
  1849   abort_hook_t abort_hook = Arguments::abort_hook();
  1850   if (abort_hook != NULL) {
  1851     abort_hook();
  1855 // Note: os::abort() might be called very early during initialization, or
  1856 // called from signal handler. Before adding something to os::abort(), make
  1857 // sure it is async-safe and can handle partially initialized VM.
  1858 void os::abort(bool dump_core) {
  1859   os::shutdown();
  1860   if (dump_core) {
  1861 #ifndef PRODUCT
  1862     fdStream out(defaultStream::output_fd());
  1863     out.print_raw("Current thread is ");
  1864     char buf[16];
  1865     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1866     out.print_raw_cr(buf);
  1867     out.print_raw_cr("Dumping core ...");
  1868 #endif
  1869     ::abort(); // dump core (for debugging)
  1872   ::exit(1);
  1875 // Die immediately, no exit hook, no abort hook, no cleanup.
  1876 void os::die() {
  1877   _exit(-1);
  1880 // unused
  1881 void os::set_error_file(const char *logfile) {}
  1883 // DLL functions
  1885 const char* os::dll_file_extension() { return ".so"; }
  1887 const char* os::get_temp_directory() {
  1888   const char *prop = Arguments::get_property("java.io.tmpdir");
  1889   return prop == NULL ? "/tmp" : prop;
  1892 static bool file_exists(const char* filename) {
  1893   struct stat statbuf;
  1894   if (filename == NULL || strlen(filename) == 0) {
  1895     return false;
  1897   return os::stat(filename, &statbuf) == 0;
  1900 void os::dll_build_name(char* buffer, size_t buflen,
  1901                         const char* pname, const char* fname) {
  1902   const size_t pnamelen = pname ? strlen(pname) : 0;
  1904   // Quietly truncate on buffer overflow.  Should be an error.
  1905   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1906     *buffer = '\0';
  1907     return;
  1910   if (pnamelen == 0) {
  1911     snprintf(buffer, buflen, "lib%s.so", fname);
  1912   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1913     int n;
  1914     char** pelements = split_path(pname, &n);
  1915     for (int i = 0 ; i < n ; i++) {
  1916       // really shouldn't be NULL but what the heck, check can't hurt
  1917       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1918         continue; // skip the empty path values
  1920       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1921       if (file_exists(buffer)) {
  1922         break;
  1925     // release the storage
  1926     for (int i = 0 ; i < n ; i++) {
  1927       if (pelements[i] != NULL) {
  1928         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1931     if (pelements != NULL) {
  1932       FREE_C_HEAP_ARRAY(char*, pelements);
  1934   } else {
  1935     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1939 const char* os::get_current_directory(char *buf, int buflen) {
  1940   return getcwd(buf, buflen);
  1943 // check if addr is inside libjvm[_g].so
  1944 bool os::address_is_in_vm(address addr) {
  1945   static address libjvm_base_addr;
  1946   Dl_info dlinfo;
  1948   if (libjvm_base_addr == NULL) {
  1949     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1950     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1951     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1954   if (dladdr((void *)addr, &dlinfo)) {
  1955     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1958   return false;
  1961 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1962 static dladdr1_func_type dladdr1_func = NULL;
  1964 bool os::dll_address_to_function_name(address addr, char *buf,
  1965                                       int buflen, int * offset) {
  1966   Dl_info dlinfo;
  1968   // dladdr1_func was initialized in os::init()
  1969   if (dladdr1_func){
  1970       // yes, we have dladdr1
  1972       // Support for dladdr1 is checked at runtime; it may be
  1973       // available even if the vm is built on a machine that does
  1974       // not have dladdr1 support.  Make sure there is a value for
  1975       // RTLD_DL_SYMENT.
  1976       #ifndef RTLD_DL_SYMENT
  1977       #define RTLD_DL_SYMENT 1
  1978       #endif
  1979       Sym * info;
  1980       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1981                        RTLD_DL_SYMENT)) {
  1982         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1983           if (buf != NULL) {
  1984             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1985               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1987             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1988             return true;
  1991       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1992         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1993           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1994           return true;
  1997       if (buf != NULL) buf[0] = '\0';
  1998       if (offset != NULL) *offset  = -1;
  1999       return false;
  2000   } else {
  2001       // no, only dladdr is available
  2002       if (dladdr((void *)addr, &dlinfo)) {
  2003         if (buf != NULL) {
  2004           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  2005             jio_snprintf(buf, buflen, dlinfo.dli_sname);
  2007         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  2008         return true;
  2009       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  2010         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  2011           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  2012           return true;
  2015       if (buf != NULL) buf[0] = '\0';
  2016       if (offset != NULL) *offset  = -1;
  2017       return false;
  2021 bool os::dll_address_to_library_name(address addr, char* buf,
  2022                                      int buflen, int* offset) {
  2023   Dl_info dlinfo;
  2025   if (dladdr((void*)addr, &dlinfo)){
  2026      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  2027      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  2028      return true;
  2029   } else {
  2030      if (buf) buf[0] = '\0';
  2031      if (offset) *offset = -1;
  2032      return false;
  2036 // Prints the names and full paths of all opened dynamic libraries
  2037 // for current process
  2038 void os::print_dll_info(outputStream * st) {
  2039     Dl_info dli;
  2040     void *handle;
  2041     Link_map *map;
  2042     Link_map *p;
  2044     st->print_cr("Dynamic libraries:"); st->flush();
  2046     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  2047         st->print_cr("Error: Cannot print dynamic libraries.");
  2048         return;
  2050     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  2051     if (handle == NULL) {
  2052         st->print_cr("Error: Cannot print dynamic libraries.");
  2053         return;
  2055     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  2056     if (map == NULL) {
  2057         st->print_cr("Error: Cannot print dynamic libraries.");
  2058         return;
  2061     while (map->l_prev != NULL)
  2062         map = map->l_prev;
  2064     while (map != NULL) {
  2065         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2066         map = map->l_next;
  2069     dlclose(handle);
  2072   // Loads .dll/.so and
  2073   // in case of error it checks if .dll/.so was built for the
  2074   // same architecture as Hotspot is running on
  2076 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2078   void * result= ::dlopen(filename, RTLD_LAZY);
  2079   if (result != NULL) {
  2080     // Successful loading
  2081     return result;
  2084   Elf32_Ehdr elf_head;
  2086   // Read system error message into ebuf
  2087   // It may or may not be overwritten below
  2088   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2089   ebuf[ebuflen-1]='\0';
  2090   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2091   char* diag_msg_buf=ebuf+strlen(ebuf);
  2093   if (diag_msg_max_length==0) {
  2094     // No more space in ebuf for additional diagnostics message
  2095     return NULL;
  2099   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2101   if (file_descriptor < 0) {
  2102     // Can't open library, report dlerror() message
  2103     return NULL;
  2106   bool failed_to_read_elf_head=
  2107     (sizeof(elf_head)!=
  2108         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2110   ::close(file_descriptor);
  2111   if (failed_to_read_elf_head) {
  2112     // file i/o error - report dlerror() msg
  2113     return NULL;
  2116   typedef struct {
  2117     Elf32_Half  code;         // Actual value as defined in elf.h
  2118     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2119     char        elf_class;    // 32 or 64 bit
  2120     char        endianess;    // MSB or LSB
  2121     char*       name;         // String representation
  2122   } arch_t;
  2124   static const arch_t arch_array[]={
  2125     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2126     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2127     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2128     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2129     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2130     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2131     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2132     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2133     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2134     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2135   };
  2137   #if  (defined IA32)
  2138     static  Elf32_Half running_arch_code=EM_386;
  2139   #elif   (defined AMD64)
  2140     static  Elf32_Half running_arch_code=EM_X86_64;
  2141   #elif  (defined IA64)
  2142     static  Elf32_Half running_arch_code=EM_IA_64;
  2143   #elif  (defined __sparc) && (defined _LP64)
  2144     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2145   #elif  (defined __sparc) && (!defined _LP64)
  2146     static  Elf32_Half running_arch_code=EM_SPARC;
  2147   #elif  (defined __powerpc64__)
  2148     static  Elf32_Half running_arch_code=EM_PPC64;
  2149   #elif  (defined __powerpc__)
  2150     static  Elf32_Half running_arch_code=EM_PPC;
  2151   #elif (defined ARM)
  2152     static  Elf32_Half running_arch_code=EM_ARM;
  2153   #else
  2154     #error Method os::dll_load requires that one of following is defined:\
  2155          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2156   #endif
  2158   // Identify compatability class for VM's architecture and library's architecture
  2159   // Obtain string descriptions for architectures
  2161   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2162   int running_arch_index=-1;
  2164   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2165     if (running_arch_code == arch_array[i].code) {
  2166       running_arch_index    = i;
  2168     if (lib_arch.code == arch_array[i].code) {
  2169       lib_arch.compat_class = arch_array[i].compat_class;
  2170       lib_arch.name         = arch_array[i].name;
  2174   assert(running_arch_index != -1,
  2175     "Didn't find running architecture code (running_arch_code) in arch_array");
  2176   if (running_arch_index == -1) {
  2177     // Even though running architecture detection failed
  2178     // we may still continue with reporting dlerror() message
  2179     return NULL;
  2182   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2183     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2184     return NULL;
  2187   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2188     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2189     return NULL;
  2192   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2193     if ( lib_arch.name!=NULL ) {
  2194       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2195         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2196         lib_arch.name, arch_array[running_arch_index].name);
  2197     } else {
  2198       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2199       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2200         lib_arch.code,
  2201         arch_array[running_arch_index].name);
  2205   return NULL;
  2208 void* os::dll_lookup(void* handle, const char* name) {
  2209   return dlsym(handle, name);
  2212 int os::stat(const char *path, struct stat *sbuf) {
  2213   char pathbuf[MAX_PATH];
  2214   if (strlen(path) > MAX_PATH - 1) {
  2215     errno = ENAMETOOLONG;
  2216     return -1;
  2218   os::native_path(strcpy(pathbuf, path));
  2219   return ::stat(pathbuf, sbuf);
  2222 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2223   int fd = ::open(filename, O_RDONLY);
  2224   if (fd == -1) {
  2225      return false;
  2228   char buf[32];
  2229   int bytes;
  2230   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2231     st->print_raw(buf, bytes);
  2234   ::close(fd);
  2236   return true;
  2239 void os::print_os_info(outputStream* st) {
  2240   st->print("OS:");
  2242   if (!_print_ascii_file("/etc/release", st)) {
  2243     st->print("Solaris");
  2245   st->cr();
  2247   // kernel
  2248   st->print("uname:");
  2249   struct utsname name;
  2250   uname(&name);
  2251   st->print(name.sysname); st->print(" ");
  2252   st->print(name.release); st->print(" ");
  2253   st->print(name.version); st->print(" ");
  2254   st->print(name.machine);
  2256   // libthread
  2257   if (os::Solaris::T2_libthread()) st->print("  (T2 libthread)");
  2258   else st->print("  (T1 libthread)");
  2259   st->cr();
  2261   // rlimit
  2262   st->print("rlimit:");
  2263   struct rlimit rlim;
  2265   st->print(" STACK ");
  2266   getrlimit(RLIMIT_STACK, &rlim);
  2267   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2268   else st->print("%uk", rlim.rlim_cur >> 10);
  2270   st->print(", CORE ");
  2271   getrlimit(RLIMIT_CORE, &rlim);
  2272   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2273   else st->print("%uk", rlim.rlim_cur >> 10);
  2275   st->print(", NOFILE ");
  2276   getrlimit(RLIMIT_NOFILE, &rlim);
  2277   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2278   else st->print("%d", rlim.rlim_cur);
  2280   st->print(", AS ");
  2281   getrlimit(RLIMIT_AS, &rlim);
  2282   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2283   else st->print("%uk", rlim.rlim_cur >> 10);
  2284   st->cr();
  2286   // load average
  2287   st->print("load average:");
  2288   double loadavg[3];
  2289   os::loadavg(loadavg, 3);
  2290   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2291   st->cr();
  2295 static bool check_addr0(outputStream* st) {
  2296   jboolean status = false;
  2297   int fd = ::open("/proc/self/map",O_RDONLY);
  2298   if (fd >= 0) {
  2299     prmap_t p;
  2300     while(::read(fd, &p, sizeof(p)) > 0) {
  2301       if (p.pr_vaddr == 0x0) {
  2302         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2303         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2304         st->print("Access:");
  2305         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2306         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2307         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2308         st->cr();
  2309         status = true;
  2311       ::close(fd);
  2314   return status;
  2317 void os::print_memory_info(outputStream* st) {
  2318   st->print("Memory:");
  2319   st->print(" %dk page", os::vm_page_size()>>10);
  2320   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2321   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2322   st->cr();
  2323   (void) check_addr0(st);
  2326 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2327 // but they're the same for all the solaris architectures that we support.
  2328 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2329                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2330                           "ILL_COPROC", "ILL_BADSTK" };
  2332 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2333                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2334                           "FPE_FLTINV", "FPE_FLTSUB" };
  2336 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2338 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2340 void os::print_siginfo(outputStream* st, void* siginfo) {
  2341   st->print("siginfo:");
  2343   const int buflen = 100;
  2344   char buf[buflen];
  2345   siginfo_t *si = (siginfo_t*)siginfo;
  2346   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2347   char *err = strerror(si->si_errno);
  2348   if (si->si_errno != 0 && err != NULL) {
  2349     st->print("si_errno=%s", err);
  2350   } else {
  2351     st->print("si_errno=%d", si->si_errno);
  2353   const int c = si->si_code;
  2354   assert(c > 0, "unexpected si_code");
  2355   switch (si->si_signo) {
  2356   case SIGILL:
  2357     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2358     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2359     break;
  2360   case SIGFPE:
  2361     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2362     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2363     break;
  2364   case SIGSEGV:
  2365     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2366     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2367     break;
  2368   case SIGBUS:
  2369     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2370     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2371     break;
  2372   default:
  2373     st->print(", si_code=%d", si->si_code);
  2374     // no si_addr
  2377   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2378       UseSharedSpaces) {
  2379     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2380     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2381       st->print("\n\nError accessing class data sharing archive."   \
  2382                 " Mapped file inaccessible during execution, "      \
  2383                 " possible disk/network problem.");
  2386   st->cr();
  2389 // Moved from whole group, because we need them here for diagnostic
  2390 // prints.
  2391 #define OLDMAXSIGNUM 32
  2392 static int Maxsignum = 0;
  2393 static int *ourSigFlags = NULL;
  2395 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2397 int os::Solaris::get_our_sigflags(int sig) {
  2398   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2399   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2400   return ourSigFlags[sig];
  2403 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2404   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2405   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2406   ourSigFlags[sig] = flags;
  2410 static const char* get_signal_handler_name(address handler,
  2411                                            char* buf, int buflen) {
  2412   int offset;
  2413   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2414   if (found) {
  2415     // skip directory names
  2416     const char *p1, *p2;
  2417     p1 = buf;
  2418     size_t len = strlen(os::file_separator());
  2419     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2420     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2421   } else {
  2422     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2424   return buf;
  2427 static void print_signal_handler(outputStream* st, int sig,
  2428                                   char* buf, size_t buflen) {
  2429   struct sigaction sa;
  2431   sigaction(sig, NULL, &sa);
  2433   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2435   address handler = (sa.sa_flags & SA_SIGINFO)
  2436                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2437                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2439   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2440     st->print("SIG_DFL");
  2441   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2442     st->print("SIG_IGN");
  2443   } else {
  2444     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2447   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2449   address rh = VMError::get_resetted_sighandler(sig);
  2450   // May be, handler was resetted by VMError?
  2451   if(rh != NULL) {
  2452     handler = rh;
  2453     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2456   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2458   // Check: is it our handler?
  2459   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2460      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2461     // It is our signal handler
  2462     // check for flags
  2463     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2464       st->print(
  2465         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2466         os::Solaris::get_our_sigflags(sig));
  2469   st->cr();
  2472 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2473   st->print_cr("Signal Handlers:");
  2474   print_signal_handler(st, SIGSEGV, buf, buflen);
  2475   print_signal_handler(st, SIGBUS , buf, buflen);
  2476   print_signal_handler(st, SIGFPE , buf, buflen);
  2477   print_signal_handler(st, SIGPIPE, buf, buflen);
  2478   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2479   print_signal_handler(st, SIGILL , buf, buflen);
  2480   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2481   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2482   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2483   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2484   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2485   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2486   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2487   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2490 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2492 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2493 void os::jvm_path(char *buf, jint buflen) {
  2494   // Error checking.
