src/cpu/x86/vm/methodHandles_x86.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2314
f95d63e2154a
child 2411
8d0b933dda2d
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "prims/methodHandles.hpp"
    30 #define __ _masm->
    32 #ifdef PRODUCT
    33 #define BLOCK_COMMENT(str) /* nothing */
    34 #else
    35 #define BLOCK_COMMENT(str) __ block_comment(str)
    36 #endif
    38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    41                                                 address interpreted_entry) {
    42   // Just before the actual machine code entry point, allocate space
    43   // for a MethodHandleEntry::Data record, so that we can manage everything
    44   // from one base pointer.
    45   __ align(wordSize);
    46   address target = __ pc() + sizeof(Data);
    47   while (__ pc() < target) {
    48     __ nop();
    49     __ align(wordSize);
    50   }
    52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    53   me->set_end_address(__ pc());         // set a temporary end_address
    54   me->set_from_interpreted_entry(interpreted_entry);
    55   me->set_type_checking_entry(NULL);
    57   return (address) me;
    58 }
    60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    61                                                 address start_addr) {
    62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    63   assert(me->end_address() == start_addr, "valid ME");
    65   // Fill in the real end_address:
    66   __ align(wordSize);
    67   me->set_end_address(__ pc());
    69   return me;
    70 }
    72 #ifdef ASSERT
    73 static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
    74                            const char* error_message) {
    75   // Verify that argslot lies within (rsp, rbp].
    76   Label L_ok, L_bad;
    77   BLOCK_COMMENT("{ verify_argslot");
    78   __ cmpptr(argslot_reg, rbp);
    79   __ jccb(Assembler::above, L_bad);
    80   __ cmpptr(rsp, argslot_reg);
    81   __ jccb(Assembler::below, L_ok);
    82   __ bind(L_bad);
    83   __ stop(error_message);
    84   __ bind(L_ok);
    85   BLOCK_COMMENT("} verify_argslot");
    86 }
    87 #endif
    90 // Code generation
    91 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
    92   // rbx: methodOop
    93   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
    94   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
    95   // rdx, rdi: garbage temp, blown away
    97   Register rbx_method = rbx;
    98   Register rcx_recv   = rcx;
    99   Register rax_mtype  = rax;
   100   Register rdx_temp   = rdx;
   101   Register rdi_temp   = rdi;
   103   // emit WrongMethodType path first, to enable jccb back-branch from main path
   104   Label wrong_method_type;
   105   __ bind(wrong_method_type);
   106   Label invoke_generic_slow_path;
   107   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   108   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
   109   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
   110   __ push(rax_mtype);       // required mtype
   111   __ push(rcx_recv);        // bad mh (1st stacked argument)
   112   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   114   // here's where control starts out:
   115   __ align(CodeEntryAlignment);
   116   address entry_point = __ pc();
   118   // fetch the MethodType from the method handle into rax (the 'check' register)
   119   {
   120     Register tem = rbx_method;
   121     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   122       __ movptr(rax_mtype, Address(tem, *pchase));
   123       tem = rax_mtype;          // in case there is another indirection
   124     }
   125   }
   127   // given the MethodType, find out where the MH argument is buried
   128   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
   129   Register rdx_vmslots = rdx_temp;
   130   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
   131   __ movptr(rcx_recv, __ argument_address(rdx_vmslots));
   133   trace_method_handle(_masm, "invokeExact");
   135   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
   136   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
   138   // for invokeGeneric (only), apply argument and result conversions on the fly
   139   __ bind(invoke_generic_slow_path);
   140 #ifdef ASSERT
   141   { Label L;
   142     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   143     __ jcc(Assembler::equal, L);
   144     __ stop("bad methodOop::intrinsic_id");
   145     __ bind(L);
   146   }
   147 #endif //ASSERT
   148   Register rbx_temp = rbx_method;  // don't need it now
   150   // make room on the stack for another pointer:
   151   Register rcx_argslot = rcx_recv;
   152   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   153   insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK,
   154                    rcx_argslot, rbx_temp, rdx_temp);
   156   // load up an adapter from the calling type (Java weaves this)
   157   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
   158   Register rdx_adapter = rdx_temp;
   159   // __ load_heap_oop(rdx_adapter, Address(rdx_temp, java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes()));
   160   // deal with old JDK versions:
   161   __ lea(rdi_temp, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   162   __ cmpptr(rdi_temp, rdx_temp);
   163   Label sorry_no_invoke_generic;
   164   __ jcc(Assembler::below, sorry_no_invoke_generic);
   166   __ load_heap_oop(rdx_adapter, Address(rdi_temp, 0));
   167   __ testptr(rdx_adapter, rdx_adapter);
   168   __ jcc(Assembler::zero, sorry_no_invoke_generic);
   169   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   170   // As a trusted first argument, pass the type being called, so the adapter knows
   171   // the actual types of the arguments and return values.
   172   // (Generic invokers are shared among form-families of method-type.)
   173   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   174   // FIXME: assert that rdx_adapter is of the right method-type.
