src/cpu/x86/vm/interp_masm_x86_64.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2318
0fc262af204f
child 2438
dd031b2226de
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_64.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/methodOop.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "thread_windows.inline.hpp"
    47 #endif
    50 // Implementation of InterpreterMacroAssembler
    52 #ifdef CC_INTERP
    53 void InterpreterMacroAssembler::get_method(Register reg) {
    54   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
    55   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    56 }
    57 #endif // CC_INTERP
    59 #ifndef CC_INTERP
    61 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    62                                                   int number_of_arguments) {
    63   // interpreter specific
    64   //
    65   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    66   //       since these are callee saved registers and no blocking/
    67   //       GC can happen in leaf calls.
    68   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    69   // already saved them so that it can use esi/edi as temporaries
    70   // then a save/restore here will DESTROY the copy the caller
    71   // saved! There used to be a save_bcp() that only happened in
    72   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    73   // when jvm built with ASSERTs.
    74 #ifdef ASSERT
    75   {
    76     Label L;
    77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    78     jcc(Assembler::equal, L);
    79     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    80          " last_sp != NULL");
    81     bind(L);
    82   }
    83 #endif
    84   // super call
    85   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    86   // interpreter specific
    87   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
    88   // but since they may not have been saved (and we don't want to
    89   // save thme here (see note above) the assert is invalid.
    90 }
    92 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    93                                              Register java_thread,
    94                                              Register last_java_sp,
    95                                              address  entry_point,
    96                                              int      number_of_arguments,
    97                                              bool     check_exceptions) {
    98   // interpreter specific
    99   //
   100   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
   101   //       really make a difference for these runtime calls, since they are
   102   //       slow anyway. Btw., bcp must be saved/restored since it may change
   103   //       due to GC.
   104   // assert(java_thread == noreg , "not expecting a precomputed java thread");
   105   save_bcp();
   106 #ifdef ASSERT
   107   {
   108     Label L;
   109     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   110     jcc(Assembler::equal, L);
   111     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
   112          " last_sp != NULL");
   113     bind(L);
   114   }
   115 #endif /* ASSERT */
   116   // super call
   117   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
   118                                entry_point, number_of_arguments,
   119                                check_exceptions);
   120   // interpreter specific
   121   restore_bcp();
   122   restore_locals();
   123 }
   126 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   127   if (JvmtiExport::can_pop_frame()) {
   128     Label L;
   129     // Initiate popframe handling only if it is not already being
   130     // processed.  If the flag has the popframe_processing bit set, it
   131     // means that this code is called *during* popframe handling - we
   132     // don't want to reenter.
   133     // This method is only called just after the call into the vm in
   134     // call_VM_base, so the arg registers are available.
   135     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   136     testl(c_rarg0, JavaThread::popframe_pending_bit);
   137     jcc(Assembler::zero, L);
   138     testl(c_rarg0, JavaThread::popframe_processing_bit);
   139     jcc(Assembler::notZero, L);
   140     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   141     // address of the same-named entrypoint in the generated interpreter code.
   142     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   143     jmp(rax);
   144     bind(L);
   145   }
   146 }
   149 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   150   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   151   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   152   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   153   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   154   switch (state) {
   155     case atos: movptr(rax, oop_addr);
   156                movptr(oop_addr, (int32_t)NULL_WORD);
   157                verify_oop(rax, state);              break;
   158     case ltos: movptr(rax, val_addr);                 break;
   159     case btos:                                   // fall through
   160     case ctos:                                   // fall through
   161     case stos:                                   // fall through
   162     case itos: movl(rax, val_addr);                 break;
   163     case ftos: movflt(xmm0, val_addr);              break;
   164     case dtos: movdbl(xmm0, val_addr);              break;
   165     case vtos: /* nothing to do */                  break;
   166     default  : ShouldNotReachHere();
   167   }
   168   // Clean up tos value in the thread object
   169   movl(tos_addr,  (int) ilgl);
   170   movl(val_addr,  (int32_t) NULL_WORD);
   171 }
   174 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   175   if (JvmtiExport::can_force_early_return()) {
   176     Label L;
   177     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   178     testptr(c_rarg0, c_rarg0);
   179     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   181     // Initiate earlyret handling only if it is not already being processed.
   182     // If the flag has the earlyret_processing bit set, it means that this code
   183     // is called *during* earlyret handling - we don't want to reenter.
   184     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   185     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   186     jcc(Assembler::notEqual, L);
   188     // Call Interpreter::remove_activation_early_entry() to get the address of the
   189     // same-named entrypoint in the generated interpreter code.
   190     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   191     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   192     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   193     jmp(rax);
   194     bind(L);
   195   }
   196 }
   199 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   200   Register reg,
   201   int bcp_offset) {
   202   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   203   movl(reg, Address(r13, bcp_offset));
   204   bswapl(reg);
   205   shrl(reg, 16);
   206 }
   209 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
   210                                                        int bcp_offset,
   211                                                        size_t index_size) {
   212   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   213   if (index_size == sizeof(u2)) {
   214     load_unsigned_short(index, Address(r13, bcp_offset));
   215   } else if (index_size == sizeof(u4)) {
   216     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   217     movl(index, Address(r13, bcp_offset));
   218     // Check if the secondary index definition is still ~x, otherwise
   219     // we have to change the following assembler code to calculate the
   220     // plain index.