  2495   if (buflen < MAXPATHLEN) {
  2496     assert(false, "must use a large-enough buffer");
  2497     buf[0] = '\0';
  2498     return;
  2500   // Lazy resolve the path to current module.
  2501   if (saved_jvm_path[0] != 0) {
  2502     strcpy(buf, saved_jvm_path);
  2503     return;
  2506   Dl_info dlinfo;
  2507   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2508   assert(ret != 0, "cannot locate libjvm");
  2509   realpath((char *)dlinfo.dli_fname, buf);
  2511   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2512     // Support for the gamma launcher.  Typical value for buf is
  2513     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2514     // the right place in the string, then assume we are installed in a JDK and
  2515     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2516     // up the path so it looks like libjvm.so is installed there (append a
  2517     // fake suffix hotspot/libjvm.so).
  2518     const char *p = buf + strlen(buf) - 1;
  2519     for (int count = 0; p > buf && count < 5; ++count) {
  2520       for (--p; p > buf && *p != '/'; --p)
  2521         /* empty */ ;
  2524     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2525       // Look for JAVA_HOME in the environment.
  2526       char* java_home_var = ::getenv("JAVA_HOME");
  2527       if (java_home_var != NULL && java_home_var[0] != 0) {
  2528         char cpu_arch[12];
  2529         char* jrelib_p;
  2530         int   len;
  2531         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2532 #ifdef _LP64
  2533         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2534         if (strcmp(cpu_arch, "sparc") == 0) {
  2535           strcat(cpu_arch, "v9");
  2536         } else if (strcmp(cpu_arch, "i386") == 0) {
  2537           strcpy(cpu_arch, "amd64");
  2539 #endif
  2540         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2541         p = strrchr(buf, '/');
  2542         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2543         p = strstr(p, "_g") ? "_g" : "";
  2545         realpath(java_home_var, buf);
  2546         // determine if this is a legacy image or modules image
  2547         // modules image doesn't have "jre" subdirectory
  2548         len = strlen(buf);
  2549         jrelib_p = buf + len;
  2550         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2551         if (0 != access(buf, F_OK)) {
  2552           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2555         if (0 == access(buf, F_OK)) {
  2556           // Use current module name "libjvm[_g].so" instead of
  2557           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2558           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2559           len = strlen(buf);
  2560           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2561         } else {
  2562           // Go back to path of .so
  2563           realpath((char *)dlinfo.dli_fname, buf);
  2569   strcpy(saved_jvm_path, buf);
  2573 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2574   // no prefix required, not even "_"
  2578 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2579   // no suffix required
  2582 // This method is a copy of JDK's sysGetLastErrorString
  2583 // from src/solaris/hpi/src/system_md.c
  2585 size_t os::lasterror(char *buf, size_t len) {
  2587   if (errno == 0)  return 0;
  2589   const char *s = ::strerror(errno);
  2590   size_t n = ::strlen(s);
  2591   if (n >= len) {
  2592     n = len - 1;
  2594   ::strncpy(buf, s, n);
  2595   buf[n] = '\0';
  2596   return n;
  2600 // sun.misc.Signal
  2602 extern "C" {
  2603   static void UserHandler(int sig, void *siginfo, void *context) {
  2604     // Ctrl-C is pressed during error reporting, likely because the error
  2605     // handler fails to abort. Let VM die immediately.
  2606     if (sig == SIGINT && is_error_reported()) {
  2607        os::die();
  2610     os::signal_notify(sig);
  2611     // We do not need to reinstate the signal handler each time...
  2615 void* os::user_handler() {
  2616   return CAST_FROM_FN_PTR(void*, UserHandler);
  2619 extern "C" {
  2620   typedef void (*sa_handler_t)(int);
  2621   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2624 void* os::signal(int signal_number, void* handler) {
  2625   struct sigaction sigAct, oldSigAct;
  2626   sigfillset(&(sigAct.sa_mask));
  2627   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2628   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2630   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2631     // -1 means registration failed
  2632     return (void *)-1;
  2634   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2637 void os::signal_raise(int signal_number) {
  2638   raise(signal_number);
  2641 /*
  2642  * The following code is moved from os.cpp for making this
  2643  * code platform specific, which it is by its very nature.
  2644  */
  2646 // a counter for each possible signal value
  2647 static int Sigexit = 0;
  2648 static int Maxlibjsigsigs;
  2649 static jint *pending_signals = NULL;
  2650 static int *preinstalled_sigs = NULL;
  2651 static struct sigaction *chainedsigactions = NULL;
  2652 static sema_t sig_sem;
  2653 typedef int (*version_getting_t)();
  2654 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2655 static int libjsigversion = NULL;
  2657 int os::sigexitnum_pd() {
  2658   assert(Sigexit > 0, "signal memory not yet initialized");
  2659   return Sigexit;
  2662 void os::Solaris::init_signal_mem() {
  2663   // Initialize signal structures
  2664   Maxsignum = SIGRTMAX;
  2665   Sigexit = Maxsignum+1;
  2666   assert(Maxsignum >0, "Unable to obtain max signal number");
  2668   Maxlibjsigsigs = Maxsignum;
  2670   // pending_signals has one int per signal
  2671   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2672   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
  2673   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2675   if (UseSignalChaining) {
  2676      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2677        * (Maxsignum + 1));
  2678      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2679      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
  2680      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2682   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
  2683   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2686 void os::signal_init_pd() {
  2687   int ret;
  2689   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2690   assert(ret == 0, "sema_init() failed");
  2693 void os::signal_notify(int signal_number) {
  2694   int ret;
  2696   Atomic::inc(&pending_signals[signal_number]);
  2697   ret = ::sema_post(&sig_sem);
  2698   assert(ret == 0, "sema_post() failed");
  2701 static int check_pending_signals(bool wait_for_signal) {
  2702   int ret;
  2703   while (true) {
  2704     for (int i = 0; i < Sigexit + 1; i++) {
  2705       jint n = pending_signals[i];
  2706       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2707         return i;
  2710     if (!wait_for_signal) {
  2711       return -1;
  2713     JavaThread *thread = JavaThread::current();
  2714     ThreadBlockInVM tbivm(thread);
  2716     bool threadIsSuspended;
  2717     do {
  2718       thread->set_suspend_equivalent();
  2719       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2720       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2722       assert(ret == 0, "sema_wait() failed");
  2724       // were we externally suspended while we were waiting?
  2725       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2726       if (threadIsSuspended) {
  2727         //
  2728         // The semaphore has been incremented, but while we were waiting
  2729         // another thread suspended us. We don't want to continue running
  2730         // while suspended because that would surprise the thread that
  2731         // suspended us.
  2732         //
  2733         ret = ::sema_post(&sig_sem);
  2734         assert(ret == 0, "sema_post() failed");
  2736         thread->java_suspend_self();
  2738     } while (threadIsSuspended);
  2742 int os::signal_lookup() {
  2743   return check_pending_signals(false);
  2746 int os::signal_wait() {
  2747   return check_pending_signals(true);
  2750 ////////////////////////////////////////////////////////////////////////////////
  2751 // Virtual Memory
  2753 static int page_size = -1;
  2755 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2756 // clear this var if support is not available.
  2757 static bool has_map_align = true;
  2759 int os::vm_page_size() {
  2760   assert(page_size != -1, "must call os::init");
  2761   return page_size;
  2764 // Solaris allocates memory by pages.
  2765 int os::vm_allocation_granularity() {
  2766   assert(page_size != -1, "must call os::init");
  2767   return page_size;
  2770 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2771   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2772   size_t size = bytes;
  2773   return
  2774      NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2777 bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2778                        bool exec) {
  2779   if (commit_memory(addr, bytes, exec)) {
  2780     if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
  2781       // If the large page size has been set and the VM
  2782       // is using large pages, use the large page size
  2783       // if it is smaller than the alignment hint. This is
  2784       // a case where the VM wants to use a larger alignment size
  2785       // for its own reasons but still want to use large pages
  2786       // (which is what matters to setting the mpss range.
  2787       size_t page_size = 0;
  2788       if (large_page_size() < alignment_hint) {
  2789         assert(UseLargePages, "Expected to be here for large page use only");
  2790         page_size = large_page_size();
  2791       } else {
  2792         // If the alignment hint is less than the large page
  2793         // size, the VM wants a particular alignment (thus the hint)
  2794         // for internal reasons.  Try to set the mpss range using
  2795         // the alignment_hint.
  2796         page_size = alignment_hint;
  2798       // Since this is a hint, ignore any failures.
  2799       (void)Solaris::set_mpss_range(addr, bytes, page_size);
  2801     return true;
  2803   return false;
  2806 // Uncommit the pages in a specified region.
  2807 void os::free_memory(char* addr, size_t bytes) {
  2808   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2809     debug_only(warning("MADV_FREE failed."));
  2810     return;
  2814 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2815   return os::commit_memory(addr, size);
  2818 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2819   return os::uncommit_memory(addr, size);
  2822 // Change the page size in a given range.
  2823 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2824   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2825   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2826   Solaris::set_mpss_range(addr, bytes, alignment_hint);
  2829 // Tell the OS to make the range local to the first-touching LWP
  2830 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2831   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2832   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2833     debug_only(warning("MADV_ACCESS_LWP failed."));
  2837 // Tell the OS that this range would be accessed from different LWPs.
  2838 void os::numa_make_global(char *addr, size_t bytes) {
  2839   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2840   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2841     debug_only(warning("MADV_ACCESS_MANY failed."));
  2845 // Get the number of the locality groups.
  2846 size_t os::numa_get_groups_num() {
  2847   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2848   return n != -1 ? n : 1;
  2851 // Get a list of leaf locality groups. A leaf lgroup is group that
  2852 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2853 // board. An LWP is assigned to one of these groups upon creation.
  2854 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2855    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2856      ids[0] = 0;
  2857      return 1;
  2859    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2860    for (int k = 0; k < size; k++) {
  2861      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2862                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2863      if (r == -1) {
  2864        ids[0] = 0;
  2865        return 1;
  2867      if (!r) {
  2868        // That's a leaf node.
  2869        assert (bottom <= cur, "Sanity check");
  2870        // Check if the node has memory
  2871        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2872                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2873          ids[bottom++] = ids[cur];
  2876      top += r;
  2877      cur++;
  2879    if (bottom == 0) {
  2880      // Handle a situation, when the OS reports no memory available.
  2881      // Assume UMA architecture.
  2882      ids[0] = 0;
  2883      return 1;
  2885    return bottom;
  2888 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2889 bool os::numa_topology_changed() {
  2890   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2891   if (is_stale != -1 && is_stale) {
  2892     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2893     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2894     assert(c != 0, "Failure to initialize LGRP API");
  2895     Solaris::set_lgrp_cookie(c);
  2896     return true;
  2898   return false;
  2901 // Get the group id of the current LWP.
  2902 int os::numa_get_group_id() {
  2903   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2904   if (lgrp_id == -1) {
  2905     return 0;
  2907   const int size = os::numa_get_groups_num();
  2908   int *ids = (int*)alloca(size * sizeof(int));
  2910   // Get the ids of all lgroups with memory; r is the count.
  2911   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2912                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2913   if (r <= 0) {
  2914     return 0;
  2916   return ids[os::random() % r];
  2919 // Request information about the page.
  2920 bool os::get_page_info(char *start, page_info* info) {
  2921   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2922   uint64_t addr = (uintptr_t)start;
  2923   uint64_t outdata[2];
  2924   uint_t validity = 0;
  2926   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2927     return false;
  2930   info->size = 0;
  2931   info->lgrp_id = -1;
  2933   if ((validity & 1) != 0) {
  2934     if ((validity & 2) != 0) {
  2935       info->lgrp_id = outdata[0];
  2937     if ((validity & 4) != 0) {
  2938       info->size = outdata[1];
  2940     return true;
  2942   return false;
  2945 // Scan the pages from start to end until a page different than
  2946 // the one described in the info parameter is encountered.
  2947 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2948   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2949   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2950   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2951   uint_t validity[MAX_MEMINFO_CNT];
  2953   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2954   uint64_t p = (uint64_t)start;
  2955   while (p < (uint64_t)end) {
  2956     addrs[0] = p;
  2957     size_t addrs_count = 1;
  2958     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
  2959       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2960       addrs_count++;
  2963     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2964       return NULL;
  2967     size_t i = 0;
  2968     for (; i < addrs_count; i++) {
  2969       if ((validity[i] & 1) != 0) {
  2970         if ((validity[i] & 4) != 0) {
  2971           if (outdata[types * i + 1] != page_expected->size) {
  2972             break;
  2974         } else
  2975           if (page_expected->size != 0) {
  2976             break;
  2979         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  2980           if (outdata[types * i] != page_expected->lgrp_id) {
  2981             break;
  2984       } else {
  2985         return NULL;
  2989     if (i != addrs_count) {
  2990       if ((validity[i] & 2) != 0) {
  2991         page_found->lgrp_id = outdata[types * i];
  2992       } else {
  2993         page_found->lgrp_id = -1;
  2995       if ((validity[i] & 4) != 0) {
  2996         page_found->size = outdata[types * i + 1];
  2997       } else {
  2998         page_found->size = 0;
  3000       return (char*)addrs[i];
  3003     p = addrs[addrs_count - 1] + page_size;
  3005   return end;
  3008 bool os::uncommit_memory(char* addr, size_t bytes) {
  3009   size_t size = bytes;
  3010   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3011   // uncommitted page. Otherwise, the read/write might succeed if we
  3012   // have enough swap space to back the physical page.
  3013   return
  3014     NULL != Solaris::mmap_chunk(addr, size,
  3015                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3016                                 PROT_NONE);
  3019 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3020   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3022   if (b == MAP_FAILED) {
  3023     return NULL;
  3025   return b;
  3028 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3029   char* addr = requested_addr;
  3030   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3032   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3034   if (fixed) {
  3035     flags |= MAP_FIXED;
  3036   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3037     flags |= MAP_ALIGN;
  3038     addr = (char*) alignment_hint;
  3041   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3042   // uncommitted page. Otherwise, the read/write might succeed if we
  3043   // have enough swap space to back the physical page.
  3044   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3047 char* os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3048   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3050   guarantee(requested_addr == NULL || requested_addr == addr,
  3051             "OS failed to return requested mmap address.");
  3052   return addr;
  3055 // Reserve memory at an arbitrary address, only if that area is
  3056 // available (and not reserved for something else).
  3058 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3059   const int max_tries = 10;
  3060   char* base[max_tries];
  3061   size_t size[max_tries];
  3063   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3064   // is dependent on the requested size and the MMU.  Our initial gap
  3065   // value here is just a guess and will be corrected later.
  3066   bool had_top_overlap = false;
  3067   bool have_adjusted_gap = false;
  3068   size_t gap = 0x400000;
  3070   // Assert only that the size is a multiple of the page size, since
  3071   // that's all that mmap requires, and since that's all we really know
  3072   // about at this low abstraction level.  If we need higher alignment,
  3073   // we can either pass an alignment to this method or verify alignment
  3074   // in one of the methods further up the call chain.  See bug 5044738.
  3075   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3077   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3078   // Give it a try, if the kernel honors the hint we can return immediately.
  3079   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3080   volatile int err = errno;
  3081   if (addr == requested_addr) {
  3082     return addr;
  3083   } else if (addr != NULL) {
  3084     unmap_memory(addr, bytes);
  3087   if (PrintMiscellaneous && Verbose) {
  3088     char buf[256];
  3089     buf[0] = '\0';
  3090     if (addr == NULL) {
  3091       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3093     warning("attempt_reserve_memory_at: couldn't reserve %d bytes at "
  3094             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3095             "%s", bytes, requested_addr, addr, buf);
  3098   // Address hint method didn't work.  Fall back to the old method.
  3099   // In theory, once SNV becomes our oldest supported platform, this
  3100   // code will no longer be needed.
  3101   //
  3102   // Repeatedly allocate blocks until the block is allocated at the
  3103   // right spot. Give up after max_tries.