   175   __ mov(rcx, rdx_adapter);
   176   trace_method_handle(_masm, "invokeGeneric");
   177   __ jump_to_method_handle_entry(rcx, rdi_temp);
   179   __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
   180   __ movptr(rcx_recv, Address(rcx_argslot, -1 * Interpreter::stackElementSize));  // recover original MH
   181   __ push(rax_mtype);       // required mtype
   182   __ push(rcx_recv);        // bad mh (1st stacked argument)
   183   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   185   return entry_point;
   186 }
   188 // Helper to insert argument slots into the stack.
   189 // arg_slots must be a multiple of stack_move_unit() and <= 0
   190 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   191                                      RegisterOrConstant arg_slots,
   192                                      int arg_mask,
   193                                      Register rax_argslot,
   194                                      Register rbx_temp, Register rdx_temp, Register temp3_reg) {
   195   assert(temp3_reg == noreg, "temp3 not required");
   196   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   197                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   199 #ifdef ASSERT
   200   verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   201   if (arg_slots.is_register()) {
   202     Label L_ok, L_bad;
   203     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   204     __ jccb(Assembler::greater, L_bad);
   205     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   206     __ jccb(Assembler::zero, L_ok);
   207     __ bind(L_bad);
   208     __ stop("assert arg_slots <= 0 and clear low bits");
   209     __ bind(L_ok);
   210   } else {
   211     assert(arg_slots.as_constant() <= 0, "");
   212     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   213   }
   214 #endif //ASSERT
   216 #ifdef _LP64
   217   if (arg_slots.is_register()) {
   218     // clean high bits of stack motion register (was loaded as an int)
   219     __ movslq(arg_slots.as_register(), arg_slots.as_register());
   220   }
   221 #endif
   223   // Make space on the stack for the inserted argument(s).
   224   // Then pull down everything shallower than rax_argslot.
   225   // The stacked return address gets pulled down with everything else.
   226   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   227   //   rsp -= size;
   228   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   229   //     rdx[-size] = rdx[0]
   230   //   argslot -= size;
   231   BLOCK_COMMENT("insert_arg_slots {");
   232   __ mov(rdx_temp, rsp);                        // source pointer for copy
   233   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   234   {
   235     Label loop;
   236     __ BIND(loop);
   237     // pull one word down each time through the loop
   238     __ movptr(rbx_temp, Address(rdx_temp, 0));
   239     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   240     __ addptr(rdx_temp, wordSize);
   241     __ cmpptr(rdx_temp, rax_argslot);
   242     __ jccb(Assembler::less, loop);
   243   }
   245   // Now move the argslot down, to point to the opened-up space.
   246   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   247   BLOCK_COMMENT("} insert_arg_slots");
   248 }
   250 // Helper to remove argument slots from the stack.
   251 // arg_slots must be a multiple of stack_move_unit() and >= 0
   252 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   253                                     RegisterOrConstant arg_slots,
   254                                     Register rax_argslot,
   255                                      Register rbx_temp, Register rdx_temp, Register temp3_reg) {
   256   assert(temp3_reg == noreg, "temp3 not required");
   257   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   258                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   260 #ifdef ASSERT
   261   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   262   __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
   263   verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame");
   264   if (arg_slots.is_register()) {
   265     Label L_ok, L_bad;
   266     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   267     __ jccb(Assembler::less, L_bad);
   268     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   269     __ jccb(Assembler::zero, L_ok);
   270     __ bind(L_bad);
   271     __ stop("assert arg_slots >= 0 and clear low bits");
   272     __ bind(L_ok);
   273   } else {
   274     assert(arg_slots.as_constant() >= 0, "");
   275     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   276   }
   277 #endif //ASSERT
   279 #ifdef _LP64
   280   if (false) {                  // not needed, since register is positive
   281     // clean high bits of stack motion register (was loaded as an int)
   282     if (arg_slots.is_register())
   283       __ movslq(arg_slots.as_register(), arg_slots.as_register());
   284   }
   285 #endif
   287   BLOCK_COMMENT("remove_arg_slots {");
   288   // Pull up everything shallower than rax_argslot.
   289   // Then remove the excess space on the stack.
   290   // The stacked return address gets pulled up with everything else.
   291   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   292   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   293   //     rdx[size] = rdx[0]
   294   //   argslot += size;
   295   //   rsp += size;
   296   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   297   {
   298     Label loop;
   299     __ BIND(loop);
   300     // pull one word up each time through the loop
   301     __ movptr(rbx_temp, Address(rdx_temp, 0));
   302     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   303     __ addptr(rdx_temp, -wordSize);
   304     __ cmpptr(rdx_temp, rsp);
   305     __ jccb(Assembler::greaterEqual, loop);
   306   }
   308   // Now move the argslot up, to point to the just-copied block.
   309   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   310   // And adjust the argslot address to point at the deletion point.
   311   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   312   BLOCK_COMMENT("} remove_arg_slots");
   313 }
   315 #ifndef PRODUCT
   316 extern "C" void print_method_handle(oop mh);
   317 void trace_method_handle_stub(const char* adaptername,
   318                               oop mh,
   319                               intptr_t* saved_regs,
   320                               intptr_t* entry_sp,
   321                               intptr_t* saved_sp,
   322                               intptr_t* saved_bp) {
   323   // called as a leaf from native code: do not block the JVM!
