src/cpu/x86/vm/templateTable_x86_32.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2314
f95d63e2154a
child 2440
bb8e3b66bde6
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    39 #define __ _masm->
    41 //----------------------------------------------------------------------------------------------------
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No i486 specific initialization
    46 }
    48 //----------------------------------------------------------------------------------------------------
    49 // Address computation
    51 // local variables
    52 static inline Address iaddress(int n)            {
    53   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    54 }
    56 static inline Address laddress(int n)            { return iaddress(n + 1); }
    57 static inline Address haddress(int n)            { return iaddress(n + 0); }
    58 static inline Address faddress(int n)            { return iaddress(n); }
    59 static inline Address daddress(int n)            { return laddress(n); }
    60 static inline Address aaddress(int n)            { return iaddress(n); }
    62 static inline Address iaddress(Register r)       {
    63   return Address(rdi, r, Interpreter::stackElementScale());
    64 }
    65 static inline Address laddress(Register r)       {
    66   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    67 }
    68 static inline Address haddress(Register r)       {
    69   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    70 }
    72 static inline Address faddress(Register r)       { return iaddress(r); }
    73 static inline Address daddress(Register r)       { return laddress(r); }
    74 static inline Address aaddress(Register r)       { return iaddress(r); }
    76 // expression stack
    77 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    78 // data beyond the rsp which is potentially unsafe in an MT environment;
    79 // an interrupt may overwrite that data.)
    80 static inline Address at_rsp   () {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than rsp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88   return tos;
    89 }
    91 static inline Address at_tos_p1() {
    92   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    93 }
    95 static inline Address at_tos_p2() {
    96   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    97 }
    99 // Condition conversion
   100 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   101   switch (cc) {
   102     case TemplateTable::equal        : return Assembler::notEqual;
   103     case TemplateTable::not_equal    : return Assembler::equal;
   104     case TemplateTable::less         : return Assembler::greaterEqual;
   105     case TemplateTable::less_equal   : return Assembler::greater;
   106     case TemplateTable::greater      : return Assembler::lessEqual;
   107     case TemplateTable::greater_equal: return Assembler::less;
   108   }
   109   ShouldNotReachHere();
   110   return Assembler::zero;
   111 }
   114 //----------------------------------------------------------------------------------------------------
   115 // Miscelaneous helper routines
   117 // Store an oop (or NULL) at the address described by obj.
   118 // If val == noreg this means store a NULL
   120 static void do_oop_store(InterpreterMacroAssembler* _masm,
   121                          Address obj,
   122                          Register val,
   123                          BarrierSet::Name barrier,
   124                          bool precise) {
   125   assert(val == noreg || val == rax, "parameter is just for looks");
   126   switch (barrier) {
   127 #ifndef SERIALGC
   128     case BarrierSet::G1SATBCT:
   129     case BarrierSet::G1SATBCTLogging:
   130       {
   131         // flatten object address if needed
   132         // We do it regardless of precise because we need the registers
   133         if (obj.index() == noreg && obj.disp() == 0) {
   134           if (obj.base() != rdx) {
   135             __ movl(rdx, obj.base());
   136           }
   137         } else {
   138           __ leal(rdx, obj);
   139         }
   140         __ get_thread(rcx);
   141         __ save_bcp();
   142         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   144         // Do the actual store
   145         // noreg means NULL
   146         if (val == noreg) {
   147           __ movptr(Address(rdx, 0), NULL_WORD);
   148           // No post barrier for NULL
   149         } else {
   150           __ movl(Address(rdx, 0), val);
   151           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   152         }
   153         __ restore_bcp();
   155       }
   156       break;
   157 #endif // SERIALGC
   158     case BarrierSet::CardTableModRef:
   159     case BarrierSet::CardTableExtension:
   160       {
   161         if (val == noreg) {
   162           __ movptr(obj, NULL_WORD);
   163         } else {
   164           __ movl(obj, val);
   165           // flatten object address if needed
   166           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   167             __ store_check(obj.base());
   168           } else {
   169             __ leal(rdx, obj);
   170             __ store_check(rdx);
   171           }
   172         }
   173       }
   174       break;
   175     case BarrierSet::ModRef:
   176     case BarrierSet::Other:
   177       if (val == noreg) {
   178         __ movptr(obj, NULL_WORD);
   179       } else {
   180         __ movl(obj, val);
   181       }
   182       break;
   183     default      :
   184       ShouldNotReachHere();
   186   }
   187 }
   189 Address TemplateTable::at_bcp(int offset) {
   190   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   191   return Address(rsi, offset);
   192 }
   195 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   196                                    Register scratch,
   197                                    bool load_bc_into_scratch/*=true*/) {
   199   if (!RewriteBytecodes) return;
   200   // the pair bytecodes have already done the load.
   201   if (load_bc_into_scratch) {
   202     __ movl(bc, bytecode);
   203   }
   204   Label patch_done;
   205   if (JvmtiExport::can_post_breakpoint()) {
   206     Label fast_patch;
   207     // if a breakpoint is present we can't rewrite the stream directly
   208     __ movzbl(scratch, at_bcp(0));
   209     __ cmpl(scratch, Bytecodes::_breakpoint);
   210     __ jcc(Assembler::notEqual, fast_patch);
   211     __ get_method(scratch);
   212     // Let breakpoint table handling rewrite to quicker bytecode
   213     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   214 #ifndef ASSERT
   215     __ jmpb(patch_done);
   216 #else
   217     __ jmp(patch_done);
   218 #endif
   219     __ bind(fast_patch);
   220   }
   221 #ifdef ASSERT
   222   Label okay;
   223   __ load_unsigned_byte(scratch, at_bcp(0));
   224   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   225   __ jccb(Assembler::equal, okay);
   226   __ cmpl(scratch, bc);
   227   __ jcc(Assembler::equal, okay);
   228   __ stop("patching the wrong bytecode");
   229   __ bind(okay);
   230 #endif
   231   // patch bytecode
   232   __ movb(at_bcp(0), bc);
   233   __ bind(patch_done);
   234 }
   236 //----------------------------------------------------------------------------------------------------
   237 // Individual instructions
   239 void TemplateTable::nop() {
   240   transition(vtos, vtos);
   241   // nothing to do
   242 }
   244 void TemplateTable::shouldnotreachhere() {
   245   transition(vtos, vtos);
   246   __ stop("shouldnotreachhere bytecode");
   247 }
   251 void TemplateTable::aconst_null() {
   252   transition(vtos, atos);
   253   __ xorptr(rax, rax);
   254 }
   257 void TemplateTable::iconst(int value) {
   258   transition(vtos, itos);
   259   if (value == 0) {
   260     __ xorptr(rax, rax);
   261   } else {
   262     __ movptr(rax, value);
   263   }
   264 }
   267 void TemplateTable::lconst(int value) {
   268   transition(vtos, ltos);
   269   if (value == 0) {
   270     __ xorptr(rax, rax);
   271   } else {
   272     __ movptr(rax, value);
   273   }
   274   assert(value >= 0, "check this code");
   275   __ xorptr(rdx, rdx);
   276 }
   279 void TemplateTable::fconst(int value) {
   280   transition(vtos, ftos);
   281          if (value == 0) { __ fldz();
   282   } else if (value == 1) { __ fld1();
   283   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   284   } else                 { ShouldNotReachHere();
   285   }
   286 }
   289 void TemplateTable::dconst(int value) {
   290   transition(vtos, dtos);
   291          if (value == 0) { __ fldz();
   292   } else if (value == 1) { __ fld1();
   293   } else                 { ShouldNotReachHere();
   294   }
   295 }
   298 void TemplateTable::bipush() {
   299   transition(vtos, itos);
   300   __ load_signed_byte(rax, at_bcp(1));
   301 }
   304 void TemplateTable::sipush() {
   305   transition(vtos, itos);
   306   __ load_unsigned_short(rax, at_bcp(1));
   307   __ bswapl(rax);
   308   __ sarl(rax, 16);
   309 }
   311 void TemplateTable::ldc(bool wide) {
   312   transition(vtos, vtos);
   313   Label call_ldc, notFloat, notClass, Done;
   315   if (wide) {
   316     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   317   } else {
   318     __ load_unsigned_byte(rbx, at_bcp(1));
   319   }
   320   __ get_cpool_and_tags(rcx, rax);
   321   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   322   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   324   // get type
   325   __ xorptr(rdx, rdx);
   326   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   328   // unresolved string - get the resolved string
   329   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   330   __ jccb(Assembler::equal, call_ldc);
   332   // unresolved class - get the resolved class
   333   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   334   __ jccb(Assembler::equal, call_ldc);
   336   // unresolved class in error (resolution failed) - call into runtime
   337   // so that the same error from first resolution attempt is thrown.
   338   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   339   __ jccb(Assembler::equal, call_ldc);
   341   // resolved class - need to call vm to get java mirror of the class
   342   __ cmpl(rdx, JVM_CONSTANT_Class);
   343   __ jcc(Assembler::notEqual, notClass);
   345   __ bind(call_ldc);
   346   __ movl(rcx, wide);
   347   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   348   __ push(atos);
   349   __ jmp(Done);
   351   __ bind(notClass);
   352   __ cmpl(rdx, JVM_CONSTANT_Float);
   353   __ jccb(Assembler::notEqual, notFloat);
   354   // ftos
   355   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   356   __ push(ftos);
   357   __ jmp(Done);
   359   __ bind(notFloat);
   360 #ifdef ASSERT
   361   { Label L;
   362     __ cmpl(rdx, JVM_CONSTANT_Integer);
   363     __ jcc(Assembler::equal, L);
   364     __ cmpl(rdx, JVM_CONSTANT_String);
   365     __ jcc(Assembler::equal, L);
   366     __ stop("unexpected tag type in ldc");
   367     __ bind(L);
   368   }
   369 #endif
   370   Label isOop;
   371   // atos and itos
   372   // String is only oop type we will see here
   373   __ cmpl(rdx, JVM_CONSTANT_String);
   374   __ jccb(Assembler::equal, isOop);
   375   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   376   __ push(itos);
   377   __ jmp(Done);
   378   __ bind(isOop);
   379   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   380   __ push(atos);
   382   if (VerifyOops) {
   383     __ verify_oop(rax);
   384   }
   385   __ bind(Done);
   386 }
   388 // Fast path for caching oop constants.
   389 // %%% We should use this to handle Class and String constants also.
   390 // %%% It will simplify the ldc/primitive path considerably.
   391 void TemplateTable::fast_aldc(bool wide) {
   392   transition(vtos, atos);
   394   if (!EnableMethodHandles) {
   395     // We should not encounter this bytecode if !EnableMethodHandles.
   396     // The verifier will stop it.  However, if we get past the verifier,
   397     // this will stop the thread in a reasonable way, without crashing the JVM.
   398     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   399                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   400     // the call_VM checks for exception, so we should never return here.
   401     __ should_not_reach_here();
   402     return;
   403   }
   405   const Register cache = rcx;
   406   const Register index = rdx;
   408   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   409   if (VerifyOops) {
   410     __ verify_oop(rax);
   411   }
   413   Label L_done, L_throw_exception;
   414   const Register con_klass_temp = rcx;  // same as Rcache
   415   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
   416   __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   417   __ jcc(Assembler::notEqual, L_done);
   418   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   419   __ jcc(Assembler::notEqual, L_throw_exception);
   420   __ xorptr(rax, rax);
   421   __ jmp(L_done);
   423   // Load the exception from the system-array which wraps it:
   424   __ bind(L_throw_exception);
   425   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   426   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   428   __ bind(L_done);
   429 }
   431 void TemplateTable::ldc2_w() {
   432   transition(vtos, vtos);
   433   Label Long, Done;
   434   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   436   __ get_cpool_and_tags(rcx, rax);
   437   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   438   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   440   // get type
   441   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   442   __ jccb(Assembler::notEqual, Long);
   443   // dtos
   444   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   445   __ push(dtos);
   446   __ jmpb(Done);
   448   __ bind(Long);
   449   // ltos
   450   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   451   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   453   __ push(ltos);
   455   __ bind(Done);
   456 }
   459 void TemplateTable::locals_index(Register reg, int offset) {
   460   __ load_unsigned_byte(reg, at_bcp(offset));
   461   __ negptr(reg);
   462 }
   465 void TemplateTable::iload() {
   466   transition(vtos, itos);
   467   if (RewriteFrequentPairs) {
   468     Label rewrite, done;
   470     // get next byte
   471     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   472     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   473     // last two iloads in a pair.  Comparing against fast_iload means that
   474     // the next bytecode is neither an iload or a caload, and therefore
   475     // an iload pair.
   476     __ cmpl(rbx, Bytecodes::_iload);
   477     __ jcc(Assembler::equal, done);
   479     __ cmpl(rbx, Bytecodes::_fast_iload);
   480     __ movl(rcx, Bytecodes::_fast_iload2);
   481     __ jccb(Assembler::equal, rewrite);
   483     // if _caload, rewrite to fast_icaload
   484     __ cmpl(rbx, Bytecodes::_caload);
   485     __ movl(rcx, Bytecodes::_fast_icaload);
   486     __ jccb(Assembler::equal, rewrite);
   488     // rewrite so iload doesn't check again.