  3104   int i;
  3105   for (i = 0; i < max_tries; ++i) {
  3106     base[i] = reserve_memory(bytes);
  3108     if (base[i] != NULL) {
  3109       // Is this the block we wanted?
  3110       if (base[i] == requested_addr) {
  3111         size[i] = bytes;
  3112         break;
  3115       // check that the gap value is right
  3116       if (had_top_overlap && !have_adjusted_gap) {
  3117         size_t actual_gap = base[i-1] - base[i] - bytes;
  3118         if (gap != actual_gap) {
  3119           // adjust the gap value and retry the last 2 allocations
  3120           assert(i > 0, "gap adjustment code problem");
  3121           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3122           gap = actual_gap;
  3123           if (PrintMiscellaneous && Verbose) {
  3124             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3126           unmap_memory(base[i], bytes);
  3127           unmap_memory(base[i-1], size[i-1]);
  3128           i-=2;
  3129           continue;
  3133       // Does this overlap the block we wanted? Give back the overlapped
  3134       // parts and try again.
  3135       //
  3136       // There is still a bug in this code: if top_overlap == bytes,
  3137       // the overlap is offset from requested region by the value of gap.
  3138       // In this case giving back the overlapped part will not work,
  3139       // because we'll give back the entire block at base[i] and
  3140       // therefore the subsequent allocation will not generate a new gap.
  3141       // This could be fixed with a new algorithm that used larger
  3142       // or variable size chunks to find the requested region -
  3143       // but such a change would introduce additional complications.
  3144       // It's rare enough that the planets align for this bug,
  3145       // so we'll just wait for a fix for 6204603/5003415 which
  3146       // will provide a mmap flag to allow us to avoid this business.
  3148       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3149       if (top_overlap >= 0 && top_overlap < bytes) {
  3150         had_top_overlap = true;
  3151         unmap_memory(base[i], top_overlap);
  3152         base[i] += top_overlap;
  3153         size[i] = bytes - top_overlap;
  3154       } else {
  3155         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3156         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3157           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3158             warning("attempt_reserve_memory_at: possible alignment bug");
  3160           unmap_memory(requested_addr, bottom_overlap);
  3161           size[i] = bytes - bottom_overlap;
  3162         } else {
  3163           size[i] = bytes;
  3169   // Give back the unused reserved pieces.
  3171   for (int j = 0; j < i; ++j) {
  3172     if (base[j] != NULL) {
  3173       unmap_memory(base[j], size[j]);
  3177   return (i < max_tries) ? requested_addr : NULL;
  3180 bool os::release_memory(char* addr, size_t bytes) {
  3181   size_t size = bytes;
  3182   return munmap(addr, size) == 0;
  3185 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3186   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3187          "addr must be page aligned");
  3188   int retVal = mprotect(addr, bytes, prot);
  3189   return retVal == 0;
  3192 // Protect memory (Used to pass readonly pages through
  3193 // JNI GetArray<type>Elements with empty arrays.)
  3194 // Also, used for serialization page and for compressed oops null pointer
  3195 // checking.
  3196 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3197                         bool is_committed) {
  3198   unsigned int p = 0;
  3199   switch (prot) {
  3200   case MEM_PROT_NONE: p = PROT_NONE; break;
  3201   case MEM_PROT_READ: p = PROT_READ; break;
  3202   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3203   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3204   default:
  3205     ShouldNotReachHere();
  3207   // is_committed is unused.
  3208   return solaris_mprotect(addr, bytes, p);
  3211 // guard_memory and unguard_memory only happens within stack guard pages.
  3212 // Since ISM pertains only to the heap, guard and unguard memory should not
  3213 /// happen with an ISM region.
  3214 bool os::guard_memory(char* addr, size_t bytes) {
  3215   return solaris_mprotect(addr, bytes, PROT_NONE);
  3218 bool os::unguard_memory(char* addr, size_t bytes) {
  3219   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3222 // Large page support
  3224 // UseLargePages is the master flag to enable/disable large page memory.
  3225 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
  3226 // effects can be described in the following table:
  3227 //
  3228 // UseLargePages UseMPSS UseISM
  3229 //    false         *       *   => UseLargePages is the master switch, turning
  3230 //                                 it off will turn off both UseMPSS and
  3231 //                                 UseISM. VM will not use large page memory
  3232 //                                 regardless the settings of UseMPSS/UseISM.
  3233 //     true      false    false => Unless future Solaris provides other
  3234 //                                 mechanism to use large page memory, this
  3235 //                                 combination is equivalent to -UseLargePages,
  3236 //                                 VM will not use large page memory
  3237 //     true      true     false => JVM will use MPSS for large page memory.
  3238 //                                 This is the default behavior.
  3239 //     true      false    true  => JVM will use ISM for large page memory.
  3240 //     true      true     true  => JVM will use ISM if it is available.
  3241 //                                 Otherwise, JVM will fall back to MPSS.
  3242 //                                 Becaues ISM is now available on all
  3243 //                                 supported Solaris versions, this combination
  3244 //                                 is equivalent to +UseISM -UseMPSS.
  3246 typedef int (*getpagesizes_func_type) (size_t[], int);
  3247 static size_t _large_page_size = 0;
  3249 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
  3250   // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
  3251   // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
  3252   // can support multiple page sizes.
  3254   // Don't bother to probe page size because getpagesizes() comes with MPSS.
  3255   // ISM is only recommended on old Solaris where there is no MPSS support.
  3256   // Simply choose a conservative value as default.
  3257   *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
  3258                SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
  3259                ARM_ONLY(2 * M);
  3261   // ISM is available on all supported Solaris versions
  3262   return true;
  3265 // Insertion sort for small arrays (descending order).
  3266 static void insertion_sort_descending(size_t* array, int len) {
  3267   for (int i = 0; i < len; i++) {
  3268     size_t val = array[i];
  3269     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3270       size_t tmp = array[key];
  3271       array[key] = array[key - 1];
  3272       array[key - 1] = tmp;
  3277 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
  3278   getpagesizes_func_type getpagesizes_func =
  3279     CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3280   if (getpagesizes_func == NULL) {
  3281     if (warn) {
  3282       warning("MPSS is not supported by the operating system.");
  3284     return false;
  3287   const unsigned int usable_count = VM_Version::page_size_count();
  3288   if (usable_count == 1) {
  3289     return false;
  3292   // Fill the array of page sizes.
  3293   int n = getpagesizes_func(_page_sizes, page_sizes_max);
  3294   assert(n > 0, "Solaris bug?");
  3295   if (n == page_sizes_max) {
  3296     // Add a sentinel value (necessary only if the array was completely filled
  3297     // since it is static (zeroed at initialization)).
  3298     _page_sizes[--n] = 0;
  3299     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3301   assert(_page_sizes[n] == 0, "missing sentinel");
  3303   if (n == 1) return false;     // Only one page size available.
  3305   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3306   // select up to usable_count elements.  First sort the array, find the first
  3307   // acceptable value, then copy the usable sizes to the top of the array and
  3308   // trim the rest.  Make sure to include the default page size :-).
  3309   //
  3310   // A better policy could get rid of the 4M limit by taking the sizes of the
  3311   // important VM memory regions (java heap and possibly the code cache) into
  3312   // account.
  3313   insertion_sort_descending(_page_sizes, n);
  3314   const size_t size_limit =
  3315     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3316   int beg;
  3317   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3318   const int end = MIN2((int)usable_count, n) - 1;
  3319   for (int cur = 0; cur < end; ++cur, ++beg) {
  3320     _page_sizes[cur] = _page_sizes[beg];
  3322   _page_sizes[end] = vm_page_size();
  3323   _page_sizes[end + 1] = 0;
  3325   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3326     // Default page size is not the smallest; sort again.
  3327     insertion_sort_descending(_page_sizes, end + 1);
  3329   *page_size = _page_sizes[0];
  3331   return true;
  3334 bool os::large_page_init() {
  3335   if (!UseLargePages) {
  3336     UseISM = false;
  3337     UseMPSS = false;
  3338     return false;
  3341   // print a warning if any large page related flag is specified on command line
  3342   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3343                          !FLAG_IS_DEFAULT(UseISM)               ||
  3344                          !FLAG_IS_DEFAULT(UseMPSS)              ||
  3345                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3346   UseISM = UseISM &&
  3347            Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
  3348   if (UseISM) {
  3349     // ISM disables MPSS to be compatible with old JDK behavior
  3350     UseMPSS = false;
  3351     _page_sizes[0] = _large_page_size;
  3352     _page_sizes[1] = vm_page_size();
  3355   UseMPSS = UseMPSS &&
  3356             Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3358   UseLargePages = UseISM || UseMPSS;
  3359   return UseLargePages;
  3362 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
  3363   // Signal to OS that we want large pages for addresses
  3364   // from addr, addr + bytes
  3365   struct memcntl_mha mpss_struct;
  3366   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3367   mpss_struct.mha_pagesize = align;
  3368   mpss_struct.mha_flags = 0;
  3369   if (memcntl(start, bytes, MC_HAT_ADVISE,
  3370               (caddr_t) &mpss_struct, 0, 0) < 0) {
  3371     debug_only(warning("Attempt to use MPSS failed."));
  3372     return false;
  3374   return true;
  3377 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  3378   // "exec" is passed in but not used.  Creating the shared image for
  3379   // the code cache doesn't have an SHM_X executable permission to check.
  3380   assert(UseLargePages && UseISM, "only for ISM large pages");
  3382   size_t size = bytes;
  3383   char* retAddr = NULL;
  3384   int shmid;
  3385   key_t ismKey;
  3387   bool warn_on_failure = UseISM &&
  3388                         (!FLAG_IS_DEFAULT(UseLargePages)         ||
  3389                          !FLAG_IS_DEFAULT(UseISM)                ||
  3390                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3391                         );
  3392   char msg[128];
  3394   ismKey = IPC_PRIVATE;
  3396   // Create a large shared memory region to attach to based on size.
  3397   // Currently, size is the total size of the heap
  3398   shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
  3399   if (shmid == -1){
  3400      if (warn_on_failure) {
  3401        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3402        warning(msg);
  3404      return NULL;
  3407   // Attach to the region
  3408   retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
  3409   int err = errno;
  3411   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3412   // will be deleted when it's detached by shmdt() or when the process
  3413   // terminates. If shmat() is not successful this will remove the shared
  3414   // segment immediately.
  3415   shmctl(shmid, IPC_RMID, NULL);
  3417   if (retAddr == (char *) -1) {
  3418     if (warn_on_failure) {
  3419       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3420       warning(msg);
  3422     return NULL;
  3425   return retAddr;
  3428 bool os::release_memory_special(char* base, size_t bytes) {
  3429   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3430   int rslt = shmdt(base);
  3431   return rslt == 0;
  3434 size_t os::large_page_size() {
  3435   return _large_page_size;
  3438 // MPSS allows application to commit large page memory on demand; with ISM
  3439 // the entire memory region must be allocated as shared memory.
  3440 bool os::can_commit_large_page_memory() {
  3441   return UseISM ? false : true;
  3444 bool os::can_execute_large_page_memory() {
  3445   return UseISM ? false : true;
  3448 static int os_sleep(jlong millis, bool interruptible) {
  3449   const jlong limit = INT_MAX;
  3450   jlong prevtime;
  3451   int res;
  3453   while (millis > limit) {
  3454     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3455       return res;
  3456     millis -= limit;
  3459   // Restart interrupted polls with new parameters until the proper delay
  3460   // has been completed.
  3462   prevtime = getTimeMillis();
  3464   while (millis > 0) {
  3465     jlong newtime;
  3467     if (!interruptible) {
  3468       // Following assert fails for os::yield_all:
  3469       // assert(!thread->is_Java_thread(), "must not be java thread");
  3470       res = poll(NULL, 0, millis);
  3471     } else {
  3472       JavaThread *jt = JavaThread::current();
  3474       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3475         os::Solaris::clear_interrupted);
  3478     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3479     // thread.Interrupt.
  3481     // See c/r 6751923. Poll can return 0 before time
  3482     // has elapsed if time is set via clock_settime (as NTP does).
  3483     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3484     // using the logic below checks that we really did
  3485     // sleep at least "millis" if not we'll sleep again.
  3486     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3487       newtime = getTimeMillis();
  3488       assert(newtime >= prevtime, "time moving backwards");
  3489     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3490        and trying to round up to avoid lost milliseconds can result in a
  3491        too-short delay. */
  3492       millis -= newtime - prevtime;
  3493       if(millis <= 0)
  3494         return OS_OK;
  3495       prevtime = newtime;
  3496     } else
  3497       return res;
  3500   return OS_OK;
  3503 // Read calls from inside the vm need to perform state transitions
  3504 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3505   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3508 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3509   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3512 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3513   assert(thread == Thread::current(),  "thread consistency check");
  3515   // TODO-FIXME: this should be removed.
  3516   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3517   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3518   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3519   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3520   // is fooled into believing that the system is making progress. In the code below we block the
  3521   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3522   // system is making progress.
  3523   if (!Solaris::T2_libthread() &&
  3524       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3525     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3526     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3527     Threads_lock->lock_without_safepoint_check();
  3528     Threads_lock->unlock();
  3531   if (thread->is_Java_thread()) {
  3532     // This is a JavaThread so we honor the _thread_blocked protocol
  3533     // even for sleeps of 0 milliseconds. This was originally done
  3534     // as a workaround for bug 4338139. However, now we also do it
  3535     // to honor the suspend-equivalent protocol.
  3537     JavaThread *jt = (JavaThread *) thread;
  3538     ThreadBlockInVM tbivm(jt);
  3540     jt->set_suspend_equivalent();
  3541     // cleared by handle_special_suspend_equivalent_condition() or
  3542     // java_suspend_self() via check_and_wait_while_suspended()
  3544     int ret_code;
  3545     if (millis <= 0) {
  3546       thr_yield();
  3547       ret_code = 0;
  3548     } else {
  3549       // The original sleep() implementation did not create an
  3550       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3551       // I'm preserving that decision for now.
  3552       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3554       ret_code = os_sleep(millis, interruptible);
  3557     // were we externally suspended while we were waiting?
  3558     jt->check_and_wait_while_suspended();
  3560     return ret_code;
  3563   // non-JavaThread from this point on:
  3565   if (millis <= 0) {
  3566     thr_yield();
  3567     return 0;
  3570   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3572   return os_sleep(millis, interruptible);
  3575 int os::naked_sleep() {
  3576   // %% make the sleep time an integer flag. for now use 1 millisec.
  3577   return os_sleep(1, false);
  3580 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3581 void os::infinite_sleep() {
  3582   while (true) {    // sleep forever ...
  3583     ::sleep(100);   // ... 100 seconds at a time
  3587 // Used to convert frequent JVM_Yield() to nops
  3588 bool os::dont_yield() {
  3589   if (DontYieldALot) {
  3590     static hrtime_t last_time = 0;
  3591     hrtime_t diff = getTimeNanos() - last_time;
  3593     if (diff < DontYieldALotInterval * 1000000)
  3594       return true;
  3596     last_time += diff;
  3598     return false;
  3600   else {
  3601     return false;
  3605 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3606 // the linux and win32 implementations do not.  This should be checked.
  3608 void os::yield() {
  3609   // Yields to all threads with same or greater priority
  3610   os::sleep(Thread::current(), 0, false);
  3613 // Note that yield semantics are defined by the scheduling class to which
  3614 // the thread currently belongs.  Typically, yield will _not yield to
  3615 // other equal or higher priority threads that reside on the dispatch queues
  3616 // of other CPUs.
  3618 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3621 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3622 // There have been cases where there is a thread ready to execute but it doesn't
  3623 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3624 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3625 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3626 // number of times yield_all is called in the one loop and increase the sleep
  3627 // time after 8 attempts. If this fails too we increase the concurrency level
  3628 // so that the starving thread would get an lwp
  3630 void os::yield_all(int attempts) {
  3631   // Yields to all threads, including threads with lower priorities
  3632   if (attempts == 0) {
  3633     os::sleep(Thread::current(), 1, false);
  3634   } else {
  3635     int iterations = attempts % 30;
  3636     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3637       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3638       int noofLWPS = thr_getconcurrency();
  3639       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3640         thr_setconcurrency(thr_getconcurrency() + 1);
  3642     } else if (iterations < 25) {
  3643       os::sleep(Thread::current(), 1, false);
  3644     } else {
  3645       os::sleep(Thread::current(), 10, false);
  3650 // Called from the tight loops to possibly influence time-sharing heuristics
  3651 void os::loop_breaker(int attempts) {
  3652   os::yield_all(attempts);
  3656 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3657 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3658 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3659 // function is meaningless in this mode so we must adjust the real lwp's priority
  3660 // The routines below implement the getting and setting of lwp priorities.