   324   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
   325   intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
   326   printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
   327          adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
   328   if (last_sp != saved_sp && last_sp != NULL)
   329     printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
   330   if (Verbose) {
   331     printf(" reg dump: ");
   332     int saved_regs_count = (entry_sp-1) - saved_regs;
   333     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
   334     int i;
   335     for (i = 0; i <= saved_regs_count; i++) {
   336       if (i > 0 && i % 4 == 0 && i != saved_regs_count)
   337         printf("\n   + dump: ");
   338       printf(" %d: "INTPTR_FORMAT, i, saved_regs[i]);
   339     }
   340     printf("\n");
   341     int stack_dump_count = 16;
   342     if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
   343       stack_dump_count = (int)(saved_bp + 2 - saved_sp);
   344     if (stack_dump_count > 64)  stack_dump_count = 48;
   345     for (i = 0; i < stack_dump_count; i += 4) {
   346       printf(" dump at SP[%d] "INTPTR_FORMAT": "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT"\n",
   347              i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
   348     }
   349     print_method_handle(mh);
   350   }
   351 }
   352 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
   353   if (!TraceMethodHandles)  return;
   354   BLOCK_COMMENT("trace_method_handle {");
   355   __ push(rax);
   356   __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
   357   __ pusha();
   358   // arguments:
   359   __ push(rbp);               // interpreter frame pointer
   360   __ push(rsi);               // saved_sp
   361   __ push(rax);               // entry_sp
   362   __ push(rcx);               // mh
   363   __ push(rcx);
   364   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
   365   __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
   366   __ popa();
   367   __ pop(rax);
   368   BLOCK_COMMENT("} trace_method_handle");
   369 }
   370 #endif //PRODUCT
   372 // which conversion op types are implemented here?
   373 int MethodHandles::adapter_conversion_ops_supported_mask() {
   374   return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
   375          |(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
   376          |(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
   377          |(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
   378          |(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
   379          |(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
   380          |(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
   381          |(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
   382          |(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
   383          //|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
   384          );
   385   // FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
   386 }
   388 // Generate an "entry" field for a method handle.
   389 // This determines how the method handle will respond to calls.
   390 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
   391   // Here is the register state during an interpreted call,
   392   // as set up by generate_method_handle_interpreter_entry():
   393   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
   394   // - rcx: receiver method handle
   395   // - rax: method handle type (only used by the check_mtype entry point)
   396   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   397   // - rdx: garbage temp, can blow away
   399   Register rcx_recv    = rcx;
   400   Register rax_argslot = rax;
   401   Register rbx_temp    = rbx;
   402   Register rdx_temp    = rdx;
   404   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
   405   // and gen_c2i_adapter (from compiled calls):
   406   Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);
   408   guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
   410   // some handy addresses
   411   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
   413   Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
   414   Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
   416   Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
   417   Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
   419   Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
   420   Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
   421   Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
   422   Address vmarg;                // __ argument_address(vmargslot)
   424   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   426   if (have_entry(ek)) {
   427     __ nop();                   // empty stubs make SG sick
   428     return;
   429   }
   431   address interp_entry = __ pc();
   433   trace_method_handle(_masm, entry_name(ek));
   435   BLOCK_COMMENT(entry_name(ek));
   437   switch ((int) ek) {
   438   case _raise_exception:
   439     {
   440       // Not a real MH entry, but rather shared code for raising an exception.
   441       // Extra local arguments are pushed on stack, as required type at TOS+8,
   442       // failing object (or NULL) at TOS+4, failing bytecode type at TOS.
   443       // Beyond those local arguments are the PC, of course.
   444       Register rdx_code = rdx_temp;
   445       Register rcx_fail = rcx_recv;
   446       Register rax_want = rax_argslot;
   447       Register rdi_pc   = rdi;
   448       __ pop(rdx_code);  // TOS+0
   449       __ pop(rcx_fail);  // TOS+4
   450       __ pop(rax_want);  // TOS+8
   451       __ pop(rdi_pc);    // caller PC
   453       __ mov(rsp, rsi);   // cut the stack back to where the caller started
   455       // Repush the arguments as if coming from the interpreter.
   456       __ push(rdx_code);
   457       __ push(rcx_fail);
   458       __ push(rax_want);
   460       Register rbx_method = rbx_temp;
   461       Label no_method;
   462       // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
   463       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
   464       __ testptr(rbx_method, rbx_method);
   465       __ jccb(Assembler::zero, no_method);
   466       int jobject_oop_offset = 0;
   467       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
   468       __ testptr(rbx_method, rbx_method);
   469       __ jccb(Assembler::zero, no_method);
   470       __ verify_oop(rbx_method);
   471       __ push(rdi_pc);          // and restore caller PC
   472       __ jmp(rbx_method_fie);
   474       // If we get here, the Java runtime did not do its job of creating the exception.
   475       // Do something that is at least causes a valid throw from the interpreter.