   489     __ movl(rcx, Bytecodes::_fast_iload);
   491     // rewrite
   492     // rcx: fast bytecode
   493     __ bind(rewrite);
   494     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   495     __ bind(done);
   496   }
   498   // Get the local value into tos
   499   locals_index(rbx);
   500   __ movl(rax, iaddress(rbx));
   501 }
   504 void TemplateTable::fast_iload2() {
   505   transition(vtos, itos);
   506   locals_index(rbx);
   507   __ movl(rax, iaddress(rbx));
   508   __ push(itos);
   509   locals_index(rbx, 3);
   510   __ movl(rax, iaddress(rbx));
   511 }
   513 void TemplateTable::fast_iload() {
   514   transition(vtos, itos);
   515   locals_index(rbx);
   516   __ movl(rax, iaddress(rbx));
   517 }
   520 void TemplateTable::lload() {
   521   transition(vtos, ltos);
   522   locals_index(rbx);
   523   __ movptr(rax, laddress(rbx));
   524   NOT_LP64(__ movl(rdx, haddress(rbx)));
   525 }
   528 void TemplateTable::fload() {
   529   transition(vtos, ftos);
   530   locals_index(rbx);
   531   __ fld_s(faddress(rbx));
   532 }
   535 void TemplateTable::dload() {
   536   transition(vtos, dtos);
   537   locals_index(rbx);
   538   __ fld_d(daddress(rbx));
   539 }
   542 void TemplateTable::aload() {
   543   transition(vtos, atos);
   544   locals_index(rbx);
   545   __ movptr(rax, aaddress(rbx));
   546 }
   549 void TemplateTable::locals_index_wide(Register reg) {
   550   __ movl(reg, at_bcp(2));
   551   __ bswapl(reg);
   552   __ shrl(reg, 16);
   553   __ negptr(reg);
   554 }
   557 void TemplateTable::wide_iload() {
   558   transition(vtos, itos);
   559   locals_index_wide(rbx);
   560   __ movl(rax, iaddress(rbx));
   561 }
   564 void TemplateTable::wide_lload() {
   565   transition(vtos, ltos);
   566   locals_index_wide(rbx);
   567   __ movptr(rax, laddress(rbx));
   568   NOT_LP64(__ movl(rdx, haddress(rbx)));
   569 }
   572 void TemplateTable::wide_fload() {
   573   transition(vtos, ftos);
   574   locals_index_wide(rbx);
   575   __ fld_s(faddress(rbx));
   576 }
   579 void TemplateTable::wide_dload() {
   580   transition(vtos, dtos);
   581   locals_index_wide(rbx);
   582   __ fld_d(daddress(rbx));
   583 }
   586 void TemplateTable::wide_aload() {
   587   transition(vtos, atos);
   588   locals_index_wide(rbx);
   589   __ movptr(rax, aaddress(rbx));
   590 }
   592 void TemplateTable::index_check(Register array, Register index) {
   593   // Pop ptr into array
   594   __ pop_ptr(array);
   595   index_check_without_pop(array, index);
   596 }
   598 void TemplateTable::index_check_without_pop(Register array, Register index) {
   599   // destroys rbx,
   600   // check array
   601   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   602   LP64_ONLY(__ movslq(index, index));
   603   // check index
   604   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   605   if (index != rbx) {
   606     // ??? convention: move aberrant index into rbx, for exception message
   607     assert(rbx != array, "different registers");
   608     __ mov(rbx, index);
   609   }
   610   __ jump_cc(Assembler::aboveEqual,
   611              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   612 }
   615 void TemplateTable::iaload() {
   616   transition(itos, itos);
   617   // rdx: array
   618   index_check(rdx, rax);  // kills rbx,
   619   // rax,: index
   620   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   621 }
   624 void TemplateTable::laload() {
   625   transition(itos, ltos);
   626   // rax,: index
   627   // rdx: array
   628   index_check(rdx, rax);
   629   __ mov(rbx, rax);
   630   // rbx,: index
   631   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   632   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   633 }
   636 void TemplateTable::faload() {
   637   transition(itos, ftos);
   638   // rdx: array
   639   index_check(rdx, rax);  // kills rbx,
   640   // rax,: index
   641   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   642 }
   645 void TemplateTable::daload() {
   646   transition(itos, dtos);
   647   // rdx: array
   648   index_check(rdx, rax);  // kills rbx,
   649   // rax,: index
   650   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   651 }
   654 void TemplateTable::aaload() {
   655   transition(itos, atos);
   656   // rdx: array
   657   index_check(rdx, rax);  // kills rbx,
   658   // rax,: index
   659   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   660 }
   663 void TemplateTable::baload() {
   664   transition(itos, itos);
   665   // rdx: array
   666   index_check(rdx, rax);  // kills rbx,
   667   // rax,: index
   668   // can do better code for P5 - fix this at some point
   669   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   670   __ mov(rax, rbx);
   671 }
   674 void TemplateTable::caload() {
   675   transition(itos, itos);
   676   // rdx: array
   677   index_check(rdx, rax);  // kills rbx,
   678   // rax,: index
   679   // can do better code for P5 - may want to improve this at some point
   680   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   681   __ mov(rax, rbx);
   682 }
   684 // iload followed by caload frequent pair
   685 void TemplateTable::fast_icaload() {
   686   transition(vtos, itos);
   687   // load index out of locals
   688   locals_index(rbx);
   689   __ movl(rax, iaddress(rbx));
   691   // rdx: array
   692   index_check(rdx, rax);
   693   // rax,: index
   694   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   695   __ mov(rax, rbx);
   696 }
   698 void TemplateTable::saload() {
   699   transition(itos, itos);
   700   // rdx: array
   701   index_check(rdx, rax);  // kills rbx,
   702   // rax,: index
   703   // can do better code for P5 - may want to improve this at some point
   704   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   705   __ mov(rax, rbx);
   706 }
   709 void TemplateTable::iload(int n) {
   710   transition(vtos, itos);
   711   __ movl(rax, iaddress(n));
   712 }
   715 void TemplateTable::lload(int n) {
   716   transition(vtos, ltos);
   717   __ movptr(rax, laddress(n));
   718   NOT_LP64(__ movptr(rdx, haddress(n)));
   719 }
   722 void TemplateTable::fload(int n) {
   723   transition(vtos, ftos);
   724   __ fld_s(faddress(n));
   725 }
   728 void TemplateTable::dload(int n) {
   729   transition(vtos, dtos);
   730   __ fld_d(daddress(n));
   731 }
   734 void TemplateTable::aload(int n) {
   735   transition(vtos, atos);
   736   __ movptr(rax, aaddress(n));
   737 }
   740 void TemplateTable::aload_0() {
   741   transition(vtos, atos);
   742   // According to bytecode histograms, the pairs:
   743   //
   744   // _aload_0, _fast_igetfield
   745   // _aload_0, _fast_agetfield
   746   // _aload_0, _fast_fgetfield
   747   //
   748   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   749   // bytecode checks if the next bytecode is either _fast_igetfield,
   750   // _fast_agetfield or _fast_fgetfield and then rewrites the
   751   // current bytecode into a pair bytecode; otherwise it rewrites the current
   752   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   753   //
   754   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   755   //       otherwise we may miss an opportunity for a pair.
   756   //
   757   // Also rewrite frequent pairs
   758   //   aload_0, aload_1
   759   //   aload_0, iload_1
   760   // These bytecodes with a small amount of code are most profitable to rewrite
   761   if (RewriteFrequentPairs) {
   762     Label rewrite, done;
   763     // get next byte
   764     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   766     // do actual aload_0
   767     aload(0);
   769     // if _getfield then wait with rewrite
   770     __ cmpl(rbx, Bytecodes::_getfield);
   771     __ jcc(Assembler::equal, done);
   773     // if _igetfield then reqrite to _fast_iaccess_0
   774     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   775     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   776     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   777     __ jccb(Assembler::equal, rewrite);
   779     // if _agetfield then reqrite to _fast_aaccess_0
   780     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   781     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   782     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   783     __ jccb(Assembler::equal, rewrite);
   785     // if _fgetfield then reqrite to _fast_faccess_0
   786     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   787     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   788     __ movl(rcx, Bytecodes::_fast_faccess_0);
   789     __ jccb(Assembler::equal, rewrite);
   791     // else rewrite to _fast_aload0
   792     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   793     __ movl(rcx, Bytecodes::_fast_aload_0);
   795     // rewrite
   796     // rcx: fast bytecode
   797     __ bind(rewrite);
   798     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   800     __ bind(done);
   801   } else {
   802     aload(0);
   803   }
   804 }
   806 void TemplateTable::istore() {
   807   transition(itos, vtos);
   808   locals_index(rbx);
   809   __ movl(iaddress(rbx), rax);
   810 }
   813 void TemplateTable::lstore() {
   814   transition(ltos, vtos);
   815   locals_index(rbx);
   816   __ movptr(laddress(rbx), rax);
   817   NOT_LP64(__ movptr(haddress(rbx), rdx));
   818 }
   821 void TemplateTable::fstore() {
   822   transition(ftos, vtos);
   823   locals_index(rbx);
   824   __ fstp_s(faddress(rbx));
   825 }
   828 void TemplateTable::dstore() {
   829   transition(dtos, vtos);
   830   locals_index(rbx);
   831   __ fstp_d(daddress(rbx));
   832 }
   835 void TemplateTable::astore() {
   836   transition(vtos, vtos);
   837   __ pop_ptr(rax);
   838   locals_index(rbx);
   839   __ movptr(aaddress(rbx), rax);
   840 }
   843 void TemplateTable::wide_istore() {
   844   transition(vtos, vtos);
   845   __ pop_i(rax);
   846   locals_index_wide(rbx);
   847   __ movl(iaddress(rbx), rax);
   848 }
   851 void TemplateTable::wide_lstore() {
   852   transition(vtos, vtos);
   853   __ pop_l(rax, rdx);
   854   locals_index_wide(rbx);
   855   __ movptr(laddress(rbx), rax);
   856   NOT_LP64(__ movl(haddress(rbx), rdx));
   857 }
   860 void TemplateTable::wide_fstore() {
   861   wide_istore();
   862 }
   865 void TemplateTable::wide_dstore() {
   866   wide_lstore();
   867 }
   870 void TemplateTable::wide_astore() {
   871   transition(vtos, vtos);
   872   __ pop_ptr(rax);
   873   locals_index_wide(rbx);
   874   __ movptr(aaddress(rbx), rax);
   875 }
   878 void TemplateTable::iastore() {
   879   transition(itos, vtos);
   880   __ pop_i(rbx);
   881   // rax,: value
   882   // rdx: array
   883   index_check(rdx, rbx);  // prefer index in rbx,
   884   // rbx,: index
   885   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   886 }
   889 void TemplateTable::lastore() {
   890   transition(ltos, vtos);
   891   __ pop_i(rbx);
   892   // rax,: low(value)
   893   // rcx: array
   894   // rdx: high(value)
   895   index_check(rcx, rbx);  // prefer index in rbx,
   896   // rbx,: index
   897   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   898   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   899 }
   902 void TemplateTable::fastore() {
   903   transition(ftos, vtos);
   904   __ pop_i(rbx);
   905   // rdx: array
   906   // st0: value
   907   index_check(rdx, rbx);  // prefer index in rbx,
   908   // rbx,: index
   909   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   910 }
   913 void TemplateTable::dastore() {
   914   transition(dtos, vtos);
   915   __ pop_i(rbx);
   916   // rdx: array
   917   // st0: value
   918   index_check(rdx, rbx);  // prefer index in rbx,
   919   // rbx,: index
   920   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   921 }
   924 void TemplateTable::aastore() {
   925   Label is_null, ok_is_subtype, done;
   926   transition(vtos, vtos);
   927   // stack: ..., array, index, value
   928   __ movptr(rax, at_tos());     // Value
   929   __ movl(rcx, at_tos_p1());  // Index
   930   __ movptr(rdx, at_tos_p2());  // Array
   932   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   933   index_check_without_pop(rdx, rcx);      // kills rbx,
   934   // do array store check - check for NULL value first
   935   __ testptr(rax, rax);
   936   __ jcc(Assembler::zero, is_null);
   938   // Move subklass into EBX
   939   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   940   // Move superklass into EAX
   941   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   942   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   943   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   944   __ lea(rdx, element_address);
   946   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   947   // Superklass in EAX.  Subklass in EBX.