  3661 //
  3662 // Note: There are three priority scales used on Solaris.  Java priotities
  3663 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3664 //       from 0 to 127, and the current scheduling class of the process we
  3665 //       are running in.  This is typically from -60 to +60.
  3666 //       The setting of the lwp priorities in done after a call to thr_setprio
  3667 //       so Java priorities are mapped to libthread priorities and we map from
  3668 //       the latter to lwp priorities.  We don't keep priorities stored in
  3669 //       Java priorities since some of our worker threads want to set priorities
  3670 //       higher than all Java threads.
  3671 //
  3672 // For related information:
  3673 // (1)  man -s 2 priocntl
  3674 // (2)  man -s 4 priocntl
  3675 // (3)  man dispadmin
  3676 // =    librt.so
  3677 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3678 // =    ps -cL <pid> ... to validate priority.
  3679 // =    sched_get_priority_min and _max
  3680 //              pthread_create
  3681 //              sched_setparam
  3682 //              pthread_setschedparam
  3683 //
  3684 // Assumptions:
  3685 // +    We assume that all threads in the process belong to the same
  3686 //              scheduling class.   IE. an homogenous process.
  3687 // +    Must be root or in IA group to change change "interactive" attribute.
  3688 //              Priocntl() will fail silently.  The only indication of failure is when
  3689 //              we read-back the value and notice that it hasn't changed.
  3690 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3691 // +    For RT, change timeslice as well.  Invariant:
  3692 //              constant "priority integral"
  3693 //              Konst == TimeSlice * (60-Priority)
  3694 //              Given a priority, compute appropriate timeslice.
  3695 // +    Higher numerical values have higher priority.
  3697 // sched class attributes
  3698 typedef struct {
  3699         int   schedPolicy;              // classID
  3700         int   maxPrio;
  3701         int   minPrio;
  3702 } SchedInfo;
  3705 static SchedInfo tsLimits, iaLimits, rtLimits;
  3707 #ifdef ASSERT
  3708 static int  ReadBackValidate = 1;
  3709 #endif
  3710 static int  myClass     = 0;
  3711 static int  myMin       = 0;
  3712 static int  myMax       = 0;
  3713 static int  myCur       = 0;
  3714 static bool priocntl_enable = false;
  3717 // Call the version of priocntl suitable for all supported versions
  3718 // of Solaris. We need to call through this wrapper so that we can
  3719 // build on Solaris 9 and run on Solaris 8, 9 and 10.
  3720 //
  3721 // This code should be removed if we ever stop supporting Solaris 8
  3722 // and earlier releases.
  3724 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3725 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3726 static priocntl_type priocntl_ptr = priocntl_stub;
  3728 // Stub to set the value of the real pointer, and then call the real
  3729 // function.
  3731 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
  3732   // Try Solaris 8- name only.
  3733   priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
  3734   guarantee(tmp != NULL, "priocntl function not found.");
  3735   priocntl_ptr = tmp;
  3736   return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
  3740 // lwp_priocntl_init
  3741 //
  3742 // Try to determine the priority scale for our process.
  3743 //
  3744 // Return errno or 0 if OK.
  3745 //
  3746 static
  3747 int     lwp_priocntl_init ()
  3749   int rslt;
  3750   pcinfo_t ClassInfo;
  3751   pcparms_t ParmInfo;
  3752   int i;
  3754   if (!UseThreadPriorities) return 0;
  3756   // We are using Bound threads, we need to determine our priority ranges
  3757   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3758     // If ThreadPriorityPolicy is 1, switch tables
  3759     if (ThreadPriorityPolicy == 1) {
  3760       for (i = 0 ; i < MaxPriority+1; i++)
  3761         os::java_to_os_priority[i] = prio_policy1[i];
  3764   // Not using Bound Threads, set to ThreadPolicy 1
  3765   else {
  3766     for ( i = 0 ; i < MaxPriority+1; i++ ) {
  3767       os::java_to_os_priority[i] = prio_policy1[i];
  3769     return 0;
  3773   // Get IDs for a set of well-known scheduling classes.
  3774   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3775   // the system.  We should have a loop that iterates over the
  3776   // classID values, which are known to be "small" integers.
  3778   strcpy(ClassInfo.pc_clname, "TS");
  3779   ClassInfo.pc_cid = -1;
  3780   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3781   if (rslt < 0) return errno;
  3782   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3783   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3784   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3785   tsLimits.minPrio = -tsLimits.maxPrio;
  3787   strcpy(ClassInfo.pc_clname, "IA");
  3788   ClassInfo.pc_cid = -1;
  3789   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3790   if (rslt < 0) return errno;
  3791   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3792   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3793   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3794   iaLimits.minPrio = -iaLimits.maxPrio;
  3796   strcpy(ClassInfo.pc_clname, "RT");
  3797   ClassInfo.pc_cid = -1;
  3798   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3799   if (rslt < 0) return errno;
  3800   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3801   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3802   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3803   rtLimits.minPrio = 0;
  3806   // Query our "current" scheduling class.
  3807   // This will normally be IA,TS or, rarely, RT.
  3808   memset (&ParmInfo, 0, sizeof(ParmInfo));
  3809   ParmInfo.pc_cid = PC_CLNULL;
  3810   rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
  3811   if ( rslt < 0 ) return errno;
  3812   myClass = ParmInfo.pc_cid;
  3814   // We now know our scheduling classId, get specific information
  3815   // the class.
  3816   ClassInfo.pc_cid = myClass;
  3817   ClassInfo.pc_clname[0] = 0;
  3818   rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
  3819   if ( rslt < 0 ) return errno;
  3821   if (ThreadPriorityVerbose)
  3822     tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3824   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3825   ParmInfo.pc_cid = PC_CLNULL;
  3826   rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3827   if (rslt < 0) return errno;
  3829   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3830     myMin = rtLimits.minPrio;
  3831     myMax = rtLimits.maxPrio;
  3832   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3833     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3834     myMin = iaLimits.minPrio;
  3835     myMax = iaLimits.maxPrio;
  3836     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3837   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3838     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3839     myMin = tsLimits.minPrio;
  3840     myMax = tsLimits.maxPrio;
  3841     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3842   } else {
  3843     // No clue - punt
  3844     if (ThreadPriorityVerbose)
  3845       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3846     return EINVAL;      // no clue, punt
  3849   if (ThreadPriorityVerbose)
  3850         tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3852   priocntl_enable = true;  // Enable changing priorities
  3853   return 0;
  3856 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3857 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3858 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3861 // scale_to_lwp_priority
  3862 //
  3863 // Convert from the libthread "thr_setprio" scale to our current
  3864 // lwp scheduling class scale.
  3865 //
  3866 static
  3867 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3869   int v;
  3871   if (x == 127) return rMax;            // avoid round-down
  3872     v = (((x*(rMax-rMin)))/128)+rMin;
  3873   return v;
  3877 // set_lwp_priority
  3878 //
  3879 // Set the priority of the lwp.  This call should only be made
  3880 // when using bound threads (T2 threads are bound by default).
  3881 //
  3882 int     set_lwp_priority (int ThreadID, int lwpid, int newPrio )
  3884   int rslt;
  3885   int Actual, Expected, prv;
  3886   pcparms_t ParmInfo;                   // for GET-SET
  3887 #ifdef ASSERT
  3888   pcparms_t ReadBack;                   // for readback
  3889 #endif
  3891   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3892   // Query current values.
  3893   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3894   // Cache "pcparms_t" in global ParmCache.
  3895   // TODO: elide set-to-same-value
  3897   // If something went wrong on init, don't change priorities.
  3898   if ( !priocntl_enable ) {
  3899     if (ThreadPriorityVerbose)
  3900       tty->print_cr("Trying to set priority but init failed, ignoring");
  3901     return EINVAL;
  3905   // If lwp hasn't started yet, just return
  3906   // the _start routine will call us again.
  3907   if ( lwpid <= 0 ) {
  3908     if (ThreadPriorityVerbose) {
  3909       tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
  3910                      ThreadID, newPrio);
  3912     return 0;
  3915   if (ThreadPriorityVerbose) {
  3916     tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3917                    ThreadID, lwpid, newPrio);
  3920   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3921   ParmInfo.pc_cid = PC_CLNULL;
  3922   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3923   if (rslt < 0) return errno;
  3925   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3926     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3927     rtInfo->rt_pri     = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
  3928     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3929     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3930     if (ThreadPriorityVerbose) {
  3931       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3933   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3934     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3935     int maxClamped     = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
  3936     iaInfo->ia_upri    = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
  3937     iaInfo->ia_uprilim = IA_NOCHANGE;
  3938     iaInfo->ia_mode    = IA_NOCHANGE;
  3939     if (ThreadPriorityVerbose) {
  3940       tty->print_cr ("IA: [%d...%d] %d->%d\n",
  3941                iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3943   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3944     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3945     int maxClamped     = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
  3946     prv                = tsInfo->ts_upri;
  3947     tsInfo->ts_upri    = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
  3948     tsInfo->ts_uprilim = IA_NOCHANGE;
  3949     if (ThreadPriorityVerbose) {
  3950       tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
  3951                prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3953     if (prv == tsInfo->ts_upri) return 0;
  3954   } else {
  3955     if ( ThreadPriorityVerbose ) {
  3956       tty->print_cr ("Unknown scheduling class\n");
  3958       return EINVAL;    // no clue, punt
  3961   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3962   if (ThreadPriorityVerbose && rslt) {
  3963     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3965   if (rslt < 0) return errno;
  3967 #ifdef ASSERT
  3968   // Sanity check: read back what we just attempted to set.
  3969   // In theory it could have changed in the interim ...
  3970   //
  3971   // The priocntl system call is tricky.
  3972   // Sometimes it'll validate the priority value argument and
  3973   // return EINVAL if unhappy.  At other times it fails silently.
  3974   // Readbacks are prudent.
  3976   if (!ReadBackValidate) return 0;
  3978   memset(&ReadBack, 0, sizeof(pcparms_t));
  3979   ReadBack.pc_cid = PC_CLNULL;
  3980   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3981   assert(rslt >= 0, "priocntl failed");
  3982   Actual = Expected = 0xBAD;
  3983   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3984   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3985     Actual   = RTPRI(ReadBack)->rt_pri;
  3986     Expected = RTPRI(ParmInfo)->rt_pri;
  3987   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3988     Actual   = IAPRI(ReadBack)->ia_upri;
  3989     Expected = IAPRI(ParmInfo)->ia_upri;
  3990   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3991     Actual   = TSPRI(ReadBack)->ts_upri;
  3992     Expected = TSPRI(ParmInfo)->ts_upri;
  3993   } else {
  3994     if ( ThreadPriorityVerbose ) {
  3995       tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
  3999   if (Actual != Expected) {
  4000     if ( ThreadPriorityVerbose ) {
  4001       tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  4002              lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  4005 #endif
  4007   return 0;
  4012 // Solaris only gives access to 128 real priorities at a time,
  4013 // so we expand Java's ten to fill this range.  This would be better
  4014 // if we dynamically adjusted relative priorities.
  4015 //
  4016 // The ThreadPriorityPolicy option allows us to select 2 different
  4017 // priority scales.
  4018 //
  4019 // ThreadPriorityPolicy=0
  4020 // Since the Solaris' default priority is MaximumPriority, we do not
  4021 // set a priority lower than Max unless a priority lower than
  4022 // NormPriority is requested.
  4023 //
  4024 // ThreadPriorityPolicy=1
  4025 // This mode causes the priority table to get filled with
  4026 // linear values.  NormPriority get's mapped to 50% of the
  4027 // Maximum priority an so on.  This will cause VM threads
  4028 // to get unfair treatment against other Solaris processes
  4029 // which do not explicitly alter their thread priorities.
  4030 //
  4033 int os::java_to_os_priority[MaxPriority + 1] = {
  4034   -99999,         // 0 Entry should never be used
  4036   0,              // 1 MinPriority
  4037   32,             // 2
  4038   64,             // 3
  4040   96,             // 4
  4041   127,            // 5 NormPriority
  4042   127,            // 6
  4044   127,            // 7
  4045   127,            // 8
  4046   127,            // 9 NearMaxPriority
  4048   127             // 10 MaxPriority
  4049 };
  4052 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4053   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4054   if ( !UseThreadPriorities ) return OS_OK;
  4055   int status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4056   if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
  4057     status |= (set_lwp_priority (thread->osthread()->thread_id(),
  4058                     thread->osthread()->lwp_id(), newpri ));
  4059   return (status == 0) ? OS_OK : OS_ERR;
  4063 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4064   int p;
  4065   if ( !UseThreadPriorities ) {
  4066     *priority_ptr = NormalPriority;
  4067     return OS_OK;
  4069   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4070   if (status != 0) {
  4071     return OS_ERR;
  4073   *priority_ptr = p;
  4074   return OS_OK;
  4078 // Hint to the underlying OS that a task switch would not be good.
  4079 // Void return because it's a hint and can fail.
  4080 void os::hint_no_preempt() {
  4081   schedctl_start(schedctl_init());
  4084 void os::interrupt(Thread* thread) {
  4085   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4087   OSThread* osthread = thread->osthread();
  4089   int isInterrupted = osthread->interrupted();
  4090   if (!isInterrupted) {
  4091       osthread->set_interrupted(true);
  4092       OrderAccess::fence();
  4093       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4094       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4095       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4096       ParkEvent * const slp = thread->_SleepEvent ;
  4097       if (slp != NULL) slp->unpark() ;
  4100   // For JSR166:  unpark after setting status but before thr_kill -dl
  4101   if (thread->is_Java_thread()) {
  4102     ((JavaThread*)thread)->parker()->unpark();
  4105   // Handle interruptible wait() ...
  4106   ParkEvent * const ev = thread->_ParkEvent ;
  4107   if (ev != NULL) ev->unpark() ;
  4109   // When events are used everywhere for os::sleep, then this thr_kill
  4110   // will only be needed if UseVMInterruptibleIO is true.
  4112   if (!isInterrupted) {
  4113     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4114     assert_status(status == 0, status, "thr_kill");
  4116     // Bump thread interruption counter
  4117     RuntimeService::record_thread_interrupt_signaled_count();
  4122 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4123   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4125   OSThread* osthread = thread->osthread();
  4127   bool res = osthread->interrupted();
  4129   // NOTE that since there is no "lock" around these two operations,
  4130   // there is the possibility that the interrupted flag will be
  4131   // "false" but that the interrupt event will be set. This is
  4132   // intentional. The effect of this is that Object.wait() will appear
  4133   // to have a spurious wakeup, which is not harmful, and the
  4134   // possibility is so rare that it is not worth the added complexity
  4135   // to add yet another lock. It has also been recommended not to put
  4136   // the interrupted flag into the os::Solaris::Event structure,
  4137   // because it hides the issue.
  4138   if (res && clear_interrupted) {
  4139     osthread->set_interrupted(false);
  4141   return res;
  4145 void os::print_statistics() {
  4148 int os::message_box(const char* title, const char* message) {
  4149   int i;
  4150   fdStream err(defaultStream::error_fd());
  4151   for (i = 0; i < 78; i++) err.print_raw("=");
  4152   err.cr();
  4153   err.print_raw_cr(title);
  4154   for (i = 0; i < 78; i++) err.print_raw("-");
  4155   err.cr();
  4156   err.print_raw_cr(message);
  4157   for (i = 0; i < 78; i++) err.print_raw("=");
  4158   err.cr();
  4160   char buf[16];
  4161   // Prevent process from exiting upon "read error" without consuming all CPU
  4162   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4164   return buf[0] == 'y' || buf[0] == 'Y';
  4167 // A lightweight implementation that does not suspend the target thread and
  4168 // thus returns only a hint. Used for profiling only!