   476       __ bind(no_method);
   477       __ pop(rax_want);
   478       __ pop(rcx_fail);
   479       __ push(rax_want);
   480       __ push(rcx_fail);
   481       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   482     }
   483     break;
   485   case _invokestatic_mh:
   486   case _invokespecial_mh:
   487     {
   488       Register rbx_method = rbx_temp;
   489       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
   490       __ verify_oop(rbx_method);
   491       // same as TemplateTable::invokestatic or invokespecial,
   492       // minus the CP setup and profiling:
   493       if (ek == _invokespecial_mh) {
   494         // Must load & check the first argument before entering the target method.
   495         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   496         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   497         __ null_check(rcx_recv);
   498         __ verify_oop(rcx_recv);
   499       }
   500       __ jmp(rbx_method_fie);
   501     }
   502     break;
   504   case _invokevirtual_mh:
   505     {
   506       // same as TemplateTable::invokevirtual,
   507       // minus the CP setup and profiling:
   509       // pick out the vtable index and receiver offset from the MH,
   510       // and then we can discard it:
   511       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   512       Register rbx_index = rbx_temp;
   513       __ movl(rbx_index, rcx_dmh_vmindex);
   514       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
   515       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   516       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   518       // get receiver klass
   519       Register rax_klass = rax_argslot;
   520       __ load_klass(rax_klass, rcx_recv);
   521       __ verify_oop(rax_klass);
   523       // get target methodOop & entry point
   524       const int base = instanceKlass::vtable_start_offset() * wordSize;
   525       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
   526       Address vtable_entry_addr(rax_klass,
   527                                 rbx_index, Address::times_ptr,
   528                                 base + vtableEntry::method_offset_in_bytes());
   529       Register rbx_method = rbx_temp;
   530       __ movptr(rbx_method, vtable_entry_addr);
   532       __ verify_oop(rbx_method);
   533       __ jmp(rbx_method_fie);
   534     }
   535     break;
   537   case _invokeinterface_mh:
   538     {
   539       // same as TemplateTable::invokeinterface,
   540       // minus the CP setup and profiling:
   542       // pick out the interface and itable index from the MH.
   543       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   544       Register rdx_intf  = rdx_temp;
   545       Register rbx_index = rbx_temp;
   546       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
   547       __ movl(rbx_index, rcx_dmh_vmindex);
   548       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   549       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   551       // get receiver klass
   552       Register rax_klass = rax_argslot;
   553       __ load_klass(rax_klass, rcx_recv);
   554       __ verify_oop(rax_klass);
   556       Register rdi_temp   = rdi;
   557       Register rbx_method = rbx_index;
   559       // get interface klass
   560       Label no_such_interface;
   561       __ verify_oop(rdx_intf);
   562       __ lookup_interface_method(rax_klass, rdx_intf,
   563                                  // note: next two args must be the same:
   564                                  rbx_index, rbx_method,
   565                                  rdi_temp,
   566                                  no_such_interface);
   568       __ verify_oop(rbx_method);
   569       __ jmp(rbx_method_fie);
   570       __ hlt();
   572       __ bind(no_such_interface);
   573       // Throw an exception.
   574       // For historical reasons, it will be IncompatibleClassChangeError.
   575       __ pushptr(Address(rdx_intf, java_mirror_offset));  // required interface
   576       __ push(rcx_recv);        // bad receiver
   577       __ push((int)Bytecodes::_invokeinterface);  // who is complaining?
   578       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
   579     }
   580     break;
   582   case _bound_ref_mh:
   583   case _bound_int_mh:
   584   case _bound_long_mh:
   585   case _bound_ref_direct_mh:
   586   case _bound_int_direct_mh:
   587   case _bound_long_direct_mh:
   588     {
   589       bool direct_to_method = (ek >= _bound_ref_direct_mh);
   590       BasicType arg_type  = T_ILLEGAL;
   591       int       arg_mask  = _INSERT_NO_MASK;
   592       int       arg_slots = -1;
   593       get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
   595       // make room for the new argument:
   596       __ movl(rax_argslot, rcx_bmh_vmargslot);
   597       __ lea(rax_argslot, __ argument_address(rax_argslot));
   598       insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
   599                        rax_argslot, rbx_temp, rdx_temp);
   601       // store bound argument into the new stack slot:
   602       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
   603       Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
   604       if (arg_type == T_OBJECT) {
   605         __ movptr(Address(rax_argslot, 0), rbx_temp);
   606       } else {
   607         __ load_sized_value(rdx_temp, prim_value_addr,
   608                             type2aelembytes(arg_type), is_signed_subword_type(arg_type));
   609         __ movptr(Address(rax_argslot, 0), rdx_temp);
   610 #ifndef _LP64
   611         if (arg_slots == 2) {
   612           __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
   613           __ movl(Address(rax_argslot, Interpreter::stackElementSize), rdx_temp);
   614         }
   615 #endif //_LP64
   616       }
   618       if (direct_to_method) {
   619         Register rbx_method = rbx_temp;
   620         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
   621         __ verify_oop(rbx_method);
   622         __ jmp(rbx_method_fie);
   623       } else {
   624         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   625         __ verify_oop(rcx_recv);
   626         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   627       }
   628     }
   629     break;
   631   case _adapter_retype_only:
   632   case _adapter_retype_raw:
   633     // immediately jump to the next MH layer:
   634     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   635     __ verify_oop(rcx_recv);
   636     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   637     // This is OK when all parameter types widen.