   948   __ gen_subtype_check( rbx, ok_is_subtype );
   950   // Come here on failure
   951   // object is at TOS
   952   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   954   // Come here on success
   955   __ bind(ok_is_subtype);
   957   // Get the value to store
   958   __ movptr(rax, at_rsp());
   959   // and store it with appropriate barrier
   960   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   962   __ jmp(done);
   964   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   965   __ bind(is_null);
   966   __ profile_null_seen(rbx);
   968   // Store NULL, (noreg means NULL to do_oop_store)
   969   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   971   // Pop stack arguments
   972   __ bind(done);
   973   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   974 }
   977 void TemplateTable::bastore() {
   978   transition(itos, vtos);
   979   __ pop_i(rbx);
   980   // rax,: value
   981   // rdx: array
   982   index_check(rdx, rbx);  // prefer index in rbx,
   983   // rbx,: index
   984   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   985 }
   988 void TemplateTable::castore() {
   989   transition(itos, vtos);
   990   __ pop_i(rbx);
   991   // rax,: value
   992   // rdx: array
   993   index_check(rdx, rbx);  // prefer index in rbx,
   994   // rbx,: index
   995   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
   996 }
   999 void TemplateTable::sastore() {
  1000   castore();
  1004 void TemplateTable::istore(int n) {
  1005   transition(itos, vtos);
  1006   __ movl(iaddress(n), rax);
  1010 void TemplateTable::lstore(int n) {
  1011   transition(ltos, vtos);
  1012   __ movptr(laddress(n), rax);
  1013   NOT_LP64(__ movptr(haddress(n), rdx));
  1017 void TemplateTable::fstore(int n) {
  1018   transition(ftos, vtos);
  1019   __ fstp_s(faddress(n));
  1023 void TemplateTable::dstore(int n) {
  1024   transition(dtos, vtos);
  1025   __ fstp_d(daddress(n));
  1029 void TemplateTable::astore(int n) {
  1030   transition(vtos, vtos);
  1031   __ pop_ptr(rax);
  1032   __ movptr(aaddress(n), rax);
  1036 void TemplateTable::pop() {
  1037   transition(vtos, vtos);
  1038   __ addptr(rsp, Interpreter::stackElementSize);
  1042 void TemplateTable::pop2() {
  1043   transition(vtos, vtos);
  1044   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1048 void TemplateTable::dup() {
  1049   transition(vtos, vtos);
  1050   // stack: ..., a
  1051   __ load_ptr(0, rax);
  1052   __ push_ptr(rax);
  1053   // stack: ..., a, a
  1057 void TemplateTable::dup_x1() {
  1058   transition(vtos, vtos);
  1059   // stack: ..., a, b
  1060   __ load_ptr( 0, rax);  // load b
  1061   __ load_ptr( 1, rcx);  // load a
  1062   __ store_ptr(1, rax);  // store b
  1063   __ store_ptr(0, rcx);  // store a
  1064   __ push_ptr(rax);      // push b
  1065   // stack: ..., b, a, b
  1069 void TemplateTable::dup_x2() {
  1070   transition(vtos, vtos);
  1071   // stack: ..., a, b, c
  1072   __ load_ptr( 0, rax);  // load c
  1073   __ load_ptr( 2, rcx);  // load a
  1074   __ store_ptr(2, rax);  // store c in a
  1075   __ push_ptr(rax);      // push c
  1076   // stack: ..., c, b, c, c
  1077   __ load_ptr( 2, rax);  // load b
  1078   __ store_ptr(2, rcx);  // store a in b
  1079   // stack: ..., c, a, c, c
  1080   __ store_ptr(1, rax);  // store b in c
  1081   // stack: ..., c, a, b, c
  1085 void TemplateTable::dup2() {
  1086   transition(vtos, vtos);
  1087   // stack: ..., a, b
  1088   __ load_ptr(1, rax);  // load a
  1089   __ push_ptr(rax);     // push a
  1090   __ load_ptr(1, rax);  // load b
  1091   __ push_ptr(rax);     // push b
  1092   // stack: ..., a, b, a, b
  1096 void TemplateTable::dup2_x1() {
  1097   transition(vtos, vtos);
  1098   // stack: ..., a, b, c
  1099   __ load_ptr( 0, rcx);  // load c
  1100   __ load_ptr( 1, rax);  // load b
  1101   __ push_ptr(rax);      // push b
  1102   __ push_ptr(rcx);      // push c
  1103   // stack: ..., a, b, c, b, c
  1104   __ store_ptr(3, rcx);  // store c in b
  1105   // stack: ..., a, c, c, b, c
  1106   __ load_ptr( 4, rcx);  // load a
  1107   __ store_ptr(2, rcx);  // store a in 2nd c
  1108   // stack: ..., a, c, a, b, c
  1109   __ store_ptr(4, rax);  // store b in a
  1110   // stack: ..., b, c, a, b, c
  1111   // stack: ..., b, c, a, b, c
  1115 void TemplateTable::dup2_x2() {
  1116   transition(vtos, vtos);
  1117   // stack: ..., a, b, c, d
  1118   __ load_ptr( 0, rcx);  // load d
  1119   __ load_ptr( 1, rax);  // load c
  1120   __ push_ptr(rax);      // push c
  1121   __ push_ptr(rcx);      // push d
  1122   // stack: ..., a, b, c, d, c, d
  1123   __ load_ptr( 4, rax);  // load b
  1124   __ store_ptr(2, rax);  // store b in d
  1125   __ store_ptr(4, rcx);  // store d in b
  1126   // stack: ..., a, d, c, b, c, d
  1127   __ load_ptr( 5, rcx);  // load a
  1128   __ load_ptr( 3, rax);  // load c
  1129   __ store_ptr(3, rcx);  // store a in c
  1130   __ store_ptr(5, rax);  // store c in a
  1131   // stack: ..., c, d, a, b, c, d
  1132   // stack: ..., c, d, a, b, c, d
  1136 void TemplateTable::swap() {
  1137   transition(vtos, vtos);
  1138   // stack: ..., a, b
  1139   __ load_ptr( 1, rcx);  // load a
  1140   __ load_ptr( 0, rax);  // load b
  1141   __ store_ptr(0, rcx);  // store a in b
  1142   __ store_ptr(1, rax);  // store b in a
  1143   // stack: ..., b, a
  1147 void TemplateTable::iop2(Operation op) {
  1148   transition(itos, itos);
  1149   switch (op) {
  1150     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1151     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1152     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1153     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1154     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1155     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1156     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1157     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1158     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1159     default   : ShouldNotReachHere();
  1164 void TemplateTable::lop2(Operation op) {
  1165   transition(ltos, ltos);
  1166   __ pop_l(rbx, rcx);
  1167   switch (op) {
  1168     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1169     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1170                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1171     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1172     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1173     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1174     default   : ShouldNotReachHere();
  1179 void TemplateTable::idiv() {
  1180   transition(itos, itos);
  1181   __ mov(rcx, rax);
  1182   __ pop_i(rax);
  1183   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1184   //       they are not equal, one could do a normal division (no correction
  1185   //       needed), which may speed up this implementation for the common case.
  1186   //       (see also JVM spec., p.243 & p.271)
  1187   __ corrected_idivl(rcx);
  1191 void TemplateTable::irem() {
  1192   transition(itos, itos);
  1193   __ mov(rcx, rax);
  1194   __ pop_i(rax);
  1195   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1196   //       they are not equal, one could do a normal division (no correction
  1197   //       needed), which may speed up this implementation for the common case.
  1198   //       (see also JVM spec., p.243 & p.271)
  1199   __ corrected_idivl(rcx);
  1200   __ mov(rax, rdx);
  1204 void TemplateTable::lmul() {
  1205   transition(ltos, ltos);
  1206   __ pop_l(rbx, rcx);
  1207   __ push(rcx); __ push(rbx);
  1208   __ push(rdx); __ push(rax);
  1209   __ lmul(2 * wordSize, 0);
  1210   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1214 void TemplateTable::ldiv() {
  1215   transition(ltos, ltos);
  1216   __ pop_l(rbx, rcx);
  1217   __ push(rcx); __ push(rbx);
  1218   __ push(rdx); __ push(rax);
  1219   // check if y = 0
  1220   __ orl(rax, rdx);
  1221   __ jump_cc(Assembler::zero,
  1222              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1223   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1224   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1228 void TemplateTable::lrem() {
  1229   transition(ltos, ltos);
  1230   __ pop_l(rbx, rcx);
  1231   __ push(rcx); __ push(rbx);
  1232   __ push(rdx); __ push(rax);
  1233   // check if y = 0
  1234   __ orl(rax, rdx);
  1235   __ jump_cc(Assembler::zero,
  1236              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1237   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1238   __ addptr(rsp, 4 * wordSize);
  1242 void TemplateTable::lshl() {
  1243   transition(itos, ltos);
  1244   __ movl(rcx, rax);                             // get shift count
  1245   __ pop_l(rax, rdx);                            // get shift value
  1246   __ lshl(rdx, rax);
  1250 void TemplateTable::lshr() {
  1251   transition(itos, ltos);
  1252   __ mov(rcx, rax);                              // get shift count
  1253   __ pop_l(rax, rdx);                            // get shift value
  1254   __ lshr(rdx, rax, true);
  1258 void TemplateTable::lushr() {
  1259   transition(itos, ltos);
  1260   __ mov(rcx, rax);                              // get shift count
  1261   __ pop_l(rax, rdx);                            // get shift value
  1262   __ lshr(rdx, rax);
  1266 void TemplateTable::fop2(Operation op) {
  1267   transition(ftos, ftos);
  1268   switch (op) {
  1269     case add: __ fadd_s (at_rsp());                break;
  1270     case sub: __ fsubr_s(at_rsp());                break;
  1271     case mul: __ fmul_s (at_rsp());                break;
  1272     case div: __ fdivr_s(at_rsp());                break;
  1273     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1274     default : ShouldNotReachHere();
  1276   __ f2ieee();
  1277   __ pop(rax);  // pop float thing off
  1281 void TemplateTable::dop2(Operation op) {
  1282   transition(dtos, dtos);
  1284   switch (op) {
  1285     case add: __ fadd_d (at_rsp());                break;
  1286     case sub: __ fsubr_d(at_rsp());                break;
  1287     case mul: {
  1288       Label L_strict;
  1289       Label L_join;
  1290       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1291       __ get_method(rcx);
  1292       __ movl(rcx, access_flags);
  1293       __ testl(rcx, JVM_ACC_STRICT);
  1294       __ jccb(Assembler::notZero, L_strict);
  1295       __ fmul_d (at_rsp());
  1296       __ jmpb(L_join);
  1297       __ bind(L_strict);
  1298       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1299       __ fmulp();
  1300       __ fmul_d (at_rsp());
  1301       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1302       __ fmulp();
  1303       __ bind(L_join);
  1304       break;
  1306     case div: {
  1307       Label L_strict;
  1308       Label L_join;
  1309       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1310       __ get_method(rcx);
  1311       __ movl(rcx, access_flags);
  1312       __ testl(rcx, JVM_ACC_STRICT);
  1313       __ jccb(Assembler::notZero, L_strict);
  1314       __ fdivr_d(at_rsp());
  1315       __ jmp(L_join);
  1316       __ bind(L_strict);
  1317       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1318       __ fmul_d (at_rsp());
  1319       __ fdivrp();
  1320       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1321       __ fmulp();
  1322       __ bind(L_join);
  1323       break;
  1325     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1326     default : ShouldNotReachHere();
  1328   __ d2ieee();
  1329   // Pop double precision number from rsp.