  4169 ExtendedPC os::get_thread_pc(Thread* thread) {
  4170   // Make sure that it is called by the watcher and the Threads lock is owned.
  4171   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4172   // For now, is only used to profile the VM Thread
  4173   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4174   ExtendedPC epc;
  4176   GetThreadPC_Callback  cb(ProfileVM_lock);
  4177   OSThread *osthread = thread->osthread();
  4178   const int time_to_wait = 400; // 400ms wait for initial response
  4179   int status = cb.interrupt(thread, time_to_wait);
  4181   if (cb.is_done() ) {
  4182     epc = cb.addr();
  4183   } else {
  4184     DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
  4185                               osthread->thread_id(), status););
  4186     // epc is already NULL
  4188   return epc;
  4192 // This does not do anything on Solaris. This is basically a hook for being
  4193 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4194 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4195   f(value, method, args, thread);
  4198 // This routine may be used by user applications as a "hook" to catch signals.
  4199 // The user-defined signal handler must pass unrecognized signals to this
  4200 // routine, and if it returns true (non-zero), then the signal handler must
  4201 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4202 // routine will never retun false (zero), but instead will execute a VM panic
  4203 // routine kill the process.
  4204 //
  4205 // If this routine returns false, it is OK to call it again.  This allows
  4206 // the user-defined signal handler to perform checks either before or after
  4207 // the VM performs its own checks.  Naturally, the user code would be making
  4208 // a serious error if it tried to handle an exception (such as a null check
  4209 // or breakpoint) that the VM was generating for its own correct operation.
  4210 //
  4211 // This routine may recognize any of the following kinds of signals:
  4212 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4213 // os::Solaris::SIGasync
  4214 // It should be consulted by handlers for any of those signals.
  4215 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4216 //
  4217 // The caller of this routine must pass in the three arguments supplied
  4218 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4219 // field of the structure passed to sigaction().  This routine assumes that
  4220 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4221 //
  4222 // Note that the VM will print warnings if it detects conflicting signal
  4223 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4224 //
  4225 extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
  4228 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4229   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4232 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4233    is needed to provoke threads blocked on IO to return an EINTR
  4234    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4235    does NOT participate in signal chaining due to requirement for
  4236    NOT setting SA_RESTART to make EINTR work. */
  4237 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4238    if (UseSignalChaining) {
  4239       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4240       if (actp && actp->sa_handler) {
  4241         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4246 // This boolean allows users to forward their own non-matching signals
  4247 // to JVM_handle_solaris_signal, harmlessly.
  4248 bool os::Solaris::signal_handlers_are_installed = false;
  4250 // For signal-chaining
  4251 bool os::Solaris::libjsig_is_loaded = false;
  4252 typedef struct sigaction *(*get_signal_t)(int);
  4253 get_signal_t os::Solaris::get_signal_action = NULL;
  4255 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4256   struct sigaction *actp = NULL;
  4258   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4259     // Retrieve the old signal handler from libjsig
  4260     actp = (*get_signal_action)(sig);
  4262   if (actp == NULL) {
  4263     // Retrieve the preinstalled signal handler from jvm
  4264     actp = get_preinstalled_handler(sig);
  4267   return actp;
  4270 static bool call_chained_handler(struct sigaction *actp, int sig,
  4271                                  siginfo_t *siginfo, void *context) {
  4272   // Call the old signal handler
  4273   if (actp->sa_handler == SIG_DFL) {
  4274     // It's more reasonable to let jvm treat it as an unexpected exception
  4275     // instead of taking the default action.
  4276     return false;
  4277   } else if (actp->sa_handler != SIG_IGN) {
  4278     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4279       // automaticlly block the signal
  4280       sigaddset(&(actp->sa_mask), sig);
  4283     sa_handler_t hand;
  4284     sa_sigaction_t sa;
  4285     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4286     // retrieve the chained handler
  4287     if (siginfo_flag_set) {
  4288       sa = actp->sa_sigaction;
  4289     } else {
  4290       hand = actp->sa_handler;
  4293     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4294       actp->sa_handler = SIG_DFL;
  4297     // try to honor the signal mask
  4298     sigset_t oset;
  4299     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4301     // call into the chained handler
  4302     if (siginfo_flag_set) {
  4303       (*sa)(sig, siginfo, context);
  4304     } else {
  4305       (*hand)(sig);
  4308     // restore the signal mask
  4309     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4311   // Tell jvm's signal handler the signal is taken care of.
  4312   return true;
  4315 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4316   bool chained = false;
  4317   // signal-chaining
  4318   if (UseSignalChaining) {
  4319     struct sigaction *actp = get_chained_signal_action(sig);
  4320     if (actp != NULL) {
  4321       chained = call_chained_handler(actp, sig, siginfo, context);
  4324   return chained;
  4327 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4328   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4329   if (preinstalled_sigs[sig] != 0) {
  4330     return &chainedsigactions[sig];
  4332   return NULL;
  4335 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4337   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4338   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4339   chainedsigactions[sig] = oldAct;
  4340   preinstalled_sigs[sig] = 1;
  4343 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4344   // Check for overwrite.
  4345   struct sigaction oldAct;
  4346   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4347   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4348                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4349   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4350       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4351       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4352     if (AllowUserSignalHandlers || !set_installed) {
  4353       // Do not overwrite; user takes responsibility to forward to us.
  4354       return;
  4355     } else if (UseSignalChaining) {
  4356       if (oktochain) {
  4357         // save the old handler in jvm
  4358         save_preinstalled_handler(sig, oldAct);
  4359       } else {
  4360         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4362       // libjsig also interposes the sigaction() call below and saves the
  4363       // old sigaction on it own.
  4364     } else {
  4365       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4366                     "%#lx for signal %d.", (long)oldhand, sig));
  4370   struct sigaction sigAct;
  4371   sigfillset(&(sigAct.sa_mask));
  4372   sigAct.sa_handler = SIG_DFL;
  4374   sigAct.sa_sigaction = signalHandler;
  4375   // Handle SIGSEGV on alternate signal stack if
  4376   // not using stack banging
  4377   if (!UseStackBanging && sig == SIGSEGV) {
  4378     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4379   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4380   // is returned instead of restarting system calls
  4381   } else if (sig == os::Solaris::SIGinterrupt()) {
  4382     sigemptyset(&sigAct.sa_mask);
  4383     sigAct.sa_handler = NULL;
  4384     sigAct.sa_flags = SA_SIGINFO;
  4385     sigAct.sa_sigaction = sigINTRHandler;
  4386   } else {
  4387     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4389   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4391   sigaction(sig, &sigAct, &oldAct);
  4393   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4394                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4395   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4399 #define DO_SIGNAL_CHECK(sig) \
  4400   if (!sigismember(&check_signal_done, sig)) \
  4401     os::Solaris::check_signal_handler(sig)
  4403 // This method is a periodic task to check for misbehaving JNI applications
  4404 // under CheckJNI, we can add any periodic checks here
  4406 void os::run_periodic_checks() {
  4407   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4408   // thereby preventing a NULL checks.
  4409   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4411   if (check_signals == false) return;
  4413   // SEGV and BUS if overridden could potentially prevent
  4414   // generation of hs*.log in the event of a crash, debugging
  4415   // such a case can be very challenging, so we absolutely
  4416   // check for the following for a good measure:
  4417   DO_SIGNAL_CHECK(SIGSEGV);
  4418   DO_SIGNAL_CHECK(SIGILL);
  4419   DO_SIGNAL_CHECK(SIGFPE);
  4420   DO_SIGNAL_CHECK(SIGBUS);
  4421   DO_SIGNAL_CHECK(SIGPIPE);
  4422   DO_SIGNAL_CHECK(SIGXFSZ);
  4424   // ReduceSignalUsage allows the user to override these handlers
  4425   // see comments at the very top and jvm_solaris.h
  4426   if (!ReduceSignalUsage) {
  4427     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4428     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4429     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4430     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4433   // See comments above for using JVM1/JVM2 and UseAltSigs
  4434   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4435   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4439 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4441 static os_sigaction_t os_sigaction = NULL;
  4443 void os::Solaris::check_signal_handler(int sig) {
  4444   char buf[O_BUFLEN];
  4445   address jvmHandler = NULL;
  4447   struct sigaction act;
  4448   if (os_sigaction == NULL) {
  4449     // only trust the default sigaction, in case it has been interposed
  4450     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4451     if (os_sigaction == NULL) return;
  4454   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4456   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4457     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4458     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4461   switch(sig) {
  4462     case SIGSEGV:
  4463     case SIGBUS:
  4464     case SIGFPE:
  4465     case SIGPIPE:
  4466     case SIGXFSZ:
  4467     case SIGILL:
  4468       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4469       break;
  4471     case SHUTDOWN1_SIGNAL:
  4472     case SHUTDOWN2_SIGNAL:
  4473     case SHUTDOWN3_SIGNAL:
  4474     case BREAK_SIGNAL:
  4475       jvmHandler = (address)user_handler();
  4476       break;
  4478     default:
  4479       int intrsig = os::Solaris::SIGinterrupt();
  4480       int asynsig = os::Solaris::SIGasync();
  4482       if (sig == intrsig) {
  4483         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4484       } else if (sig == asynsig) {
  4485         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4486       } else {
  4487         return;
  4489       break;
  4493   if (thisHandler != jvmHandler) {
  4494     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4495     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4496     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4497     // No need to check this sig any longer
  4498     sigaddset(&check_signal_done, sig);
  4499   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4500     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4501     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4502     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4503     // No need to check this sig any longer
  4504     sigaddset(&check_signal_done, sig);
  4507   // Print all the signal handler state
  4508   if (sigismember(&check_signal_done, sig)) {
  4509     print_signal_handlers(tty, buf, O_BUFLEN);
  4514 void os::Solaris::install_signal_handlers() {
  4515   bool libjsigdone = false;
  4516   signal_handlers_are_installed = true;
  4518   // signal-chaining
  4519   typedef void (*signal_setting_t)();
  4520   signal_setting_t begin_signal_setting = NULL;
  4521   signal_setting_t end_signal_setting = NULL;
  4522   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4523                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4524   if (begin_signal_setting != NULL) {
  4525     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4526                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4527     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4528                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4529     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4530                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4531     libjsig_is_loaded = true;
  4532     if (os::Solaris::get_libjsig_version != NULL) {
  4533       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4535     assert(UseSignalChaining, "should enable signal-chaining");
  4537   if (libjsig_is_loaded) {
  4538     // Tell libjsig jvm is setting signal handlers
  4539     (*begin_signal_setting)();
  4542   set_signal_handler(SIGSEGV, true, true);
  4543   set_signal_handler(SIGPIPE, true, true);
  4544   set_signal_handler(SIGXFSZ, true, true);
  4545   set_signal_handler(SIGBUS, true, true);
  4546   set_signal_handler(SIGILL, true, true);
  4547   set_signal_handler(SIGFPE, true, true);
  4550   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4552     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4553     // can not register overridable signals which might be > 32
  4554     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4555     // Tell libjsig jvm has finished setting signal handlers
  4556       (*end_signal_setting)();
  4557       libjsigdone = true;
  4561   // Never ok to chain our SIGinterrupt
  4562   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4563   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4565   if (libjsig_is_loaded && !libjsigdone) {
  4566     // Tell libjsig jvm finishes setting signal handlers
  4567     (*end_signal_setting)();
  4570   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4571   // and if UserSignalHandler is installed all bets are off
  4572   if (CheckJNICalls) {
  4573     if (libjsig_is_loaded) {
  4574       tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4575       check_signals = false;
  4577     if (AllowUserSignalHandlers) {
  4578       tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4579       check_signals = false;
  4585 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4587 const char * signames[] = {
  4588   "SIG0",
  4589   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4590   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4591   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4592   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4593   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4594   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4595   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4596   "SIGCANCEL", "SIGLOST"
  4597 };
  4599 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4600   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4601     // signal
  4602     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4603        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4604     } else {
  4605        jio_snprintf(buf, size, "SIG%d", exception_code);
  4607     return buf;
  4608   } else {
  4609     return NULL;
  4613 // (Static) wrappers for the new libthread API
  4614 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4615 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4616 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4617 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4618 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4620 // (Static) wrapper for getisax(2) call.
  4621 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4623 // (Static) wrappers for the liblgrp API
  4624 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4625 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4626 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4627 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4628 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4629 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4630 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4631 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4632 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4634 // (Static) wrapper for meminfo() call.
  4635 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4637 static address resolve_symbol_lazy(const char* name) {
  4638   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4639   if(addr == NULL) {
  4640     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4641     addr = (address) dlsym(RTLD_NEXT, name);
  4643   return addr;
  4646 static address resolve_symbol(const char* name) {
  4647   address addr = resolve_symbol_lazy(name);
  4648   if(addr == NULL) {
  4649     fatal(dlerror());
  4651   return addr;
  4656 // isT2_libthread()
  4657 //
  4658 // Routine to determine if we are currently using the new T2 libthread.
  4659 //
  4660 // We determine if we are using T2 by reading /proc/self/lstatus and
  4661 // looking for a thread with the ASLWP bit set.  If we find this status
  4662 // bit set, we must assume that we are NOT using T2.  The T2 team
  4663 // has approved this algorithm.
  4664 //
  4665 // We need to determine if we are running with the new T2 libthread
  4666 // since setting native thread priorities is handled differently
  4667 // when using this library.  All threads created using T2 are bound
  4668 // threads. Calling thr_setprio is meaningless in this case.
  4669 //
  4670 bool isT2_libthread() {
  4671   static prheader_t * lwpArray = NULL;
  4672   static int lwpSize = 0;
  4673   static int lwpFile = -1;
  4674   lwpstatus_t * that;
  4675   char lwpName [128];
  4676   bool isT2 = false;
  4678 #define ADR(x)  ((uintptr_t)(x))
  4679 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4681   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4682   if (lwpFile < 0) {
  4683       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4684       return false;
  4686   lwpSize = 16*1024;
  4687   for (;;) {
  4688     ::lseek64 (lwpFile, 0, SEEK_SET);
  4689     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize);
  4690     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4691       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4692       break;
  4694     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4695        // We got a good snapshot - now iterate over the list.
  4696       int aslwpcount = 0;
  4697       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4698         that = LWPINDEX(lwpArray,i);
  4699         if (that->pr_flags & PR_ASLWP) {
  4700           aslwpcount++;
  4703       if (aslwpcount == 0) isT2 = true;
  4704       break;
  4706     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4707     FREE_C_HEAP_ARRAY(char, lwpArray);  // retry.
  4710   FREE_C_HEAP_ARRAY(char, lwpArray);
  4711   ::close (lwpFile);
  4712   if (ThreadPriorityVerbose) {
  4713     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4714     else tty->print_cr("We are not running with a T2 libthread\n");
  4716   return isT2;
  4720 void os::Solaris::libthread_init() {
  4721   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4723   // Determine if we are running with the new T2 libthread
  4724   os::Solaris::set_T2_libthread(isT2_libthread());
  4726   lwp_priocntl_init();
  4728   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4729   if(func == NULL) {
  4730     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4731     // Guarantee that this VM is running on an new enough OS (5.6 or
  4732     // later) that it will have a new enough libthread.so.