   638     // It is also OK when a return type narrows.
   639     break;
   641   case _adapter_check_cast:
   642     {
   643       // temps:
   644       Register rbx_klass = rbx_temp; // interesting AMH data
   646       // check a reference argument before jumping to the next layer of MH:
   647       __ movl(rax_argslot, rcx_amh_vmargslot);
   648       vmarg = __ argument_address(rax_argslot);
   650       // What class are we casting to?
   651       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
   652       __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
   654       Label done;
   655       __ movptr(rdx_temp, vmarg);
   656       __ testptr(rdx_temp, rdx_temp);
   657       __ jcc(Assembler::zero, done);         // no cast if null
   658       __ load_klass(rdx_temp, rdx_temp);
   660       // live at this point:
   661       // - rbx_klass:  klass required by the target method
   662       // - rdx_temp:   argument klass to test
   663       // - rcx_recv:   adapter method handle
   664       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
   666       // If we get here, the type check failed!
   667       // Call the wrong_method_type stub, passing the failing argument type in rax.
   668       Register rax_mtype = rax_argslot;
   669       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
   670       __ movptr(rdx_temp, vmarg);
   672       __ load_heap_oop(rbx_klass, rcx_amh_argument); // required class
   673       __ push(rbx_klass);
   674       __ push(rdx_temp);                             // bad object
   675       __ push((int)Bytecodes::_checkcast);           // who is complaining?
   676       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
   678       __ bind(done);
   679       // get the new MH:
   680       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   681       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   682     }
   683     break;
   685   case _adapter_prim_to_prim:
   686   case _adapter_ref_to_prim:
   687     // handled completely by optimized cases
   688     __ stop("init_AdapterMethodHandle should not issue this");
   689     break;
   691   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
   692 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
   693   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
   694   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
   695     {
   696       // perform an in-place conversion to int or an int subword
   697       __ movl(rax_argslot, rcx_amh_vmargslot);
   698       vmarg = __ argument_address(rax_argslot);
   700       switch (ek) {
   701       case _adapter_opt_i2i:
   702         __ movl(rdx_temp, vmarg);
   703         break;
   704       case _adapter_opt_l2i:
   705         {
   706           // just delete the extra slot; on a little-endian machine we keep the first
   707           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   708           remove_arg_slots(_masm, -stack_move_unit(),
   709                            rax_argslot, rbx_temp, rdx_temp);
   710           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
   711           __ movl(rdx_temp, vmarg);
   712         }
   713         break;
   714       case _adapter_opt_unboxi:
   715         {
   716           // Load the value up from the heap.
   717           __ movptr(rdx_temp, vmarg);
   718           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
   719 #ifdef ASSERT
   720           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
   721             if (is_subword_type(BasicType(bt)))
   722               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
   723           }
   724 #endif
   725           __ null_check(rdx_temp, value_offset);
   726           __ movl(rdx_temp, Address(rdx_temp, value_offset));
   727           // We load this as a word.  Because we are little-endian,
   728           // the low bits will be correct, but the high bits may need cleaning.
   729           // The vminfo will guide us to clean those bits.
   730         }
   731         break;
   732       default:
   733         ShouldNotReachHere();
   734       }
   736       // Do the requested conversion and store the value.
   737       Register rbx_vminfo = rbx_temp;
   738       __ movl(rbx_vminfo, rcx_amh_conversion);
   739       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   741       // get the new MH:
   742       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   743       // (now we are done with the old MH)
   745       // original 32-bit vmdata word must be of this form:
   746       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
   747       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
   748       __ shll(rdx_temp /*, rcx*/);
   749       Label zero_extend, done;
   750       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
   751       __ jccb(Assembler::zero, zero_extend);
   753       // this path is taken for int->byte, int->short
   754       __ sarl(rdx_temp /*, rcx*/);
   755       __ jmpb(done);
   757       __ bind(zero_extend);
   758       // this is taken for int->char
   759       __ shrl(rdx_temp /*, rcx*/);
   761       __ bind(done);
   762       __ movl(vmarg, rdx_temp);  // Store the value.
   763       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
   765       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   766     }
   767     break;
   769   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
   770   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
   771     {
   772       // perform an in-place int-to-long or ref-to-long conversion
   773       __ movl(rax_argslot, rcx_amh_vmargslot);
   775       // on a little-endian machine we keep the first slot and add another after
   776       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   777       insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   778                        rax_argslot, rbx_temp, rdx_temp);
   779       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
   780       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
   782       switch (ek) {
   783       case _adapter_opt_i2l:
   784         {
   785 #ifdef _LP64
   786           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
   787           __ movq(vmarg1, rdx_temp);    // Store into first slot
   788 #else
   789           __ movl(rdx_temp, vmarg1);
   790           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
   791           __ movl(vmarg2, rdx_temp); // store second word
   792 #endif
   793         }
   794         break;
   795       case _adapter_opt_unboxl:
   796         {
   797           // Load the value up from the heap.