  1330   __ pop(rax);
  1331   __ pop(rdx);
  1335 void TemplateTable::ineg() {
  1336   transition(itos, itos);
  1337   __ negl(rax);
  1341 void TemplateTable::lneg() {
  1342   transition(ltos, ltos);
  1343   __ lneg(rdx, rax);
  1347 void TemplateTable::fneg() {
  1348   transition(ftos, ftos);
  1349   __ fchs();
  1353 void TemplateTable::dneg() {
  1354   transition(dtos, dtos);
  1355   __ fchs();
  1359 void TemplateTable::iinc() {
  1360   transition(vtos, vtos);
  1361   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1362   locals_index(rbx);
  1363   __ addl(iaddress(rbx), rdx);
  1367 void TemplateTable::wide_iinc() {
  1368   transition(vtos, vtos);
  1369   __ movl(rdx, at_bcp(4));                       // get constant
  1370   locals_index_wide(rbx);
  1371   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1372   __ sarl(rdx, 16);
  1373   __ addl(iaddress(rbx), rdx);
  1374   // Note: should probably use only one movl to get both
  1375   //       the index and the constant -> fix this
  1379 void TemplateTable::convert() {
  1380   // Checking
  1381 #ifdef ASSERT
  1382   { TosState tos_in  = ilgl;
  1383     TosState tos_out = ilgl;
  1384     switch (bytecode()) {
  1385       case Bytecodes::_i2l: // fall through
  1386       case Bytecodes::_i2f: // fall through
  1387       case Bytecodes::_i2d: // fall through
  1388       case Bytecodes::_i2b: // fall through
  1389       case Bytecodes::_i2c: // fall through
  1390       case Bytecodes::_i2s: tos_in = itos; break;
  1391       case Bytecodes::_l2i: // fall through
  1392       case Bytecodes::_l2f: // fall through
  1393       case Bytecodes::_l2d: tos_in = ltos; break;
  1394       case Bytecodes::_f2i: // fall through
  1395       case Bytecodes::_f2l: // fall through
  1396       case Bytecodes::_f2d: tos_in = ftos; break;
  1397       case Bytecodes::_d2i: // fall through
  1398       case Bytecodes::_d2l: // fall through
  1399       case Bytecodes::_d2f: tos_in = dtos; break;
  1400       default             : ShouldNotReachHere();
  1402     switch (bytecode()) {
  1403       case Bytecodes::_l2i: // fall through
  1404       case Bytecodes::_f2i: // fall through
  1405       case Bytecodes::_d2i: // fall through
  1406       case Bytecodes::_i2b: // fall through
  1407       case Bytecodes::_i2c: // fall through
  1408       case Bytecodes::_i2s: tos_out = itos; break;
  1409       case Bytecodes::_i2l: // fall through
  1410       case Bytecodes::_f2l: // fall through
  1411       case Bytecodes::_d2l: tos_out = ltos; break;
  1412       case Bytecodes::_i2f: // fall through
  1413       case Bytecodes::_l2f: // fall through
  1414       case Bytecodes::_d2f: tos_out = ftos; break;
  1415       case Bytecodes::_i2d: // fall through
  1416       case Bytecodes::_l2d: // fall through
  1417       case Bytecodes::_f2d: tos_out = dtos; break;
  1418       default             : ShouldNotReachHere();
  1420     transition(tos_in, tos_out);
  1422 #endif // ASSERT
  1424   // Conversion
  1425   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1426   switch (bytecode()) {
  1427     case Bytecodes::_i2l:
  1428       __ extend_sign(rdx, rax);
  1429       break;
  1430     case Bytecodes::_i2f:
  1431       __ push(rax);          // store int on tos
  1432       __ fild_s(at_rsp());   // load int to ST0
  1433       __ f2ieee();           // truncate to float size
  1434       __ pop(rcx);           // adjust rsp
  1435       break;
  1436     case Bytecodes::_i2d:
  1437       __ push(rax);          // add one slot for d2ieee()
  1438       __ push(rax);          // store int on tos
  1439       __ fild_s(at_rsp());   // load int to ST0
  1440       __ d2ieee();           // truncate to double size
  1441       __ pop(rcx);           // adjust rsp
  1442       __ pop(rcx);
  1443       break;
  1444     case Bytecodes::_i2b:
  1445       __ shll(rax, 24);      // truncate upper 24 bits
  1446       __ sarl(rax, 24);      // and sign-extend byte
  1447       LP64_ONLY(__ movsbl(rax, rax));
  1448       break;
  1449     case Bytecodes::_i2c:
  1450       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1451       LP64_ONLY(__ movzwl(rax, rax));
  1452       break;
  1453     case Bytecodes::_i2s:
  1454       __ shll(rax, 16);      // truncate upper 16 bits
  1455       __ sarl(rax, 16);      // and sign-extend short
  1456       LP64_ONLY(__ movswl(rax, rax));
  1457       break;
  1458     case Bytecodes::_l2i:
  1459       /* nothing to do */
  1460       break;
  1461     case Bytecodes::_l2f:
  1462       __ push(rdx);          // store long on tos
  1463       __ push(rax);
  1464       __ fild_d(at_rsp());   // load long to ST0
  1465       __ f2ieee();           // truncate to float size
  1466       __ pop(rcx);           // adjust rsp
  1467       __ pop(rcx);
  1468       break;
  1469     case Bytecodes::_l2d:
  1470       __ push(rdx);          // store long on tos
  1471       __ push(rax);
  1472       __ fild_d(at_rsp());   // load long to ST0
  1473       __ d2ieee();           // truncate to double size
  1474       __ pop(rcx);           // adjust rsp
  1475       __ pop(rcx);
  1476       break;
  1477     case Bytecodes::_f2i:
  1478       __ push(rcx);          // reserve space for argument
  1479       __ fstp_s(at_rsp());   // pass float argument on stack
  1480       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1481       break;
  1482     case Bytecodes::_f2l:
  1483       __ push(rcx);          // reserve space for argument
  1484       __ fstp_s(at_rsp());   // pass float argument on stack
  1485       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1486       break;
  1487     case Bytecodes::_f2d:
  1488       /* nothing to do */
  1489       break;
  1490     case Bytecodes::_d2i:
  1491       __ push(rcx);          // reserve space for argument
  1492       __ push(rcx);
  1493       __ fstp_d(at_rsp());   // pass double argument on stack
  1494       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1495       break;
  1496     case Bytecodes::_d2l:
  1497       __ push(rcx);          // reserve space for argument
  1498       __ push(rcx);
  1499       __ fstp_d(at_rsp());   // pass double argument on stack
  1500       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1501       break;
  1502     case Bytecodes::_d2f:
  1503       __ push(rcx);          // reserve space for f2ieee()
  1504       __ f2ieee();           // truncate to float size
  1505       __ pop(rcx);           // adjust rsp
  1506       break;
  1507     default             :
  1508       ShouldNotReachHere();
  1513 void TemplateTable::lcmp() {
  1514   transition(ltos, itos);
  1515   // y = rdx:rax
  1516   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1517   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1518   __ mov(rax, rcx);
  1522 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1523   if (is_float) {
  1524     __ fld_s(at_rsp());
  1525   } else {
  1526     __ fld_d(at_rsp());
  1527     __ pop(rdx);
  1529   __ pop(rcx);
  1530   __ fcmp2int(rax, unordered_result < 0);
  1534 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1535   __ get_method(rcx);           // ECX holds method
  1536   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1538   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1539   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1540   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1542   // Load up EDX with the branch displacement
  1543   __ movl(rdx, at_bcp(1));
  1544   __ bswapl(rdx);
  1545   if (!is_wide) __ sarl(rdx, 16);
  1546   LP64_ONLY(__ movslq(rdx, rdx));
  1549   // Handle all the JSR stuff here, then exit.
  1550   // It's much shorter and cleaner than intermingling with the
  1551   // non-JSR normal-branch stuff occurring below.
  1552   if (is_jsr) {
  1553     // Pre-load the next target bytecode into EBX
  1554     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1556     // compute return address as bci in rax,
  1557     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1558     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1559     // Adjust the bcp in RSI by the displacement in EDX
  1560     __ addptr(rsi, rdx);
  1561     // Push return address
  1562     __ push_i(rax);
  1563     // jsr returns vtos
  1564     __ dispatch_only_noverify(vtos);
  1565     return;
  1568   // Normal (non-jsr) branch handling
  1570   // Adjust the bcp in RSI by the displacement in EDX
  1571   __ addptr(rsi, rdx);
  1573   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1574   Label backedge_counter_overflow;
  1575   Label profile_method;
  1576   Label dispatch;
  1577   if (UseLoopCounter) {
  1578     // increment backedge counter for backward branches
  1579     // rax,: MDO
  1580     // rbx,: MDO bumped taken-count
  1581     // rcx: method
  1582     // rdx: target offset
  1583     // rsi: target bcp
  1584     // rdi: locals pointer
  1585     __ testl(rdx, rdx);             // check if forward or backward branch
  1586     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1588     if (TieredCompilation) {
  1589       Label no_mdo;
  1590       int increment = InvocationCounter::count_increment;
  1591       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1592       if (ProfileInterpreter) {
  1593         // Are we profiling?
  1594         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1595         __ testptr(rbx, rbx);
  1596         __ jccb(Assembler::zero, no_mdo);
  1597         // Increment the MDO backedge counter
  1598         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1599                                                 in_bytes(InvocationCounter::counter_offset()));
  1600         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1601                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1602         __ jmp(dispatch);
  1604       __ bind(no_mdo);
  1605       // Increment backedge counter in methodOop
  1606       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1607                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1608     } else {
  1609       // increment counter
  1610       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1611       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1612       __ movl(Address(rcx, be_offset), rax);        // store counter
  1614       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1615       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1616       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1618       if (ProfileInterpreter) {
  1619         // Test to see if we should create a method data oop
  1620         __ cmp32(rax,
  1621                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1622         __ jcc(Assembler::less, dispatch);
  1624         // if no method data exists, go to profile method
  1625         __ test_method_data_pointer(rax, profile_method);
  1627         if (UseOnStackReplacement) {
  1628           // check for overflow against rbx, which is the MDO taken count
  1629           __ cmp32(rbx,
  1630                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1631           __ jcc(Assembler::below, dispatch);
  1633           // When ProfileInterpreter is on, the backedge_count comes from the
  1634           // methodDataOop, which value does not get reset on the call to
  1635           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1636           // routine while the method is being compiled, add a second test to make
  1637           // sure the overflow function is called only once every overflow_frequency.
  1638           const int overflow_frequency = 1024;
  1639           __ andptr(rbx, overflow_frequency-1);
  1640           __ jcc(Assembler::zero, backedge_counter_overflow);
  1642       } else {
  1643         if (UseOnStackReplacement) {
  1644           // check for overflow against rax, which is the sum of the counters
  1645           __ cmp32(rax,
  1646                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1647           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1652     __ bind(dispatch);
  1655   // Pre-load the next target bytecode into EBX
  1656   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1658   // continue with the bytecode @ target
  1659   // rax,: return bci for jsr's, unused otherwise
  1660   // rbx,: target bytecode
  1661   // rsi: target bcp
  1662   __ dispatch_only(vtos);
  1664   if (UseLoopCounter) {
  1665     if (ProfileInterpreter) {
  1666       // Out-of-line code to allocate method data oop.
  1667       __ bind(profile_method);
  1668       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
  1669       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1670       __ movptr(rcx, Address(rbp, method_offset));
  1671       __ movptr(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1672       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1673       __ test_method_data_pointer(rcx, dispatch);
  1674       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1675       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1676       __ addptr(rcx, rax);
  1677       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1678       __ jmp(dispatch);
  1681     if (UseOnStackReplacement) {
  1683       // invocation counter overflow
  1684       __ bind(backedge_counter_overflow);
  1685       __ negptr(rdx);
  1686       __ addptr(rdx, rsi);        // branch bcp
  1687       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1688       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1690       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1691       // rbx,: target bytecode
  1692       // rdx: scratch
  1693       // rdi: locals pointer
  1694       // rsi: bcp
  1695       __ testptr(rax, rax);                      // test result
  1696       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1697       // nmethod may have been invalidated (VM may block upon call_VM return)
  1698       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1699       __ cmpl(rcx, InvalidOSREntryBci);
  1700       __ jcc(Assembler::equal, dispatch);
  1702       // We have the address of an on stack replacement routine in rax,
  1703       // We need to prepare to execute the OSR method. First we must
  1704       // migrate the locals and monitors off of the stack.
  1706       __ mov(rbx, rax);                             // save the nmethod
  1708       const Register thread = rcx;
  1709       __ get_thread(thread);
  1710       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1711       // rax, is OSR buffer, move it to expected parameter location
  1712       __ mov(rcx, rax);
  1714       // pop the interpreter frame
  1715       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1716       __ leave();                                // remove frame anchor
  1717       __ pop(rdi);                               // get return address
  1718       __ mov(rsp, rdx);                          // set sp to sender sp
  1721       Label skip;
  1722       Label chkint;
  1724       // The interpreter frame we have removed may be returning to
  1725       // either the callstub or the interpreter. Since we will
  1726       // now be returning from a compiled (OSR) nmethod we must
  1727       // adjust the return to the return were it can handler compiled
  1728       // results and clean the fpu stack. This is very similar to
  1729       // what a i2c adapter must do.
  1731       // Are we returning to the call stub?
  1733       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1734       __ jcc(Assembler::notEqual, chkint);
  1736       // yes adjust to the specialized call stub  return.
  1737       assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
  1738       __ lea(rdi, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
  1739       __ jmp(skip);
  1741       __ bind(chkint);
  1743       // Are we returning to the interpreter? Look for sentinel
  1745       __ cmpl(Address(rdi, -2*wordSize), Interpreter::return_sentinel);
  1746       __ jcc(Assembler::notEqual, skip);
  1748       // Adjust to compiled return back to interpreter
  1750       __ movptr(rdi, Address(rdi, -wordSize));
  1751       __ bind(skip);
  1753       // Align stack pointer for compiled code (note that caller is
  1754       // responsible for undoing this fixup by remembering the old SP
  1755       // in an rbp,-relative location)
  1756       __ andptr(rsp, -(StackAlignmentInBytes));
  1758       // push the (possibly adjusted) return address
  1759       __ push(rdi);
  1761       // and begin the OSR nmethod
  1762       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1768 void TemplateTable::if_0cmp(Condition cc) {
  1769   transition(itos, vtos);
  1770   // assume branch is more often taken than not (loops use backward branches)
  1771   Label not_taken;
  1772   __ testl(rax, rax);
  1773   __ jcc(j_not(cc), not_taken);
  1774   branch(false, false);
  1775   __ bind(not_taken);
  1776   __ profile_not_taken_branch(rax);
  1780 void TemplateTable::if_icmp(Condition cc) {
  1781   transition(itos, vtos);
  1782   // assume branch is more often taken than not (loops use backward branches)
  1783   Label not_taken;
  1784   __ pop_i(rdx);
  1785   __ cmpl(rdx, rax);
  1786   __ jcc(j_not(cc), not_taken);
  1787   branch(false, false);
  1788   __ bind(not_taken);
  1789   __ profile_not_taken_branch(rax);
  1793 void TemplateTable::if_nullcmp(Condition cc) {
  1794   transition(atos, vtos);
  1795   // assume branch is more often taken than not (loops use backward branches)
  1796   Label not_taken;
  1797   __ testptr(rax, rax);
  1798   __ jcc(j_not(cc), not_taken);
  1799   branch(false, false);
  1800   __ bind(not_taken);
  1801   __ profile_not_taken_branch(rax);
  1805 void TemplateTable::if_acmp(Condition cc) {
  1806   transition(atos, vtos);
  1807   // assume branch is more often taken than not (loops use backward branches)
  1808   Label not_taken;
  1809   __ pop_ptr(rdx);
  1810   __ cmpptr(rdx, rax);
  1811   __ jcc(j_not(cc), not_taken);
  1812   branch(false, false);
  1813   __ bind(not_taken);
  1814   __ profile_not_taken_branch(rax);
  1818 void TemplateTable::ret() {
  1819   transition(vtos, vtos);
  1820   locals_index(rbx);
  1821   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1822   __ profile_ret(rbx, rcx);
  1823   __ get_method(rax);
  1824   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1825   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1826                       constMethodOopDesc::codes_offset()));
  1827   __ dispatch_next(vtos);
  1831 void TemplateTable::wide_ret() {
  1832   transition(vtos, vtos);
  1833   locals_index_wide(rbx);
  1834   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1835   __ profile_ret(rbx, rcx);
  1836   __ get_method(rax);
  1837   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1838   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1839   __ dispatch_next(vtos);
  1843 void TemplateTable::tableswitch() {
  1844   Label default_case, continue_execution;
  1845   transition(itos, vtos);
  1846   // align rsi
  1847   __ lea(rbx, at_bcp(wordSize));
  1848   __ andptr(rbx, -wordSize);
  1849   // load lo & hi
  1850   __ movl(rcx, Address(rbx, 1 * wordSize));
  1851   __ movl(rdx, Address(rbx, 2 * wordSize));
  1852   __ bswapl(rcx);
  1853   __ bswapl(rdx);
  1854   // check against lo & hi
  1855   __ cmpl(rax, rcx);
  1856   __ jccb(Assembler::less, default_case);
  1857   __ cmpl(rax, rdx);
  1858   __ jccb(Assembler::greater, default_case);
  1859   // lookup dispatch offset
  1860   __ subl(rax, rcx);
  1861   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1862   __ profile_switch_case(rax, rbx, rcx);
  1863   // continue execution
  1864   __ bind(continue_execution);
  1865   __ bswapl(rdx);
  1866   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1867   __ addptr(rsi, rdx);
  1868   __ dispatch_only(vtos);
  1869   // handle default
  1870   __ bind(default_case);
  1871   __ profile_switch_default(rax);
  1872   __ movl(rdx, Address(rbx, 0));
  1873   __ jmp(continue_execution);
  1877 void TemplateTable::lookupswitch() {
  1878   transition(itos, itos);
  1879   __ stop("lookupswitch bytecode should have been rewritten");
  1883 void TemplateTable::fast_linearswitch() {
  1884   transition(itos, vtos);
  1885   Label loop_entry, loop, found, continue_execution;
  1886   // bswapl rax, so we can avoid bswapping the table entries
  1887   __ bswapl(rax);
  1888   // align rsi
  1889   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1890   __ andptr(rbx, -wordSize);
  1891   // set counter
  1892   __ movl(rcx, Address(rbx, wordSize));
  1893   __ bswapl(rcx);
  1894   __ jmpb(loop_entry);
  1895   // table search
  1896   __ bind(loop);
  1897   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1898   __ jccb(Assembler::equal, found);
  1899   __ bind(loop_entry);
  1900   __ decrementl(rcx);
  1901   __ jcc(Assembler::greaterEqual, loop);
  1902   // default case
  1903   __ profile_switch_default(rax);
  1904   __ movl(rdx, Address(rbx, 0));
  1905   __ jmpb(continue_execution);
  1906   // entry found -> get offset
  1907   __ bind(found);
  1908   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1909   __ profile_switch_case(rcx, rax, rbx);
  1910   // continue execution
  1911   __ bind(continue_execution);
  1912   __ bswapl(rdx);
  1913   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1914   __ addptr(rsi, rdx);
  1915   __ dispatch_only(vtos);
  1919 void TemplateTable::fast_binaryswitch() {
  1920   transition(itos, vtos);
  1921   // Implementation using the following core algorithm:
  1922   //
  1923   // int binary_search(int key, LookupswitchPair* array, int n) {
  1924   //   // Binary search according to "Methodik des Programmierens" by
  1925   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1926   //   int i = 0;
  1927   //   int j = n;
  1928   //   while (i+1 < j) {
  1929   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1930   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1931   //     // where a stands for the array and assuming that the (inexisting)
  1932   //     // element a[n] is infinitely big.
  1933   //     int h = (i + j) >> 1;
  1934   //     // i < h < j
  1935   //     if (key < array[h].fast_match()) {
  1936   //       j = h;
  1937   //     } else {
  1938   //       i = h;
  1939   //     }
  1940   //   }
  1941   //   // R: a[i] <= key < a[i+1] or Q
  1942   //   // (i.e., if key is within array, i is the correct index)
  1943   //   return i;
  1944   // }
  1946   // register allocation
  1947   const Register key   = rax;                    // already set (tosca)
  1948   const Register array = rbx;
  1949   const Register i     = rcx;
  1950   const Register j     = rdx;
  1951   const Register h     = rdi;                    // needs to be restored
  1952   const Register temp  = rsi;
  1953   // setup array
  1954   __ save_bcp();
  1956   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1957   __ andptr(array, -wordSize);
  1958   // initialize i & j
  1959   __ xorl(i, i);                                 // i = 0;
  1960   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1961   // Convert j into native byteordering
  1962   __ bswapl(j);
  1963   // and start
  1964   Label entry;
  1965   __ jmp(entry);
  1967   // binary search loop
  1968   { Label loop;
  1969     __ bind(loop);
  1970     // int h = (i + j) >> 1;
  1971     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1972     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1973     // if (key < array[h].fast_match()) {
  1974     //   j = h;
  1975     // } else {
  1976     //   i = h;
  1977     // }
  1978     // Convert array[h].match to native byte-ordering before compare
  1979     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1980     __ bswapl(temp);
  1981     __ cmpl(key, temp);
  1982     if (VM_Version::supports_cmov()) {
  1983       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  1984       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  1985     } else {
  1986       Label set_i, end_of_if;
  1987       __ jccb(Assembler::greaterEqual, set_i);     // {
  1988       __ mov(j, h);                                //   j = h;
  1989       __ jmp(end_of_if);                           // }
  1990       __ bind(set_i);                              // else {
  1991       __ mov(i, h);                                //   i = h;
  1992       __ bind(end_of_if);                          // }
  1994     // while (i+1 < j)
  1995     __ bind(entry);
  1996     __ leal(h, Address(i, 1));                   // i+1
  1997     __ cmpl(h, j);                               // i+1 < j
  1998     __ jcc(Assembler::less, loop);
  2001   // end of binary search, result index is i (must check again!)
  2002   Label default_case;
  2003   // Convert array[i].match to native byte-ordering before compare
  2004   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  2005   __ bswapl(temp);
  2006   __ cmpl(key, temp);
  2007   __ jcc(Assembler::notEqual, default_case);
  2009   // entry found -> j = offset
  2010   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  2011   __ profile_switch_case(i, key, array);
  2012   __ bswapl(j);
  2013   LP64_ONLY(__ movslq(j, j));
  2014   __ restore_bcp();
  2015   __ restore_locals();                           // restore rdi
  2016   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2018   __ addptr(rsi, j);
  2019   __ dispatch_only(vtos);
  2021   // default case -> j = default offset
  2022   __ bind(default_case);
  2023   __ profile_switch_default(i);
  2024   __ movl(j, Address(array, -2*wordSize));
  2025   __ bswapl(j);
  2026   LP64_ONLY(__ movslq(j, j));
  2027   __ restore_bcp();
  2028   __ restore_locals();                           // restore rdi
  2029   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2030   __ addptr(rsi, j);
  2031   __ dispatch_only(vtos);
  2035 void TemplateTable::_return(TosState state) {
  2036   transition(state, state);
  2037   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2039   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2040     assert(state == vtos, "only valid state");
  2041     __ movptr(rax, aaddress(0));
  2042     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  2043     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2044     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2045     Label skip_register_finalizer;
  2046     __ jcc(Assembler::zero, skip_register_finalizer);
  2048     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2050     __ bind(skip_register_finalizer);
  2053   __ remove_activation(state, rsi);
  2054   __ jmp(rsi);
  2058 // ----------------------------------------------------------------------------
  2059 // Volatile variables demand their effects be made known to all CPU's in
  2060 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2061 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2062 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2063 // reorder volatile references, the hardware also must not reorder them).
  2064 //
  2065 // According to the new Java Memory Model (JMM):
  2066 // (1) All volatiles are serialized wrt to each other.
  2067 // ALSO reads & writes act as aquire & release, so:
  2068 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2069 // the read float up to before the read.  It's OK for non-volatile memory refs
  2070 // that happen before the volatile read to float down below it.
  2071 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2072 // that happen BEFORE the write float down to after the write.  It's OK for
  2073 // non-volatile memory refs that happen after the volatile write to float up
  2074 // before it.
  2075 //
  2076 // We only put in barriers around volatile refs (they are expensive), not
  2077 // _between_ memory refs (that would require us to track the flavor of the
  2078 // previous memory refs).  Requirements (2) and (3) require some barriers
  2079 // before volatile stores and after volatile loads.  These nearly cover
  2080 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2081 // case is placed after volatile-stores although it could just as well go
  2082 // before volatile-loads.
  2083 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2084   // Helper function to insert a is-volatile test and memory barrier
  2085   if( !os::is_MP() ) return;    // Not needed on single CPU
  2086   __ membar(order_constraint);
  2089 void TemplateTable::resolve_cache_and_index(int byte_no,
  2090                                             Register result,
  2091                                             Register Rcache,
  2092                                             Register index,
  2093                                             size_t index_size) {
  2094   Register temp = rbx;
  2096   assert_different_registers(result, Rcache, index, temp);
  2098   Label resolved;
  2099   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2100   if (byte_no == f1_oop) {
  2101     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2102     // This kind of CP cache entry does not need to match the flags byte, because
  2103     // there is a 1-1 relation between bytecode type and CP entry type.
  2104     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2105     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2106     __ testptr(result, result);
  2107     __ jcc(Assembler::notEqual, resolved);
  2108   } else {
  2109     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2110     assert(result == noreg, "");  //else change code for setting result
  2111     const int shift_count = (1 + byte_no)*BitsPerByte;
  2112     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2113     __ shrl(temp, shift_count);
  2114     // have we resolved this bytecode?
  2115     __ andl(temp, 0xFF);
  2116     __ cmpl(temp, (int)bytecode());
  2117     __ jcc(Assembler::equal, resolved);
  2120   // resolve first time through
  2121   address entry;
  2122   switch (bytecode()) {
  2123     case Bytecodes::_getstatic      : // fall through
  2124     case Bytecodes::_putstatic      : // fall through
  2125     case Bytecodes::_getfield       : // fall through
  2126     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2127     case Bytecodes::_invokevirtual  : // fall through
  2128     case Bytecodes::_invokespecial  : // fall through
  2129     case Bytecodes::_invokestatic   : // fall through
  2130     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2131     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
  2132     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2133     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2134     default                         : ShouldNotReachHere();                                 break;
  2136   __ movl(temp, (int)bytecode());
  2137   __ call_VM(noreg, entry, temp);
  2138   // Update registers with resolved info
  2139   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2140   if (result != noreg)
  2141     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2142   __ bind(resolved);
  2146 // The cache and index registers must be set before call
  2147 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2148                                               Register cache,
  2149                                               Register index,
  2150                                               Register off,
  2151                                               Register flags,
  2152                                               bool is_static = false) {
  2153   assert_different_registers(cache, index, flags, off);
  2155   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2156   // Field offset
  2157   __ movptr(off, Address(cache, index, Address::times_ptr,
  2158                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2159   // Flags
  2160   __ movl(flags, Address(cache, index, Address::times_ptr,
  2161            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2163   // klass     overwrite register
  2164   if (is_static) {
  2165     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2166                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2170 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2171                                                Register method,
  2172                                                Register itable_index,
  2173                                                Register flags,
  2174                                                bool is_invokevirtual,
  2175                                                bool is_invokevfinal /*unused*/,
  2176                                                bool is_invokedynamic) {
  2177   // setup registers
  2178   const Register cache = rcx;
  2179   const Register index = rdx;
  2180   assert_different_registers(method, flags);
  2181   assert_different_registers(method, cache, index);
  2182   assert_different_registers(itable_index, flags);
  2183   assert_different_registers(itable_index, cache, index);
  2184   // determine constant pool cache field offsets
  2185   const int method_offset = in_bytes(
  2186     constantPoolCacheOopDesc::base_offset() +
  2187       (is_invokevirtual
  2188        ? ConstantPoolCacheEntry::f2_offset()
  2189        : ConstantPoolCacheEntry::f1_offset()
  2191     );
  2192   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2193                                     ConstantPoolCacheEntry::flags_offset());
  2194   // access constant pool cache fields
  2195   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2196                                     ConstantPoolCacheEntry::f2_offset());
  2198   if (byte_no == f1_oop) {
  2199     // Resolved f1_oop goes directly into 'method' register.
  2200     assert(is_invokedynamic, "");
  2201     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2202   } else {
  2203     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2204     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2206   if (itable_index != noreg) {
  2207     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2209   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2213 // The registers cache and index expected to be set before call.
  2214 // Correct values of the cache and index registers are preserved.
  2215 void TemplateTable::jvmti_post_field_access(Register cache,
  2216                                             Register index,
  2217                                             bool is_static,
  2218                                             bool has_tos) {
  2219   if (JvmtiExport::can_post_field_access()) {
  2220     // Check to see if a field access watch has been set before we take
  2221     // the time to call into the VM.
  2222     Label L1;
  2223     assert_different_registers(cache, index, rax);
  2224     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2225     __ testl(rax,rax);
  2226     __ jcc(Assembler::zero, L1);
  2228     // cache entry pointer
  2229     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2230     __ shll(index, LogBytesPerWord);
  2231     __ addptr(cache, index);
  2232     if (is_static) {
  2233       __ xorptr(rax, rax);      // NULL object reference
  2234     } else {
  2235       __ pop(atos);         // Get the object
  2236       __ verify_oop(rax);
  2237       __ push(atos);        // Restore stack state
  2239     // rax,:   object pointer or NULL
  2240     // cache: cache entry pointer
  2241     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2242                rax, cache);
  2243     __ get_cache_and_index_at_bcp(cache, index, 1);
  2244     __ bind(L1);
  2248 void TemplateTable::pop_and_check_object(Register r) {
  2249   __ pop_ptr(r);
  2250   __ null_check(r);  // for field access must check obj.
  2251   __ verify_oop(r);
  2254 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2255   transition(vtos, vtos);
  2257   const Register cache = rcx;
  2258   const Register index = rdx;
  2259   const Register obj   = rcx;
  2260   const Register off   = rbx;
  2261   const Register flags = rax;
  2263   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2264   jvmti_post_field_access(cache, index, is_static, false);
  2265   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2267   if (!is_static) pop_and_check_object(obj);
  2269   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2270   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2272   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2274   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2275   assert(btos == 0, "change code, btos != 0");
  2276   // btos
  2277   __ andptr(flags, 0x0f);
  2278   __ jcc(Assembler::notZero, notByte);
  2280   __ load_signed_byte(rax, lo );
  2281   __ push(btos);
  2282   // Rewrite bytecode to be faster
  2283   if (!is_static) {
  2284     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2286   __ jmp(Done);
  2288   __ bind(notByte);
  2289   // itos
  2290   __ cmpl(flags, itos );
  2291   __ jcc(Assembler::notEqual, notInt);
  2293   __ movl(rax, lo );
  2294   __ push(itos);
  2295   // Rewrite bytecode to be faster
  2296   if (!is_static) {
  2297     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2299   __ jmp(Done);
  2301   __ bind(notInt);
  2302   // atos
  2303   __ cmpl(flags, atos );
  2304   __ jcc(Assembler::notEqual, notObj);
  2306   __ movl(rax, lo );
  2307   __ push(atos);
  2308   if (!is_static) {
  2309     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2311   __ jmp(Done);
  2313   __ bind(notObj);
  2314   // ctos
  2315   __ cmpl(flags, ctos );
  2316   __ jcc(Assembler::notEqual, notChar);
  2318   __ load_unsigned_short(rax, lo );
  2319   __ push(ctos);
  2320   if (!is_static) {
  2321     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2323   __ jmp(Done);
  2325   __ bind(notChar);
  2326   // stos
  2327   __ cmpl(flags, stos );
  2328   __ jcc(Assembler::notEqual, notShort);
  2330   __ load_signed_short(rax, lo );
  2331   __ push(stos);
  2332   if (!is_static) {
  2333     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2335   __ jmp(Done);
  2337   __ bind(notShort);
  2338   // ltos
  2339   __ cmpl(flags, ltos );
  2340   __ jcc(Assembler::notEqual, notLong);
  2342   // Generate code as if volatile.  There just aren't enough registers to
  2343   // save that information and this code is faster than the test.
  2344   __ fild_d(lo);                // Must load atomically
  2345   __ subptr(rsp,2*wordSize);    // Make space for store
  2346   __ fistp_d(Address(rsp,0));
  2347   __ pop(rax);
  2348   __ pop(rdx);
  2350   __ push(ltos);
  2351   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2352   __ jmp(Done);
  2354   __ bind(notLong);
  2355   // ftos
  2356   __ cmpl(flags, ftos );
  2357   __ jcc(Assembler::notEqual, notFloat);
  2359   __ fld_s(lo);
  2360   __ push(ftos);
  2361   if (!is_static) {
  2362     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2364   __ jmp(Done);
  2366   __ bind(notFloat);
  2367   // dtos
  2368   __ cmpl(flags, dtos );
  2369   __ jcc(Assembler::notEqual, notDouble);
  2371   __ fld_d(lo);
  2372   __ push(dtos);
  2373   if (!is_static) {
  2374     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2376   __ jmpb(Done);
  2378   __ bind(notDouble);
  2380   __ stop("Bad state");
  2382   __ bind(Done);
  2383   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2384   // volatile_barrier( );
  2388 void TemplateTable::getfield(int byte_no) {
  2389   getfield_or_static(byte_no, false);
  2393 void TemplateTable::getstatic(int byte_no) {
  2394   getfield_or_static(byte_no, true);
  2397 // The registers cache and index expected to be set before call.
  2398 // The function may destroy various registers, just not the cache and index registers.
  2399 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2401   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2403   if (JvmtiExport::can_post_field_modification()) {
  2404     // Check to see if a field modification watch has been set before we take
  2405     // the time to call into the VM.
  2406     Label L1;
  2407     assert_different_registers(cache, index, rax);
  2408     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2409     __ testl(rax, rax);
  2410     __ jcc(Assembler::zero, L1);
  2412     // The cache and index registers have been already set.
  2413     // This allows to eliminate this call but the cache and index
  2414     // registers have to be correspondingly used after this line.
  2415     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2417     if (is_static) {
  2418       // Life is simple.  Null out the object pointer.
  2419       __ xorptr(rbx, rbx);
  2420     } else {
  2421       // Life is harder. The stack holds the value on top, followed by the object.
  2422       // We don't know the size of the value, though; it could be one or two words
  2423       // depending on its type. As a result, we must find the type to determine where
  2424       // the object is.
  2425       Label two_word, valsize_known;
  2426       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2427                                    ConstantPoolCacheEntry::flags_offset())));
  2428       __ mov(rbx, rsp);
  2429       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2430       // Make sure we don't need to mask rcx for tosBits after the above shift
  2431       ConstantPoolCacheEntry::verify_tosBits();
  2432       __ cmpl(rcx, ltos);
  2433       __ jccb(Assembler::equal, two_word);
  2434       __ cmpl(rcx, dtos);
  2435       __ jccb(Assembler::equal, two_word);
  2436       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2437       __ jmpb(valsize_known);
  2439       __ bind(two_word);
  2440       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2442       __ bind(valsize_known);
  2443       // setup object pointer
  2444       __ movptr(rbx, Address(rbx, 0));
  2446     // cache entry pointer
  2447     __ addptr(rax, in_bytes(cp_base_offset));
  2448     __ shll(rdx, LogBytesPerWord);
  2449     __ addptr(rax, rdx);
  2450     // object (tos)
  2451     __ mov(rcx, rsp);
  2452     // rbx,: object pointer set up above (NULL if static)
  2453     // rax,: cache entry pointer
  2454     // rcx: jvalue object on the stack
  2455     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2456                rbx, rax, rcx);
  2457     __ get_cache_and_index_at_bcp(cache, index, 1);
  2458     __ bind(L1);
  2463 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2464   transition(vtos, vtos);
  2466   const Register cache = rcx;
  2467   const Register index = rdx;
  2468   const Register obj   = rcx;
  2469   const Register off   = rbx;
  2470   const Register flags = rax;
  2472   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2473   jvmti_post_field_mod(cache, index, is_static);
  2474   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2476   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2477   // volatile_barrier( );
  2479   Label notVolatile, Done;
  2480   __ movl(rdx, flags);
  2481   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2482   __ andl(rdx, 0x1);
  2484   // field addresses
  2485   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2486   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2488   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2490   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2491   assert(btos == 0, "change code, btos != 0");
  2492   // btos
  2493   __ andl(flags, 0x0f);
  2494   __ jcc(Assembler::notZero, notByte);
  2496   __ pop(btos);
  2497   if (!is_static) pop_and_check_object(obj);
  2498   __ movb(lo, rax );
  2499   if (!is_static) {
  2500     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2502   __ jmp(Done);
  2504   __ bind(notByte);
  2505   // itos
  2506   __ cmpl(flags, itos );
  2507   __ jcc(Assembler::notEqual, notInt);
  2509   __ pop(itos);
  2510   if (!is_static) pop_and_check_object(obj);
  2512   __ movl(lo, rax );
  2513   if (!is_static) {
  2514     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2516   __ jmp(Done);
  2518   __ bind(notInt);
  2519   // atos
  2520   __ cmpl(flags, atos );
  2521   __ jcc(Assembler::notEqual, notObj);
  2523   __ pop(atos);
  2524   if (!is_static) pop_and_check_object(obj);
  2526   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2528   if (!is_static) {
  2529     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2532   __ jmp(Done);
  2534   __ bind(notObj);
  2535   // ctos
  2536   __ cmpl(flags, ctos );
  2537   __ jcc(Assembler::notEqual, notChar);
  2539   __ pop(ctos);
  2540   if (!is_static) pop_and_check_object(obj);
  2541   __ movw(lo, rax );
  2542   if (!is_static) {
  2543     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2545   __ jmp(Done);
  2547   __ bind(notChar);
  2548   // stos
  2549   __ cmpl(flags, stos );
  2550   __ jcc(Assembler::notEqual, notShort);
  2552   __ pop(stos);
  2553   if (!is_static) pop_and_check_object(obj);
  2554   __ movw(lo, rax );
  2555   if (!is_static) {
  2556     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2558   __ jmp(Done);
  2560   __ bind(notShort);
  2561   // ltos
  2562   __ cmpl(flags, ltos );
  2563   __ jcc(Assembler::notEqual, notLong);
  2565   Label notVolatileLong;
  2566   __ testl(rdx, rdx);
  2567   __ jcc(Assembler::zero, notVolatileLong);
  2569   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2570   if (!is_static) pop_and_check_object(obj);
  2572   // Replace with real volatile test
  2573   __ push(rdx);
  2574   __ push(rax);                 // Must update atomically with FIST
  2575   __ fild_d(Address(rsp,0));    // So load into FPU register
  2576   __ fistp_d(lo);               // and put into memory atomically
  2577   __ addptr(rsp, 2*wordSize);
  2578   // volatile_barrier();
  2579   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2580                                                Assembler::StoreStore));
  2581   // Don't rewrite volatile version
  2582   __ jmp(notVolatile);
  2584   __ bind(notVolatileLong);
  2586   __ pop(ltos);  // overwrites rdx
  2587   if (!is_static) pop_and_check_object(obj);
  2588   NOT_LP64(__ movptr(hi, rdx));
  2589   __ movptr(lo, rax);
  2590   if (!is_static) {
  2591     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2593   __ jmp(notVolatile);
  2595   __ bind(notLong);
  2596   // ftos
  2597   __ cmpl(flags, ftos );
  2598   __ jcc(Assembler::notEqual, notFloat);
  2600   __ pop(ftos);
  2601   if (!is_static) pop_and_check_object(obj);
  2602   __ fstp_s(lo);
  2603   if (!is_static) {
  2604     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2606   __ jmp(Done);
  2608   __ bind(notFloat);
  2609   // dtos
  2610   __ cmpl(flags, dtos );
  2611   __ jcc(Assembler::notEqual, notDouble);
  2613   __ pop(dtos);
  2614   if (!is_static) pop_and_check_object(obj);
  2615   __ fstp_d(lo);
  2616   if (!is_static) {
  2617     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2619   __ jmp(Done);
  2621   __ bind(notDouble);
  2623   __ stop("Bad state");
  2625   __ bind(Done);
  2627   // Check for volatile store
  2628   __ testl(rdx, rdx);
  2629   __ jcc(Assembler::zero, notVolatile);
  2630   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2631                                                Assembler::StoreStore));
  2632   __ bind(notVolatile);
  2636 void TemplateTable::putfield(int byte_no) {
  2637   putfield_or_static(byte_no, false);
  2641 void TemplateTable::putstatic(int byte_no) {
  2642   putfield_or_static(byte_no, true);
  2645 void TemplateTable::jvmti_post_fast_field_mod() {
  2646   if (JvmtiExport::can_post_field_modification()) {
  2647     // Check to see if a field modification watch has been set before we take
  2648     // the time to call into the VM.
  2649     Label L2;
  2650     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2651     __ testl(rcx,rcx);
  2652     __ jcc(Assembler::zero, L2);
  2653     __ pop_ptr(rbx);               // copy the object pointer from tos
  2654     __ verify_oop(rbx);
  2655     __ push_ptr(rbx);              // put the object pointer back on tos
  2656     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2657     __ mov(rcx, rsp);
  2658     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2659     __ xorptr(rbx, rbx);
  2660     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2661     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2662     switch (bytecode()) {          // load values into the jvalue object
  2663     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2664     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2665     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2666     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2667     case Bytecodes::_fast_lputfield:
  2668       NOT_LP64(__ movptr(hi_value, rdx));
  2669       __ movptr(lo_value, rax);
  2670       break;
  2672     // need to call fld_s() after fstp_s() to restore the value for below
  2673     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2675     // need to call fld_d() after fstp_d() to restore the value for below
  2676     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2678     // since rcx is not an object we don't call store_check() here
  2679     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2681     default:  ShouldNotReachHere();
  2683     __ pop_ptr(rbx);  // restore copy of object pointer
  2685     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2686     // then use them for JVM/DI purposes
  2687     __ push(rax);
  2688     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2689     // access constant pool cache entry
  2690     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2691     __ verify_oop(rbx);
  2692     // rbx,: object pointer copied above
  2693     // rax,: cache entry pointer
  2694     // rcx: jvalue object on the stack
  2695     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2696     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2697     __ pop(rax);     // restore lower value
  2698     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2699     __ bind(L2);
  2703 void TemplateTable::fast_storefield(TosState state) {
  2704   transition(state, vtos);
  2706   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2708   jvmti_post_fast_field_mod();
  2710   // access constant pool cache
  2711   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2713   // test for volatile with rdx but rdx is tos register for lputfield.
  2714   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2715   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2716                        ConstantPoolCacheEntry::flags_offset())));
  2718   // replace index with field offset from cache entry
  2719   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2721   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2722   // volatile_barrier( );
  2724   Label notVolatile, Done;
  2725   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2726   __ andl(rdx, 0x1);
  2727   // Check for volatile store
  2728   __ testl(rdx, rdx);
  2729   __ jcc(Assembler::zero, notVolatile);
  2731   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2733   // Get object from stack
  2734   pop_and_check_object(rcx);
  2736   // field addresses
  2737   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2738   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2740   // access field
  2741   switch (bytecode()) {
  2742     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2743     case Bytecodes::_fast_sputfield: // fall through
  2744     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2745     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2746     case Bytecodes::_fast_lputfield:
  2747       NOT_LP64(__ movptr(hi, rdx));
  2748       __ movptr(lo, rax);
  2749       break;
  2750     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2751     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2752     case Bytecodes::_fast_aputfield: {
  2753       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2754       break;
  2756     default:
  2757       ShouldNotReachHere();
  2760   Label done;
  2761   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2762                                                Assembler::StoreStore));
  2763   // Barriers are so large that short branch doesn't reach!
  2764   __ jmp(done);
  2766   // Same code as above, but don't need rdx to test for volatile.
  2767   __ bind(notVolatile);
  2769   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2771   // Get object from stack
  2772   pop_and_check_object(rcx);
  2774   // access field
  2775   switch (bytecode()) {
  2776     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2777     case Bytecodes::_fast_sputfield: // fall through
  2778     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2779     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2780     case Bytecodes::_fast_lputfield:
  2781       NOT_LP64(__ movptr(hi, rdx));
  2782       __ movptr(lo, rax);
  2783       break;
  2784     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2785     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2786     case Bytecodes::_fast_aputfield: {
  2787       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2788       break;
  2790     default:
  2791       ShouldNotReachHere();
  2793   __ bind(done);
  2797 void TemplateTable::fast_accessfield(TosState state) {
  2798   transition(atos, state);
  2800   // do the JVMTI work here to avoid disturbing the register state below
  2801   if (JvmtiExport::can_post_field_access()) {
  2802     // Check to see if a field access watch has been set before we take
  2803     // the time to call into the VM.
  2804     Label L1;
  2805     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2806     __ testl(rcx,rcx);
  2807     __ jcc(Assembler::zero, L1);
  2808     // access constant pool cache entry
  2809     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2810     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2811     __ verify_oop(rax);
  2812     // rax,: object pointer copied above
  2813     // rcx: cache entry pointer
  2814     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2815     __ pop_ptr(rax);   // restore object pointer
  2816     __ bind(L1);
  2819   // access constant pool cache
  2820   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2821   // replace index with field offset from cache entry
  2822   __ movptr(rbx, Address(rcx,
  2823                          rbx,
  2824                          Address::times_ptr,
  2825                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2828   // rax,: object
  2829   __ verify_oop(rax);
  2830   __ null_check(rax);
  2831   // field addresses
  2832   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2833   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2835   // access field
  2836   switch (bytecode()) {
  2837     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2838     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2839     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2840     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2841     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2842     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2843     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2844     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2845     default:
  2846       ShouldNotReachHere();
  2849   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2850   // volatile_barrier( );
  2853 void TemplateTable::fast_xaccess(TosState state) {
  2854   transition(vtos, state);
  2855   // get receiver
  2856   __ movptr(rax, aaddress(0));
  2857   // access constant pool cache
  2858   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2859   __ movptr(rbx, Address(rcx,
  2860                          rdx,
  2861                          Address::times_ptr,
  2862                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2863   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2864   __ increment(rsi);
  2865   __ null_check(rax);
  2866   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2867   if (state == itos) {
  2868     __ movl(rax, lo);
  2869   } else if (state == atos) {
  2870     __ movptr(rax, lo);
  2871     __ verify_oop(rax);
  2872   } else if (state == ftos) {
  2873     __ fld_s(lo);
  2874   } else {
  2875     ShouldNotReachHere();
  2877   __ decrement(rsi);
  2882 //----------------------------------------------------------------------------------------------------
  2883 // Calls
  2885 void TemplateTable::count_calls(Register method, Register temp) {
  2886   // implemented elsewhere
  2887   ShouldNotReachHere();
  2891 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2892   // determine flags
  2893   Bytecodes::Code code = bytecode();
  2894   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2895   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2896   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2897   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2898   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2899   const bool receiver_null_check = is_invokespecial;
  2900   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2901   // setup registers & access constant pool cache
  2902   const Register recv   = rcx;
  2903   const Register flags  = rdx;
  2904   assert_different_registers(method, index, recv, flags);
  2906   // save 'interpreter return address'
  2907   __ save_bcp();
  2909   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2911   // load receiver if needed (note: no return address pushed yet)
  2912   if (load_receiver) {
  2913     assert(!is_invokedynamic, "");
  2914     __ movl(recv, flags);
  2915     __ andl(recv, 0xFF);
  2916     // recv count is 0 based?
  2917     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
  2918     __ movptr(recv, recv_addr);
  2919     __ verify_oop(recv);
  2922   // do null check if needed
  2923   if (receiver_null_check) {
  2924     __ null_check(recv);
  2927   if (save_flags) {
  2928     __ mov(rsi, flags);
  2931   // compute return type
  2932   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2933   // Make sure we don't need to mask flags for tosBits after the above shift
  2934   ConstantPoolCacheEntry::verify_tosBits();
  2935   // load return address
  2937     address table_addr;
  2938     if (is_invokeinterface || is_invokedynamic)
  2939       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2940     else
  2941       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2942     ExternalAddress table(table_addr);
  2943     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2946   // push return address
  2947   __ push(flags);
  2949   // Restore flag value from the constant pool cache, and restore rsi
  2950   // for later null checks.  rsi is the bytecode pointer
  2951   if (save_flags) {
  2952     __ mov(flags, rsi);
  2953     __ restore_bcp();
  2958 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2959                         Register flags) {
  2961   // Uses temporary registers rax, rdx
  2962   assert_different_registers(index, recv, rax, rdx);
  2964   // Test for an invoke of a final method
  2965   Label notFinal;
  2966   __ movl(rax, flags);
  2967   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2968   __ jcc(Assembler::zero, notFinal);
  2970   Register method = index;  // method must be rbx,
  2971   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2973   // do the call - the index is actually the method to call
  2974   __ verify_oop(method);
  2976   // It's final, need a null check here!
  2977   __ null_check(recv);
  2979   // profile this call
  2980   __ profile_final_call(rax);
  2982   __ jump_from_interpreted(method, rax);
  2984   __ bind(notFinal);
  2986   // get receiver klass
  2987   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2988   // Keep recv in rcx for callee expects it there
  2989   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2990   __ verify_oop(rax);
  2992   // profile this call
  2993   __ profile_virtual_call(rax, rdi, rdx);
  2995   // get target methodOop & entry point
  2996   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2997   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2998   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2999   __ jump_from_interpreted(method, rdx);
  3003 void TemplateTable::invokevirtual(int byte_no) {
  3004   transition(vtos, vtos);
  3005   assert(byte_no == f2_byte, "use this argument");
  3006   prepare_invoke(rbx, noreg, byte_no);
  3008   // rbx,: index
  3009   // rcx: receiver
  3010   // rdx: flags
  3012   invokevirtual_helper(rbx, rcx, rdx);
  3016 void TemplateTable::invokespecial(int byte_no) {
  3017   transition(vtos, vtos);
  3018   assert(byte_no == f1_byte, "use this argument");
  3019   prepare_invoke(rbx, noreg, byte_no);
  3020   // do the call
  3021   __ verify_oop(rbx);
  3022   __ profile_call(rax);
  3023   __ jump_from_interpreted(rbx, rax);
  3027 void TemplateTable::invokestatic(int byte_no) {
  3028   transition(vtos, vtos);
  3029   assert(byte_no == f1_byte, "use this argument");
  3030   prepare_invoke(rbx, noreg, byte_no);
  3031   // do the call
  3032   __ verify_oop(rbx);
  3033   __ profile_call(rax);
  3034   __ jump_from_interpreted(rbx, rax);
  3038 void TemplateTable::fast_invokevfinal(int byte_no) {
  3039   transition(vtos, vtos);
  3040   assert(byte_no == f2_byte, "use this argument");
  3041   __ stop("fast_invokevfinal not used on x86");
  3045 void TemplateTable::invokeinterface(int byte_no) {
  3046   transition(vtos, vtos);
  3047   assert(byte_no == f1_byte, "use this argument");
  3048   prepare_invoke(rax, rbx, byte_no);
  3050   // rax,: Interface
  3051   // rbx,: index
  3052   // rcx: receiver
  3053   // rdx: flags
  3055   // Special case of invokeinterface called for virtual method of
  3056   // java.lang.Object.  See cpCacheOop.cpp for details.
  3057   // This code isn't produced by javac, but could be produced by
  3058   // another compliant java compiler.
  3059   Label notMethod;
  3060   __ movl(rdi, rdx);
  3061   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3062   __ jcc(Assembler::zero, notMethod);
  3064   invokevirtual_helper(rbx, rcx, rdx);
  3065   __ bind(notMethod);
  3067   // Get receiver klass into rdx - also a null check
  3068   __ restore_locals();  // restore rdi
  3069   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  3070   __ verify_oop(rdx);
  3072   // profile this call
  3073   __ profile_virtual_call(rdx, rsi, rdi);
  3075   Label no_such_interface, no_such_method;
  3077   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3078                              rdx, rax, rbx,
  3079                              // outputs: method, scan temp. reg
  3080                              rbx, rsi,
  3081                              no_such_interface);
  3083   // rbx,: methodOop to call
  3084   // rcx: receiver
  3085   // Check for abstract method error
  3086   // Note: This should be done more efficiently via a throw_abstract_method_error
  3087   //       interpreter entry point and a conditional jump to it in case of a null
  3088   //       method.
  3089   __ testptr(rbx, rbx);
  3090   __ jcc(Assembler::zero, no_such_method);
  3092   // do the call
  3093   // rcx: receiver
  3094   // rbx,: methodOop
  3095   __ jump_from_interpreted(rbx, rdx);
  3096   __ should_not_reach_here();
  3098   // exception handling code follows...
  3099   // note: must restore interpreter registers to canonical
  3100   //       state for exception handling to work correctly!
  3102   __ bind(no_such_method);
  3103   // throw exception
  3104   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3105   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3106   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3107   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3108   // the call_VM checks for exception, so we should never return here.
  3109   __ should_not_reach_here();
  3111   __ bind(no_such_interface);
  3112   // throw exception
  3113   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3114   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3115   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3116   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3117                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3118   // the call_VM checks for exception, so we should never return here.
  3119   __ should_not_reach_here();
  3122 void TemplateTable::invokedynamic(int byte_no) {
  3123   transition(vtos, vtos);
  3125   if (!EnableInvokeDynamic) {
  3126     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3127     // The verifier will stop it.  However, if we get past the verifier,
  3128     // this will stop the thread in a reasonable way, without crashing the JVM.
  3129     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3130                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3131     // the call_VM checks for exception, so we should never return here.
  3132     __ should_not_reach_here();
  3133     return;
  3136   assert(byte_no == f1_oop, "use this argument");
  3137   prepare_invoke(rax, rbx, byte_no);
  3139   // rax: CallSite object (f1)
  3140   // rbx: unused (f2)
  3141   // rcx: receiver address
  3142   // rdx: flags (unused)
  3144   Register rax_callsite      = rax;
  3145   Register rcx_method_handle = rcx;
  3147   if (ProfileInterpreter) {
  3148     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3149     // profile this call
  3150     __ profile_call(rsi);
  3153   __ movptr(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3154   __ null_check(rcx_method_handle);
  3155   __ prepare_to_jump_from_interpreted();
  3156   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3159 //----------------------------------------------------------------------------------------------------
  3160 // Allocation
  3162 void TemplateTable::_new() {
  3163   transition(vtos, atos);
  3164   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3165   Label slow_case;
  3166   Label slow_case_no_pop;
  3167   Label done;
  3168   Label initialize_header;
  3169   Label initialize_object;  // including clearing the fields
  3170   Label allocate_shared;
  3172   __ get_cpool_and_tags(rcx, rax);
  3174   // Make sure the class we're about to instantiate has been resolved.
  3175   // This is done before loading instanceKlass to be consistent with the order
  3176   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3177   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3178   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3179   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3181   // get instanceKlass
  3182   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3183   __ push(rcx);  // save the contexts of klass for initializing the header
  3185   // make sure klass is initialized & doesn't have finalizer
  3186   // make sure klass is fully initialized
  3187   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3188   __ jcc(Assembler::notEqual, slow_case);
  3190   // get instance_size in instanceKlass (scaled to a count of bytes)
  3191   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3192   // test to see if it has a finalizer or is malformed in some way
  3193   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3194   __ jcc(Assembler::notZero, slow_case);
  3196   //
  3197   // Allocate the instance
  3198   // 1) Try to allocate in the TLAB
  3199   // 2) if fail and the object is large allocate in the shared Eden
  3200   // 3) if the above fails (or is not applicable), go to a slow case
  3201   // (creates a new TLAB, etc.)
  3203   const bool allow_shared_alloc =
  3204     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3206   const Register thread = rcx;
  3207   if (UseTLAB || allow_shared_alloc) {
  3208     __ get_thread(thread);
  3211   if (UseTLAB) {
  3212     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3213     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3214     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3215     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3216     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3217     if (ZeroTLAB) {
  3218       // the fields have been already cleared
  3219       __ jmp(initialize_header);
  3220     } else {
  3221       // initialize both the header and fields
  3222       __ jmp(initialize_object);
  3226   // Allocation in the shared Eden, if allowed.
  3227   //
  3228   // rdx: instance size in bytes
  3229   if (allow_shared_alloc) {
  3230     __ bind(allocate_shared);
  3232     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3234     Label retry;
  3235     __ bind(retry);
  3236     __ movptr(rax, heap_top);
  3237     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3238     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3239     __ jcc(Assembler::above, slow_case);
  3241     // Compare rax, with the top addr, and if still equal, store the new
  3242     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3243     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3244     //
  3245     // rax,: object begin
  3246     // rbx,: object end
  3247     // rdx: instance size in bytes
  3248     __ locked_cmpxchgptr(rbx, heap_top);
  3250     // if someone beat us on the allocation, try again, otherwise continue
  3251     __ jcc(Assembler::notEqual, retry);
  3253     __ incr_allocated_bytes(thread, rdx, 0);
  3256   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3257     // The object is initialized before the header.  If the object size is
  3258     // zero, go directly to the header initialization.
  3259     __ bind(initialize_object);
  3260     __ decrement(rdx, sizeof(oopDesc));
  3261     __ jcc(Assembler::zero, initialize_header);
  3263     // Initialize topmost object field, divide rdx by 8, check if odd and
  3264     // test if zero.
  3265     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3266     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3268     // rdx must have been multiple of 8
  3269 #ifdef ASSERT
  3270     // make sure rdx was multiple of 8
  3271     Label L;
  3272     // Ignore partial flag stall after shrl() since it is debug VM
  3273     __ jccb(Assembler::carryClear, L);
  3274     __ stop("object size is not multiple of 2 - adjust this code");
  3275     __ bind(L);
  3276     // rdx must be > 0, no extra check needed here
  3277 #endif
  3279     // initialize remaining object fields: rdx was a multiple of 8
  3280     { Label loop;
  3281     __ bind(loop);
  3282     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3283     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3284     __ decrement(rdx);
  3285     __ jcc(Assembler::notZero, loop);
  3288     // initialize object header only.
  3289     __ bind(initialize_header);
  3290     if (UseBiasedLocking) {
  3291       __ pop(rcx);   // get saved klass back in the register.
  3292       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3293       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3294     } else {
  3295       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3296                 (int32_t)markOopDesc::prototype()); // header
  3297       __ pop(rcx);   // get saved klass back in the register.
  3299     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3302       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3303       // Trigger dtrace event for fastpath
  3304       __ push(atos);
  3305       __ call_VM_leaf(
  3306            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3307       __ pop(atos);
  3310     __ jmp(done);
  3313   // slow case
  3314   __ bind(slow_case);
  3315   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3316   __ bind(slow_case_no_pop);
  3317   __ get_constant_pool(rax);
  3318   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3319   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3321   // continue
  3322   __ bind(done);
  3326 void TemplateTable::newarray() {
  3327   transition(itos, atos);
  3328   __ push_i(rax);                                 // make sure everything is on the stack
  3329   __ load_unsigned_byte(rdx, at_bcp(1));
  3330   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3331   __ pop_i(rdx);                                  // discard size
  3335 void TemplateTable::anewarray() {
  3336   transition(itos, atos);
  3337   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3338   __ get_constant_pool(rcx);
  3339   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3343 void TemplateTable::arraylength() {
  3344   transition(atos, itos);
  3345   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3346   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3350 void TemplateTable::checkcast() {
  3351   transition(atos, atos);
  3352   Label done, is_null, ok_is_subtype, quicked, resolved;
  3353   __ testptr(rax, rax);   // Object is in EAX
  3354   __ jcc(Assembler::zero, is_null);
  3356   // Get cpool & tags index
  3357   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3358   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3359   // See if bytecode has already been quicked
  3360   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3361   __ jcc(Assembler::equal, quicked);
  3363   __ push(atos);
  3364   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3365   __ pop_ptr(rdx);
  3366   __ jmpb(resolved);
  3368   // Get superklass in EAX and subklass in EBX
  3369   __ bind(quicked);
  3370   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3371   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3373   __ bind(resolved);
  3374   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3376   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3377   // Superklass in EAX.  Subklass in EBX.
  3378   __ gen_subtype_check( rbx, ok_is_subtype );
  3380   // Come here on failure
  3381   __ push(rdx);
  3382   // object is at TOS
  3383   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3385   // Come here on success
  3386   __ bind(ok_is_subtype);
  3387   __ mov(rax,rdx);           // Restore object in EDX
  3389   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3390   if (ProfileInterpreter) {
  3391     __ jmp(done);
  3392     __ bind(is_null);
  3393     __ profile_null_seen(rcx);
  3394   } else {
  3395     __ bind(is_null);   // same as 'done'
  3397   __ bind(done);
  3401 void TemplateTable::instanceof() {
  3402   transition(atos, itos);
  3403   Label done, is_null, ok_is_subtype, quicked, resolved;
  3404   __ testptr(rax, rax);
  3405   __ jcc(Assembler::zero, is_null);
  3407   // Get cpool & tags index
  3408   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3409   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3410   // See if bytecode has already been quicked
  3411   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3412   __ jcc(Assembler::equal, quicked);
  3414   __ push(atos);
  3415   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3416   __ pop_ptr(rdx);
  3417   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3418   __ jmp(resolved);
  3420   // Get superklass in EAX and subklass in EDX
  3421   __ bind(quicked);
  3422   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3423   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3425   __ bind(resolved);
  3427   // Generate subtype check.  Blows ECX.  Resets EDI.
  3428   // Superklass in EAX.  Subklass in EDX.
  3429   __ gen_subtype_check( rdx, ok_is_subtype );
  3431   // Come here on failure
  3432   __ xorl(rax,rax);
  3433   __ jmpb(done);
  3434   // Come here on success
  3435   __ bind(ok_is_subtype);
  3436   __ movl(rax, 1);
  3438   // Collect counts on whether this test sees NULLs a lot or not.
  3439   if (ProfileInterpreter) {
  3440     __ jmp(done);
  3441     __ bind(is_null);
  3442     __ profile_null_seen(rcx);
  3443   } else {
  3444     __ bind(is_null);   // same as 'done'
  3446   __ bind(done);
  3447   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3448   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3452 //----------------------------------------------------------------------------------------------------
  3453 // Breakpoints
  3454 void TemplateTable::_breakpoint() {
  3456   // Note: We get here even if we are single stepping..
  3457   // jbug inists on setting breakpoints at every bytecode
  3458   // even if we are in single step mode.
  3460   transition(vtos, vtos);
  3462   // get the unpatched byte code
  3463   __ get_method(rcx);
  3464   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3465   __ mov(rbx, rax);
  3467   // post the breakpoint event
  3468   __ get_method(rcx);
  3469   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3471   // complete the execution of original bytecode
  3472   __ dispatch_only_normal(vtos);
  3476 //----------------------------------------------------------------------------------------------------
  3477 // Exceptions
  3479 void TemplateTable::athrow() {
  3480   transition(atos, vtos);
  3481   __ null_check(rax);
  3482   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3486 //----------------------------------------------------------------------------------------------------
  3487 // Synchronization
  3488 //
  3489 // Note: monitorenter & exit are symmetric routines; which is reflected
  3490 //       in the assembly code structure as well
  3491 //
  3492 // Stack layout:
  3493 //
  3494 // [expressions  ] <--- rsp               = expression stack top
  3495 // ..
  3496 // [expressions  ]
  3497 // [monitor entry] <--- monitor block top = expression stack bot
  3498 // ..
  3499 // [monitor entry]
  3500 // [frame data   ] <--- monitor block bot
  3501 // ...
  3502 // [saved rbp,    ] <--- rbp,
  3505 void TemplateTable::monitorenter() {
  3506   transition(atos, vtos);
  3508   // check for NULL object
  3509   __ null_check(rax);
  3511   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3512   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3513   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3514   Label allocated;
  3516   // initialize entry pointer
  3517   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3519   // find a free slot in the monitor block (result in rdx)
  3520   { Label entry, loop, exit;
  3521     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
  3522     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
  3523     __ jmpb(entry);
  3525     __ bind(loop);
  3526     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3528 // TODO - need new func here - kbt
  3529     if (VM_Version::supports_cmov()) {
  3530       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
  3531     } else {
  3532       Label L;
  3533       __ jccb(Assembler::notEqual, L);
  3534       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
  3535       __ bind(L);
  3537     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3538     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3539     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3540     __ bind(entry);
  3541     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3542     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3543     __ bind(exit);
  3546   __ testptr(rdx, rdx);                          // check if a slot has been found
  3547   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3549   // allocate one if there's no free slot
  3550   { Label entry, loop;
  3551     // 1. compute new pointers                   // rsp: old expression stack top
  3552     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3553     __ subptr(rsp, entry_size);                  // move expression stack top
  3554     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3555     __ mov(rcx, rsp);                            // set start value for copy loop
  3556     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3557     __ jmp(entry);
  3558     // 2. move expression stack contents
  3559     __ bind(loop);
  3560     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3561     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3562     __ addptr(rcx, wordSize);                    // advance to next word
  3563     __ bind(entry);
  3564     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3565     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3568   // call run-time routine
  3569   // rdx: points to monitor entry
  3570   __ bind(allocated);
  3572   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3573   // The object has already been poped from the stack, so the expression stack looks correct.
  3574   __ increment(rsi);
  3576   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3577   __ lock_object(rdx);
  3579   // check to make sure this monitor doesn't cause stack overflow after locking
  3580   __ save_bcp();  // in case of exception
  3581   __ generate_stack_overflow_check(0);
  3583   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3584   __ dispatch_next(vtos);
  3588 void TemplateTable::monitorexit() {
  3589   transition(atos, vtos);
  3591   // check for NULL object
  3592   __ null_check(rax);
  3594   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3595   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3596   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3597   Label found;
  3599   // find matching slot
  3600   { Label entry, loop;
  3601     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3602     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3603     __ jmpb(entry);
  3605     __ bind(loop);
  3606     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3607     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3608     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3609     __ bind(entry);
  3610     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3611     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3614   // error handling. Unlocking was not block-structured
  3615   Label end;
  3616   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3617   __ should_not_reach_here();
  3619   // call run-time routine
  3620   // rcx: points to monitor entry
  3621   __ bind(found);
  3622   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3623   __ unlock_object(rdx);
  3624   __ pop_ptr(rax);                                  // discard object
  3625   __ bind(end);
  3629 //----------------------------------------------------------------------------------------------------
  3630 // Wide instructions
  3632 void TemplateTable::wide() {
  3633   transition(vtos, vtos);
  3634   __ load_unsigned_byte(rbx, at_bcp(1));
  3635   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3636   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3637   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3641 //----------------------------------------------------------------------------------------------------
  3642 // Multi arrays
  3644 void TemplateTable::multianewarray() {
  3645   transition(vtos, atos);
  3646   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3647   // last dim is on top of stack; we want address of first one:
  3648   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3649   // the latter wordSize to point to the beginning of the array.
  3650   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3651   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3652   __ load_unsigned_byte(rbx, at_bcp(3));
  3653   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3656 #endif /* !CC_INTERP */

mercurial