  4733     guarantee(func != NULL, "libthread.so is too old.");
  4736   // Initialize the new libthread getstate API wrappers
  4737   func = resolve_symbol("thr_getstate");
  4738   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4740   func = resolve_symbol("thr_setstate");
  4741   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4743   func = resolve_symbol("thr_setmutator");
  4744   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4746   func = resolve_symbol("thr_suspend_mutator");
  4747   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4749   func = resolve_symbol("thr_continue_mutator");
  4750   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4752   int size;
  4753   void (*handler_info_func)(address *, int *);
  4754   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4755   handler_info_func(&handler_start, &size);
  4756   handler_end = handler_start + size;
  4760 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4761 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4762 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4763 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4764 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4765 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4767 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4768 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4769 int_fnP_cond_tP os::Solaris::_cond_signal;
  4770 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4771 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4772 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4773 int os::Solaris::_cond_scope = USYNC_THREAD;
  4775 void os::Solaris::synchronization_init() {
  4776   if(UseLWPSynchronization) {
  4777     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4778     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4779     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4780     os::Solaris::set_mutex_init(lwp_mutex_init);
  4781     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4782     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4784     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4785     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4786     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4787     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4788     os::Solaris::set_cond_init(lwp_cond_init);
  4789     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4790     os::Solaris::set_cond_scope(USYNC_THREAD);
  4792   else {
  4793     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4794     os::Solaris::set_cond_scope(USYNC_THREAD);
  4796     if(UsePthreads) {
  4797       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4798       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4799       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4800       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4801       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4803       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4804       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4805       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4806       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4807       os::Solaris::set_cond_init(pthread_cond_default_init);
  4808       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4810     else {
  4811       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4812       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4813       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4814       os::Solaris::set_mutex_init(::mutex_init);
  4815       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4817       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4818       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4819       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4820       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4821       os::Solaris::set_cond_init(::cond_init);
  4822       os::Solaris::set_cond_destroy(::cond_destroy);
  4827 bool os::Solaris::liblgrp_init() {
  4828   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  4829   if (handle != NULL) {
  4830     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  4831     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  4832     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  4833     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  4834     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  4835     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  4836     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  4837     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  4838                                        dlsym(handle, "lgrp_cookie_stale")));
  4840     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  4841     set_lgrp_cookie(c);
  4842     return true;
  4844   return false;
  4847 void os::Solaris::misc_sym_init() {
  4848   address func;
  4850   // getisax
  4851   func = resolve_symbol_lazy("getisax");
  4852   if (func != NULL) {
  4853     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  4856   // meminfo
  4857   func = resolve_symbol_lazy("meminfo");
  4858   if (func != NULL) {
  4859     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  4863 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  4864   assert(_getisax != NULL, "_getisax not set");
  4865   return _getisax(array, n);
  4868 // Symbol doesn't exist in Solaris 8 pset.h
  4869 #ifndef PS_MYID
  4870 #define PS_MYID -3
  4871 #endif
  4873 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  4874 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  4875 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  4877 void init_pset_getloadavg_ptr(void) {
  4878   pset_getloadavg_ptr =
  4879     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  4880   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  4881     warning("pset_getloadavg function not found");
  4885 int os::Solaris::_dev_zero_fd = -1;
  4887 // this is called _before_ the global arguments have been parsed
  4888 void os::init(void) {
  4889   _initial_pid = getpid();
  4891   max_hrtime = first_hrtime = gethrtime();
  4893   init_random(1234567);
  4895   page_size = sysconf(_SC_PAGESIZE);
  4896   if (page_size == -1)
  4897     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  4898                   strerror(errno)));
  4899   init_page_sizes((size_t) page_size);
  4901   Solaris::initialize_system_info();
  4903   // Initialize misc. symbols as soon as possible, so we can use them
  4904   // if we need them.
  4905   Solaris::misc_sym_init();
  4907   int fd = ::open("/dev/zero", O_RDWR);
  4908   if (fd < 0) {
  4909     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  4910   } else {
  4911     Solaris::set_dev_zero_fd(fd);
  4913     // Close on exec, child won't inherit.
  4914     fcntl(fd, F_SETFD, FD_CLOEXEC);
  4917   clock_tics_per_sec = CLK_TCK;
  4919   // check if dladdr1() exists; dladdr1 can provide more information than
  4920   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  4921   // and is available on linker patches for 5.7 and 5.8.
  4922   // libdl.so must have been loaded, this call is just an entry lookup
  4923   void * hdl = dlopen("libdl.so", RTLD_NOW);
  4924   if (hdl)
  4925     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  4927   // (Solaris only) this switches to calls that actually do locking.
  4928   ThreadCritical::initialize();
  4930   main_thread = thr_self();
  4932   // Constant minimum stack size allowed. It must be at least
  4933   // the minimum of what the OS supports (thr_min_stack()), and
  4934   // enough to allow the thread to get to user bytecode execution.
  4935   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  4936   // If the pagesize of the VM is greater than 8K determine the appropriate
  4937   // number of initial guard pages.  The user can change this with the
  4938   // command line arguments, if needed.
  4939   if (vm_page_size() > 8*K) {
  4940     StackYellowPages = 1;
  4941     StackRedPages = 1;
  4942     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  4946 // To install functions for atexit system call
  4947 extern "C" {
  4948   static void perfMemory_exit_helper() {
  4949     perfMemory_exit();
  4953 // this is called _after_ the global arguments have been parsed
  4954 jint os::init_2(void) {
  4955   // try to enable extended file IO ASAP, see 6431278
  4956   os::Solaris::try_enable_extended_io();
  4958   // Allocate a single page and mark it as readable for safepoint polling.  Also
  4959   // use this first mmap call to check support for MAP_ALIGN.
  4960   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  4961                                                       page_size,
  4962                                                       MAP_PRIVATE | MAP_ALIGN,
  4963                                                       PROT_READ);
  4964   if (polling_page == NULL) {
  4965     has_map_align = false;
  4966     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  4967                                                 PROT_READ);
  4970   os::set_polling_page(polling_page);
  4972 #ifndef PRODUCT
  4973   if( Verbose && PrintMiscellaneous )
  4974     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4975 #endif
  4977   if (!UseMembar) {
  4978     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  4979     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4980     os::set_memory_serialize_page( mem_serialize_page );
  4982 #ifndef PRODUCT
  4983     if(Verbose && PrintMiscellaneous)
  4984       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4985 #endif
  4988   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  4990   // Check minimum allowable stack size for thread creation and to initialize
  4991   // the java system classes, including StackOverflowError - depends on page
  4992   // size.  Add a page for compiler2 recursion in main thread.
  4993   // Add in 2*BytesPerWord times page size to account for VM stack during
  4994   // class initialization depending on 32 or 64 bit VM.
  4995   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  4996             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4997                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  4999   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5000   if (threadStackSizeInBytes != 0 &&
  5001     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5002     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5003                   os::Solaris::min_stack_allowed/K);
  5004     return JNI_ERR;
  5007   // For 64kbps there will be a 64kb page size, which makes
  5008   // the usable default stack size quite a bit less.  Increase the
  5009   // stack for 64kb (or any > than 8kb) pages, this increases
  5010   // virtual memory fragmentation (since we're not creating the
  5011   // stack on a power of 2 boundary.  The real fix for this
  5012   // should be to fix the guard page mechanism.
  5014   if (vm_page_size() > 8*K) {
  5015       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5016          ? threadStackSizeInBytes +
  5017            ((StackYellowPages + StackRedPages) * vm_page_size())
  5018          : 0;
  5019       ThreadStackSize = threadStackSizeInBytes/K;
  5022   // Make the stack size a multiple of the page size so that
  5023   // the yellow/red zones can be guarded.
  5024   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5025         vm_page_size()));
  5027   Solaris::libthread_init();
  5029   if (UseNUMA) {
  5030     if (!Solaris::liblgrp_init()) {
  5031       UseNUMA = false;
  5032     } else {
  5033       size_t lgrp_limit = os::numa_get_groups_num();
  5034       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
  5035       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5036       FREE_C_HEAP_ARRAY(int, lgrp_ids);
  5037       if (lgrp_num < 2) {
  5038         // There's only one locality group, disable NUMA.
  5039         UseNUMA = false;
  5042     if (!UseNUMA && ForceNUMA) {
  5043       UseNUMA = true;
  5047   Solaris::signal_sets_init();
  5048   Solaris::init_signal_mem();
  5049   Solaris::install_signal_handlers();
  5051   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5052     Maxlibjsigsigs = OLDMAXSIGNUM;
  5055   // initialize synchronization primitives to use either thread or
  5056   // lwp synchronization (controlled by UseLWPSynchronization)
  5057   Solaris::synchronization_init();
  5059   if (MaxFDLimit) {
  5060     // set the number of file descriptors to max. print out error
  5061     // if getrlimit/setrlimit fails but continue regardless.
  5062     struct rlimit nbr_files;
  5063     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5064     if (status != 0) {
  5065       if (PrintMiscellaneous && (Verbose || WizardMode))
  5066         perror("os::init_2 getrlimit failed");
  5067     } else {
  5068       nbr_files.rlim_cur = nbr_files.rlim_max;
  5069       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5070       if (status != 0) {
  5071         if (PrintMiscellaneous && (Verbose || WizardMode))
  5072           perror("os::init_2 setrlimit failed");
  5077   // Calculate theoretical max. size of Threads to guard gainst
  5078   // artifical out-of-memory situations, where all available address-
  5079   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5080   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5081     JavaThread::stack_size_at_create() : (1*K*K);
  5082   assert(pre_thread_stack_size != 0, "Must have a stack");
  5083   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5084   // we should start doing Virtual Memory banging. Currently when the threads will
  5085   // have used all but 200Mb of space.
  5086   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5087   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5089   // at-exit methods are called in the reverse order of their registration.
  5090   // In Solaris 7 and earlier, atexit functions are called on return from
  5091   // main or as a result of a call to exit(3C). There can be only 32 of
  5092   // these functions registered and atexit() does not set errno. In Solaris
  5093   // 8 and later, there is no limit to the number of functions registered
  5094   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5095   // functions are called upon dlclose(3DL) in addition to return from main
  5096   // and exit(3C).
  5098   if (PerfAllowAtExitRegistration) {
  5099     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5100     // atexit functions can be delayed until process exit time, which
  5101     // can be problematic for embedded VM situations. Embedded VMs should
  5102     // call DestroyJavaVM() to assure that VM resources are released.
  5104     // note: perfMemory_exit_helper atexit function may be removed in
  5105     // the future if the appropriate cleanup code can be added to the
  5106     // VM_Exit VMOperation's doit method.
  5107     if (atexit(perfMemory_exit_helper) != 0) {
  5108       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5112   // Init pset_loadavg function pointer
  5113   init_pset_getloadavg_ptr();
  5115   return JNI_OK;
  5118 void os::init_3(void) {
  5119   return;
  5122 // Mark the polling page as unreadable
  5123 void os::make_polling_page_unreadable(void) {
  5124   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5125     fatal("Could not disable polling page");
  5126 };
  5128 // Mark the polling page as readable
  5129 void os::make_polling_page_readable(void) {
  5130   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5131     fatal("Could not enable polling page");
  5132 };
  5134 // OS interface.
  5136 bool os::check_heap(bool force) { return true; }
  5138 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5139 static vsnprintf_t sol_vsnprintf = NULL;
  5141 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5142   if (!sol_vsnprintf) {
  5143     //search  for the named symbol in the objects that were loaded after libjvm
  5144     void* where = RTLD_NEXT;
  5145     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5146         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5147     if (!sol_vsnprintf){
  5148       //search  for the named symbol in the objects that were loaded before libjvm
  5149       where = RTLD_DEFAULT;
  5150       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5151         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5152       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5155   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5159 // Is a (classpath) directory empty?
  5160 bool os::dir_is_empty(const char* path) {
  5161   DIR *dir = NULL;
  5162   struct dirent *ptr;
  5164   dir = opendir(path);
  5165   if (dir == NULL) return true;
  5167   /* Scan the directory */
  5168   bool result = true;
  5169   char buf[sizeof(struct dirent) + MAX_PATH];
  5170   struct dirent *dbuf = (struct dirent *) buf;
  5171   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5172     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5173       result = false;
  5176   closedir(dir);
  5177   return result;
  5180 // This code originates from JDK's sysOpen and open64_w
  5181 // from src/solaris/hpi/src/system_md.c
  5183 #ifndef O_DELETE
  5184 #define O_DELETE 0x10000
  5185 #endif
  5187 // Open a file. Unlink the file immediately after open returns
  5188 // if the specified oflag has the O_DELETE flag set.
  5189 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5191 int os::open(const char *path, int oflag, int mode) {
  5192   if (strlen(path) > MAX_PATH - 1) {
  5193     errno = ENAMETOOLONG;
  5194     return -1;
  5196   int fd;
  5197   int o_delete = (oflag & O_DELETE);
  5198   oflag = oflag & ~O_DELETE;
  5200   fd = ::open64(path, oflag, mode);
  5201   if (fd == -1) return -1;
  5203   //If the open succeeded, the file might still be a directory
  5205     struct stat64 buf64;
  5206     int ret = ::fstat64(fd, &buf64);
  5207     int st_mode = buf64.st_mode;
  5209     if (ret != -1) {
  5210       if ((st_mode & S_IFMT) == S_IFDIR) {
  5211         errno = EISDIR;
  5212         ::close(fd);
  5213         return -1;
  5215     } else {
  5216       ::close(fd);
  5217       return -1;
  5220     /*
  5221      * 32-bit Solaris systems suffer from:
  5223      * - an historical default soft limit of 256 per-process file
  5224      *   descriptors that is too low for many Java programs.
  5226      * - a design flaw where file descriptors created using stdio
  5227      *   fopen must be less than 256, _even_ when the first limit above
  5228      *   has been raised.  This can cause calls to fopen (but not calls to
  5229      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5230      *   native code (although the JDK itself uses fopen).  One can hardly
  5231      *   criticize them for using this most standard of all functions.
  5233      * We attempt to make everything work anyways by:
  5235      * - raising the soft limit on per-process file descriptors beyond
  5236      *   256
  5238      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5239      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5240      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5242      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5243      *   workaround the bug by remapping non-stdio file descriptors below
  5244      *   256 to ones beyond 256, which is done below.
  5246      * See:
  5247      * 1085341: 32-bit stdio routines should support file descriptors >255
  5248      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5249      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5250      *          enable_extended_FILE_stdio() in VM initialisation
  5251      * Giri Mandalika's blog
  5252      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5253      */
  5254 #ifndef  _LP64
  5255      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5256          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5257          if (newfd != -1) {
  5258              ::close(fd);
  5259              fd = newfd;
  5262 #endif // 32-bit Solaris
  5263     /*
  5264      * All file descriptors that are opened in the JVM and not
  5265      * specifically destined for a subprocess should have the
  5266      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5267      * party native code might fork and exec without closing all
  5268      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5269      * UNIXProcess.c), and this in turn might:
  5271      * - cause end-of-file to fail to be detected on some file
  5272      *   descriptors, resulting in mysterious hangs, or
  5274      * - might cause an fopen in the subprocess to fail on a system
  5275      *   suffering from bug 1085341.
  5277      * (Yes, the default setting of the close-on-exec flag is a Unix
  5278      * design flaw)
  5280      * See:
  5281      * 1085341: 32-bit stdio routines should support file descriptors >255
  5282      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5283      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5284      */
  5285 #ifdef FD_CLOEXEC
  5287         int flags = ::fcntl(fd, F_GETFD);
  5288         if (flags != -1)
  5289             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5291 #endif
  5293   if (o_delete != 0) {
  5294     ::unlink(path);
  5296   return fd;
  5299 // create binary file, rewriting existing file if required
  5300 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5301   int oflags = O_WRONLY | O_CREAT;
  5302   if (!rewrite_existing) {
  5303     oflags |= O_EXCL;
  5305   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5308 // return current position of file pointer
  5309 jlong os::current_file_offset(int fd) {
  5310   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5313 // move file pointer to the specified offset
  5314 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5315   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5318 jlong os::lseek(int fd, jlong offset, int whence) {
  5319   return (jlong) ::lseek64(fd, offset, whence);
  5322 char * os::native_path(char *path) {
  5323   return path;
  5326 int os::ftruncate(int fd, jlong length) {
  5327   return ::ftruncate64(fd, length);
  5330 int os::fsync(int fd)  {
  5331   RESTARTABLE_RETURN_INT(::fsync(fd));
  5334 int os::available(int fd, jlong *bytes) {
  5335   jlong cur, end;
  5336   int mode;
  5337   struct stat64 buf64;
  5339   if (::fstat64(fd, &buf64) >= 0) {
  5340     mode = buf64.st_mode;
  5341     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5342       /*
  5343       * XXX: is the following call interruptible? If so, this might
  5344       * need to go through the INTERRUPT_IO() wrapper as for other
  5345       * blocking, interruptible calls in this file.
  5346       */
  5347       int n,ioctl_return;
  5349       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5350       if (ioctl_return>= 0) {
  5351           *bytes = n;
  5352         return 1;
  5356   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5357     return 0;
  5358   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5359     return 0;
  5360   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5361     return 0;
  5363   *bytes = end - cur;
  5364   return 1;
  5367 // Map a block of memory.
  5368 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  5369                      char *addr, size_t bytes, bool read_only,
  5370                      bool allow_exec) {
  5371   int prot;
  5372   int flags;
  5374   if (read_only) {
  5375     prot = PROT_READ;
  5376     flags = MAP_SHARED;
  5377   } else {
  5378     prot = PROT_READ | PROT_WRITE;
  5379     flags = MAP_PRIVATE;
  5382   if (allow_exec) {
  5383     prot |= PROT_EXEC;
  5386   if (addr != NULL) {
  5387     flags |= MAP_FIXED;
  5390   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5391                                      fd, file_offset);
  5392   if (mapped_address == MAP_FAILED) {
  5393     return NULL;
  5395   return mapped_address;
  5399 // Remap a block of memory.
  5400 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  5401                        char *addr, size_t bytes, bool read_only,
  5402                        bool allow_exec) {
  5403   // same as map_memory() on this OS
  5404   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5405                         allow_exec);
  5409 // Unmap a block of memory.
  5410 bool os::unmap_memory(char* addr, size_t bytes) {
  5411   return munmap(addr, bytes) == 0;
  5414 void os::pause() {
  5415   char filename[MAX_PATH];
  5416   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5417     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5418   } else {
  5419     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5422   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5423   if (fd != -1) {
  5424     struct stat buf;
  5425     ::close(fd);
  5426     while (::stat(filename, &buf) == 0) {
  5427       (void)::poll(NULL, 0, 100);
  5429   } else {
  5430     jio_fprintf(stderr,
  5431       "Could not open pause file '%s', continuing immediately.\n", filename);
  5435 #ifndef PRODUCT
  5436 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5437 // Turn this on if you need to trace synch operations.
  5438 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5439 // and call record_synch_enable and record_synch_disable
  5440 // around the computation of interest.
  5442 void record_synch(char* name, bool returning);  // defined below
  5444 class RecordSynch {
  5445   char* _name;
  5446  public:
  5447   RecordSynch(char* name) :_name(name)
  5448                  { record_synch(_name, false); }
  5449   ~RecordSynch() { record_synch(_name,   true);  }
  5450 };
  5452 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5453 extern "C" ret name params {                                    \
  5454   typedef ret name##_t params;                                  \
  5455   static name##_t* implem = NULL;                               \
  5456   static int callcount = 0;                                     \
  5457   if (implem == NULL) {                                         \
  5458     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5459     if (implem == NULL)  fatal(dlerror());                      \
  5460   }                                                             \
  5461   ++callcount;                                                  \
  5462   RecordSynch _rs(#name);                                       \
  5463   inner;                                                        \
  5464   return implem args;                                           \
  5466 // in dbx, examine callcounts this way:
  5467 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5469 #define CHECK_POINTER_OK(p) \
  5470   (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
  5471 #define CHECK_MU \
  5472   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5473 #define CHECK_CV \
  5474   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5475 #define CHECK_P(p) \
  5476   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5478 #define CHECK_MUTEX(mutex_op) \
  5479 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5481 CHECK_MUTEX(   mutex_lock)
  5482 CHECK_MUTEX(  _mutex_lock)
  5483 CHECK_MUTEX( mutex_unlock)
  5484 CHECK_MUTEX(_mutex_unlock)
  5485 CHECK_MUTEX( mutex_trylock)
  5486 CHECK_MUTEX(_mutex_trylock)
  5488 #define CHECK_COND(cond_op) \
  5489 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5491 CHECK_COND( cond_wait);
  5492 CHECK_COND(_cond_wait);
  5493 CHECK_COND(_cond_wait_cancel);
  5495 #define CHECK_COND2(cond_op) \
  5496 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5498 CHECK_COND2( cond_timedwait);
  5499 CHECK_COND2(_cond_timedwait);
  5500 CHECK_COND2(_cond_timedwait_cancel);
  5502 // do the _lwp_* versions too
  5503 #define mutex_t lwp_mutex_t
  5504 #define cond_t  lwp_cond_t
  5505 CHECK_MUTEX(  _lwp_mutex_lock)
  5506 CHECK_MUTEX(  _lwp_mutex_unlock)
  5507 CHECK_MUTEX(  _lwp_mutex_trylock)
  5508 CHECK_MUTEX( __lwp_mutex_lock)
  5509 CHECK_MUTEX( __lwp_mutex_unlock)
  5510 CHECK_MUTEX( __lwp_mutex_trylock)
  5511 CHECK_MUTEX(___lwp_mutex_lock)
  5512 CHECK_MUTEX(___lwp_mutex_unlock)
  5514 CHECK_COND(  _lwp_cond_wait);
  5515 CHECK_COND( __lwp_cond_wait);
  5516 CHECK_COND(___lwp_cond_wait);
  5518 CHECK_COND2(  _lwp_cond_timedwait);
  5519 CHECK_COND2( __lwp_cond_timedwait);
  5520 #undef mutex_t
  5521 #undef cond_t
  5523 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5524 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5525 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5526 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5527 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5528 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5529 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5530 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5533 // recording machinery:
  5535 enum { RECORD_SYNCH_LIMIT = 200 };
  5536 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5537 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5538 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5539 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5540 int record_synch_count = 0;
  5541 bool record_synch_enabled = false;
  5543 // in dbx, examine recorded data this way:
  5544 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5546 void record_synch(char* name, bool returning) {
  5547   if (record_synch_enabled) {
  5548     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5549       record_synch_name[record_synch_count] = name;
  5550       record_synch_returning[record_synch_count] = returning;
  5551       record_synch_thread[record_synch_count] = thr_self();
  5552       record_synch_arg0ptr[record_synch_count] = &name;
  5553       record_synch_count++;
  5555     // put more checking code here:
  5556     // ...
  5560 void record_synch_enable() {
  5561   // start collecting trace data, if not already doing so
  5562   if (!record_synch_enabled)  record_synch_count = 0;
  5563   record_synch_enabled = true;
  5566 void record_synch_disable() {
  5567   // stop collecting trace data
  5568   record_synch_enabled = false;
  5571 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5572 #endif // PRODUCT
  5574 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5575 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5576                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5579 // JVMTI & JVM monitoring and management support
  5580 // The thread_cpu_time() and current_thread_cpu_time() are only
  5581 // supported if is_thread_cpu_time_supported() returns true.
  5582 // They are not supported on Solaris T1.
  5584 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5585 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5586 // of a thread.
  5587 //
  5588 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5589 // returns the fast estimate available on the platform.
  5591 // hrtime_t gethrvtime() return value includes
  5592 // user time but does not include system time
  5593 jlong os::current_thread_cpu_time() {
  5594   return (jlong) gethrvtime();
  5597 jlong os::thread_cpu_time(Thread *thread) {
  5598   // return user level CPU time only to be consistent with
  5599   // what current_thread_cpu_time returns.
  5600   // thread_cpu_time_info() must be changed if this changes
  5601   return os::thread_cpu_time(thread, false /* user time only */);
  5604 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5605   if (user_sys_cpu_time) {
  5606     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5607   } else {
  5608     return os::current_thread_cpu_time();
  5612 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5613   char proc_name[64];
  5614   int count;
  5615   prusage_t prusage;
  5616   jlong lwp_time;
  5617   int fd;
  5619   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5620                      getpid(),
  5621                      thread->osthread()->lwp_id());
  5622   fd = ::open(proc_name, O_RDONLY);
  5623   if ( fd == -1 ) return -1;
  5625   do {
  5626     count = ::pread(fd,
  5627                   (void *)&prusage.pr_utime,
  5628                   thr_time_size,
  5629                   thr_time_off);
  5630   } while (count < 0 && errno == EINTR);
  5631   ::close(fd);
  5632   if ( count < 0 ) return -1;
  5634   if (user_sys_cpu_time) {
  5635     // user + system CPU time
  5636     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5637                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5638                  (jlong)prusage.pr_stime.tv_nsec +
  5639                  (jlong)prusage.pr_utime.tv_nsec;
  5640   } else {
  5641     // user level CPU time only
  5642     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5643                 (jlong)prusage.pr_utime.tv_nsec;
  5646   return(lwp_time);
  5649 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5650   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5651   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5652   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5653   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5656 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5657   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5658   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5659   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5660   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5663 bool os::is_thread_cpu_time_supported() {
  5664   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5665     return true;
  5666   } else {
  5667     return false;
  5671 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5672 // Return the load average for our processor set if the primitive exists
  5673 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5674 int os::loadavg(double loadavg[], int nelem) {
  5675   if (pset_getloadavg_ptr != NULL) {
  5676     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5677   } else {
  5678     return ::getloadavg(loadavg, nelem);
  5682 //---------------------------------------------------------------------------------
  5684 static address same_page(address x, address y) {
  5685   intptr_t page_bits = -os::vm_page_size();
  5686   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  5687     return x;
  5688   else if (x > y)
  5689     return (address)(intptr_t(y) | ~page_bits) + 1;
  5690   else
  5691     return (address)(intptr_t(y) & page_bits);
  5694 bool os::find(address addr, outputStream* st) {
  5695   Dl_info dlinfo;
  5696   memset(&dlinfo, 0, sizeof(dlinfo));
  5697   if (dladdr(addr, &dlinfo)) {
  5698 #ifdef _LP64
  5699     st->print("0x%016lx: ", addr);
  5700 #else
  5701     st->print("0x%08x: ", addr);
  5702 #endif
  5703     if (dlinfo.dli_sname != NULL)
  5704       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5705     else if (dlinfo.dli_fname)
  5706       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5707     else
  5708       st->print("<absolute address>");
  5709     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
  5710 #ifdef _LP64
  5711     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
  5712 #else
  5713     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
  5714 #endif
  5715     st->cr();
  5717     if (Verbose) {
  5718       // decode some bytes around the PC
  5719       address begin = same_page(addr-40, addr);
  5720       address end   = same_page(addr+40, addr);
  5721       address       lowest = (address) dlinfo.dli_sname;
  5722       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5723       if (begin < lowest)  begin = lowest;
  5724       Dl_info dlinfo2;
  5725       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5726           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5727         end = (address) dlinfo2.dli_saddr;
  5728       Disassembler::decode(begin, end, st);
  5730     return true;
  5732   return false;
  5735 // Following function has been added to support HotSparc's libjvm.so running
  5736 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5737 // src/solaris/hpi/native_threads in the EVM codebase.
  5738 //
  5739 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5740 // libraries and should thus be removed. We will leave it behind for a while
  5741 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5742 // JDK. See 4341971.
  5744 #define STACK_SLACK 0x800
  5746 extern "C" {
  5747   intptr_t sysThreadAvailableStackWithSlack() {
  5748     stack_t st;
  5749     intptr_t retval, stack_top;
  5750     retval = thr_stksegment(&st);
  5751     assert(retval == 0, "incorrect return value from thr_stksegment");
  5752     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5753     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5754     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5755     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5759 // Just to get the Kernel build to link on solaris for testing.
  5761 extern "C" {
  5762 class ASGCT_CallTrace;
  5763 void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
  5764   KERNEL_RETURN;
  5768 // ObjectMonitor park-unpark infrastructure ...
  5769 //
  5770 // We implement Solaris and Linux PlatformEvents with the
  5771 // obvious condvar-mutex-flag triple.
  5772 // Another alternative that works quite well is pipes:
  5773 // Each PlatformEvent consists of a pipe-pair.
  5774 // The thread associated with the PlatformEvent
  5775 // calls park(), which reads from the input end of the pipe.
  5776 // Unpark() writes into the other end of the pipe.
  5777 // The write-side of the pipe must be set NDELAY.
  5778 // Unfortunately pipes consume a large # of handles.
  5779 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5780 // Using pipes for the 1st few threads might be workable, however.
  5781 //
  5782 // park() is permitted to return spuriously.
  5783 // Callers of park() should wrap the call to park() in
  5784 // an appropriate loop.  A litmus test for the correct
  5785 // usage of park is the following: if park() were modified
  5786 // to immediately return 0 your code should still work,
  5787 // albeit degenerating to a spin loop.
  5788 //
  5789 // An interesting optimization for park() is to use a trylock()
  5790 // to attempt to acquire the mutex.  If the trylock() fails
  5791 // then we know that a concurrent unpark() operation is in-progress.
  5792 // in that case the park() code could simply set _count to 0
  5793 // and return immediately.  The subsequent park() operation *might*
  5794 // return immediately.  That's harmless as the caller of park() is
  5795 // expected to loop.  By using trylock() we will have avoided a
  5796 // avoided a context switch caused by contention on the per-thread mutex.
  5797 //
  5798 // TODO-FIXME:
  5799 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5800 //     objectmonitor implementation.
  5801 // 2.  Collapse the JSR166 parker event, and the
  5802 //     objectmonitor ParkEvent into a single "Event" construct.
  5803 // 3.  In park() and unpark() add:
  5804 //     assert (Thread::current() == AssociatedWith).
  5805 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5806 //     1-out-of-N park() operations will return immediately.
  5807 //
  5808 // _Event transitions in park()
  5809 //   -1 => -1 : illegal
  5810 //    1 =>  0 : pass - return immediately
  5811 //    0 => -1 : block
  5812 //
  5813 // _Event serves as a restricted-range semaphore.
  5814 //
  5815 // Another possible encoding of _Event would be with
  5816 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5817 //
  5818 // TODO-FIXME: add DTRACE probes for:
  5819 // 1.   Tx parks
  5820 // 2.   Ty unparks Tx
  5821 // 3.   Tx resumes from park
  5824 // value determined through experimentation
  5825 #define ROUNDINGFIX 11
  5827 // utility to compute the abstime argument to timedwait.
  5828 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5830 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5831   // millis is the relative timeout time
  5832   // abstime will be the absolute timeout time
  5833   if (millis < 0)  millis = 0;
  5834   struct timeval now;
  5835   int status = gettimeofday(&now, NULL);
  5836   assert(status == 0, "gettimeofday");
  5837   jlong seconds = millis / 1000;
  5838   jlong max_wait_period;
  5840   if (UseLWPSynchronization) {
  5841     // forward port of fix for 4275818 (not sleeping long enough)
  5842     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5843     // _lwp_cond_timedwait() used a round_down algorithm rather
  5844     // than a round_up. For millis less than our roundfactor
  5845     // it rounded down to 0 which doesn't meet the spec.
  5846     // For millis > roundfactor we may return a bit sooner, but
  5847     // since we can not accurately identify the patch level and
  5848     // this has already been fixed in Solaris 9 and 8 we will
  5849     // leave it alone rather than always rounding down.
  5851     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  5852        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  5853            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  5854            max_wait_period = 21000000;
  5855   } else {
  5856     max_wait_period = 50000000;
  5858   millis %= 1000;
  5859   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  5860      seconds = max_wait_period;
  5862   abstime->tv_sec = now.tv_sec  + seconds;
  5863   long       usec = now.tv_usec + millis * 1000;
  5864   if (usec >= 1000000) {
  5865     abstime->tv_sec += 1;
  5866     usec -= 1000000;
  5868   abstime->tv_nsec = usec * 1000;
  5869   return abstime;
  5872 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5873 // Conceptually TryPark() should be equivalent to park(0).
  5875 int os::PlatformEvent::TryPark() {
  5876   for (;;) {
  5877     const int v = _Event ;
  5878     guarantee ((v == 0) || (v == 1), "invariant") ;
  5879     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5883 void os::PlatformEvent::park() {           // AKA: down()
  5884   // Invariant: Only the thread associated with the Event/PlatformEvent
  5885   // may call park().
  5886   int v ;
  5887   for (;;) {
  5888       v = _Event ;
  5889       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5891   guarantee (v >= 0, "invariant") ;
  5892   if (v == 0) {
  5893      // Do this the hard way by blocking ...
  5894      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5895      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  5896      // Only for SPARC >= V8PlusA
  5897 #if defined(__sparc) && defined(COMPILER2)
  5898      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5899 #endif
  5900      int status = os::Solaris::mutex_lock(_mutex);
  5901      assert_status(status == 0, status,  "mutex_lock");
  5902      guarantee (_nParked == 0, "invariant") ;
  5903      ++ _nParked ;
  5904      while (_Event < 0) {
  5905         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5906         // Treat this the same as if the wait was interrupted
  5907         // With usr/lib/lwp going to kernel, always handle ETIME
  5908         status = os::Solaris::cond_wait(_cond, _mutex);
  5909         if (status == ETIME) status = EINTR ;
  5910         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5912      -- _nParked ;
  5913      _Event = 0 ;
  5914      status = os::Solaris::mutex_unlock(_mutex);
  5915      assert_status(status == 0, status, "mutex_unlock");
  5919 int os::PlatformEvent::park(jlong millis) {
  5920   guarantee (_nParked == 0, "invariant") ;
  5921   int v ;
  5922   for (;;) {
  5923       v = _Event ;
  5924       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5926   guarantee (v >= 0, "invariant") ;
  5927   if (v != 0) return OS_OK ;
  5929   int ret = OS_TIMEOUT;
  5930   timestruc_t abst;
  5931   compute_abstime (&abst, millis);
  5933   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5934   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  5935   // Only for SPARC >= V8PlusA
  5936 #if defined(__sparc) && defined(COMPILER2)
  5937  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5938 #endif
  5939   int status = os::Solaris::mutex_lock(_mutex);
  5940   assert_status(status == 0, status, "mutex_lock");
  5941   guarantee (_nParked == 0, "invariant") ;
  5942   ++ _nParked ;
  5943   while (_Event < 0) {
  5944      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  5945      assert_status(status == 0 || status == EINTR ||
  5946                    status == ETIME || status == ETIMEDOUT,
  5947                    status, "cond_timedwait");
  5948      if (!FilterSpuriousWakeups) break ;                // previous semantics
  5949      if (status == ETIME || status == ETIMEDOUT) break ;
  5950      // We consume and ignore EINTR and spurious wakeups.
  5952   -- _nParked ;
  5953   if (_Event >= 0) ret = OS_OK ;
  5954   _Event = 0 ;
  5955   status = os::Solaris::mutex_unlock(_mutex);
  5956   assert_status(status == 0, status, "mutex_unlock");
  5957   return ret;
  5960 void os::PlatformEvent::unpark() {
  5961   int v, AnyWaiters;
  5963   // Increment _Event.
  5964   // Another acceptable implementation would be to simply swap 1
  5965   // into _Event:
  5966   //   if (Swap (&_Event, 1) < 0) {
  5967   //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
  5968   //      if (AnyWaiters) cond_signal (_cond) ;
  5969   //   }
  5971   for (;;) {
  5972     v = _Event ;
  5973     if (v > 0) {
  5974        // The LD of _Event could have reordered or be satisfied
  5975        // by a read-aside from this processor's write buffer.
  5976        // To avoid problems execute a barrier and then
  5977        // ratify the value.  A degenerate CAS() would also work.
  5978        // Viz., CAS (v+0, &_Event, v) == v).
  5979        OrderAccess::fence() ;
  5980        if (_Event == v) return ;
  5981        continue ;
  5983     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5986   // If the thread associated with the event was parked, wake it.
  5987   if (v < 0) {
  5988      int status ;
  5989      // Wait for the thread assoc with the PlatformEvent to vacate.
  5990      status = os::Solaris::mutex_lock(_mutex);
  5991      assert_status(status == 0, status, "mutex_lock");
  5992      AnyWaiters = _nParked ;
  5993      status = os::Solaris::mutex_unlock(_mutex);
  5994      assert_status(status == 0, status, "mutex_unlock");
  5995      guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5996      if (AnyWaiters != 0) {
  5997        // We intentional signal *after* dropping the lock
  5998        // to avoid a common class of futile wakeups.
  5999        status = os::Solaris::cond_signal(_cond);
  6000        assert_status(status == 0, status, "cond_signal");
  6005 // JSR166
  6006 // -------------------------------------------------------
  6008 /*
  6009  * The solaris and linux implementations of park/unpark are fairly
  6010  * conservative for now, but can be improved. They currently use a
  6011  * mutex/condvar pair, plus _counter.
  6012  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6013  * sets count to 1 and signals condvar.  Only one thread ever waits
  6014  * on the condvar. Contention seen when trying to park implies that someone
  6015  * is unparking you, so don't wait. And spurious returns are fine, so there
  6016  * is no need to track notifications.
  6017  */
  6019 #define NANOSECS_PER_SEC 1000000000
  6020 #define NANOSECS_PER_MILLISEC 1000000
  6021 #define MAX_SECS 100000000
  6023 /*
  6024  * This code is common to linux and solaris and will be moved to a
  6025  * common place in dolphin.
  6027  * The passed in time value is either a relative time in nanoseconds
  6028  * or an absolute time in milliseconds. Either way it has to be unpacked
  6029  * into suitable seconds and nanoseconds components and stored in the
  6030  * given timespec structure.
  6031  * Given time is a 64-bit value and the time_t used in the timespec is only
  6032  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6033  * overflow if times way in the future are given. Further on Solaris versions
  6034  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6035  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6036  * As it will be 28 years before "now + 100000000" will overflow we can
  6037  * ignore overflow and just impose a hard-limit on seconds using the value
  6038  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6039  * years from "now".
  6040  */
  6041 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6042   assert (time > 0, "convertTime");
  6044   struct timeval now;
  6045   int status = gettimeofday(&now, NULL);
  6046   assert(status == 0, "gettimeofday");
  6048   time_t max_secs = now.tv_sec + MAX_SECS;
  6050   if (isAbsolute) {
  6051     jlong secs = time / 1000;
  6052     if (secs > max_secs) {
  6053       absTime->tv_sec = max_secs;
  6055     else {
  6056       absTime->tv_sec = secs;
  6058     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6060   else {
  6061     jlong secs = time / NANOSECS_PER_SEC;
  6062     if (secs >= MAX_SECS) {
  6063       absTime->tv_sec = max_secs;
  6064       absTime->tv_nsec = 0;
  6066     else {
  6067       absTime->tv_sec = now.tv_sec + secs;
  6068       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6069       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6070         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6071         ++absTime->tv_sec; // note: this must be <= max_secs
  6075   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6076   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6077   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6078   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6081 void Parker::park(bool isAbsolute, jlong time) {
  6083   // Optional fast-path check:
  6084   // Return immediately if a permit is available.
  6085   if (_counter > 0) {
  6086       _counter = 0 ;
  6087       OrderAccess::fence();
  6088       return ;
  6091   // Optional fast-exit: Check interrupt before trying to wait
  6092   Thread* thread = Thread::current();
  6093   assert(thread->is_Java_thread(), "Must be JavaThread");
  6094   JavaThread *jt = (JavaThread *)thread;
  6095   if (Thread::is_interrupted(thread, false)) {
  6096     return;
  6099   // First, demultiplex/decode time arguments
  6100   timespec absTime;
  6101   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6102     return;
  6104   if (time > 0) {
  6105     // Warning: this code might be exposed to the old Solaris time
  6106     // round-down bugs.  Grep "roundingFix" for details.
  6107     unpackTime(&absTime, isAbsolute, time);
  6110   // Enter safepoint region
  6111   // Beware of deadlocks such as 6317397.
  6112   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6113   // In particular a thread must never block on the Threads_lock while
  6114   // holding the Parker:: mutex.  If safepoints are pending both the
  6115   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6116   ThreadBlockInVM tbivm(jt);
  6118   // Don't wait if cannot get lock since interference arises from
  6119   // unblocking.  Also. check interrupt before trying wait
  6120   if (Thread::is_interrupted(thread, false) ||
  6121       os::Solaris::mutex_trylock(_mutex) != 0) {
  6122     return;
  6125   int status ;
  6127   if (_counter > 0)  { // no wait needed
  6128     _counter = 0;
  6129     status = os::Solaris::mutex_unlock(_mutex);
  6130     assert (status == 0, "invariant") ;
  6131     OrderAccess::fence();
  6132     return;
  6135 #ifdef ASSERT
  6136   // Don't catch signals while blocked; let the running threads have the signals.
  6137   // (This allows a debugger to break into the running thread.)
  6138   sigset_t oldsigs;
  6139   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6140   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6141 #endif
  6143   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6144   jt->set_suspend_equivalent();
  6145   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6147   // Do this the hard way by blocking ...
  6148   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6149   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6150   // Only for SPARC >= V8PlusA
  6151 #if defined(__sparc) && defined(COMPILER2)
  6152   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6153 #endif
  6155   if (time == 0) {
  6156     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6157   } else {
  6158     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6160   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6161   // versions of the Solaris.
  6162   assert_status(status == 0 || status == EINTR ||
  6163                 status == ETIME || status == ETIMEDOUT,
  6164                 status, "cond_timedwait");
  6166 #ifdef ASSERT
  6167   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6168 #endif
  6169   _counter = 0 ;
  6170   status = os::Solaris::mutex_unlock(_mutex);
  6171   assert_status(status == 0, status, "mutex_unlock") ;
  6173   // If externally suspended while waiting, re-suspend
  6174   if (jt->handle_special_suspend_equivalent_condition()) {
  6175     jt->java_suspend_self();
  6177   OrderAccess::fence();
  6180 void Parker::unpark() {
  6181   int s, status ;
  6182   status = os::Solaris::mutex_lock (_mutex) ;
  6183   assert (status == 0, "invariant") ;
  6184   s = _counter;
  6185   _counter = 1;
  6186   status = os::Solaris::mutex_unlock (_mutex) ;
  6187   assert (status == 0, "invariant") ;
  6189   if (s < 1) {
  6190     status = os::Solaris::cond_signal (_cond) ;
  6191     assert (status == 0, "invariant") ;
  6195 extern char** environ;
  6197 // Run the specified command in a separate process. Return its exit value,
  6198 // or -1 on failure (e.g. can't fork a new process).
  6199 // Unlike system(), this function can be called from signal handler. It
  6200 // doesn't block SIGINT et al.
  6201 int os::fork_and_exec(char* cmd) {
  6202   char * argv[4];
  6203   argv[0] = (char *)"sh";
  6204   argv[1] = (char *)"-c";
  6205   argv[2] = cmd;
  6206   argv[3] = NULL;
  6208   // fork is async-safe, fork1 is not so can't use in signal handler
  6209   pid_t pid;
  6210   Thread* t = ThreadLocalStorage::get_thread_slow();
  6211   if (t != NULL && t->is_inside_signal_handler()) {
  6212     pid = fork();
  6213   } else {
  6214     pid = fork1();
  6217   if (pid < 0) {
  6218     // fork failed
  6219     warning("fork failed: %s", strerror(errno));
  6220     return -1;
  6222   } else if (pid == 0) {
  6223     // child process
  6225     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6226     execve("/usr/bin/sh", argv, environ);
  6228     // execve failed
  6229     _exit(-1);
  6231   } else  {
  6232     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6233     // care about the actual exit code, for now.
  6235     int status;
  6237     // Wait for the child process to exit.  This returns immediately if
  6238     // the child has already exited. */
  6239     while (waitpid(pid, &status, 0) < 0) {
  6240         switch (errno) {
  6241         case ECHILD: return 0;
  6242         case EINTR: break;
  6243         default: return -1;
  6247     if (WIFEXITED(status)) {
  6248        // The child exited normally; get its exit code.
  6249        return WEXITSTATUS(status);
  6250     } else if (WIFSIGNALED(status)) {
  6251        // The child exited because of a signal
  6252        // The best value to return is 0x80 + signal number,
  6253        // because that is what all Unix shells do, and because
  6254        // it allows callers to distinguish between process exit and
  6255        // process death by signal.
  6256        return 0x80 + WTERMSIG(status);
  6257     } else {
  6258        // Unknown exit code; pass it through
  6259        return status;
  6264 // is_headless_jre()
  6265 //
  6266 // Test for the existence of libmawt in motif21 or xawt directories
  6267 // in order to report if we are running in a headless jre
  6268 //
  6269 bool os::is_headless_jre() {
  6270     struct stat statbuf;
  6271     char buf[MAXPATHLEN];
  6272     char libmawtpath[MAXPATHLEN];
  6273     const char *xawtstr  = "/xawt/libmawt.so";
  6274     const char *motifstr = "/motif21/libmawt.so";
  6275     char *p;
  6277     // Get path to libjvm.so
  6278     os::jvm_path(buf, sizeof(buf));
  6280     // Get rid of libjvm.so
  6281     p = strrchr(buf, '/');
  6282     if (p == NULL) return false;
  6283     else *p = '\0';
  6285     // Get rid of client or server
  6286     p = strrchr(buf, '/');
  6287     if (p == NULL) return false;
  6288     else *p = '\0';
  6290     // check xawt/libmawt.so
  6291     strcpy(libmawtpath, buf);
  6292     strcat(libmawtpath, xawtstr);
  6293     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6295     // check motif21/libmawt.so
  6296     strcpy(libmawtpath, buf);
  6297     strcat(libmawtpath, motifstr);
  6298     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6300     return true;
  6303 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6304   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6307 int os::close(int fd) {
  6308   RESTARTABLE_RETURN_INT(::close(fd));
  6311 int os::socket_close(int fd) {
  6312   RESTARTABLE_RETURN_INT(::close(fd));
  6315 int os::recv(int fd, char *buf, int nBytes, int flags) {
  6316   INTERRUPTIBLE_RETURN_INT(::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6320 int os::send(int fd, char *buf, int nBytes, int flags) {
  6321   INTERRUPTIBLE_RETURN_INT(::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6324 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
  6325   RESTARTABLE_RETURN_INT(::send(fd, buf, nBytes, flags));
  6328 // As both poll and select can be interrupted by signals, we have to be
  6329 // prepared to restart the system call after updating the timeout, unless
  6330 // a poll() is done with timeout == -1, in which case we repeat with this
  6331 // "wait forever" value.
  6333 int os::timeout(int fd, long timeout) {
  6334   int res;
  6335   struct timeval t;
  6336   julong prevtime, newtime;
  6337   static const char* aNull = 0;
  6338   struct pollfd pfd;
  6339   pfd.fd = fd;
  6340   pfd.events = POLLIN;
  6342   gettimeofday(&t, &aNull);
  6343   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6345   for(;;) {
  6346     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6347     if(res == OS_ERR && errno == EINTR) {
  6348         if(timeout != -1) {
  6349           gettimeofday(&t, &aNull);
  6350           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6351           timeout -= newtime - prevtime;
  6352           if(timeout <= 0)
  6353             return OS_OK;
  6354           prevtime = newtime;
  6356     } else return res;
  6360 int os::connect(int fd, struct sockaddr *him, int len) {
  6361   int _result;
  6362   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,
  6363                           os::Solaris::clear_interrupted);
  6365   // Depending on when thread interruption is reset, _result could be
  6366   // one of two values when errno == EINTR
  6368   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6369                                         && (errno == EINTR)) {
  6370      /* restarting a connect() changes its errno semantics */
  6371      INTERRUPTIBLE(::connect(fd, him, len), _result,
  6372                      os::Solaris::clear_interrupted);
  6373      /* undo these changes */
  6374      if (_result == OS_ERR) {
  6375        if (errno == EALREADY) {
  6376          errno = EINPROGRESS; /* fall through */
  6377        } else if (errno == EISCONN) {
  6378          errno = 0;
  6379          return OS_OK;
  6383    return _result;
  6386 int os::accept(int fd, struct sockaddr *him, int *len) {
  6387   if (fd < 0)
  6388    return OS_ERR;
  6389   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him,\
  6390     (socklen_t*) len), os::Solaris::clear_interrupted);
  6393 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
  6394                              sockaddr *from, int *fromlen) {
  6395    //%%note jvm_r11
  6396   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes,\
  6397     flags, from, fromlen), os::Solaris::clear_interrupted);
  6400 int os::sendto(int fd, char *buf, int len, int flags,
  6401                            struct sockaddr *to, int tolen) {
  6402   //%%note jvm_r11
  6403   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags,\
  6404     to, tolen), os::Solaris::clear_interrupted);
  6407 int os::socket_available(int fd, jint *pbytes) {
  6408    if (fd < 0)
  6409      return OS_OK;
  6411    int ret;
  6413    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6415    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  6416    // is expected to return 0 on failure and 1 on success to the jdk.
  6418    return (ret == OS_ERR) ? 0 : 1;
  6422 int os::bind(int fd, struct sockaddr *him, int len) {
  6423    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6424      os::Solaris::clear_interrupted);

mercurial