   798           __ movptr(rdx_temp, vmarg1);
   799           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
   800           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
   801           __ null_check(rdx_temp, value_offset);
   802 #ifdef _LP64
   803           __ movq(rbx_temp, Address(rdx_temp, value_offset));
   804           __ movq(vmarg1, rbx_temp);
   805 #else
   806           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
   807           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
   808           __ movl(vmarg1, rbx_temp);
   809           __ movl(vmarg2, rdx_temp);
   810 #endif
   811         }
   812         break;
   813       default:
   814         ShouldNotReachHere();
   815       }
   817       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   818       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   819     }
   820     break;
   822   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
   823   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
   824     {
   825       // perform an in-place floating primitive conversion
   826       __ movl(rax_argslot, rcx_amh_vmargslot);
   827       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   828       if (ek == _adapter_opt_f2d) {
   829         insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   830                          rax_argslot, rbx_temp, rdx_temp);
   831       }
   832       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
   834 #ifdef _LP64
   835       if (ek == _adapter_opt_f2d) {
   836         __ movflt(xmm0, vmarg);
   837         __ cvtss2sd(xmm0, xmm0);
   838         __ movdbl(vmarg, xmm0);
   839       } else {
   840         __ movdbl(xmm0, vmarg);
   841         __ cvtsd2ss(xmm0, xmm0);
   842         __ movflt(vmarg, xmm0);
   843       }
   844 #else //_LP64
   845       if (ek == _adapter_opt_f2d) {
   846         __ fld_s(vmarg);        // load float to ST0
   847         __ fstp_s(vmarg);       // store single
   848       } else {
   849         __ fld_d(vmarg);        // load double to ST0
   850         __ fstp_s(vmarg);       // store single
   851       }
   852 #endif //_LP64
   854       if (ek == _adapter_opt_d2f) {
   855         remove_arg_slots(_masm, -stack_move_unit(),
   856                          rax_argslot, rbx_temp, rdx_temp);
   857       }
   859       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   860       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   861     }
   862     break;
   864   case _adapter_prim_to_ref:
   865     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
   866     break;
   868   case _adapter_swap_args:
   869   case _adapter_rot_args:
   870     // handled completely by optimized cases
   871     __ stop("init_AdapterMethodHandle should not issue this");
   872     break;
   874   case _adapter_opt_swap_1:
   875   case _adapter_opt_swap_2:
   876   case _adapter_opt_rot_1_up:
   877   case _adapter_opt_rot_1_down:
   878   case _adapter_opt_rot_2_up:
   879   case _adapter_opt_rot_2_down:
   880     {
   881       int swap_bytes = 0, rotate = 0;
   882       get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
   884       // 'argslot' is the position of the first argument to swap
   885       __ movl(rax_argslot, rcx_amh_vmargslot);
   886       __ lea(rax_argslot, __ argument_address(rax_argslot));
   888       // 'vminfo' is the second
   889       Register rbx_destslot = rbx_temp;
   890       __ movl(rbx_destslot, rcx_amh_conversion);
   891       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   892       __ andl(rbx_destslot, CONV_VMINFO_MASK);
   893       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
   894       DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
   896       if (!rotate) {
   897         for (int i = 0; i < swap_bytes; i += wordSize) {
   898           __ movptr(rdx_temp, Address(rax_argslot , i));
   899           __ push(rdx_temp);
   900           __ movptr(rdx_temp, Address(rbx_destslot, i));
   901           __ movptr(Address(rax_argslot, i), rdx_temp);
   902           __ pop(rdx_temp);
   903           __ movptr(Address(rbx_destslot, i), rdx_temp);
   904         }
   905       } else {
   906         // push the first chunk, which is going to get overwritten
   907         for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
   908           __ movptr(rdx_temp, Address(rax_argslot, i));
   909           __ push(rdx_temp);
   910         }
   912         if (rotate > 0) {
   913           // rotate upward
   914           __ subptr(rax_argslot, swap_bytes);
   915 #ifdef ASSERT
   916           {
   917             // Verify that argslot > destslot, by at least swap_bytes.
   918             Label L_ok;
   919             __ cmpptr(rax_argslot, rbx_destslot);
   920             __ jccb(Assembler::aboveEqual, L_ok);
   921             __ stop("source must be above destination (upward rotation)");
   922             __ bind(L_ok);
   923           }
   924 #endif
   925           // work argslot down to destslot, copying contiguous data upwards
   926           // pseudo-code:
   927           //   rax = src_addr - swap_bytes
   928           //   rbx = dest_addr
   929           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
   930           Label loop;
   931           __ bind(loop);
   932           __ movptr(rdx_temp, Address(rax_argslot, 0));
   933           __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
   934           __ addptr(rax_argslot, -wordSize);
   935           __ cmpptr(rax_argslot, rbx_destslot);
   936           __ jccb(Assembler::aboveEqual, loop);
   937         } else {
   938           __ addptr(rax_argslot, swap_bytes);
   939 #ifdef ASSERT
   940           {
   941             // Verify that argslot < destslot, by at least swap_bytes.