   221     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   222     notl(index);  // convert to plain index
   223   } else if (index_size == sizeof(u1)) {
   224     assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
   225     load_unsigned_byte(index, Address(r13, bcp_offset));
   226   } else {
   227     ShouldNotReachHere();
   228   }
   229 }
   232 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   233                                                            Register index,
   234                                                            int bcp_offset,
   235                                                            size_t index_size) {
   236   assert(cache != index, "must use different registers");
   237   get_cache_index_at_bcp(index, bcp_offset, index_size);
   238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   239   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   240   // convert from field index to ConstantPoolCacheEntry index
   241   shll(index, 2);
   242 }
   245 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   246                                                                Register tmp,
   247                                                                int bcp_offset,
   248                                                                size_t index_size) {
   249   assert(cache != tmp, "must use different register");
   250   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   251   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   252   // convert from field index to ConstantPoolCacheEntry index
   253   // and from word offset to byte offset
   254   shll(tmp, 2 + LogBytesPerWord);
   255   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   256   // skip past the header
   257   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   258   addptr(cache, tmp);  // construct pointer to cache entry
   259 }
   262 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   263 // subtype of super_klass.
   264 //
   265 // Args:
   266 //      rax: superklass
   267 //      Rsub_klass: subklass
   268 //
   269 // Kills:
   270 //      rcx, rdi
   271 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   272                                                   Label& ok_is_subtype) {
   273   assert(Rsub_klass != rax, "rax holds superklass");
   274   assert(Rsub_klass != r14, "r14 holds locals");
   275   assert(Rsub_klass != r13, "r13 holds bcp");
   276   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   277   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   279   // Profile the not-null value's klass.
   280   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   282   // Do the check.
   283   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   285   // Profile the failure of the check.
   286   profile_typecheck_failed(rcx); // blows rcx
   287 }
   291 // Java Expression Stack
   293 void InterpreterMacroAssembler::pop_ptr(Register r) {
   294   pop(r);
   295 }
   297 void InterpreterMacroAssembler::pop_i(Register r) {
   298   // XXX can't use pop currently, upper half non clean
   299   movl(r, Address(rsp, 0));
   300   addptr(rsp, wordSize);
   301 }
   303 void InterpreterMacroAssembler::pop_l(Register r) {
   304   movq(r, Address(rsp, 0));
   305   addptr(rsp, 2 * Interpreter::stackElementSize);
   306 }
   308 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   309   movflt(r, Address(rsp, 0));
   310   addptr(rsp, wordSize);
   311 }
   313 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   314   movdbl(r, Address(rsp, 0));
   315   addptr(rsp, 2 * Interpreter::stackElementSize);
   316 }
   318 void InterpreterMacroAssembler::push_ptr(Register r) {
   319   push(r);
   320 }
   322 void InterpreterMacroAssembler::push_i(Register r) {
   323   push(r);
   324 }
   326 void InterpreterMacroAssembler::push_l(Register r) {
   327   subptr(rsp, 2 * wordSize);
   328   movq(Address(rsp, 0), r);
   329 }
   331 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   332   subptr(rsp, wordSize);
   333   movflt(Address(rsp, 0), r);
   334 }
   336 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   337   subptr(rsp, 2 * wordSize);
   338   movdbl(Address(rsp, 0), r);
   339 }
   341 void InterpreterMacroAssembler::pop(TosState state) {
   342   switch (state) {
   343   case atos: pop_ptr();                 break;
   344   case btos:
   345   case ctos:
   346   case stos:
   347   case itos: pop_i();                   break;
   348   case ltos: pop_l();                   break;
   349   case ftos: pop_f();                   break;
   350   case dtos: pop_d();                   break;
   351   case vtos: /* nothing to do */        break;
   352   default:   ShouldNotReachHere();
   353   }
   354   verify_oop(rax, state);
   355 }
   357 void InterpreterMacroAssembler::push(TosState state) {
   358   verify_oop(rax, state);
   359   switch (state) {
   360   case atos: push_ptr();                break;
   361   case btos:
   362   case ctos:
   363   case stos:
   364   case itos: push_i();                  break;
   365   case ltos: push_l();                  break;
   366   case ftos: push_f();                  break;
   367   case dtos: push_d();                  break;
   368   case vtos: /* nothing to do */        break;
   369   default  : ShouldNotReachHere();
   370   }
   371 }
   374 // Helpers for swap and dup
   375 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   376   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   377 }
   379 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   380   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   381 }
   384 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   385   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   386 }
   389 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   390                                                    Register arg_1) {
   391   if (c_rarg0 != arg_1) {
   392     mov(c_rarg0, arg_1);
   393   }
   394   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   395 }
   398 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   399                                                    Register arg_1,
   400                                                    Register arg_2) {
   401   assert(c_rarg0 != arg_2, "smashed argument");
   402   assert(c_rarg1 != arg_1, "smashed argument");
   403   if (c_rarg0 != arg_1) {
   404     mov(c_rarg0, arg_1);
   405   }
   406   if (c_rarg1 != arg_2) {
   407     mov(c_rarg1, arg_2);
   408   }
   409   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   410 }
   412 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   413                                                    Register arg_1,
   414                                                    Register arg_2,
   415                                                    Register arg_3) {
   416   assert(c_rarg0 != arg_2, "smashed argument");
   417   assert(c_rarg0 != arg_3, "smashed argument");
   418   assert(c_rarg1 != arg_1, "smashed argument");
   419   assert(c_rarg1 != arg_3, "smashed argument");
   420   assert(c_rarg2 != arg_1, "smashed argument");
   421   assert(c_rarg2 != arg_2, "smashed argument");
   422   if (c_rarg0 != arg_1) {
   423     mov(c_rarg0, arg_1);
   424   }
   425   if (c_rarg1 != arg_2) {
   426     mov(c_rarg1, arg_2);
   427   }
   428   if (c_rarg2 != arg_3) {
   429     mov(c_rarg2, arg_3);
   430   }
   431   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   432 }
   434 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   435   // set sender sp
   436   lea(r13, Address(rsp, wordSize));
   437   // record last_sp
   438   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   439 }
   442 // Jump to from_interpreted entry of a call unless single stepping is possible
   443 // in this thread in which case we must call the i2i entry
   444 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   445   prepare_to_jump_from_interpreted();
   447   if (JvmtiExport::can_post_interpreter_events()) {
   448     Label run_compiled_code;
   449     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   450     // compiled code in threads for which the event is enabled.  Check here for
   451     // interp_only_mode if these events CAN be enabled.
   452     // interp_only is an int, on little endian it is sufficient to test the byte only
   453     // Is a cmpl faster?
   454     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
   455     jcc(Assembler::zero, run_compiled_code);
   456     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   457     bind(run_compiled_code);
   458   }
   460   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   462 }
   465 // The following two routines provide a hook so that an implementation
   466 // can schedule the dispatch in two parts.  amd64 does not do this.
   467 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   468   // Nothing amd64 specific to be done here
   469 }
   471 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   472   dispatch_next(state, step);
   473 }
   475 void InterpreterMacroAssembler::dispatch_base(TosState state,
   476                                               address* table,
   477                                               bool verifyoop) {
   478   verify_FPU(1, state);
   479   if (VerifyActivationFrameSize) {
   480     Label L;
   481     mov(rcx, rbp);
   482     subptr(rcx, rsp);
   483     int32_t min_frame_size =
   484       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   485       wordSize;
   486     cmpptr(rcx, (int32_t)min_frame_size);
   487     jcc(Assembler::greaterEqual, L);
   488     stop("broken stack frame");
   489     bind(L);
   490   }
   491   if (verifyoop) {
   492     verify_oop(rax, state);
   493   }
   494   lea(rscratch1, ExternalAddress((address)table));
   495   jmp(Address(rscratch1, rbx, Address::times_8));
   496 }
   498 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   499   dispatch_base(state, Interpreter::dispatch_table(state));
   500 }
   502 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   503   dispatch_base(state, Interpreter::normal_table(state));
   504 }
   506 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   507   dispatch_base(state, Interpreter::normal_table(state), false);
   508 }
   511 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   512   // load next bytecode (load before advancing r13 to prevent AGI)
   513   load_unsigned_byte(rbx, Address(r13, step));
   514   // advance r13
   515   increment(r13, step);
   516   dispatch_base(state, Interpreter::dispatch_table(state));
   517 }
   519 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   520   // load current bytecode
   521   load_unsigned_byte(rbx, Address(r13, 0));
   522   dispatch_base(state, table);
   523 }
   525 // remove activation
   526 //
   527 // Unlock the receiver if this is a synchronized method.
   528 // Unlock any Java monitors from syncronized blocks.
   529 // Remove the activation from the stack.
   530 //
   531 // If there are locked Java monitors
   532 //    If throw_monitor_exception
   533 //       throws IllegalMonitorStateException
   534 //    Else if install_monitor_exception
   535 //       installs IllegalMonitorStateException
   536 //    Else
   537 //       no error processing
   538 void InterpreterMacroAssembler::remove_activation(
   539         TosState state,
   540         Register ret_addr,
   541         bool throw_monitor_exception,
   542         bool install_monitor_exception,
   543         bool notify_jvmdi) {
   544   // Note: Registers rdx xmm0 may be in use for the
   545   // result check if synchronized method
   546   Label unlocked, unlock, no_unlock;
   548   // get the value of _do_not_unlock_if_synchronized into rdx
   549   const Address do_not_unlock_if_synchronized(r15_thread,
   550     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   551   movbool(rdx, do_not_unlock_if_synchronized);
   552   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   554  // get method access flags
   555   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   556   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   557   testl(rcx, JVM_ACC_SYNCHRONIZED);
   558   jcc(Assembler::zero, unlocked);
   560   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   561   // is set.
   562   testbool(rdx);
   563   jcc(Assembler::notZero, no_unlock);
   565   // unlock monitor
   566   push(state); // save result
   568   // BasicObjectLock will be first in list, since this is a
   569   // synchronized method. However, need to check that the object has
   570   // not been unlocked by an explicit monitorexit bytecode.
   571   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   572                         wordSize - (int) sizeof(BasicObjectLock));
   573   // We use c_rarg1 so that if we go slow path it will be the correct
   574   // register for unlock_object to pass to VM directly
   575   lea(c_rarg1, monitor); // address of first monitor
   577   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   578   testptr(rax, rax);
   579   jcc(Assembler::notZero, unlock);
   581   pop(state);
   582   if (throw_monitor_exception) {
   583     // Entry already unlocked, need to throw exception
   584     call_VM(noreg, CAST_FROM_FN_PTR(address,
   585                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   586     should_not_reach_here();
   587   } else {
   588     // Monitor already unlocked during a stack unroll. If requested,
   589     // install an illegal_monitor_state_exception.  Continue with
   590     // stack unrolling.
   591     if (install_monitor_exception) {
   592       call_VM(noreg, CAST_FROM_FN_PTR(address,
   593                      InterpreterRuntime::new_illegal_monitor_state_exception));
   594     }
   595     jmp(unlocked);
   596   }
   598   bind(unlock);
   599   unlock_object(c_rarg1);
   600   pop(state);
   602   // Check that for block-structured locking (i.e., that all locked
   603   // objects has been unlocked)
   604   bind(unlocked);
   606   // rax: Might contain return value
   608   // Check that all monitors are unlocked
   609   {
   610     Label loop, exception, entry, restart;
   611     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   612     const Address monitor_block_top(
   613         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   614     const Address monitor_block_bot(
   615         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   617     bind(restart);
   618     // We use c_rarg1 so that if we go slow path it will be the correct
   619     // register for unlock_object to pass to VM directly
   620     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
   621                                   // with top-most entry
   622     lea(rbx, monitor_block_bot);  // points to word before bottom of
   623                                   // monitor block
   624     jmp(entry);
   626     // Entry already locked, need to throw exception
   627     bind(exception);
   629     if (throw_monitor_exception) {
   630       // Throw exception
   631       MacroAssembler::call_VM(noreg,
   632                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   633                                    throw_illegal_monitor_state_exception));
   634       should_not_reach_here();
   635     } else {
   636       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   637       // Unlock does not block, so don't have to worry about the frame.
   638       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   640       push(state);
   641       unlock_object(c_rarg1);
   642       pop(state);
   644       if (install_monitor_exception) {
   645         call_VM(noreg, CAST_FROM_FN_PTR(address,
   646                                         InterpreterRuntime::
   647                                         new_illegal_monitor_state_exception));
   648       }
   650       jmp(restart);
   651     }
   653     bind(loop);
   654     // check if current entry is used
   655     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
   656     jcc(Assembler::notEqual, exception);
   658     addptr(c_rarg1, entry_size); // otherwise advance to next entry
   659     bind(entry);
   660     cmpptr(c_rarg1, rbx); // check if bottom reached
   661     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   662   }
   664   bind(no_unlock);
   666   // jvmti support
   667   if (notify_jvmdi) {
   668     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   669   } else {
   670     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   671   }
   673   // remove activation
   674   // get sender sp
   675   movptr(rbx,
   676          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   677   leave();                           // remove frame anchor
   678   pop(ret_addr);                     // get return address
   679   mov(rsp, rbx);                     // set sp to sender sp
   680 }
   682 #endif // C_INTERP
   684 // Lock object
   685 //
   686 // Args:
   687 //      c_rarg1: BasicObjectLock to be used for locking
   688 //
   689 // Kills:
   690 //      rax
   691 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   692 //      rscratch1, rscratch2 (scratch regs)
   693 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   694   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   696   if (UseHeavyMonitors) {
   697     call_VM(noreg,
   698             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   699             lock_reg);
   700   } else {
   701     Label done;
   703     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   704     const Register obj_reg = c_rarg3; // Will contain the oop
   706     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   707     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   708     const int mark_offset = lock_offset +
   709                             BasicLock::displaced_header_offset_in_bytes();
   711     Label slow_case;
   713     // Load object pointer into obj_reg %c_rarg3
   714     movptr(obj_reg, Address(lock_reg, obj_offset));
   716     if (UseBiasedLocking) {
   717       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   718     }
   720     // Load immediate 1 into swap_reg %rax
   721     movl(swap_reg, 1);
   723     // Load (object->mark() | 1) into swap_reg %rax
   724     orptr(swap_reg, Address(obj_reg, 0));
   726     // Save (object->mark() | 1) into BasicLock's displaced header
   727     movptr(Address(lock_reg, mark_offset), swap_reg);
   729     assert(lock_offset == 0,
   730            "displached header must be first word in BasicObjectLock");
   732     if (os::is_MP()) lock();
   733     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   734     if (PrintBiasedLockingStatistics) {
   735       cond_inc32(Assembler::zero,
   736                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   737     }
   738     jcc(Assembler::zero, done);
   740     // Test if the oopMark is an obvious stack pointer, i.e.,
   741     //  1) (mark & 7) == 0, and
   742     //  2) rsp <= mark < mark + os::pagesize()
   743     //
   744     // These 3 tests can be done by evaluating the following
   745     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   746     // assuming both stack pointer and pagesize have their
   747     // least significant 3 bits clear.
   748     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   749     subptr(swap_reg, rsp);
   750     andptr(swap_reg, 7 - os::vm_page_size());
   752     // Save the test result, for recursive case, the result is zero
   753     movptr(Address(lock_reg, mark_offset), swap_reg);
   755     if (PrintBiasedLockingStatistics) {
   756       cond_inc32(Assembler::zero,
   757                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   758     }
   759     jcc(Assembler::zero, done);
   761     bind(slow_case);
   763     // Call the runtime routine for slow case
   764     call_VM(noreg,
   765             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   766             lock_reg);
   768     bind(done);
   769   }
   770 }
   773 // Unlocks an object. Used in monitorexit bytecode and
   774 // remove_activation.  Throws an IllegalMonitorException if object is
   775 // not locked by current thread.
   776 //
   777 // Args:
   778 //      c_rarg1: BasicObjectLock for lock
   779 //
   780 // Kills:
   781 //      rax
   782 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   783 //      rscratch1, rscratch2 (scratch regs)
   784 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   785   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   787   if (UseHeavyMonitors) {
   788     call_VM(noreg,
   789             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   790             lock_reg);
   791   } else {
   792     Label done;
   794     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   795     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   796     const Register obj_reg    = c_rarg3;  // Will contain the oop
   798     save_bcp(); // Save in case of exception
   800     // Convert from BasicObjectLock structure to object and BasicLock
   801     // structure Store the BasicLock address into %rax
   802     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   804     // Load oop into obj_reg(%c_rarg3)
   805     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   807     // Free entry
   808     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   810     if (UseBiasedLocking) {
   811       biased_locking_exit(obj_reg, header_reg, done);
   812     }
   814     // Load the old header from BasicLock structure
   815     movptr(header_reg, Address(swap_reg,
   816                                BasicLock::displaced_header_offset_in_bytes()));
   818     // Test for recursion
   819     testptr(header_reg, header_reg);
   821     // zero for recursive case
   822     jcc(Assembler::zero, done);
   824     // Atomic swap back the old header
   825     if (os::is_MP()) lock();
   826     cmpxchgptr(header_reg, Address(obj_reg, 0));
   828     // zero for recursive case
   829     jcc(Assembler::zero, done);
   831     // Call the runtime routine for slow case.
   832     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
   833          obj_reg); // restore obj
   834     call_VM(noreg,
   835             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   836             lock_reg);
   838     bind(done);
   840     restore_bcp();
   841   }
   842 }
   844 #ifndef CC_INTERP
   846 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
   847                                                          Label& zero_continue) {
   848   assert(ProfileInterpreter, "must be profiling interpreter");
   849   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   850   testptr(mdp, mdp);
   851   jcc(Assembler::zero, zero_continue);
   852 }
   855 // Set the method data pointer for the current bcp.
   856 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   857   assert(ProfileInterpreter, "must be profiling interpreter");
   858   Label zero_continue;
   859   push(rax);
   860   push(rbx);
   862   get_method(rbx);
   863   // Test MDO to avoid the call if it is NULL.
   864   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   865   testptr(rax, rax);
   866   jcc(Assembler::zero, zero_continue);
   868   // rbx: method
   869   // r13: bcp
   870   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
   871   // rax: mdi
   873   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   874   testptr(rbx, rbx);
   875   jcc(Assembler::zero, zero_continue);
   876   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   877   addptr(rbx, rax);
   878   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
   880   bind(zero_continue);
   881   pop(rbx);
   882   pop(rax);
   883 }
   885 void InterpreterMacroAssembler::verify_method_data_pointer() {
   886   assert(ProfileInterpreter, "must be profiling interpreter");
   887 #ifdef ASSERT
   888   Label verify_continue;
   889   push(rax);
   890   push(rbx);
   891   push(c_rarg3);
   892   push(c_rarg2);
   893   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
   894   get_method(rbx);
   896   // If the mdp is valid, it will point to a DataLayout header which is
   897   // consistent with the bcp.  The converse is highly probable also.
   898   load_unsigned_short(c_rarg2,
   899                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
   900   addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
   901   lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
   902   cmpptr(c_rarg2, r13);
   903   jcc(Assembler::equal, verify_continue);
   904   // rbx: method
   905   // r13: bcp
   906   // c_rarg3: mdp
   907   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
   908                rbx, r13, c_rarg3);
   909   bind(verify_continue);
   910   pop(c_rarg2);
   911   pop(c_rarg3);
   912   pop(rbx);
   913   pop(rax);
   914 #endif // ASSERT
   915 }
   918 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
   919                                                 int constant,
   920                                                 Register value) {
   921   assert(ProfileInterpreter, "must be profiling interpreter");
   922   Address data(mdp_in, constant);
   923   movptr(data, value);
   924 }
   927 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   928                                                       int constant,
   929                                                       bool decrement) {
   930   // Counter address
   931   Address data(mdp_in, constant);
   933   increment_mdp_data_at(data, decrement);
   934 }
   936 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   937                                                       bool decrement) {
   938   assert(ProfileInterpreter, "must be profiling interpreter");
   939   // %%% this does 64bit counters at best it is wasting space
   940   // at worst it is a rare bug when counters overflow
   942   if (decrement) {
   943     // Decrement the register.  Set condition codes.
   944     addptr(data, (int32_t) -DataLayout::counter_increment);
   945     // If the decrement causes the counter to overflow, stay negative
   946     Label L;
   947     jcc(Assembler::negative, L);
   948     addptr(data, (int32_t) DataLayout::counter_increment);
   949     bind(L);
   950   } else {
   951     assert(DataLayout::counter_increment == 1,
   952            "flow-free idiom only works with 1");
   953     // Increment the register.  Set carry flag.
   954     addptr(data, DataLayout::counter_increment);
   955     // If the increment causes the counter to overflow, pull back by 1.
   956     sbbptr(data, (int32_t)0);
   957   }
   958 }
   961 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   962                                                       Register reg,
   963                                                       int constant,
   964                                                       bool decrement) {
   965   Address data(mdp_in, reg, Address::times_1, constant);
   967   increment_mdp_data_at(data, decrement);
   968 }
   970 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
   971                                                 int flag_byte_constant) {
   972   assert(ProfileInterpreter, "must be profiling interpreter");
   973   int header_offset = in_bytes(DataLayout::header_offset());
   974   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   975   // Set the flag
   976   orl(Address(mdp_in, header_offset), header_bits);
   977 }
   981 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   982                                                  int offset,
   983                                                  Register value,
   984                                                  Register test_value_out,
   985                                                  Label& not_equal_continue) {
   986   assert(ProfileInterpreter, "must be profiling interpreter");
   987   if (test_value_out == noreg) {
   988     cmpptr(value, Address(mdp_in, offset));
   989   } else {
   990     // Put the test value into a register, so caller can use it:
   991     movptr(test_value_out, Address(mdp_in, offset));
   992     cmpptr(test_value_out, value);
   993   }
   994   jcc(Assembler::notEqual, not_equal_continue);
   995 }
   998 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
   999                                                      int offset_of_disp) {
  1000   assert(ProfileInterpreter, "must be profiling interpreter");
  1001   Address disp_address(mdp_in, offset_of_disp);
  1002   addptr(mdp_in, disp_address);
  1003   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1007 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1008                                                      Register reg,
  1009                                                      int offset_of_disp) {
  1010   assert(ProfileInterpreter, "must be profiling interpreter");
  1011   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1012   addptr(mdp_in, disp_address);
  1013   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1017 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
  1018                                                        int constant) {
  1019   assert(ProfileInterpreter, "must be profiling interpreter");
  1020   addptr(mdp_in, constant);
  1021   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1025 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1026   assert(ProfileInterpreter, "must be profiling interpreter");
  1027   push(return_bci); // save/restore across call_VM
  1028   call_VM(noreg,
  1029           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1030           return_bci);
  1031   pop(return_bci);
  1035 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1036                                                      Register bumped_count) {
  1037   if (ProfileInterpreter) {
  1038     Label profile_continue;
  1040     // If no method data exists, go to profile_continue.
  1041     // Otherwise, assign to mdp
  1042     test_method_data_pointer(mdp, profile_continue);
  1044     // We are taking a branch.  Increment the taken count.
  1045     // We inline increment_mdp_data_at to return bumped_count in a register
  1046     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1047     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1048     movptr(bumped_count, data);
  1049     assert(DataLayout::counter_increment == 1,
  1050             "flow-free idiom only works with 1");
  1051     addptr(bumped_count, DataLayout::counter_increment);
  1052     sbbptr(bumped_count, 0);
  1053     movptr(data, bumped_count); // Store back out
  1055     // The method data pointer needs to be updated to reflect the new target.
  1056     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1057     bind(profile_continue);
  1062 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1063   if (ProfileInterpreter) {
  1064     Label profile_continue;
  1066     // If no method data exists, go to profile_continue.
  1067     test_method_data_pointer(mdp, profile_continue);
  1069     // We are taking a branch.  Increment the not taken count.
  1070     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1072     // The method data pointer needs to be updated to correspond to
  1073     // the next bytecode
  1074     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1075     bind(profile_continue);
  1080 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1081   if (ProfileInterpreter) {
  1082     Label profile_continue;
  1084     // If no method data exists, go to profile_continue.
  1085     test_method_data_pointer(mdp, profile_continue);
  1087     // We are making a call.  Increment the count.
  1088     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1090     // The method data pointer needs to be updated to reflect the new target.
  1091     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1092     bind(profile_continue);
  1097 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1098   if (ProfileInterpreter) {
  1099     Label profile_continue;
  1101     // If no method data exists, go to profile_continue.
  1102     test_method_data_pointer(mdp, profile_continue);
  1104     // We are making a call.  Increment the count.
  1105     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1107     // The method data pointer needs to be updated to reflect the new target.
  1108     update_mdp_by_constant(mdp,
  1109                            in_bytes(VirtualCallData::
  1110                                     virtual_call_data_size()));
  1111     bind(profile_continue);
  1116 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1117                                                      Register mdp,
  1118                                                      Register reg2,
  1119                                                      bool receiver_can_be_null) {
  1120   if (ProfileInterpreter) {
  1121     Label profile_continue;
  1123     // If no method data exists, go to profile_continue.
  1124     test_method_data_pointer(mdp, profile_continue);
  1126     Label skip_receiver_profile;
  1127     if (receiver_can_be_null) {
  1128       Label not_null;
  1129       testptr(receiver, receiver);
  1130       jccb(Assembler::notZero, not_null);
  1131       // We are making a call.  Increment the count for null receiver.
  1132       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1133       jmp(skip_receiver_profile);
  1134       bind(not_null);
  1137     // Record the receiver type.
  1138     record_klass_in_profile(receiver, mdp, reg2, true);
  1139     bind(skip_receiver_profile);
  1141     // The method data pointer needs to be updated to reflect the new target.
  1142     update_mdp_by_constant(mdp,
  1143                            in_bytes(VirtualCallData::
  1144                                     virtual_call_data_size()));
  1145     bind(profile_continue);
  1149 // This routine creates a state machine for updating the multi-row
  1150 // type profile at a virtual call site (or other type-sensitive bytecode).
  1151 // The machine visits each row (of receiver/count) until the receiver type
  1152 // is found, or until it runs out of rows.  At the same time, it remembers
  1153 // the location of the first empty row.  (An empty row records null for its
  1154 // receiver, and can be allocated for a newly-observed receiver type.)
  1155 // Because there are two degrees of freedom in the state, a simple linear
  1156 // search will not work; it must be a decision tree.  Hence this helper
  1157 // function is recursive, to generate the required tree structured code.
  1158 // It's the interpreter, so we are trading off code space for speed.
  1159 // See below for example code.
  1160 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1161                                         Register receiver, Register mdp,
  1162                                         Register reg2, int start_row,
  1163                                         Label& done, bool is_virtual_call) {
  1164   if (TypeProfileWidth == 0) {
  1165     if (is_virtual_call) {
  1166       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1168     return;
  1171   int last_row = VirtualCallData::row_limit() - 1;
  1172   assert(start_row <= last_row, "must be work left to do");
  1173   // Test this row for both the receiver and for null.
  1174   // Take any of three different outcomes:
  1175   //   1. found receiver => increment count and goto done
  1176   //   2. found null => keep looking for case 1, maybe allocate this cell
  1177   //   3. found something else => keep looking for cases 1 and 2
  1178   // Case 3 is handled by a recursive call.
  1179   for (int row = start_row; row <= last_row; row++) {
  1180     Label next_test;
  1181     bool test_for_null_also = (row == start_row);
  1183     // See if the receiver is receiver[n].
  1184     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1185     test_mdp_data_at(mdp, recvr_offset, receiver,
  1186                      (test_for_null_also ? reg2 : noreg),
  1187                      next_test);
  1188     // (Reg2 now contains the receiver from the CallData.)
  1190     // The receiver is receiver[n].  Increment count[n].
  1191     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1192     increment_mdp_data_at(mdp, count_offset);
  1193     jmp(done);
  1194     bind(next_test);
  1196     if (test_for_null_also) {
  1197       Label found_null;
  1198       // Failed the equality check on receiver[n]...  Test for null.
  1199       testptr(reg2, reg2);
  1200       if (start_row == last_row) {
  1201         // The only thing left to do is handle the null case.
  1202         if (is_virtual_call) {
  1203           jccb(Assembler::zero, found_null);
  1204           // Receiver did not match any saved receiver and there is no empty row for it.
  1205           // Increment total counter to indicate polymorphic case.
  1206           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1207           jmp(done);
  1208           bind(found_null);
  1209         } else {
  1210           jcc(Assembler::notZero, done);
  1212         break;
  1214       // Since null is rare, make it be the branch-taken case.
  1215       jcc(Assembler::zero, found_null);
  1217       // Put all the "Case 3" tests here.
  1218       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1220       // Found a null.  Keep searching for a matching receiver,
  1221       // but remember that this is an empty (unused) slot.
  1222       bind(found_null);
  1226   // In the fall-through case, we found no matching receiver, but we
  1227   // observed the receiver[start_row] is NULL.
  1229   // Fill in the receiver field and increment the count.
  1230   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1231   set_mdp_data_at(mdp, recvr_offset, receiver);
  1232   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1233   movl(reg2, DataLayout::counter_increment);
  1234   set_mdp_data_at(mdp, count_offset, reg2);
  1235   if (start_row > 0) {
  1236     jmp(done);
  1240 // Example state machine code for three profile rows:
  1241 //   // main copy of decision tree, rooted at row[1]
  1242 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1243 //   if (row[0].rec != NULL) {
  1244 //     // inner copy of decision tree, rooted at row[1]
  1245 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1246 //     if (row[1].rec != NULL) {
  1247 //       // degenerate decision tree, rooted at row[2]
  1248 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1249 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
  1250 //       row[2].init(rec); goto done;
  1251 //     } else {
  1252 //       // remember row[1] is empty
  1253 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1254 //       row[1].init(rec); goto done;
  1255 //     }
  1256 //   } else {
  1257 //     // remember row[0] is empty
  1258 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1259 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1260 //     row[0].init(rec); goto done;
  1261 //   }
  1262 //   done:
  1264 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1265                                                         Register mdp, Register reg2,
  1266                                                         bool is_virtual_call) {
  1267   assert(ProfileInterpreter, "must be profiling");
  1268   Label done;
  1270   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1272   bind (done);
  1275 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1276                                             Register mdp) {
  1277   if (ProfileInterpreter) {
  1278     Label profile_continue;
  1279     uint row;
  1281     // If no method data exists, go to profile_continue.
  1282     test_method_data_pointer(mdp, profile_continue);
  1284     // Update the total ret count.
  1285     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1287     for (row = 0; row < RetData::row_limit(); row++) {
  1288       Label next_test;
  1290       // See if return_bci is equal to bci[n]:
  1291       test_mdp_data_at(mdp,
  1292                        in_bytes(RetData::bci_offset(row)),
  1293                        return_bci, noreg,
  1294                        next_test);
  1296       // return_bci is equal to bci[n].  Increment the count.
  1297       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1299       // The method data pointer needs to be updated to reflect the new target.
  1300       update_mdp_by_offset(mdp,
  1301                            in_bytes(RetData::bci_displacement_offset(row)));
  1302       jmp(profile_continue);
  1303       bind(next_test);
  1306     update_mdp_for_ret(return_bci);
  1308     bind(profile_continue);
  1313 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1314   if (ProfileInterpreter) {
  1315     Label profile_continue;
  1317     // If no method data exists, go to profile_continue.
  1318     test_method_data_pointer(mdp, profile_continue);
  1320     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1322     // The method data pointer needs to be updated.
  1323     int mdp_delta = in_bytes(BitData::bit_data_size());
  1324     if (TypeProfileCasts) {
  1325       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1327     update_mdp_by_constant(mdp, mdp_delta);
  1329     bind(profile_continue);
  1334 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1335   if (ProfileInterpreter && TypeProfileCasts) {
  1336     Label profile_continue;
  1338     // If no method data exists, go to profile_continue.
  1339     test_method_data_pointer(mdp, profile_continue);
  1341     int count_offset = in_bytes(CounterData::count_offset());
  1342     // Back up the address, since we have already bumped the mdp.
  1343     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1345     // *Decrement* the counter.  We expect to see zero or small negatives.
  1346     increment_mdp_data_at(mdp, count_offset, true);
  1348     bind (profile_continue);
  1353 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1354   if (ProfileInterpreter) {
  1355     Label profile_continue;
  1357     // If no method data exists, go to profile_continue.
  1358     test_method_data_pointer(mdp, profile_continue);
  1360     // The method data pointer needs to be updated.
  1361     int mdp_delta = in_bytes(BitData::bit_data_size());
  1362     if (TypeProfileCasts) {
  1363       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1365       // Record the object type.
  1366       record_klass_in_profile(klass, mdp, reg2, false);
  1368     update_mdp_by_constant(mdp, mdp_delta);
  1370     bind(profile_continue);
  1375 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1376   if (ProfileInterpreter) {
  1377     Label profile_continue;
  1379     // If no method data exists, go to profile_continue.
  1380     test_method_data_pointer(mdp, profile_continue);
  1382     // Update the default case count
  1383     increment_mdp_data_at(mdp,
  1384                           in_bytes(MultiBranchData::default_count_offset()));
  1386     // The method data pointer needs to be updated.
  1387     update_mdp_by_offset(mdp,
  1388                          in_bytes(MultiBranchData::
  1389                                   default_displacement_offset()));
  1391     bind(profile_continue);
  1396 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1397                                                     Register mdp,
  1398                                                     Register reg2) {
  1399   if (ProfileInterpreter) {
  1400     Label profile_continue;
  1402     // If no method data exists, go to profile_continue.
  1403     test_method_data_pointer(mdp, profile_continue);
  1405     // Build the base (index * per_case_size_in_bytes()) +
  1406     // case_array_offset_in_bytes()
  1407     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1408     imulptr(index, reg2); // XXX l ?
  1409     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1411     // Update the case count
  1412     increment_mdp_data_at(mdp,
  1413                           index,
  1414                           in_bytes(MultiBranchData::relative_count_offset()));
  1416     // The method data pointer needs to be updated.
  1417     update_mdp_by_offset(mdp,
  1418                          index,
  1419                          in_bytes(MultiBranchData::
  1420                                   relative_displacement_offset()));
  1422     bind(profile_continue);
  1428 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1429   if (state == atos) {
  1430     MacroAssembler::verify_oop(reg);
  1434 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1436 #endif // !CC_INTERP
  1439 void InterpreterMacroAssembler::notify_method_entry() {
  1440   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1441   // track stack depth.  If it is possible to enter interp_only_mode we add
  1442   // the code to check if the event should be sent.
  1443   if (JvmtiExport::can_post_interpreter_events()) {
  1444     Label L;
  1445     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1446     testl(rdx, rdx);
  1447     jcc(Assembler::zero, L);
  1448     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1449                                     InterpreterRuntime::post_method_entry));
  1450     bind(L);
  1454     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1455     get_method(c_rarg1);
  1456     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1457                  r15_thread, c_rarg1);
  1460   // RedefineClasses() tracing support for obsolete method entry
  1461   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1462     get_method(c_rarg1);
  1463     call_VM_leaf(
  1464       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1465       r15_thread, c_rarg1);
  1470 void InterpreterMacroAssembler::notify_method_exit(
  1471     TosState state, NotifyMethodExitMode mode) {
  1472   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1473   // track stack depth.  If it is possible to enter interp_only_mode we add
  1474   // the code to check if the event should be sent.
  1475   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1476     Label L;
  1477     // Note: frame::interpreter_frame_result has a dependency on how the
  1478     // method result is saved across the call to post_method_exit. If this
  1479     // is changed then the interpreter_frame_result implementation will
  1480     // need to be updated too.
  1482     // For c++ interpreter the result is always stored at a known location in the frame
  1483     // template interpreter will leave it on the top of the stack.
  1484     NOT_CC_INTERP(push(state);)
  1485     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1486     testl(rdx, rdx);
  1487     jcc(Assembler::zero, L);
  1488     call_VM(noreg,
  1489             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1490     bind(L);
  1491     NOT_CC_INTERP(pop(state));
  1495     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1496     NOT_CC_INTERP(push(state));
  1497     get_method(c_rarg1);
  1498     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1499                  r15_thread, c_rarg1);
  1500     NOT_CC_INTERP(pop(state));
  1504 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1505 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1506                                                         int increment, int mask,
  1507                                                         Register scratch, bool preloaded,
  1508                                                         Condition cond, Label* where) {
  1509   if (!preloaded) {
  1510     movl(scratch, counter_addr);
  1512   incrementl(scratch, increment);
  1513   movl(counter_addr, scratch);
  1514   andl(scratch, mask);
  1515   jcc(cond, *where);

mercurial