   942             Label L_ok;
   943             __ cmpptr(rax_argslot, rbx_destslot);
   944             __ jccb(Assembler::belowEqual, L_ok);
   945             __ stop("source must be below destination (downward rotation)");
   946             __ bind(L_ok);
   947           }
   948 #endif
   949           // work argslot up to destslot, copying contiguous data downwards
   950           // pseudo-code:
   951           //   rax = src_addr + swap_bytes
   952           //   rbx = dest_addr
   953           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
   954           Label loop;
   955           __ bind(loop);
   956           __ movptr(rdx_temp, Address(rax_argslot, 0));
   957           __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
   958           __ addptr(rax_argslot, wordSize);
   959           __ cmpptr(rax_argslot, rbx_destslot);
   960           __ jccb(Assembler::belowEqual, loop);
   961         }
   963         // pop the original first chunk into the destination slot, now free
   964         for (int i = 0; i < swap_bytes; i += wordSize) {
   965           __ pop(rdx_temp);
   966           __ movptr(Address(rbx_destslot, i), rdx_temp);
   967         }
   968       }
   970       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
   971       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   972     }
   973     break;
   975   case _adapter_dup_args:
   976     {
   977       // 'argslot' is the position of the first argument to duplicate
   978       __ movl(rax_argslot, rcx_amh_vmargslot);
   979       __ lea(rax_argslot, __ argument_address(rax_argslot));
   981       // 'stack_move' is negative number of words to duplicate
   982       Register rdx_stack_move = rdx_temp;
   983       __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
   984       __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
   986       int argslot0_num = 0;
   987       Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
   988       assert(argslot0.base() == rsp, "");
   989       int pre_arg_size = argslot0.disp();
   990       assert(pre_arg_size % wordSize == 0, "");
   991       assert(pre_arg_size > 0, "must include PC");
   993       // remember the old rsp+1 (argslot[0])
   994       Register rbx_oldarg = rbx_temp;
   995       __ lea(rbx_oldarg, argslot0);
   997       // move rsp down to make room for dups
   998       __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
  1000       // compute the new rsp+1 (argslot[0])
  1001       Register rdx_newarg = rdx_temp;
  1002       __ lea(rdx_newarg, argslot0);
  1004       __ push(rdi);             // need a temp
  1005       // (preceding push must be done after arg addresses are taken!)
  1007       // pull down the pre_arg_size data (PC)
  1008       for (int i = -pre_arg_size; i < 0; i += wordSize) {
  1009         __ movptr(rdi, Address(rbx_oldarg, i));
  1010         __ movptr(Address(rdx_newarg, i), rdi);
  1013       // copy from rax_argslot[0...] down to new_rsp[1...]
  1014       // pseudo-code:
  1015       //   rbx = old_rsp+1
  1016       //   rdx = new_rsp+1
  1017       //   rax = argslot
  1018       //   while (rdx < rbx) *rdx++ = *rax++
  1019       Label loop;
  1020       __ bind(loop);
  1021       __ movptr(rdi, Address(rax_argslot, 0));
  1022       __ movptr(Address(rdx_newarg, 0), rdi);
  1023       __ addptr(rax_argslot, wordSize);
  1024       __ addptr(rdx_newarg, wordSize);
  1025       __ cmpptr(rdx_newarg, rbx_oldarg);
  1026       __ jccb(Assembler::less, loop);
  1028       __ pop(rdi);              // restore temp
  1030       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1031       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1033     break;
  1035   case _adapter_drop_args:
  1037       // 'argslot' is the position of the first argument to nuke
  1038       __ movl(rax_argslot, rcx_amh_vmargslot);
  1039       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1041       __ push(rdi);             // need a temp
  1042       // (must do previous push after argslot address is taken)
  1044       // 'stack_move' is number of words to drop
  1045       Register rdi_stack_move = rdi;
  1046       __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
  1047       __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
  1048       remove_arg_slots(_masm, rdi_stack_move,
  1049                        rax_argslot, rbx_temp, rdx_temp);
  1051       __ pop(rdi);              // restore temp
  1053       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1054       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1056     break;
  1058   case _adapter_collect_args:
  1059     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1060     break;
  1062   case _adapter_spread_args:
  1063     // handled completely by optimized cases
  1064     __ stop("init_AdapterMethodHandle should not issue this");
  1065     break;
  1067   case _adapter_opt_spread_0:
  1068   case _adapter_opt_spread_1:
  1069   case _adapter_opt_spread_more:
  1071       // spread an array out into a group of arguments
  1072       int length_constant = get_ek_adapter_opt_spread_info(ek);
  1074       // find the address of the array argument
  1075       __ movl(rax_argslot, rcx_amh_vmargslot);
  1076       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1078       // grab some temps
  1079       { __ push(rsi); __ push(rdi); }
  1080       // (preceding pushes must be done after argslot address is taken!)
  1081 #define UNPUSH_RSI_RDI \
  1082       { __ pop(rdi); __ pop(rsi); }
  1084       // arx_argslot points both to the array and to the first output arg
  1085       vmarg = Address(rax_argslot, 0);
  1087       // Get the array value.
  1088       Register  rsi_array       = rsi;
  1089       Register  rdx_array_klass = rdx_temp;
  1090       BasicType elem_type       = T_OBJECT;
  1091       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  1092       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  1093       __ movptr(rsi_array, vmarg);
  1094       Label skip_array_check;
  1095       if (length_constant == 0) {
  1096         __ testptr(rsi_array, rsi_array);
  1097         __ jcc(Assembler::zero, skip_array_check);
  1099       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
  1100       __ load_klass(rdx_array_klass, rsi_array);
  1102       // Check the array type.
  1103       Register rbx_klass = rbx_temp;
  1104       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  1105       __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
  1107       Label ok_array_klass, bad_array_klass, bad_array_length;
  1108       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
  1109       // If we get here, the type check failed!
  1110       __ jmp(bad_array_klass);
  1111       __ bind(ok_array_klass);
  1113       // Check length.
  1114       if (length_constant >= 0) {
  1115         __ cmpl(Address(rsi_array, length_offset), length_constant);
  1116       } else {
  1117         Register rbx_vminfo = rbx_temp;
  1118         __ movl(rbx_vminfo, rcx_amh_conversion);
  1119         assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1120         __ andl(rbx_vminfo, CONV_VMINFO_MASK);
  1121         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
  1123       __ jcc(Assembler::notEqual, bad_array_length);
  1125       Register rdx_argslot_limit = rdx_temp;
  1127       // Array length checks out.  Now insert any required stack slots.
  1128       if (length_constant == -1) {
  1129         // Form a pointer to the end of the affected region.
  1130         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
  1131         // 'stack_move' is negative number of words to insert
  1132         Register rdi_stack_move = rdi;
  1133         __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
  1134         __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
  1135         Register rsi_temp = rsi_array;  // spill this
  1136         insert_arg_slots(_masm, rdi_stack_move, -1,
  1137                          rax_argslot, rbx_temp, rsi_temp);
  1138         // reload the array (since rsi was killed)
  1139         __ movptr(rsi_array, vmarg);
  1140       } else if (length_constant > 1) {
  1141         int arg_mask = 0;
  1142         int new_slots = (length_constant - 1);
  1143         for (int i = 0; i < new_slots; i++) {
  1144           arg_mask <<= 1;
  1145           arg_mask |= _INSERT_REF_MASK;
  1147         insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
  1148                          rax_argslot, rbx_temp, rdx_temp);
  1149       } else if (length_constant == 1) {
  1150         // no stack resizing required
  1151       } else if (length_constant == 0) {
  1152         remove_arg_slots(_masm, -stack_move_unit(),
  1153                          rax_argslot, rbx_temp, rdx_temp);
  1156       // Copy from the array to the new slots.
  1157       // Note: Stack change code preserves integrity of rax_argslot pointer.
  1158       // So even after slot insertions, rax_argslot still points to first argument.
  1159       if (length_constant == -1) {
  1160         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  1161         Register rsi_source = rsi_array;
  1162         __ lea(rsi_source, Address(rsi_array, elem0_offset));
  1163         Label loop;
  1164         __ bind(loop);
  1165         __ movptr(rbx_temp, Address(rsi_source, 0));
  1166         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1167         __ addptr(rsi_source, type2aelembytes(elem_type));
  1168         __ addptr(rax_argslot, Interpreter::stackElementSize);
  1169         __ cmpptr(rax_argslot, rdx_argslot_limit);
  1170         __ jccb(Assembler::less, loop);
  1171       } else if (length_constant == 0) {
  1172         __ bind(skip_array_check);
  1173         // nothing to copy
  1174       } else {
  1175         int elem_offset = elem0_offset;
  1176         int slot_offset = 0;
  1177         for (int index = 0; index < length_constant; index++) {
  1178           __ movptr(rbx_temp, Address(rsi_array, elem_offset));
  1179           __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
  1180           elem_offset += type2aelembytes(elem_type);
  1181            slot_offset += Interpreter::stackElementSize;
  1185       // Arguments are spread.  Move to next method handle.
  1186       UNPUSH_RSI_RDI;
  1187       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1188       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1190       __ bind(bad_array_klass);
  1191       UNPUSH_RSI_RDI;
  1192       __ pushptr(Address(rdx_array_klass, java_mirror_offset)); // required type
  1193       __ pushptr(vmarg);                // bad array
  1194       __ push((int)Bytecodes::_aaload); // who is complaining?
  1195       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1197       __ bind(bad_array_length);
  1198       UNPUSH_RSI_RDI;
  1199       __ push(rcx_recv);        // AMH requiring a certain length
  1200       __ pushptr(vmarg);        // bad array
  1201       __ push((int)Bytecodes::_arraylength); // who is complaining?
  1202       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1204 #undef UNPUSH_RSI_RDI
  1206     break;
  1208   case _adapter_flyby:
  1209   case _adapter_ricochet:
  1210     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1211     break;
  1213   default:  ShouldNotReachHere();
  1215   __ hlt();
  1217   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  1218   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1220   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial