src/cpu/x86/vm/assembler_x86.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2356
4de5f4101cfd
child 2565
28bf941f445e
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // immediate-to-memory forms
   240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   if (is8bit(imm32)) {
   244     emit_byte(op1 | 0x02); // set sign bit
   245     emit_operand(rm, adr, 1);
   246     emit_byte(imm32 & 0xFF);
   247   } else {
   248     emit_byte(op1);
   249     emit_operand(rm, adr, 4);
   250     emit_long(imm32);
   251   }
   252 }
   254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   255   LP64_ONLY(ShouldNotReachHere());
   256   assert(isByte(op1) && isByte(op2), "wrong opcode");
   257   assert((op1 & 0x01) == 1, "should be 32bit operation");
   258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   259   InstructionMark im(this);
   260   emit_byte(op1);
   261   emit_byte(op2 | encode(dst));
   262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   263 }
   266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   267   assert(isByte(op1) && isByte(op2), "wrong opcode");
   268   emit_byte(op1);
   269   emit_byte(op2 | encode(dst) << 3 | encode(src));
   270 }
   273 void Assembler::emit_operand(Register reg, Register base, Register index,
   274                              Address::ScaleFactor scale, int disp,
   275                              RelocationHolder const& rspec,
   276                              int rip_relative_correction) {
   277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   279   // Encode the registers as needed in the fields they are used in
   281   int regenc = encode(reg) << 3;
   282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   283   int baseenc = base->is_valid() ? encode(base) : 0;
   285   if (base->is_valid()) {
   286     if (index->is_valid()) {
   287       assert(scale != Address::no_scale, "inconsistent address");
   288       // [base + index*scale + disp]
   289       if (disp == 0 && rtype == relocInfo::none  &&
   290           base != rbp LP64_ONLY(&& base != r13)) {
   291         // [base + index*scale]
   292         // [00 reg 100][ss index base]
   293         assert(index != rsp, "illegal addressing mode");
   294         emit_byte(0x04 | regenc);
   295         emit_byte(scale << 6 | indexenc | baseenc);
   296       } else if (is8bit(disp) && rtype == relocInfo::none) {
   297         // [base + index*scale + imm8]
   298         // [01 reg 100][ss index base] imm8
   299         assert(index != rsp, "illegal addressing mode");
   300         emit_byte(0x44 | regenc);
   301         emit_byte(scale << 6 | indexenc | baseenc);
   302         emit_byte(disp & 0xFF);
   303       } else {
   304         // [base + index*scale + disp32]
   305         // [10 reg 100][ss index base] disp32
   306         assert(index != rsp, "illegal addressing mode");
   307         emit_byte(0x84 | regenc);
   308         emit_byte(scale << 6 | indexenc | baseenc);
   309         emit_data(disp, rspec, disp32_operand);
   310       }
   311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   312       // [rsp + disp]
   313       if (disp == 0 && rtype == relocInfo::none) {
   314         // [rsp]
   315         // [00 reg 100][00 100 100]
   316         emit_byte(0x04 | regenc);
   317         emit_byte(0x24);
   318       } else if (is8bit(disp) && rtype == relocInfo::none) {
   319         // [rsp + imm8]
   320         // [01 reg 100][00 100 100] disp8
   321         emit_byte(0x44 | regenc);
   322         emit_byte(0x24);
   323         emit_byte(disp & 0xFF);
   324       } else {
   325         // [rsp + imm32]
   326         // [10 reg 100][00 100 100] disp32
   327         emit_byte(0x84 | regenc);
   328         emit_byte(0x24);
   329         emit_data(disp, rspec, disp32_operand);
   330       }
   331     } else {
   332       // [base + disp]
   333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   334       if (disp == 0 && rtype == relocInfo::none &&
   335           base != rbp LP64_ONLY(&& base != r13)) {
   336         // [base]
   337         // [00 reg base]
   338         emit_byte(0x00 | regenc | baseenc);
   339       } else if (is8bit(disp) && rtype == relocInfo::none) {
   340         // [base + disp8]
   341         // [01 reg base] disp8
   342         emit_byte(0x40 | regenc | baseenc);
   343         emit_byte(disp & 0xFF);
   344       } else {
   345         // [base + disp32]
   346         // [10 reg base] disp32
   347         emit_byte(0x80 | regenc | baseenc);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     }
   351   } else {
   352     if (index->is_valid()) {
   353       assert(scale != Address::no_scale, "inconsistent address");
   354       // [index*scale + disp]
   355       // [00 reg 100][ss index 101] disp32
   356       assert(index != rsp, "illegal addressing mode");
   357       emit_byte(0x04 | regenc);
   358       emit_byte(scale << 6 | indexenc | 0x05);
   359       emit_data(disp, rspec, disp32_operand);
   360     } else if (rtype != relocInfo::none ) {
   361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   362       // [00 000 101] disp32
   364       emit_byte(0x05 | regenc);
   365       // Note that the RIP-rel. correction applies to the generated
   366       // disp field, but _not_ to the target address in the rspec.
   368       // disp was created by converting the target address minus the pc
   369       // at the start of the instruction. That needs more correction here.
   370       // intptr_t disp = target - next_ip;
   371       assert(inst_mark() != NULL, "must be inside InstructionMark");
   372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   373       int64_t adjusted = disp;
   374       // Do rip-rel adjustment for 64bit
   375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   376       assert(is_simm32(adjusted),
   377              "must be 32bit offset (RIP relative address)");
   378       emit_data((int32_t) adjusted, rspec, disp32_operand);
   380     } else {
   381       // 32bit never did this, did everything as the rip-rel/disp code above
   382       // [disp] ABSOLUTE
   383       // [00 reg 100][00 100 101] disp32
   384       emit_byte(0x04 | regenc);
   385       emit_byte(0x25);
   386       emit_data(disp, rspec, disp32_operand);
   387     }
   388   }
   389 }
   391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   392                              Address::ScaleFactor scale, int disp,
   393                              RelocationHolder const& rspec) {
   394   emit_operand((Register)reg, base, index, scale, disp, rspec);
   395 }
   397 // Secret local extension to Assembler::WhichOperand:
   398 #define end_pc_operand (_WhichOperand_limit)
   400 address Assembler::locate_operand(address inst, WhichOperand which) {
   401   // Decode the given instruction, and return the address of
   402   // an embedded 32-bit operand word.
   404   // If "which" is disp32_operand, selects the displacement portion
   405   // of an effective address specifier.
   406   // If "which" is imm64_operand, selects the trailing immediate constant.
   407   // If "which" is call32_operand, selects the displacement of a call or jump.
   408   // Caller is responsible for ensuring that there is such an operand,
   409   // and that it is 32/64 bits wide.
   411   // If "which" is end_pc_operand, find the end of the instruction.
   413   address ip = inst;
   414   bool is_64bit = false;
   416   debug_only(bool has_disp32 = false);
   417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   419   again_after_prefix:
   420   switch (0xFF & *ip++) {
   422   // These convenience macros generate groups of "case" labels for the switch.
   423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   426 #define REP16(x) REP8((x)+0): \
   427               case REP8((x)+8)
   429   case CS_segment:
   430   case SS_segment:
   431   case DS_segment:
   432   case ES_segment:
   433   case FS_segment:
   434   case GS_segment:
   435     // Seems dubious
   436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   437     assert(ip == inst+1, "only one prefix allowed");
   438     goto again_after_prefix;
   440   case 0x67:
   441   case REX:
   442   case REX_B:
   443   case REX_X:
   444   case REX_XB:
   445   case REX_R:
   446   case REX_RB:
   447   case REX_RX:
   448   case REX_RXB:
   449     NOT_LP64(assert(false, "64bit prefixes"));
   450     goto again_after_prefix;
   452   case REX_W:
   453   case REX_WB:
   454   case REX_WX:
   455   case REX_WXB:
   456   case REX_WR:
   457   case REX_WRB:
   458   case REX_WRX:
   459   case REX_WRXB:
   460     NOT_LP64(assert(false, "64bit prefixes"));
   461     is_64bit = true;
   462     goto again_after_prefix;
   464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   465   case 0x88: // movb a, r
   466   case 0x89: // movl a, r
   467   case 0x8A: // movb r, a
   468   case 0x8B: // movl r, a
   469   case 0x8F: // popl a
   470     debug_only(has_disp32 = true);
   471     break;
   473   case 0x68: // pushq #32
   474     if (which == end_pc_operand) {
   475       return ip + 4;
   476     }
   477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   478     return ip;                  // not produced by emit_operand
   480   case 0x66: // movw ... (size prefix)
   481     again_after_size_prefix2:
   482     switch (0xFF & *ip++) {
   483     case REX:
   484     case REX_B:
   485     case REX_X:
   486     case REX_XB:
   487     case REX_R:
   488     case REX_RB:
   489     case REX_RX:
   490     case REX_RXB:
   491     case REX_W:
   492     case REX_WB:
   493     case REX_WX:
   494     case REX_WXB:
   495     case REX_WR:
   496     case REX_WRB:
   497     case REX_WRX:
   498     case REX_WRXB:
   499       NOT_LP64(assert(false, "64bit prefix found"));
   500       goto again_after_size_prefix2;
   501     case 0x8B: // movw r, a
   502     case 0x89: // movw a, r
   503       debug_only(has_disp32 = true);
   504       break;
   505     case 0xC7: // movw a, #16
   506       debug_only(has_disp32 = true);
   507       tail_size = 2;  // the imm16
   508       break;
   509     case 0x0F: // several SSE/SSE2 variants
   510       ip--;    // reparse the 0x0F
   511       goto again_after_prefix;
   512     default:
   513       ShouldNotReachHere();
   514     }
   515     break;
   517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   519     // these asserts are somewhat nonsensical
   520 #ifndef _LP64
   521     assert(which == imm_operand || which == disp32_operand, "");
   522 #else
   523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   524            which == narrow_oop_operand && !is_64bit, "");
   525 #endif // _LP64
   526     return ip;
   528   case 0x69: // imul r, a, #32
   529   case 0xC7: // movl a, #32(oop?)
   530     tail_size = 4;
   531     debug_only(has_disp32 = true); // has both kinds of operands!
   532     break;
   534   case 0x0F: // movx..., etc.
   535     switch (0xFF & *ip++) {
   536     case 0x12: // movlps
   537     case 0x28: // movaps
   538     case 0x2E: // ucomiss
   539     case 0x2F: // comiss
   540     case 0x54: // andps
   541     case 0x55: // andnps
   542     case 0x56: // orps
   543     case 0x57: // xorps
   544     case 0x6E: // movd
   545     case 0x7E: // movd
   546     case 0xAE: // ldmxcsr   a
   547       // 64bit side says it these have both operands but that doesn't
   548       // appear to be true
   549       debug_only(has_disp32 = true);
   550       break;
   552     case 0xAD: // shrd r, a, %cl
   553     case 0xAF: // imul r, a
   554     case 0xBE: // movsbl r, a (movsxb)
   555     case 0xBF: // movswl r, a (movsxw)
   556     case 0xB6: // movzbl r, a (movzxb)
   557     case 0xB7: // movzwl r, a (movzxw)
   558     case REP16(0x40): // cmovl cc, r, a
   559     case 0xB0: // cmpxchgb
   560     case 0xB1: // cmpxchg
   561     case 0xC1: // xaddl
   562     case 0xC7: // cmpxchg8
   563     case REP16(0x90): // setcc a
   564       debug_only(has_disp32 = true);
   565       // fall out of the switch to decode the address
   566       break;
   568     case 0xAC: // shrd r, a, #8
   569       debug_only(has_disp32 = true);
   570       tail_size = 1;  // the imm8
   571       break;
   573     case REP16(0x80): // jcc rdisp32
   574       if (which == end_pc_operand)  return ip + 4;
   575       assert(which == call32_operand, "jcc has no disp32 or imm");
   576       return ip;
   577     default:
   578       ShouldNotReachHere();
   579     }
   580     break;
   582   case 0x81: // addl a, #32; addl r, #32
   583     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   584     // on 32bit in the case of cmpl, the imm might be an oop
   585     tail_size = 4;
   586     debug_only(has_disp32 = true); // has both kinds of operands!
   587     break;
   589   case 0x83: // addl a, #8; addl r, #8
   590     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   591     debug_only(has_disp32 = true); // has both kinds of operands!
   592     tail_size = 1;
   593     break;
   595   case 0x9B:
   596     switch (0xFF & *ip++) {
   597     case 0xD9: // fnstcw a
   598       debug_only(has_disp32 = true);
   599       break;
   600     default:
   601       ShouldNotReachHere();
   602     }
   603     break;
   605   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   606   case REP4(0x10): // adc...
   607   case REP4(0x20): // and...
   608   case REP4(0x30): // xor...
   609   case REP4(0x08): // or...
   610   case REP4(0x18): // sbb...
   611   case REP4(0x28): // sub...
   612   case 0xF7: // mull a
   613   case 0x8D: // lea r, a
   614   case 0x87: // xchg r, a
   615   case REP4(0x38): // cmp...
   616   case 0x85: // test r, a
   617     debug_only(has_disp32 = true); // has both kinds of operands!
   618     break;
   620   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   621   case 0xC6: // movb a, #8
   622   case 0x80: // cmpb a, #8
   623   case 0x6B: // imul r, a, #8
   624     debug_only(has_disp32 = true); // has both kinds of operands!
   625     tail_size = 1; // the imm8
   626     break;
   628   case 0xE8: // call rdisp32
   629   case 0xE9: // jmp  rdisp32
   630     if (which == end_pc_operand)  return ip + 4;
   631     assert(which == call32_operand, "call has no disp32 or imm");
   632     return ip;
   634   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   635   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   636   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   637   case 0xDD: // fld_d a; fst_d a; fstp_d a
   638   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   639   case 0xDF: // fild_d a; fistp_d a
   640   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   641   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   642   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   643     debug_only(has_disp32 = true);
   644     break;
   646   case 0xF0:                    // Lock
   647     assert(os::is_MP(), "only on MP");
   648     goto again_after_prefix;
   650   case 0xF3:                    // For SSE
   651   case 0xF2:                    // For SSE2
   652     switch (0xFF & *ip++) {
   653     case REX:
   654     case REX_B:
   655     case REX_X:
   656     case REX_XB:
   657     case REX_R:
   658     case REX_RB:
   659     case REX_RX:
   660     case REX_RXB:
   661     case REX_W:
   662     case REX_WB:
   663     case REX_WX:
   664     case REX_WXB:
   665     case REX_WR:
   666     case REX_WRB:
   667     case REX_WRX:
   668     case REX_WRXB:
   669       NOT_LP64(assert(false, "found 64bit prefix"));
   670       ip++;
   671     default:
   672       ip++;
   673     }
   674     debug_only(has_disp32 = true); // has both kinds of operands!
   675     break;
   677   default:
   678     ShouldNotReachHere();
   680 #undef REP8
   681 #undef REP16
   682   }
   684   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   685 #ifdef _LP64
   686   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   687 #else
   688   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   689   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   690 #endif // LP64
   691   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   693   // parse the output of emit_operand
   694   int op2 = 0xFF & *ip++;
   695   int base = op2 & 0x07;
   696   int op3 = -1;
   697   const int b100 = 4;
   698   const int b101 = 5;
   699   if (base == b100 && (op2 >> 6) != 3) {
   700     op3 = 0xFF & *ip++;
   701     base = op3 & 0x07;   // refetch the base
   702   }
   703   // now ip points at the disp (if any)
   705   switch (op2 >> 6) {
   706   case 0:
   707     // [00 reg  100][ss index base]
   708     // [00 reg  100][00   100  esp]
   709     // [00 reg base]
   710     // [00 reg  100][ss index  101][disp32]
   711     // [00 reg  101]               [disp32]
   713     if (base == b101) {
   714       if (which == disp32_operand)
   715         return ip;              // caller wants the disp32
   716       ip += 4;                  // skip the disp32
   717     }
   718     break;
   720   case 1:
   721     // [01 reg  100][ss index base][disp8]
   722     // [01 reg  100][00   100  esp][disp8]
   723     // [01 reg base]               [disp8]
   724     ip += 1;                    // skip the disp8
   725     break;
   727   case 2:
   728     // [10 reg  100][ss index base][disp32]
   729     // [10 reg  100][00   100  esp][disp32]
   730     // [10 reg base]               [disp32]
   731     if (which == disp32_operand)
   732       return ip;                // caller wants the disp32
   733     ip += 4;                    // skip the disp32
   734     break;
   736   case 3:
   737     // [11 reg base]  (not a memory addressing mode)
   738     break;
   739   }
   741   if (which == end_pc_operand) {
   742     return ip + tail_size;
   743   }
   745 #ifdef _LP64
   746   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   747 #else
   748   assert(which == imm_operand, "instruction has only an imm field");
   749 #endif // LP64
   750   return ip;
   751 }
   753 address Assembler::locate_next_instruction(address inst) {
   754   // Secretly share code with locate_operand:
   755   return locate_operand(inst, end_pc_operand);
   756 }
   759 #ifdef ASSERT
   760 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   761   address inst = inst_mark();
   762   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   763   address opnd;
   765   Relocation* r = rspec.reloc();
   766   if (r->type() == relocInfo::none) {
   767     return;
   768   } else if (r->is_call() || format == call32_operand) {
   769     // assert(format == imm32_operand, "cannot specify a nonzero format");
   770     opnd = locate_operand(inst, call32_operand);
   771   } else if (r->is_data()) {
   772     assert(format == imm_operand || format == disp32_operand
   773            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   774     opnd = locate_operand(inst, (WhichOperand)format);
   775   } else {
   776     assert(format == imm_operand, "cannot specify a format");
   777     return;
   778   }
   779   assert(opnd == pc(), "must put operand where relocs can find it");
   780 }
   781 #endif // ASSERT
   783 void Assembler::emit_operand32(Register reg, Address adr) {
   784   assert(reg->encoding() < 8, "no extended registers");
   785   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   786   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   787                adr._rspec);
   788 }
   790 void Assembler::emit_operand(Register reg, Address adr,
   791                              int rip_relative_correction) {
   792   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   793                adr._rspec,
   794                rip_relative_correction);
   795 }
   797 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   798   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   799                adr._rspec);
   800 }
   802 // MMX operations
   803 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   804   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   805   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   806 }
   808 // work around gcc (3.2.1-7a) bug
   809 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   810   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   811   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   812 }
   815 void Assembler::emit_farith(int b1, int b2, int i) {
   816   assert(isByte(b1) && isByte(b2), "wrong opcode");
   817   assert(0 <= i &&  i < 8, "illegal stack offset");
   818   emit_byte(b1);
   819   emit_byte(b2 + i);
   820 }
   823 // Now the Assembler instructions (identical for 32/64 bits)
   825 void Assembler::adcl(Address dst, int32_t imm32) {
   826   InstructionMark im(this);
   827   prefix(dst);
   828   emit_arith_operand(0x81, rdx, dst, imm32);
   829 }
   831 void Assembler::adcl(Address dst, Register src) {
   832   InstructionMark im(this);
   833   prefix(dst, src);
   834   emit_byte(0x11);
   835   emit_operand(src, dst);
   836 }
   838 void Assembler::adcl(Register dst, int32_t imm32) {
   839   prefix(dst);
   840   emit_arith(0x81, 0xD0, dst, imm32);
   841 }
   843 void Assembler::adcl(Register dst, Address src) {
   844   InstructionMark im(this);
   845   prefix(src, dst);
   846   emit_byte(0x13);
   847   emit_operand(dst, src);
   848 }
   850 void Assembler::adcl(Register dst, Register src) {
   851   (void) prefix_and_encode(dst->encoding(), src->encoding());
   852   emit_arith(0x13, 0xC0, dst, src);
   853 }
   855 void Assembler::addl(Address dst, int32_t imm32) {
   856   InstructionMark im(this);
   857   prefix(dst);
   858   emit_arith_operand(0x81, rax, dst, imm32);
   859 }
   861 void Assembler::addl(Address dst, Register src) {
   862   InstructionMark im(this);
   863   prefix(dst, src);
   864   emit_byte(0x01);
   865   emit_operand(src, dst);
   866 }
   868 void Assembler::addl(Register dst, int32_t imm32) {
   869   prefix(dst);
   870   emit_arith(0x81, 0xC0, dst, imm32);
   871 }
   873 void Assembler::addl(Register dst, Address src) {
   874   InstructionMark im(this);
   875   prefix(src, dst);
   876   emit_byte(0x03);
   877   emit_operand(dst, src);
   878 }
   880 void Assembler::addl(Register dst, Register src) {
   881   (void) prefix_and_encode(dst->encoding(), src->encoding());
   882   emit_arith(0x03, 0xC0, dst, src);
   883 }
   885 void Assembler::addr_nop_4() {
   886   // 4 bytes: NOP DWORD PTR [EAX+0]
   887   emit_byte(0x0F);
   888   emit_byte(0x1F);
   889   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   890   emit_byte(0);    // 8-bits offset (1 byte)
   891 }
   893 void Assembler::addr_nop_5() {
   894   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   895   emit_byte(0x0F);
   896   emit_byte(0x1F);
   897   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   898   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   899   emit_byte(0);    // 8-bits offset (1 byte)
   900 }
   902 void Assembler::addr_nop_7() {
   903   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   904   emit_byte(0x0F);
   905   emit_byte(0x1F);
   906   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   907   emit_long(0);    // 32-bits offset (4 bytes)
   908 }
   910 void Assembler::addr_nop_8() {
   911   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   912   emit_byte(0x0F);
   913   emit_byte(0x1F);
   914   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   915   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   916   emit_long(0);    // 32-bits offset (4 bytes)
   917 }
   919 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   921   emit_byte(0xF2);
   922   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   923   emit_byte(0x0F);
   924   emit_byte(0x58);
   925   emit_byte(0xC0 | encode);
   926 }
   928 void Assembler::addsd(XMMRegister dst, Address src) {
   929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   930   InstructionMark im(this);
   931   emit_byte(0xF2);
   932   prefix(src, dst);
   933   emit_byte(0x0F);
   934   emit_byte(0x58);
   935   emit_operand(dst, src);
   936 }
   938 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   940   emit_byte(0xF3);
   941   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   942   emit_byte(0x0F);
   943   emit_byte(0x58);
   944   emit_byte(0xC0 | encode);
   945 }
   947 void Assembler::addss(XMMRegister dst, Address src) {
   948   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   949   InstructionMark im(this);
   950   emit_byte(0xF3);
   951   prefix(src, dst);
   952   emit_byte(0x0F);
   953   emit_byte(0x58);
   954   emit_operand(dst, src);
   955 }
   957 void Assembler::andl(Register dst, int32_t imm32) {
   958   prefix(dst);
   959   emit_arith(0x81, 0xE0, dst, imm32);
   960 }
   962 void Assembler::andl(Register dst, Address src) {
   963   InstructionMark im(this);
   964   prefix(src, dst);
   965   emit_byte(0x23);
   966   emit_operand(dst, src);
   967 }
   969 void Assembler::andl(Register dst, Register src) {
   970   (void) prefix_and_encode(dst->encoding(), src->encoding());
   971   emit_arith(0x23, 0xC0, dst, src);
   972 }
   974 void Assembler::andpd(XMMRegister dst, Address src) {
   975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   976   InstructionMark im(this);
   977   emit_byte(0x66);
   978   prefix(src, dst);
   979   emit_byte(0x0F);
   980   emit_byte(0x54);
   981   emit_operand(dst, src);
   982 }
   984 void Assembler::bsfl(Register dst, Register src) {
   985   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   986   emit_byte(0x0F);
   987   emit_byte(0xBC);
   988   emit_byte(0xC0 | encode);
   989 }
   991 void Assembler::bsrl(Register dst, Register src) {
   992   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
   993   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   994   emit_byte(0x0F);
   995   emit_byte(0xBD);
   996   emit_byte(0xC0 | encode);
   997 }
   999 void Assembler::bswapl(Register reg) { // bswap
  1000   int encode = prefix_and_encode(reg->encoding());
  1001   emit_byte(0x0F);
  1002   emit_byte(0xC8 | encode);
  1005 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1006   // suspect disp32 is always good
  1007   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1009   if (L.is_bound()) {
  1010     const int long_size = 5;
  1011     int offs = (int)( target(L) - pc() );
  1012     assert(offs <= 0, "assembler error");
  1013     InstructionMark im(this);
  1014     // 1110 1000 #32-bit disp
  1015     emit_byte(0xE8);
  1016     emit_data(offs - long_size, rtype, operand);
  1017   } else {
  1018     InstructionMark im(this);
  1019     // 1110 1000 #32-bit disp
  1020     L.add_patch_at(code(), locator());
  1022     emit_byte(0xE8);
  1023     emit_data(int(0), rtype, operand);
  1027 void Assembler::call(Register dst) {
  1028   // This was originally using a 32bit register encoding
  1029   // and surely we want 64bit!
  1030   // this is a 32bit encoding but in 64bit mode the default
  1031   // operand size is 64bit so there is no need for the
  1032   // wide prefix. So prefix only happens if we use the
  1033   // new registers. Much like push/pop.
  1034   int x = offset();
  1035   // this may be true but dbx disassembles it as if it
  1036   // were 32bits...
  1037   // int encode = prefix_and_encode(dst->encoding());
  1038   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  1039   int encode = prefixq_and_encode(dst->encoding());
  1041   emit_byte(0xFF);
  1042   emit_byte(0xD0 | encode);
  1046 void Assembler::call(Address adr) {
  1047   InstructionMark im(this);
  1048   prefix(adr);
  1049   emit_byte(0xFF);
  1050   emit_operand(rdx, adr);
  1053 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1054   assert(entry != NULL, "call most probably wrong");
  1055   InstructionMark im(this);
  1056   emit_byte(0xE8);
  1057   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1058   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1059   // Technically, should use call32_operand, but this format is
  1060   // implied by the fact that we're emitting a call instruction.
  1062   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1063   emit_data((int) disp, rspec, operand);
  1066 void Assembler::cdql() {
  1067   emit_byte(0x99);
  1070 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1071   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1072   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1073   emit_byte(0x0F);
  1074   emit_byte(0x40 | cc);
  1075   emit_byte(0xC0 | encode);
  1079 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1080   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1081   prefix(src, dst);
  1082   emit_byte(0x0F);
  1083   emit_byte(0x40 | cc);
  1084   emit_operand(dst, src);
  1087 void Assembler::cmpb(Address dst, int imm8) {
  1088   InstructionMark im(this);
  1089   prefix(dst);
  1090   emit_byte(0x80);
  1091   emit_operand(rdi, dst, 1);
  1092   emit_byte(imm8);
  1095 void Assembler::cmpl(Address dst, int32_t imm32) {
  1096   InstructionMark im(this);
  1097   prefix(dst);
  1098   emit_byte(0x81);
  1099   emit_operand(rdi, dst, 4);
  1100   emit_long(imm32);
  1103 void Assembler::cmpl(Register dst, int32_t imm32) {
  1104   prefix(dst);
  1105   emit_arith(0x81, 0xF8, dst, imm32);
  1108 void Assembler::cmpl(Register dst, Register src) {
  1109   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1110   emit_arith(0x3B, 0xC0, dst, src);
  1114 void Assembler::cmpl(Register dst, Address  src) {
  1115   InstructionMark im(this);
  1116   prefix(src, dst);
  1117   emit_byte(0x3B);
  1118   emit_operand(dst, src);
  1121 void Assembler::cmpw(Address dst, int imm16) {
  1122   InstructionMark im(this);
  1123   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1124   emit_byte(0x66);
  1125   emit_byte(0x81);
  1126   emit_operand(rdi, dst, 2);
  1127   emit_word(imm16);
  1130 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1131 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1132 // The ZF is set if the compared values were equal, and cleared otherwise.
  1133 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1134   if (Atomics & 2) {
  1135      // caveat: no instructionmark, so this isn't relocatable.
  1136      // Emit a synthetic, non-atomic, CAS equivalent.
  1137      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1138      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1139      cmpl(rax, adr);
  1140      movl(rax, adr);
  1141      if (reg != rax) {
  1142         Label L ;
  1143         jcc(Assembler::notEqual, L);
  1144         movl(adr, reg);
  1145         bind(L);
  1147   } else {
  1148      InstructionMark im(this);
  1149      prefix(adr, reg);
  1150      emit_byte(0x0F);
  1151      emit_byte(0xB1);
  1152      emit_operand(reg, adr);
  1156 void Assembler::comisd(XMMRegister dst, Address src) {
  1157   // NOTE: dbx seems to decode this as comiss even though the
  1158   // 0x66 is there. Strangly ucomisd comes out correct
  1159   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1160   emit_byte(0x66);
  1161   comiss(dst, src);
  1164 void Assembler::comiss(XMMRegister dst, Address src) {
  1165   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1167   InstructionMark im(this);
  1168   prefix(src, dst);
  1169   emit_byte(0x0F);
  1170   emit_byte(0x2F);
  1171   emit_operand(dst, src);
  1174 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1176   emit_byte(0xF3);
  1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1178   emit_byte(0x0F);
  1179   emit_byte(0xE6);
  1180   emit_byte(0xC0 | encode);
  1183 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1185   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1186   emit_byte(0x0F);
  1187   emit_byte(0x5B);
  1188   emit_byte(0xC0 | encode);
  1191 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1193   emit_byte(0xF2);
  1194   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1195   emit_byte(0x0F);
  1196   emit_byte(0x5A);
  1197   emit_byte(0xC0 | encode);
  1200 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1202   emit_byte(0xF2);
  1203   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1204   emit_byte(0x0F);
  1205   emit_byte(0x2A);
  1206   emit_byte(0xC0 | encode);
  1209 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1210   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1211   emit_byte(0xF3);
  1212   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1213   emit_byte(0x0F);
  1214   emit_byte(0x2A);
  1215   emit_byte(0xC0 | encode);
  1218 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1219   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1220   emit_byte(0xF3);
  1221   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1222   emit_byte(0x0F);
  1223   emit_byte(0x5A);
  1224   emit_byte(0xC0 | encode);
  1227 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1229   emit_byte(0xF2);
  1230   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1231   emit_byte(0x0F);
  1232   emit_byte(0x2C);
  1233   emit_byte(0xC0 | encode);
  1236 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1237   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1238   emit_byte(0xF3);
  1239   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1240   emit_byte(0x0F);
  1241   emit_byte(0x2C);
  1242   emit_byte(0xC0 | encode);
  1245 void Assembler::decl(Address dst) {
  1246   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1247   InstructionMark im(this);
  1248   prefix(dst);
  1249   emit_byte(0xFF);
  1250   emit_operand(rcx, dst);
  1253 void Assembler::divsd(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1255   InstructionMark im(this);
  1256   emit_byte(0xF2);
  1257   prefix(src, dst);
  1258   emit_byte(0x0F);
  1259   emit_byte(0x5E);
  1260   emit_operand(dst, src);
  1263 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1265   emit_byte(0xF2);
  1266   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1267   emit_byte(0x0F);
  1268   emit_byte(0x5E);
  1269   emit_byte(0xC0 | encode);
  1272 void Assembler::divss(XMMRegister dst, Address src) {
  1273   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1274   InstructionMark im(this);
  1275   emit_byte(0xF3);
  1276   prefix(src, dst);
  1277   emit_byte(0x0F);
  1278   emit_byte(0x5E);
  1279   emit_operand(dst, src);
  1282 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1283   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1284   emit_byte(0xF3);
  1285   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1286   emit_byte(0x0F);
  1287   emit_byte(0x5E);
  1288   emit_byte(0xC0 | encode);
  1291 void Assembler::emms() {
  1292   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1293   emit_byte(0x0F);
  1294   emit_byte(0x77);
  1297 void Assembler::hlt() {
  1298   emit_byte(0xF4);
  1301 void Assembler::idivl(Register src) {
  1302   int encode = prefix_and_encode(src->encoding());
  1303   emit_byte(0xF7);
  1304   emit_byte(0xF8 | encode);
  1307 void Assembler::divl(Register src) { // Unsigned
  1308   int encode = prefix_and_encode(src->encoding());
  1309   emit_byte(0xF7);
  1310   emit_byte(0xF0 | encode);
  1313 void Assembler::imull(Register dst, Register src) {
  1314   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1315   emit_byte(0x0F);
  1316   emit_byte(0xAF);
  1317   emit_byte(0xC0 | encode);
  1321 void Assembler::imull(Register dst, Register src, int value) {
  1322   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1323   if (is8bit(value)) {
  1324     emit_byte(0x6B);
  1325     emit_byte(0xC0 | encode);
  1326     emit_byte(value & 0xFF);
  1327   } else {
  1328     emit_byte(0x69);
  1329     emit_byte(0xC0 | encode);
  1330     emit_long(value);
  1334 void Assembler::incl(Address dst) {
  1335   // Don't use it directly. Use MacroAssembler::increment() instead.
  1336   InstructionMark im(this);
  1337   prefix(dst);
  1338   emit_byte(0xFF);
  1339   emit_operand(rax, dst);
  1342 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1343   InstructionMark im(this);
  1344   relocate(rtype);
  1345   assert((0 <= cc) && (cc < 16), "illegal cc");
  1346   if (L.is_bound()) {
  1347     address dst = target(L);
  1348     assert(dst != NULL, "jcc most probably wrong");
  1350     const int short_size = 2;
  1351     const int long_size = 6;
  1352     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1353     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1354       // 0111 tttn #8-bit disp
  1355       emit_byte(0x70 | cc);
  1356       emit_byte((offs - short_size) & 0xFF);
  1357     } else {
  1358       // 0000 1111 1000 tttn #32-bit disp
  1359       assert(is_simm32(offs - long_size),
  1360              "must be 32bit offset (call4)");
  1361       emit_byte(0x0F);
  1362       emit_byte(0x80 | cc);
  1363       emit_long(offs - long_size);
  1365   } else {
  1366     // Note: could eliminate cond. jumps to this jump if condition
  1367     //       is the same however, seems to be rather unlikely case.
  1368     // Note: use jccb() if label to be bound is very close to get
  1369     //       an 8-bit displacement
  1370     L.add_patch_at(code(), locator());
  1371     emit_byte(0x0F);
  1372     emit_byte(0x80 | cc);
  1373     emit_long(0);
  1377 void Assembler::jccb(Condition cc, Label& L) {
  1378   if (L.is_bound()) {
  1379     const int short_size = 2;
  1380     address entry = target(L);
  1381     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1382            "Dispacement too large for a short jmp");
  1383     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1384     // 0111 tttn #8-bit disp
  1385     emit_byte(0x70 | cc);
  1386     emit_byte((offs - short_size) & 0xFF);
  1387   } else {
  1388     InstructionMark im(this);
  1389     L.add_patch_at(code(), locator());
  1390     emit_byte(0x70 | cc);
  1391     emit_byte(0);
  1395 void Assembler::jmp(Address adr) {
  1396   InstructionMark im(this);
  1397   prefix(adr);
  1398   emit_byte(0xFF);
  1399   emit_operand(rsp, adr);
  1402 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1403   if (L.is_bound()) {
  1404     address entry = target(L);
  1405     assert(entry != NULL, "jmp most probably wrong");
  1406     InstructionMark im(this);
  1407     const int short_size = 2;
  1408     const int long_size = 5;
  1409     intptr_t offs = entry - _code_pos;
  1410     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1411       emit_byte(0xEB);
  1412       emit_byte((offs - short_size) & 0xFF);
  1413     } else {
  1414       emit_byte(0xE9);
  1415       emit_long(offs - long_size);
  1417   } else {
  1418     // By default, forward jumps are always 32-bit displacements, since
  1419     // we can't yet know where the label will be bound.  If you're sure that
  1420     // the forward jump will not run beyond 256 bytes, use jmpb to
  1421     // force an 8-bit displacement.
  1422     InstructionMark im(this);
  1423     relocate(rtype);
  1424     L.add_patch_at(code(), locator());
  1425     emit_byte(0xE9);
  1426     emit_long(0);
  1430 void Assembler::jmp(Register entry) {
  1431   int encode = prefix_and_encode(entry->encoding());
  1432   emit_byte(0xFF);
  1433   emit_byte(0xE0 | encode);
  1436 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1437   InstructionMark im(this);
  1438   emit_byte(0xE9);
  1439   assert(dest != NULL, "must have a target");
  1440   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1441   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1442   emit_data(disp, rspec.reloc(), call32_operand);
  1445 void Assembler::jmpb(Label& L) {
  1446   if (L.is_bound()) {
  1447     const int short_size = 2;
  1448     address entry = target(L);
  1449     assert(is8bit((entry - _code_pos) + short_size),
  1450            "Dispacement too large for a short jmp");
  1451     assert(entry != NULL, "jmp most probably wrong");
  1452     intptr_t offs = entry - _code_pos;
  1453     emit_byte(0xEB);
  1454     emit_byte((offs - short_size) & 0xFF);
  1455   } else {
  1456     InstructionMark im(this);
  1457     L.add_patch_at(code(), locator());
  1458     emit_byte(0xEB);
  1459     emit_byte(0);
  1463 void Assembler::ldmxcsr( Address src) {
  1464   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1465   InstructionMark im(this);
  1466   prefix(src);
  1467   emit_byte(0x0F);
  1468   emit_byte(0xAE);
  1469   emit_operand(as_Register(2), src);
  1472 void Assembler::leal(Register dst, Address src) {
  1473   InstructionMark im(this);
  1474 #ifdef _LP64
  1475   emit_byte(0x67); // addr32
  1476   prefix(src, dst);
  1477 #endif // LP64
  1478   emit_byte(0x8D);
  1479   emit_operand(dst, src);
  1482 void Assembler::lock() {
  1483   if (Atomics & 1) {
  1484      // Emit either nothing, a NOP, or a NOP: prefix
  1485      emit_byte(0x90) ;
  1486   } else {
  1487      emit_byte(0xF0);
  1491 void Assembler::lzcntl(Register dst, Register src) {
  1492   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1493   emit_byte(0xF3);
  1494   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1495   emit_byte(0x0F);
  1496   emit_byte(0xBD);
  1497   emit_byte(0xC0 | encode);
  1500 // Emit mfence instruction
  1501 void Assembler::mfence() {
  1502   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1503   emit_byte( 0x0F );
  1504   emit_byte( 0xAE );
  1505   emit_byte( 0xF0 );
  1508 void Assembler::mov(Register dst, Register src) {
  1509   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1512 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1513   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1514   int dstenc = dst->encoding();
  1515   int srcenc = src->encoding();
  1516   emit_byte(0x66);
  1517   if (dstenc < 8) {
  1518     if (srcenc >= 8) {
  1519       prefix(REX_B);
  1520       srcenc -= 8;
  1522   } else {
  1523     if (srcenc < 8) {
  1524       prefix(REX_R);
  1525     } else {
  1526       prefix(REX_RB);
  1527       srcenc -= 8;
  1529     dstenc -= 8;
  1531   emit_byte(0x0F);
  1532   emit_byte(0x28);
  1533   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1536 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1537   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1538   int dstenc = dst->encoding();
  1539   int srcenc = src->encoding();
  1540   if (dstenc < 8) {
  1541     if (srcenc >= 8) {
  1542       prefix(REX_B);
  1543       srcenc -= 8;
  1545   } else {
  1546     if (srcenc < 8) {
  1547       prefix(REX_R);
  1548     } else {
  1549       prefix(REX_RB);
  1550       srcenc -= 8;
  1552     dstenc -= 8;
  1554   emit_byte(0x0F);
  1555   emit_byte(0x28);
  1556   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1559 void Assembler::movb(Register dst, Address src) {
  1560   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1561   InstructionMark im(this);
  1562   prefix(src, dst, true);
  1563   emit_byte(0x8A);
  1564   emit_operand(dst, src);
  1568 void Assembler::movb(Address dst, int imm8) {
  1569   InstructionMark im(this);
  1570    prefix(dst);
  1571   emit_byte(0xC6);
  1572   emit_operand(rax, dst, 1);
  1573   emit_byte(imm8);
  1577 void Assembler::movb(Address dst, Register src) {
  1578   assert(src->has_byte_register(), "must have byte register");
  1579   InstructionMark im(this);
  1580   prefix(dst, src, true);
  1581   emit_byte(0x88);
  1582   emit_operand(src, dst);
  1585 void Assembler::movdl(XMMRegister dst, Register src) {
  1586   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1587   emit_byte(0x66);
  1588   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1589   emit_byte(0x0F);
  1590   emit_byte(0x6E);
  1591   emit_byte(0xC0 | encode);
  1594 void Assembler::movdl(Register dst, XMMRegister src) {
  1595   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1596   emit_byte(0x66);
  1597   // swap src/dst to get correct prefix
  1598   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1599   emit_byte(0x0F);
  1600   emit_byte(0x7E);
  1601   emit_byte(0xC0 | encode);
  1604 void Assembler::movdqa(XMMRegister dst, Address src) {
  1605   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1606   InstructionMark im(this);
  1607   emit_byte(0x66);
  1608   prefix(src, dst);
  1609   emit_byte(0x0F);
  1610   emit_byte(0x6F);
  1611   emit_operand(dst, src);
  1614 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1615   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1616   emit_byte(0x66);
  1617   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1618   emit_byte(0x0F);
  1619   emit_byte(0x6F);
  1620   emit_byte(0xC0 | encode);
  1623 void Assembler::movdqa(Address dst, XMMRegister src) {
  1624   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1625   InstructionMark im(this);
  1626   emit_byte(0x66);
  1627   prefix(dst, src);
  1628   emit_byte(0x0F);
  1629   emit_byte(0x7F);
  1630   emit_operand(src, dst);
  1633 void Assembler::movdqu(XMMRegister dst, Address src) {
  1634   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1635   InstructionMark im(this);
  1636   emit_byte(0xF3);
  1637   prefix(src, dst);
  1638   emit_byte(0x0F);
  1639   emit_byte(0x6F);
  1640   emit_operand(dst, src);
  1643 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1645   emit_byte(0xF3);
  1646   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1647   emit_byte(0x0F);
  1648   emit_byte(0x6F);
  1649   emit_byte(0xC0 | encode);
  1652 void Assembler::movdqu(Address dst, XMMRegister src) {
  1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1654   InstructionMark im(this);
  1655   emit_byte(0xF3);
  1656   prefix(dst, src);
  1657   emit_byte(0x0F);
  1658   emit_byte(0x7F);
  1659   emit_operand(src, dst);
  1662 // Uses zero extension on 64bit
  1664 void Assembler::movl(Register dst, int32_t imm32) {
  1665   int encode = prefix_and_encode(dst->encoding());
  1666   emit_byte(0xB8 | encode);
  1667   emit_long(imm32);
  1670 void Assembler::movl(Register dst, Register src) {
  1671   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1672   emit_byte(0x8B);
  1673   emit_byte(0xC0 | encode);
  1676 void Assembler::movl(Register dst, Address src) {
  1677   InstructionMark im(this);
  1678   prefix(src, dst);
  1679   emit_byte(0x8B);
  1680   emit_operand(dst, src);
  1683 void Assembler::movl(Address dst, int32_t imm32) {
  1684   InstructionMark im(this);
  1685   prefix(dst);
  1686   emit_byte(0xC7);
  1687   emit_operand(rax, dst, 4);
  1688   emit_long(imm32);
  1691 void Assembler::movl(Address dst, Register src) {
  1692   InstructionMark im(this);
  1693   prefix(dst, src);
  1694   emit_byte(0x89);
  1695   emit_operand(src, dst);
  1698 // New cpus require to use movsd and movss to avoid partial register stall
  1699 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1700 // The selection is done in MacroAssembler::movdbl() and movflt().
  1701 void Assembler::movlpd(XMMRegister dst, Address src) {
  1702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1703   InstructionMark im(this);
  1704   emit_byte(0x66);
  1705   prefix(src, dst);
  1706   emit_byte(0x0F);
  1707   emit_byte(0x12);
  1708   emit_operand(dst, src);
  1711 void Assembler::movq( MMXRegister dst, Address src ) {
  1712   assert( VM_Version::supports_mmx(), "" );
  1713   emit_byte(0x0F);
  1714   emit_byte(0x6F);
  1715   emit_operand(dst, src);
  1718 void Assembler::movq( Address dst, MMXRegister src ) {
  1719   assert( VM_Version::supports_mmx(), "" );
  1720   emit_byte(0x0F);
  1721   emit_byte(0x7F);
  1722   // workaround gcc (3.2.1-7a) bug
  1723   // In that version of gcc with only an emit_operand(MMX, Address)
  1724   // gcc will tail jump and try and reverse the parameters completely
  1725   // obliterating dst in the process. By having a version available
  1726   // that doesn't need to swap the args at the tail jump the bug is
  1727   // avoided.
  1728   emit_operand(dst, src);
  1731 void Assembler::movq(XMMRegister dst, Address src) {
  1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1733   InstructionMark im(this);
  1734   emit_byte(0xF3);
  1735   prefix(src, dst);
  1736   emit_byte(0x0F);
  1737   emit_byte(0x7E);
  1738   emit_operand(dst, src);
  1741 void Assembler::movq(Address dst, XMMRegister src) {
  1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1743   InstructionMark im(this);
  1744   emit_byte(0x66);
  1745   prefix(dst, src);
  1746   emit_byte(0x0F);
  1747   emit_byte(0xD6);
  1748   emit_operand(src, dst);
  1751 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1752   InstructionMark im(this);
  1753   prefix(src, dst);
  1754   emit_byte(0x0F);
  1755   emit_byte(0xBE);
  1756   emit_operand(dst, src);
  1759 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1760   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1761   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1762   emit_byte(0x0F);
  1763   emit_byte(0xBE);
  1764   emit_byte(0xC0 | encode);
  1767 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1769   emit_byte(0xF2);
  1770   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1771   emit_byte(0x0F);
  1772   emit_byte(0x10);
  1773   emit_byte(0xC0 | encode);
  1776 void Assembler::movsd(XMMRegister dst, Address src) {
  1777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1778   InstructionMark im(this);
  1779   emit_byte(0xF2);
  1780   prefix(src, dst);
  1781   emit_byte(0x0F);
  1782   emit_byte(0x10);
  1783   emit_operand(dst, src);
  1786 void Assembler::movsd(Address dst, XMMRegister src) {
  1787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1788   InstructionMark im(this);
  1789   emit_byte(0xF2);
  1790   prefix(dst, src);
  1791   emit_byte(0x0F);
  1792   emit_byte(0x11);
  1793   emit_operand(src, dst);
  1796 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1797   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1798   emit_byte(0xF3);
  1799   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1800   emit_byte(0x0F);
  1801   emit_byte(0x10);
  1802   emit_byte(0xC0 | encode);
  1805 void Assembler::movss(XMMRegister dst, Address src) {
  1806   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1807   InstructionMark im(this);
  1808   emit_byte(0xF3);
  1809   prefix(src, dst);
  1810   emit_byte(0x0F);
  1811   emit_byte(0x10);
  1812   emit_operand(dst, src);
  1815 void Assembler::movss(Address dst, XMMRegister src) {
  1816   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1817   InstructionMark im(this);
  1818   emit_byte(0xF3);
  1819   prefix(dst, src);
  1820   emit_byte(0x0F);
  1821   emit_byte(0x11);
  1822   emit_operand(src, dst);
  1825 void Assembler::movswl(Register dst, Address src) { // movsxw
  1826   InstructionMark im(this);
  1827   prefix(src, dst);
  1828   emit_byte(0x0F);
  1829   emit_byte(0xBF);
  1830   emit_operand(dst, src);
  1833 void Assembler::movswl(Register dst, Register src) { // movsxw
  1834   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1835   emit_byte(0x0F);
  1836   emit_byte(0xBF);
  1837   emit_byte(0xC0 | encode);
  1840 void Assembler::movw(Address dst, int imm16) {
  1841   InstructionMark im(this);
  1843   emit_byte(0x66); // switch to 16-bit mode
  1844   prefix(dst);
  1845   emit_byte(0xC7);
  1846   emit_operand(rax, dst, 2);
  1847   emit_word(imm16);
  1850 void Assembler::movw(Register dst, Address src) {
  1851   InstructionMark im(this);
  1852   emit_byte(0x66);
  1853   prefix(src, dst);
  1854   emit_byte(0x8B);
  1855   emit_operand(dst, src);
  1858 void Assembler::movw(Address dst, Register src) {
  1859   InstructionMark im(this);
  1860   emit_byte(0x66);
  1861   prefix(dst, src);
  1862   emit_byte(0x89);
  1863   emit_operand(src, dst);
  1866 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1867   InstructionMark im(this);
  1868   prefix(src, dst);
  1869   emit_byte(0x0F);
  1870   emit_byte(0xB6);
  1871   emit_operand(dst, src);
  1874 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1875   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1876   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1877   emit_byte(0x0F);
  1878   emit_byte(0xB6);
  1879   emit_byte(0xC0 | encode);
  1882 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1883   InstructionMark im(this);
  1884   prefix(src, dst);
  1885   emit_byte(0x0F);
  1886   emit_byte(0xB7);
  1887   emit_operand(dst, src);
  1890 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1891   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1892   emit_byte(0x0F);
  1893   emit_byte(0xB7);
  1894   emit_byte(0xC0 | encode);
  1897 void Assembler::mull(Address src) {
  1898   InstructionMark im(this);
  1899   prefix(src);
  1900   emit_byte(0xF7);
  1901   emit_operand(rsp, src);
  1904 void Assembler::mull(Register src) {
  1905   int encode = prefix_and_encode(src->encoding());
  1906   emit_byte(0xF7);
  1907   emit_byte(0xE0 | encode);
  1910 void Assembler::mulsd(XMMRegister dst, Address src) {
  1911   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1912   InstructionMark im(this);
  1913   emit_byte(0xF2);
  1914   prefix(src, dst);
  1915   emit_byte(0x0F);
  1916   emit_byte(0x59);
  1917   emit_operand(dst, src);
  1920 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1921   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1922   emit_byte(0xF2);
  1923   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1924   emit_byte(0x0F);
  1925   emit_byte(0x59);
  1926   emit_byte(0xC0 | encode);
  1929 void Assembler::mulss(XMMRegister dst, Address src) {
  1930   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1931   InstructionMark im(this);
  1932   emit_byte(0xF3);
  1933   prefix(src, dst);
  1934   emit_byte(0x0F);
  1935   emit_byte(0x59);
  1936   emit_operand(dst, src);
  1939 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1941   emit_byte(0xF3);
  1942   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1943   emit_byte(0x0F);
  1944   emit_byte(0x59);
  1945   emit_byte(0xC0 | encode);
  1948 void Assembler::negl(Register dst) {
  1949   int encode = prefix_and_encode(dst->encoding());
  1950   emit_byte(0xF7);
  1951   emit_byte(0xD8 | encode);
  1954 void Assembler::nop(int i) {
  1955 #ifdef ASSERT
  1956   assert(i > 0, " ");
  1957   // The fancy nops aren't currently recognized by debuggers making it a
  1958   // pain to disassemble code while debugging. If asserts are on clearly
  1959   // speed is not an issue so simply use the single byte traditional nop
  1960   // to do alignment.
  1962   for (; i > 0 ; i--) emit_byte(0x90);
  1963   return;
  1965 #endif // ASSERT
  1967   if (UseAddressNop && VM_Version::is_intel()) {
  1968     //
  1969     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1970     //  1: 0x90
  1971     //  2: 0x66 0x90
  1972     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1973     //  4: 0x0F 0x1F 0x40 0x00
  1974     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1975     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1976     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1977     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1978     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1979     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1980     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1982     // The rest coding is Intel specific - don't use consecutive address nops
  1984     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1985     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1986     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1987     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1989     while(i >= 15) {
  1990       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1991       i -= 15;
  1992       emit_byte(0x66);   // size prefix
  1993       emit_byte(0x66);   // size prefix
  1994       emit_byte(0x66);   // size prefix
  1995       addr_nop_8();
  1996       emit_byte(0x66);   // size prefix
  1997       emit_byte(0x66);   // size prefix
  1998       emit_byte(0x66);   // size prefix
  1999       emit_byte(0x90);   // nop
  2001     switch (i) {
  2002       case 14:
  2003         emit_byte(0x66); // size prefix
  2004       case 13:
  2005         emit_byte(0x66); // size prefix
  2006       case 12:
  2007         addr_nop_8();
  2008         emit_byte(0x66); // size prefix
  2009         emit_byte(0x66); // size prefix
  2010         emit_byte(0x66); // size prefix
  2011         emit_byte(0x90); // nop
  2012         break;
  2013       case 11:
  2014         emit_byte(0x66); // size prefix
  2015       case 10:
  2016         emit_byte(0x66); // size prefix
  2017       case 9:
  2018         emit_byte(0x66); // size prefix
  2019       case 8:
  2020         addr_nop_8();
  2021         break;
  2022       case 7:
  2023         addr_nop_7();
  2024         break;
  2025       case 6:
  2026         emit_byte(0x66); // size prefix
  2027       case 5:
  2028         addr_nop_5();
  2029         break;
  2030       case 4:
  2031         addr_nop_4();
  2032         break;
  2033       case 3:
  2034         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2035         emit_byte(0x66); // size prefix
  2036       case 2:
  2037         emit_byte(0x66); // size prefix
  2038       case 1:
  2039         emit_byte(0x90); // nop
  2040         break;
  2041       default:
  2042         assert(i == 0, " ");
  2044     return;
  2046   if (UseAddressNop && VM_Version::is_amd()) {
  2047     //
  2048     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2049     //  1: 0x90
  2050     //  2: 0x66 0x90
  2051     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2052     //  4: 0x0F 0x1F 0x40 0x00
  2053     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2054     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2055     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2056     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2057     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2058     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2059     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2061     // The rest coding is AMD specific - use consecutive address nops
  2063     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2064     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2065     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2066     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2067     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2068     //     Size prefixes (0x66) are added for larger sizes
  2070     while(i >= 22) {
  2071       i -= 11;
  2072       emit_byte(0x66); // size prefix
  2073       emit_byte(0x66); // size prefix
  2074       emit_byte(0x66); // size prefix
  2075       addr_nop_8();
  2077     // Generate first nop for size between 21-12
  2078     switch (i) {
  2079       case 21:
  2080         i -= 1;
  2081         emit_byte(0x66); // size prefix
  2082       case 20:
  2083       case 19:
  2084         i -= 1;
  2085         emit_byte(0x66); // size prefix
  2086       case 18:
  2087       case 17:
  2088         i -= 1;
  2089         emit_byte(0x66); // size prefix
  2090       case 16:
  2091       case 15:
  2092         i -= 8;
  2093         addr_nop_8();
  2094         break;
  2095       case 14:
  2096       case 13:
  2097         i -= 7;
  2098         addr_nop_7();
  2099         break;
  2100       case 12:
  2101         i -= 6;
  2102         emit_byte(0x66); // size prefix
  2103         addr_nop_5();
  2104         break;
  2105       default:
  2106         assert(i < 12, " ");
  2109     // Generate second nop for size between 11-1
  2110     switch (i) {
  2111       case 11:
  2112         emit_byte(0x66); // size prefix
  2113       case 10:
  2114         emit_byte(0x66); // size prefix
  2115       case 9:
  2116         emit_byte(0x66); // size prefix
  2117       case 8:
  2118         addr_nop_8();
  2119         break;
  2120       case 7:
  2121         addr_nop_7();
  2122         break;
  2123       case 6:
  2124         emit_byte(0x66); // size prefix
  2125       case 5:
  2126         addr_nop_5();
  2127         break;
  2128       case 4:
  2129         addr_nop_4();
  2130         break;
  2131       case 3:
  2132         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2133         emit_byte(0x66); // size prefix
  2134       case 2:
  2135         emit_byte(0x66); // size prefix
  2136       case 1:
  2137         emit_byte(0x90); // nop
  2138         break;
  2139       default:
  2140         assert(i == 0, " ");
  2142     return;
  2145   // Using nops with size prefixes "0x66 0x90".
  2146   // From AMD Optimization Guide:
  2147   //  1: 0x90
  2148   //  2: 0x66 0x90
  2149   //  3: 0x66 0x66 0x90
  2150   //  4: 0x66 0x66 0x66 0x90
  2151   //  5: 0x66 0x66 0x90 0x66 0x90
  2152   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2153   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2154   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2155   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2156   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2157   //
  2158   while(i > 12) {
  2159     i -= 4;
  2160     emit_byte(0x66); // size prefix
  2161     emit_byte(0x66);
  2162     emit_byte(0x66);
  2163     emit_byte(0x90); // nop
  2165   // 1 - 12 nops
  2166   if(i > 8) {
  2167     if(i > 9) {
  2168       i -= 1;
  2169       emit_byte(0x66);
  2171     i -= 3;
  2172     emit_byte(0x66);
  2173     emit_byte(0x66);
  2174     emit_byte(0x90);
  2176   // 1 - 8 nops
  2177   if(i > 4) {
  2178     if(i > 6) {
  2179       i -= 1;
  2180       emit_byte(0x66);
  2182     i -= 3;
  2183     emit_byte(0x66);
  2184     emit_byte(0x66);
  2185     emit_byte(0x90);
  2187   switch (i) {
  2188     case 4:
  2189       emit_byte(0x66);
  2190     case 3:
  2191       emit_byte(0x66);
  2192     case 2:
  2193       emit_byte(0x66);
  2194     case 1:
  2195       emit_byte(0x90);
  2196       break;
  2197     default:
  2198       assert(i == 0, " ");
  2202 void Assembler::notl(Register dst) {
  2203   int encode = prefix_and_encode(dst->encoding());
  2204   emit_byte(0xF7);
  2205   emit_byte(0xD0 | encode );
  2208 void Assembler::orl(Address dst, int32_t imm32) {
  2209   InstructionMark im(this);
  2210   prefix(dst);
  2211   emit_arith_operand(0x81, rcx, dst, imm32);
  2214 void Assembler::orl(Register dst, int32_t imm32) {
  2215   prefix(dst);
  2216   emit_arith(0x81, 0xC8, dst, imm32);
  2219 void Assembler::orl(Register dst, Address src) {
  2220   InstructionMark im(this);
  2221   prefix(src, dst);
  2222   emit_byte(0x0B);
  2223   emit_operand(dst, src);
  2226 void Assembler::orl(Register dst, Register src) {
  2227   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2228   emit_arith(0x0B, 0xC0, dst, src);
  2231 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2232   assert(VM_Version::supports_sse4_2(), "");
  2234   InstructionMark im(this);
  2235   emit_byte(0x66);
  2236   prefix(src, dst);
  2237   emit_byte(0x0F);
  2238   emit_byte(0x3A);
  2239   emit_byte(0x61);
  2240   emit_operand(dst, src);
  2241   emit_byte(imm8);
  2244 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2245   assert(VM_Version::supports_sse4_2(), "");
  2247   emit_byte(0x66);
  2248   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2249   emit_byte(0x0F);
  2250   emit_byte(0x3A);
  2251   emit_byte(0x61);
  2252   emit_byte(0xC0 | encode);
  2253   emit_byte(imm8);
  2256 // generic
  2257 void Assembler::pop(Register dst) {
  2258   int encode = prefix_and_encode(dst->encoding());
  2259   emit_byte(0x58 | encode);
  2262 void Assembler::popcntl(Register dst, Address src) {
  2263   assert(VM_Version::supports_popcnt(), "must support");
  2264   InstructionMark im(this);
  2265   emit_byte(0xF3);
  2266   prefix(src, dst);
  2267   emit_byte(0x0F);
  2268   emit_byte(0xB8);
  2269   emit_operand(dst, src);
  2272 void Assembler::popcntl(Register dst, Register src) {
  2273   assert(VM_Version::supports_popcnt(), "must support");
  2274   emit_byte(0xF3);
  2275   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2276   emit_byte(0x0F);
  2277   emit_byte(0xB8);
  2278   emit_byte(0xC0 | encode);
  2281 void Assembler::popf() {
  2282   emit_byte(0x9D);
  2285 #ifndef _LP64 // no 32bit push/pop on amd64
  2286 void Assembler::popl(Address dst) {
  2287   // NOTE: this will adjust stack by 8byte on 64bits
  2288   InstructionMark im(this);
  2289   prefix(dst);
  2290   emit_byte(0x8F);
  2291   emit_operand(rax, dst);
  2293 #endif
  2295 void Assembler::prefetch_prefix(Address src) {
  2296   prefix(src);
  2297   emit_byte(0x0F);
  2300 void Assembler::prefetchnta(Address src) {
  2301   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2302   InstructionMark im(this);
  2303   prefetch_prefix(src);
  2304   emit_byte(0x18);
  2305   emit_operand(rax, src); // 0, src
  2308 void Assembler::prefetchr(Address src) {
  2309   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2310   InstructionMark im(this);
  2311   prefetch_prefix(src);
  2312   emit_byte(0x0D);
  2313   emit_operand(rax, src); // 0, src
  2316 void Assembler::prefetcht0(Address src) {
  2317   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2318   InstructionMark im(this);
  2319   prefetch_prefix(src);
  2320   emit_byte(0x18);
  2321   emit_operand(rcx, src); // 1, src
  2324 void Assembler::prefetcht1(Address src) {
  2325   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2326   InstructionMark im(this);
  2327   prefetch_prefix(src);
  2328   emit_byte(0x18);
  2329   emit_operand(rdx, src); // 2, src
  2332 void Assembler::prefetcht2(Address src) {
  2333   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2334   InstructionMark im(this);
  2335   prefetch_prefix(src);
  2336   emit_byte(0x18);
  2337   emit_operand(rbx, src); // 3, src
  2340 void Assembler::prefetchw(Address src) {
  2341   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2342   InstructionMark im(this);
  2343   prefetch_prefix(src);
  2344   emit_byte(0x0D);
  2345   emit_operand(rcx, src); // 1, src
  2348 void Assembler::prefix(Prefix p) {
  2349   a_byte(p);
  2352 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2353   assert(isByte(mode), "invalid value");
  2354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2356   emit_byte(0x66);
  2357   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2358   emit_byte(0x0F);
  2359   emit_byte(0x70);
  2360   emit_byte(0xC0 | encode);
  2361   emit_byte(mode & 0xFF);
  2365 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2366   assert(isByte(mode), "invalid value");
  2367   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2369   InstructionMark im(this);
  2370   emit_byte(0x66);
  2371   prefix(src, dst);
  2372   emit_byte(0x0F);
  2373   emit_byte(0x70);
  2374   emit_operand(dst, src);
  2375   emit_byte(mode & 0xFF);
  2378 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2379   assert(isByte(mode), "invalid value");
  2380   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2382   emit_byte(0xF2);
  2383   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2384   emit_byte(0x0F);
  2385   emit_byte(0x70);
  2386   emit_byte(0xC0 | encode);
  2387   emit_byte(mode & 0xFF);
  2390 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2391   assert(isByte(mode), "invalid value");
  2392   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2394   InstructionMark im(this);
  2395   emit_byte(0xF2);
  2396   prefix(src, dst); // QQ new
  2397   emit_byte(0x0F);
  2398   emit_byte(0x70);
  2399   emit_operand(dst, src);
  2400   emit_byte(mode & 0xFF);
  2403 void Assembler::psrlq(XMMRegister dst, int shift) {
  2404   // HMM Table D-1 says sse2 or mmx
  2405   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2407   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2408   emit_byte(0x66);
  2409   emit_byte(0x0F);
  2410   emit_byte(0x73);
  2411   emit_byte(0xC0 | encode);
  2412   emit_byte(shift);
  2415 void Assembler::ptest(XMMRegister dst, Address src) {
  2416   assert(VM_Version::supports_sse4_1(), "");
  2418   InstructionMark im(this);
  2419   emit_byte(0x66);
  2420   prefix(src, dst);
  2421   emit_byte(0x0F);
  2422   emit_byte(0x38);
  2423   emit_byte(0x17);
  2424   emit_operand(dst, src);
  2427 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2428   assert(VM_Version::supports_sse4_1(), "");
  2430   emit_byte(0x66);
  2431   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2432   emit_byte(0x0F);
  2433   emit_byte(0x38);
  2434   emit_byte(0x17);
  2435   emit_byte(0xC0 | encode);
  2438 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2440   emit_byte(0x66);
  2441   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2442   emit_byte(0x0F);
  2443   emit_byte(0x60);
  2444   emit_byte(0xC0 | encode);
  2447 void Assembler::push(int32_t imm32) {
  2448   // in 64bits we push 64bits onto the stack but only
  2449   // take a 32bit immediate
  2450   emit_byte(0x68);
  2451   emit_long(imm32);
  2454 void Assembler::push(Register src) {
  2455   int encode = prefix_and_encode(src->encoding());
  2457   emit_byte(0x50 | encode);
  2460 void Assembler::pushf() {
  2461   emit_byte(0x9C);
  2464 #ifndef _LP64 // no 32bit push/pop on amd64
  2465 void Assembler::pushl(Address src) {
  2466   // Note this will push 64bit on 64bit
  2467   InstructionMark im(this);
  2468   prefix(src);
  2469   emit_byte(0xFF);
  2470   emit_operand(rsi, src);
  2472 #endif
  2474 void Assembler::pxor(XMMRegister dst, Address src) {
  2475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2476   InstructionMark im(this);
  2477   emit_byte(0x66);
  2478   prefix(src, dst);
  2479   emit_byte(0x0F);
  2480   emit_byte(0xEF);
  2481   emit_operand(dst, src);
  2484 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2485   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2486   InstructionMark im(this);
  2487   emit_byte(0x66);
  2488   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2489   emit_byte(0x0F);
  2490   emit_byte(0xEF);
  2491   emit_byte(0xC0 | encode);
  2494 void Assembler::rcll(Register dst, int imm8) {
  2495   assert(isShiftCount(imm8), "illegal shift count");
  2496   int encode = prefix_and_encode(dst->encoding());
  2497   if (imm8 == 1) {
  2498     emit_byte(0xD1);
  2499     emit_byte(0xD0 | encode);
  2500   } else {
  2501     emit_byte(0xC1);
  2502     emit_byte(0xD0 | encode);
  2503     emit_byte(imm8);
  2507 // copies data from [esi] to [edi] using rcx pointer sized words
  2508 // generic
  2509 void Assembler::rep_mov() {
  2510   emit_byte(0xF3);
  2511   // MOVSQ
  2512   LP64_ONLY(prefix(REX_W));
  2513   emit_byte(0xA5);
  2516 // sets rcx pointer sized words with rax, value at [edi]
  2517 // generic
  2518 void Assembler::rep_set() { // rep_set
  2519   emit_byte(0xF3);
  2520   // STOSQ
  2521   LP64_ONLY(prefix(REX_W));
  2522   emit_byte(0xAB);
  2525 // scans rcx pointer sized words at [edi] for occurance of rax,
  2526 // generic
  2527 void Assembler::repne_scan() { // repne_scan
  2528   emit_byte(0xF2);
  2529   // SCASQ
  2530   LP64_ONLY(prefix(REX_W));
  2531   emit_byte(0xAF);
  2534 #ifdef _LP64
  2535 // scans rcx 4 byte words at [edi] for occurance of rax,
  2536 // generic
  2537 void Assembler::repne_scanl() { // repne_scan
  2538   emit_byte(0xF2);
  2539   // SCASL
  2540   emit_byte(0xAF);
  2542 #endif
  2544 void Assembler::ret(int imm16) {
  2545   if (imm16 == 0) {
  2546     emit_byte(0xC3);
  2547   } else {
  2548     emit_byte(0xC2);
  2549     emit_word(imm16);
  2553 void Assembler::sahf() {
  2554 #ifdef _LP64
  2555   // Not supported in 64bit mode
  2556   ShouldNotReachHere();
  2557 #endif
  2558   emit_byte(0x9E);
  2561 void Assembler::sarl(Register dst, int imm8) {
  2562   int encode = prefix_and_encode(dst->encoding());
  2563   assert(isShiftCount(imm8), "illegal shift count");
  2564   if (imm8 == 1) {
  2565     emit_byte(0xD1);
  2566     emit_byte(0xF8 | encode);
  2567   } else {
  2568     emit_byte(0xC1);
  2569     emit_byte(0xF8 | encode);
  2570     emit_byte(imm8);
  2574 void Assembler::sarl(Register dst) {
  2575   int encode = prefix_and_encode(dst->encoding());
  2576   emit_byte(0xD3);
  2577   emit_byte(0xF8 | encode);
  2580 void Assembler::sbbl(Address dst, int32_t imm32) {
  2581   InstructionMark im(this);
  2582   prefix(dst);
  2583   emit_arith_operand(0x81, rbx, dst, imm32);
  2586 void Assembler::sbbl(Register dst, int32_t imm32) {
  2587   prefix(dst);
  2588   emit_arith(0x81, 0xD8, dst, imm32);
  2592 void Assembler::sbbl(Register dst, Address src) {
  2593   InstructionMark im(this);
  2594   prefix(src, dst);
  2595   emit_byte(0x1B);
  2596   emit_operand(dst, src);
  2599 void Assembler::sbbl(Register dst, Register src) {
  2600   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2601   emit_arith(0x1B, 0xC0, dst, src);
  2604 void Assembler::setb(Condition cc, Register dst) {
  2605   assert(0 <= cc && cc < 16, "illegal cc");
  2606   int encode = prefix_and_encode(dst->encoding(), true);
  2607   emit_byte(0x0F);
  2608   emit_byte(0x90 | cc);
  2609   emit_byte(0xC0 | encode);
  2612 void Assembler::shll(Register dst, int imm8) {
  2613   assert(isShiftCount(imm8), "illegal shift count");
  2614   int encode = prefix_and_encode(dst->encoding());
  2615   if (imm8 == 1 ) {
  2616     emit_byte(0xD1);
  2617     emit_byte(0xE0 | encode);
  2618   } else {
  2619     emit_byte(0xC1);
  2620     emit_byte(0xE0 | encode);
  2621     emit_byte(imm8);
  2625 void Assembler::shll(Register dst) {
  2626   int encode = prefix_and_encode(dst->encoding());
  2627   emit_byte(0xD3);
  2628   emit_byte(0xE0 | encode);
  2631 void Assembler::shrl(Register dst, int imm8) {
  2632   assert(isShiftCount(imm8), "illegal shift count");
  2633   int encode = prefix_and_encode(dst->encoding());
  2634   emit_byte(0xC1);
  2635   emit_byte(0xE8 | encode);
  2636   emit_byte(imm8);
  2639 void Assembler::shrl(Register dst) {
  2640   int encode = prefix_and_encode(dst->encoding());
  2641   emit_byte(0xD3);
  2642   emit_byte(0xE8 | encode);
  2645 // copies a single word from [esi] to [edi]
  2646 void Assembler::smovl() {
  2647   emit_byte(0xA5);
  2650 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2651   // HMM Table D-1 says sse2
  2652   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2654   emit_byte(0xF2);
  2655   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2656   emit_byte(0x0F);
  2657   emit_byte(0x51);
  2658   emit_byte(0xC0 | encode);
  2661 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2663   InstructionMark im(this);
  2664   emit_byte(0xF2);
  2665   prefix(src, dst);
  2666   emit_byte(0x0F);
  2667   emit_byte(0x51);
  2668   emit_operand(dst, src);
  2671 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2672   // HMM Table D-1 says sse2
  2673   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2675   emit_byte(0xF3);
  2676   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2677   emit_byte(0x0F);
  2678   emit_byte(0x51);
  2679   emit_byte(0xC0 | encode);
  2682 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2684   InstructionMark im(this);
  2685   emit_byte(0xF3);
  2686   prefix(src, dst);
  2687   emit_byte(0x0F);
  2688   emit_byte(0x51);
  2689   emit_operand(dst, src);
  2692 void Assembler::stmxcsr( Address dst) {
  2693   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2694   InstructionMark im(this);
  2695   prefix(dst);
  2696   emit_byte(0x0F);
  2697   emit_byte(0xAE);
  2698   emit_operand(as_Register(3), dst);
  2701 void Assembler::subl(Address dst, int32_t imm32) {
  2702   InstructionMark im(this);
  2703   prefix(dst);
  2704   emit_arith_operand(0x81, rbp, dst, imm32);
  2707 void Assembler::subl(Address dst, Register src) {
  2708   InstructionMark im(this);
  2709   prefix(dst, src);
  2710   emit_byte(0x29);
  2711   emit_operand(src, dst);
  2714 void Assembler::subl(Register dst, int32_t imm32) {
  2715   prefix(dst);
  2716   emit_arith(0x81, 0xE8, dst, imm32);
  2719 void Assembler::subl(Register dst, Address src) {
  2720   InstructionMark im(this);
  2721   prefix(src, dst);
  2722   emit_byte(0x2B);
  2723   emit_operand(dst, src);
  2726 void Assembler::subl(Register dst, Register src) {
  2727   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2728   emit_arith(0x2B, 0xC0, dst, src);
  2731 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2733   emit_byte(0xF2);
  2734   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2735   emit_byte(0x0F);
  2736   emit_byte(0x5C);
  2737   emit_byte(0xC0 | encode);
  2740 void Assembler::subsd(XMMRegister dst, Address src) {
  2741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2742   InstructionMark im(this);
  2743   emit_byte(0xF2);
  2744   prefix(src, dst);
  2745   emit_byte(0x0F);
  2746   emit_byte(0x5C);
  2747   emit_operand(dst, src);
  2750 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2751   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2752   emit_byte(0xF3);
  2753   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2754   emit_byte(0x0F);
  2755   emit_byte(0x5C);
  2756   emit_byte(0xC0 | encode);
  2759 void Assembler::subss(XMMRegister dst, Address src) {
  2760   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2761   InstructionMark im(this);
  2762   emit_byte(0xF3);
  2763   prefix(src, dst);
  2764   emit_byte(0x0F);
  2765   emit_byte(0x5C);
  2766   emit_operand(dst, src);
  2769 void Assembler::testb(Register dst, int imm8) {
  2770   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2771   (void) prefix_and_encode(dst->encoding(), true);
  2772   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2775 void Assembler::testl(Register dst, int32_t imm32) {
  2776   // not using emit_arith because test
  2777   // doesn't support sign-extension of
  2778   // 8bit operands
  2779   int encode = dst->encoding();
  2780   if (encode == 0) {
  2781     emit_byte(0xA9);
  2782   } else {
  2783     encode = prefix_and_encode(encode);
  2784     emit_byte(0xF7);
  2785     emit_byte(0xC0 | encode);
  2787   emit_long(imm32);
  2790 void Assembler::testl(Register dst, Register src) {
  2791   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2792   emit_arith(0x85, 0xC0, dst, src);
  2795 void Assembler::testl(Register dst, Address  src) {
  2796   InstructionMark im(this);
  2797   prefix(src, dst);
  2798   emit_byte(0x85);
  2799   emit_operand(dst, src);
  2802 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2804   emit_byte(0x66);
  2805   ucomiss(dst, src);
  2808 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2809   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2810   emit_byte(0x66);
  2811   ucomiss(dst, src);
  2814 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2815   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2817   InstructionMark im(this);
  2818   prefix(src, dst);
  2819   emit_byte(0x0F);
  2820   emit_byte(0x2E);
  2821   emit_operand(dst, src);
  2824 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2825   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2826   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2827   emit_byte(0x0F);
  2828   emit_byte(0x2E);
  2829   emit_byte(0xC0 | encode);
  2833 void Assembler::xaddl(Address dst, Register src) {
  2834   InstructionMark im(this);
  2835   prefix(dst, src);
  2836   emit_byte(0x0F);
  2837   emit_byte(0xC1);
  2838   emit_operand(src, dst);
  2841 void Assembler::xchgl(Register dst, Address src) { // xchg
  2842   InstructionMark im(this);
  2843   prefix(src, dst);
  2844   emit_byte(0x87);
  2845   emit_operand(dst, src);
  2848 void Assembler::xchgl(Register dst, Register src) {
  2849   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2850   emit_byte(0x87);
  2851   emit_byte(0xc0 | encode);
  2854 void Assembler::xorl(Register dst, int32_t imm32) {
  2855   prefix(dst);
  2856   emit_arith(0x81, 0xF0, dst, imm32);
  2859 void Assembler::xorl(Register dst, Address src) {
  2860   InstructionMark im(this);
  2861   prefix(src, dst);
  2862   emit_byte(0x33);
  2863   emit_operand(dst, src);
  2866 void Assembler::xorl(Register dst, Register src) {
  2867   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2868   emit_arith(0x33, 0xC0, dst, src);
  2871 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2873   emit_byte(0x66);
  2874   xorps(dst, src);
  2877 void Assembler::xorpd(XMMRegister dst, Address src) {
  2878   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2879   InstructionMark im(this);
  2880   emit_byte(0x66);
  2881   prefix(src, dst);
  2882   emit_byte(0x0F);
  2883   emit_byte(0x57);
  2884   emit_operand(dst, src);
  2888 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2889   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2890   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2891   emit_byte(0x0F);
  2892   emit_byte(0x57);
  2893   emit_byte(0xC0 | encode);
  2896 void Assembler::xorps(XMMRegister dst, Address src) {
  2897   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2898   InstructionMark im(this);
  2899   prefix(src, dst);
  2900   emit_byte(0x0F);
  2901   emit_byte(0x57);
  2902   emit_operand(dst, src);
  2905 #ifndef _LP64
  2906 // 32bit only pieces of the assembler
  2908 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2909   // NO PREFIX AS NEVER 64BIT
  2910   InstructionMark im(this);
  2911   emit_byte(0x81);
  2912   emit_byte(0xF8 | src1->encoding());
  2913   emit_data(imm32, rspec, 0);
  2916 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2917   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2918   InstructionMark im(this);
  2919   emit_byte(0x81);
  2920   emit_operand(rdi, src1);
  2921   emit_data(imm32, rspec, 0);
  2924 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2925 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2926 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2927 void Assembler::cmpxchg8(Address adr) {
  2928   InstructionMark im(this);
  2929   emit_byte(0x0F);
  2930   emit_byte(0xc7);
  2931   emit_operand(rcx, adr);
  2934 void Assembler::decl(Register dst) {
  2935   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2936  emit_byte(0x48 | dst->encoding());
  2939 #endif // _LP64
  2941 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2943 void Assembler::fabs() {
  2944   emit_byte(0xD9);
  2945   emit_byte(0xE1);
  2948 void Assembler::fadd(int i) {
  2949   emit_farith(0xD8, 0xC0, i);
  2952 void Assembler::fadd_d(Address src) {
  2953   InstructionMark im(this);
  2954   emit_byte(0xDC);
  2955   emit_operand32(rax, src);
  2958 void Assembler::fadd_s(Address src) {
  2959   InstructionMark im(this);
  2960   emit_byte(0xD8);
  2961   emit_operand32(rax, src);
  2964 void Assembler::fadda(int i) {
  2965   emit_farith(0xDC, 0xC0, i);
  2968 void Assembler::faddp(int i) {
  2969   emit_farith(0xDE, 0xC0, i);
  2972 void Assembler::fchs() {
  2973   emit_byte(0xD9);
  2974   emit_byte(0xE0);
  2977 void Assembler::fcom(int i) {
  2978   emit_farith(0xD8, 0xD0, i);
  2981 void Assembler::fcomp(int i) {
  2982   emit_farith(0xD8, 0xD8, i);
  2985 void Assembler::fcomp_d(Address src) {
  2986   InstructionMark im(this);
  2987   emit_byte(0xDC);
  2988   emit_operand32(rbx, src);
  2991 void Assembler::fcomp_s(Address src) {
  2992   InstructionMark im(this);
  2993   emit_byte(0xD8);
  2994   emit_operand32(rbx, src);
  2997 void Assembler::fcompp() {
  2998   emit_byte(0xDE);
  2999   emit_byte(0xD9);
  3002 void Assembler::fcos() {
  3003   emit_byte(0xD9);
  3004   emit_byte(0xFF);
  3007 void Assembler::fdecstp() {
  3008   emit_byte(0xD9);
  3009   emit_byte(0xF6);
  3012 void Assembler::fdiv(int i) {
  3013   emit_farith(0xD8, 0xF0, i);
  3016 void Assembler::fdiv_d(Address src) {
  3017   InstructionMark im(this);
  3018   emit_byte(0xDC);
  3019   emit_operand32(rsi, src);
  3022 void Assembler::fdiv_s(Address src) {
  3023   InstructionMark im(this);
  3024   emit_byte(0xD8);
  3025   emit_operand32(rsi, src);
  3028 void Assembler::fdiva(int i) {
  3029   emit_farith(0xDC, 0xF8, i);
  3032 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3033 //       is erroneous for some of the floating-point instructions below.
  3035 void Assembler::fdivp(int i) {
  3036   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3039 void Assembler::fdivr(int i) {
  3040   emit_farith(0xD8, 0xF8, i);
  3043 void Assembler::fdivr_d(Address src) {
  3044   InstructionMark im(this);
  3045   emit_byte(0xDC);
  3046   emit_operand32(rdi, src);
  3049 void Assembler::fdivr_s(Address src) {
  3050   InstructionMark im(this);
  3051   emit_byte(0xD8);
  3052   emit_operand32(rdi, src);
  3055 void Assembler::fdivra(int i) {
  3056   emit_farith(0xDC, 0xF0, i);
  3059 void Assembler::fdivrp(int i) {
  3060   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3063 void Assembler::ffree(int i) {
  3064   emit_farith(0xDD, 0xC0, i);
  3067 void Assembler::fild_d(Address adr) {
  3068   InstructionMark im(this);
  3069   emit_byte(0xDF);
  3070   emit_operand32(rbp, adr);
  3073 void Assembler::fild_s(Address adr) {
  3074   InstructionMark im(this);
  3075   emit_byte(0xDB);
  3076   emit_operand32(rax, adr);
  3079 void Assembler::fincstp() {
  3080   emit_byte(0xD9);
  3081   emit_byte(0xF7);
  3084 void Assembler::finit() {
  3085   emit_byte(0x9B);
  3086   emit_byte(0xDB);
  3087   emit_byte(0xE3);
  3090 void Assembler::fist_s(Address adr) {
  3091   InstructionMark im(this);
  3092   emit_byte(0xDB);
  3093   emit_operand32(rdx, adr);
  3096 void Assembler::fistp_d(Address adr) {
  3097   InstructionMark im(this);
  3098   emit_byte(0xDF);
  3099   emit_operand32(rdi, adr);
  3102 void Assembler::fistp_s(Address adr) {
  3103   InstructionMark im(this);
  3104   emit_byte(0xDB);
  3105   emit_operand32(rbx, adr);
  3108 void Assembler::fld1() {
  3109   emit_byte(0xD9);
  3110   emit_byte(0xE8);
  3113 void Assembler::fld_d(Address adr) {
  3114   InstructionMark im(this);
  3115   emit_byte(0xDD);
  3116   emit_operand32(rax, adr);
  3119 void Assembler::fld_s(Address adr) {
  3120   InstructionMark im(this);
  3121   emit_byte(0xD9);
  3122   emit_operand32(rax, adr);
  3126 void Assembler::fld_s(int index) {
  3127   emit_farith(0xD9, 0xC0, index);
  3130 void Assembler::fld_x(Address adr) {
  3131   InstructionMark im(this);
  3132   emit_byte(0xDB);
  3133   emit_operand32(rbp, adr);
  3136 void Assembler::fldcw(Address src) {
  3137   InstructionMark im(this);
  3138   emit_byte(0xd9);
  3139   emit_operand32(rbp, src);
  3142 void Assembler::fldenv(Address src) {
  3143   InstructionMark im(this);
  3144   emit_byte(0xD9);
  3145   emit_operand32(rsp, src);
  3148 void Assembler::fldlg2() {
  3149   emit_byte(0xD9);
  3150   emit_byte(0xEC);
  3153 void Assembler::fldln2() {
  3154   emit_byte(0xD9);
  3155   emit_byte(0xED);
  3158 void Assembler::fldz() {
  3159   emit_byte(0xD9);
  3160   emit_byte(0xEE);
  3163 void Assembler::flog() {
  3164   fldln2();
  3165   fxch();
  3166   fyl2x();
  3169 void Assembler::flog10() {
  3170   fldlg2();
  3171   fxch();
  3172   fyl2x();
  3175 void Assembler::fmul(int i) {
  3176   emit_farith(0xD8, 0xC8, i);
  3179 void Assembler::fmul_d(Address src) {
  3180   InstructionMark im(this);
  3181   emit_byte(0xDC);
  3182   emit_operand32(rcx, src);
  3185 void Assembler::fmul_s(Address src) {
  3186   InstructionMark im(this);
  3187   emit_byte(0xD8);
  3188   emit_operand32(rcx, src);
  3191 void Assembler::fmula(int i) {
  3192   emit_farith(0xDC, 0xC8, i);
  3195 void Assembler::fmulp(int i) {
  3196   emit_farith(0xDE, 0xC8, i);
  3199 void Assembler::fnsave(Address dst) {
  3200   InstructionMark im(this);
  3201   emit_byte(0xDD);
  3202   emit_operand32(rsi, dst);
  3205 void Assembler::fnstcw(Address src) {
  3206   InstructionMark im(this);
  3207   emit_byte(0x9B);
  3208   emit_byte(0xD9);
  3209   emit_operand32(rdi, src);
  3212 void Assembler::fnstsw_ax() {
  3213   emit_byte(0xdF);
  3214   emit_byte(0xE0);
  3217 void Assembler::fprem() {
  3218   emit_byte(0xD9);
  3219   emit_byte(0xF8);
  3222 void Assembler::fprem1() {
  3223   emit_byte(0xD9);
  3224   emit_byte(0xF5);
  3227 void Assembler::frstor(Address src) {
  3228   InstructionMark im(this);
  3229   emit_byte(0xDD);
  3230   emit_operand32(rsp, src);
  3233 void Assembler::fsin() {
  3234   emit_byte(0xD9);
  3235   emit_byte(0xFE);
  3238 void Assembler::fsqrt() {
  3239   emit_byte(0xD9);
  3240   emit_byte(0xFA);
  3243 void Assembler::fst_d(Address adr) {
  3244   InstructionMark im(this);
  3245   emit_byte(0xDD);
  3246   emit_operand32(rdx, adr);
  3249 void Assembler::fst_s(Address adr) {
  3250   InstructionMark im(this);
  3251   emit_byte(0xD9);
  3252   emit_operand32(rdx, adr);
  3255 void Assembler::fstp_d(Address adr) {
  3256   InstructionMark im(this);
  3257   emit_byte(0xDD);
  3258   emit_operand32(rbx, adr);
  3261 void Assembler::fstp_d(int index) {
  3262   emit_farith(0xDD, 0xD8, index);
  3265 void Assembler::fstp_s(Address adr) {
  3266   InstructionMark im(this);
  3267   emit_byte(0xD9);
  3268   emit_operand32(rbx, adr);
  3271 void Assembler::fstp_x(Address adr) {
  3272   InstructionMark im(this);
  3273   emit_byte(0xDB);
  3274   emit_operand32(rdi, adr);
  3277 void Assembler::fsub(int i) {
  3278   emit_farith(0xD8, 0xE0, i);
  3281 void Assembler::fsub_d(Address src) {
  3282   InstructionMark im(this);
  3283   emit_byte(0xDC);
  3284   emit_operand32(rsp, src);
  3287 void Assembler::fsub_s(Address src) {
  3288   InstructionMark im(this);
  3289   emit_byte(0xD8);
  3290   emit_operand32(rsp, src);
  3293 void Assembler::fsuba(int i) {
  3294   emit_farith(0xDC, 0xE8, i);
  3297 void Assembler::fsubp(int i) {
  3298   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3301 void Assembler::fsubr(int i) {
  3302   emit_farith(0xD8, 0xE8, i);
  3305 void Assembler::fsubr_d(Address src) {
  3306   InstructionMark im(this);
  3307   emit_byte(0xDC);
  3308   emit_operand32(rbp, src);
  3311 void Assembler::fsubr_s(Address src) {
  3312   InstructionMark im(this);
  3313   emit_byte(0xD8);
  3314   emit_operand32(rbp, src);
  3317 void Assembler::fsubra(int i) {
  3318   emit_farith(0xDC, 0xE0, i);
  3321 void Assembler::fsubrp(int i) {
  3322   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3325 void Assembler::ftan() {
  3326   emit_byte(0xD9);
  3327   emit_byte(0xF2);
  3328   emit_byte(0xDD);
  3329   emit_byte(0xD8);
  3332 void Assembler::ftst() {
  3333   emit_byte(0xD9);
  3334   emit_byte(0xE4);
  3337 void Assembler::fucomi(int i) {
  3338   // make sure the instruction is supported (introduced for P6, together with cmov)
  3339   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3340   emit_farith(0xDB, 0xE8, i);
  3343 void Assembler::fucomip(int i) {
  3344   // make sure the instruction is supported (introduced for P6, together with cmov)
  3345   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3346   emit_farith(0xDF, 0xE8, i);
  3349 void Assembler::fwait() {
  3350   emit_byte(0x9B);
  3353 void Assembler::fxch(int i) {
  3354   emit_farith(0xD9, 0xC8, i);
  3357 void Assembler::fyl2x() {
  3358   emit_byte(0xD9);
  3359   emit_byte(0xF1);
  3363 #ifndef _LP64
  3365 void Assembler::incl(Register dst) {
  3366   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3367  emit_byte(0x40 | dst->encoding());
  3370 void Assembler::lea(Register dst, Address src) {
  3371   leal(dst, src);
  3374 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3375   InstructionMark im(this);
  3376   emit_byte(0xC7);
  3377   emit_operand(rax, dst);
  3378   emit_data((int)imm32, rspec, 0);
  3381 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3382   InstructionMark im(this);
  3383   int encode = prefix_and_encode(dst->encoding());
  3384   emit_byte(0xB8 | encode);
  3385   emit_data((int)imm32, rspec, 0);
  3388 void Assembler::popa() { // 32bit
  3389   emit_byte(0x61);
  3392 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3393   InstructionMark im(this);
  3394   emit_byte(0x68);
  3395   emit_data(imm32, rspec, 0);
  3398 void Assembler::pusha() { // 32bit
  3399   emit_byte(0x60);
  3402 void Assembler::set_byte_if_not_zero(Register dst) {
  3403   emit_byte(0x0F);
  3404   emit_byte(0x95);
  3405   emit_byte(0xE0 | dst->encoding());
  3408 void Assembler::shldl(Register dst, Register src) {
  3409   emit_byte(0x0F);
  3410   emit_byte(0xA5);
  3411   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3414 void Assembler::shrdl(Register dst, Register src) {
  3415   emit_byte(0x0F);
  3416   emit_byte(0xAD);
  3417   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3420 #else // LP64
  3422 void Assembler::set_byte_if_not_zero(Register dst) {
  3423   int enc = prefix_and_encode(dst->encoding(), true);
  3424   emit_byte(0x0F);
  3425   emit_byte(0x95);
  3426   emit_byte(0xE0 | enc);
  3429 // 64bit only pieces of the assembler
  3430 // This should only be used by 64bit instructions that can use rip-relative
  3431 // it cannot be used by instructions that want an immediate value.
  3433 bool Assembler::reachable(AddressLiteral adr) {
  3434   int64_t disp;
  3435   // None will force a 64bit literal to the code stream. Likely a placeholder
  3436   // for something that will be patched later and we need to certain it will
  3437   // always be reachable.
  3438   if (adr.reloc() == relocInfo::none) {
  3439     return false;
  3441   if (adr.reloc() == relocInfo::internal_word_type) {
  3442     // This should be rip relative and easily reachable.
  3443     return true;
  3445   if (adr.reloc() == relocInfo::virtual_call_type ||
  3446       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3447       adr.reloc() == relocInfo::static_call_type ||
  3448       adr.reloc() == relocInfo::static_stub_type ) {
  3449     // This should be rip relative within the code cache and easily
  3450     // reachable until we get huge code caches. (At which point
  3451     // ic code is going to have issues).
  3452     return true;
  3454   if (adr.reloc() != relocInfo::external_word_type &&
  3455       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3456       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3457       adr.reloc() != relocInfo::runtime_call_type ) {
  3458     return false;
  3461   // Stress the correction code
  3462   if (ForceUnreachable) {
  3463     // Must be runtimecall reloc, see if it is in the codecache
  3464     // Flipping stuff in the codecache to be unreachable causes issues
  3465     // with things like inline caches where the additional instructions
  3466     // are not handled.
  3467     if (CodeCache::find_blob(adr._target) == NULL) {
  3468       return false;
  3471   // For external_word_type/runtime_call_type if it is reachable from where we
  3472   // are now (possibly a temp buffer) and where we might end up
  3473   // anywhere in the codeCache then we are always reachable.
  3474   // This would have to change if we ever save/restore shared code
  3475   // to be more pessimistic.
  3477   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3478   if (!is_simm32(disp)) return false;
  3479   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3480   if (!is_simm32(disp)) return false;
  3482   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3484   // Because rip relative is a disp + address_of_next_instruction and we
  3485   // don't know the value of address_of_next_instruction we apply a fudge factor
  3486   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3487   // We don't have to fudge the checks above here because they are already worst case.
  3489   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3490   // + 4 because better safe than sorry.
  3491   const int fudge = 12 + 4;
  3492   if (disp < 0) {
  3493     disp -= fudge;
  3494   } else {
  3495     disp += fudge;
  3497   return is_simm32(disp);
  3500 void Assembler::emit_data64(jlong data,
  3501                             relocInfo::relocType rtype,
  3502                             int format) {
  3503   if (rtype == relocInfo::none) {
  3504     emit_long64(data);
  3505   } else {
  3506     emit_data64(data, Relocation::spec_simple(rtype), format);
  3510 void Assembler::emit_data64(jlong data,
  3511                             RelocationHolder const& rspec,
  3512                             int format) {
  3513   assert(imm_operand == 0, "default format must be immediate in this file");
  3514   assert(imm_operand == format, "must be immediate");
  3515   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3516   // Do not use AbstractAssembler::relocate, which is not intended for
  3517   // embedded words.  Instead, relocate to the enclosing instruction.
  3518   code_section()->relocate(inst_mark(), rspec, format);
  3519 #ifdef ASSERT
  3520   check_relocation(rspec, format);
  3521 #endif
  3522   emit_long64(data);
  3525 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3526   if (reg_enc >= 8) {
  3527     prefix(REX_B);
  3528     reg_enc -= 8;
  3529   } else if (byteinst && reg_enc >= 4) {
  3530     prefix(REX);
  3532   return reg_enc;
  3535 int Assembler::prefixq_and_encode(int reg_enc) {
  3536   if (reg_enc < 8) {
  3537     prefix(REX_W);
  3538   } else {
  3539     prefix(REX_WB);
  3540     reg_enc -= 8;
  3542   return reg_enc;
  3545 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3546   if (dst_enc < 8) {
  3547     if (src_enc >= 8) {
  3548       prefix(REX_B);
  3549       src_enc -= 8;
  3550     } else if (byteinst && src_enc >= 4) {
  3551       prefix(REX);
  3553   } else {
  3554     if (src_enc < 8) {
  3555       prefix(REX_R);
  3556     } else {
  3557       prefix(REX_RB);
  3558       src_enc -= 8;
  3560     dst_enc -= 8;
  3562   return dst_enc << 3 | src_enc;
  3565 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3566   if (dst_enc < 8) {
  3567     if (src_enc < 8) {
  3568       prefix(REX_W);
  3569     } else {
  3570       prefix(REX_WB);
  3571       src_enc -= 8;
  3573   } else {
  3574     if (src_enc < 8) {
  3575       prefix(REX_WR);
  3576     } else {
  3577       prefix(REX_WRB);
  3578       src_enc -= 8;
  3580     dst_enc -= 8;
  3582   return dst_enc << 3 | src_enc;
  3585 void Assembler::prefix(Register reg) {
  3586   if (reg->encoding() >= 8) {
  3587     prefix(REX_B);
  3591 void Assembler::prefix(Address adr) {
  3592   if (adr.base_needs_rex()) {
  3593     if (adr.index_needs_rex()) {
  3594       prefix(REX_XB);
  3595     } else {
  3596       prefix(REX_B);
  3598   } else {
  3599     if (adr.index_needs_rex()) {
  3600       prefix(REX_X);
  3605 void Assembler::prefixq(Address adr) {
  3606   if (adr.base_needs_rex()) {
  3607     if (adr.index_needs_rex()) {
  3608       prefix(REX_WXB);
  3609     } else {
  3610       prefix(REX_WB);
  3612   } else {
  3613     if (adr.index_needs_rex()) {
  3614       prefix(REX_WX);
  3615     } else {
  3616       prefix(REX_W);
  3622 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3623   if (reg->encoding() < 8) {
  3624     if (adr.base_needs_rex()) {
  3625       if (adr.index_needs_rex()) {
  3626         prefix(REX_XB);
  3627       } else {
  3628         prefix(REX_B);
  3630     } else {
  3631       if (adr.index_needs_rex()) {
  3632         prefix(REX_X);
  3633       } else if (reg->encoding() >= 4 ) {
  3634         prefix(REX);
  3637   } else {
  3638     if (adr.base_needs_rex()) {
  3639       if (adr.index_needs_rex()) {
  3640         prefix(REX_RXB);
  3641       } else {
  3642         prefix(REX_RB);
  3644     } else {
  3645       if (adr.index_needs_rex()) {
  3646         prefix(REX_RX);
  3647       } else {
  3648         prefix(REX_R);
  3654 void Assembler::prefixq(Address adr, Register src) {
  3655   if (src->encoding() < 8) {
  3656     if (adr.base_needs_rex()) {
  3657       if (adr.index_needs_rex()) {
  3658         prefix(REX_WXB);
  3659       } else {
  3660         prefix(REX_WB);
  3662     } else {
  3663       if (adr.index_needs_rex()) {
  3664         prefix(REX_WX);
  3665       } else {
  3666         prefix(REX_W);
  3669   } else {
  3670     if (adr.base_needs_rex()) {
  3671       if (adr.index_needs_rex()) {
  3672         prefix(REX_WRXB);
  3673       } else {
  3674         prefix(REX_WRB);
  3676     } else {
  3677       if (adr.index_needs_rex()) {
  3678         prefix(REX_WRX);
  3679       } else {
  3680         prefix(REX_WR);
  3686 void Assembler::prefix(Address adr, XMMRegister reg) {
  3687   if (reg->encoding() < 8) {
  3688     if (adr.base_needs_rex()) {
  3689       if (adr.index_needs_rex()) {
  3690         prefix(REX_XB);
  3691       } else {
  3692         prefix(REX_B);
  3694     } else {
  3695       if (adr.index_needs_rex()) {
  3696         prefix(REX_X);
  3699   } else {
  3700     if (adr.base_needs_rex()) {
  3701       if (adr.index_needs_rex()) {
  3702         prefix(REX_RXB);
  3703       } else {
  3704         prefix(REX_RB);
  3706     } else {
  3707       if (adr.index_needs_rex()) {
  3708         prefix(REX_RX);
  3709       } else {
  3710         prefix(REX_R);
  3716 void Assembler::adcq(Register dst, int32_t imm32) {
  3717   (void) prefixq_and_encode(dst->encoding());
  3718   emit_arith(0x81, 0xD0, dst, imm32);
  3721 void Assembler::adcq(Register dst, Address src) {
  3722   InstructionMark im(this);
  3723   prefixq(src, dst);
  3724   emit_byte(0x13);
  3725   emit_operand(dst, src);
  3728 void Assembler::adcq(Register dst, Register src) {
  3729   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3730   emit_arith(0x13, 0xC0, dst, src);
  3733 void Assembler::addq(Address dst, int32_t imm32) {
  3734   InstructionMark im(this);
  3735   prefixq(dst);
  3736   emit_arith_operand(0x81, rax, dst,imm32);
  3739 void Assembler::addq(Address dst, Register src) {
  3740   InstructionMark im(this);
  3741   prefixq(dst, src);
  3742   emit_byte(0x01);
  3743   emit_operand(src, dst);
  3746 void Assembler::addq(Register dst, int32_t imm32) {
  3747   (void) prefixq_and_encode(dst->encoding());
  3748   emit_arith(0x81, 0xC0, dst, imm32);
  3751 void Assembler::addq(Register dst, Address src) {
  3752   InstructionMark im(this);
  3753   prefixq(src, dst);
  3754   emit_byte(0x03);
  3755   emit_operand(dst, src);
  3758 void Assembler::addq(Register dst, Register src) {
  3759   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3760   emit_arith(0x03, 0xC0, dst, src);
  3763 void Assembler::andq(Register dst, int32_t imm32) {
  3764   (void) prefixq_and_encode(dst->encoding());
  3765   emit_arith(0x81, 0xE0, dst, imm32);
  3768 void Assembler::andq(Register dst, Address src) {
  3769   InstructionMark im(this);
  3770   prefixq(src, dst);
  3771   emit_byte(0x23);
  3772   emit_operand(dst, src);
  3775 void Assembler::andq(Register dst, Register src) {
  3776   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3777   emit_arith(0x23, 0xC0, dst, src);
  3780 void Assembler::bsfq(Register dst, Register src) {
  3781   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3782   emit_byte(0x0F);
  3783   emit_byte(0xBC);
  3784   emit_byte(0xC0 | encode);
  3787 void Assembler::bsrq(Register dst, Register src) {
  3788   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  3789   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3790   emit_byte(0x0F);
  3791   emit_byte(0xBD);
  3792   emit_byte(0xC0 | encode);
  3795 void Assembler::bswapq(Register reg) {
  3796   int encode = prefixq_and_encode(reg->encoding());
  3797   emit_byte(0x0F);
  3798   emit_byte(0xC8 | encode);
  3801 void Assembler::cdqq() {
  3802   prefix(REX_W);
  3803   emit_byte(0x99);
  3806 void Assembler::clflush(Address adr) {
  3807   prefix(adr);
  3808   emit_byte(0x0F);
  3809   emit_byte(0xAE);
  3810   emit_operand(rdi, adr);
  3813 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3814   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3815   emit_byte(0x0F);
  3816   emit_byte(0x40 | cc);
  3817   emit_byte(0xC0 | encode);
  3820 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3821   InstructionMark im(this);
  3822   prefixq(src, dst);
  3823   emit_byte(0x0F);
  3824   emit_byte(0x40 | cc);
  3825   emit_operand(dst, src);
  3828 void Assembler::cmpq(Address dst, int32_t imm32) {
  3829   InstructionMark im(this);
  3830   prefixq(dst);
  3831   emit_byte(0x81);
  3832   emit_operand(rdi, dst, 4);
  3833   emit_long(imm32);
  3836 void Assembler::cmpq(Register dst, int32_t imm32) {
  3837   (void) prefixq_and_encode(dst->encoding());
  3838   emit_arith(0x81, 0xF8, dst, imm32);
  3841 void Assembler::cmpq(Address dst, Register src) {
  3842   InstructionMark im(this);
  3843   prefixq(dst, src);
  3844   emit_byte(0x3B);
  3845   emit_operand(src, dst);
  3848 void Assembler::cmpq(Register dst, Register src) {
  3849   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3850   emit_arith(0x3B, 0xC0, dst, src);
  3853 void Assembler::cmpq(Register dst, Address  src) {
  3854   InstructionMark im(this);
  3855   prefixq(src, dst);
  3856   emit_byte(0x3B);
  3857   emit_operand(dst, src);
  3860 void Assembler::cmpxchgq(Register reg, Address adr) {
  3861   InstructionMark im(this);
  3862   prefixq(adr, reg);
  3863   emit_byte(0x0F);
  3864   emit_byte(0xB1);
  3865   emit_operand(reg, adr);
  3868 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3870   emit_byte(0xF2);
  3871   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3872   emit_byte(0x0F);
  3873   emit_byte(0x2A);
  3874   emit_byte(0xC0 | encode);
  3877 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3878   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3879   emit_byte(0xF3);
  3880   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3881   emit_byte(0x0F);
  3882   emit_byte(0x2A);
  3883   emit_byte(0xC0 | encode);
  3886 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3888   emit_byte(0xF2);
  3889   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3890   emit_byte(0x0F);
  3891   emit_byte(0x2C);
  3892   emit_byte(0xC0 | encode);
  3895 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3896   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3897   emit_byte(0xF3);
  3898   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3899   emit_byte(0x0F);
  3900   emit_byte(0x2C);
  3901   emit_byte(0xC0 | encode);
  3904 void Assembler::decl(Register dst) {
  3905   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3906   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3907   int encode = prefix_and_encode(dst->encoding());
  3908   emit_byte(0xFF);
  3909   emit_byte(0xC8 | encode);
  3912 void Assembler::decq(Register dst) {
  3913   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3914   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3915   int encode = prefixq_and_encode(dst->encoding());
  3916   emit_byte(0xFF);
  3917   emit_byte(0xC8 | encode);
  3920 void Assembler::decq(Address dst) {
  3921   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3922   InstructionMark im(this);
  3923   prefixq(dst);
  3924   emit_byte(0xFF);
  3925   emit_operand(rcx, dst);
  3928 void Assembler::fxrstor(Address src) {
  3929   prefixq(src);
  3930   emit_byte(0x0F);
  3931   emit_byte(0xAE);
  3932   emit_operand(as_Register(1), src);
  3935 void Assembler::fxsave(Address dst) {
  3936   prefixq(dst);
  3937   emit_byte(0x0F);
  3938   emit_byte(0xAE);
  3939   emit_operand(as_Register(0), dst);
  3942 void Assembler::idivq(Register src) {
  3943   int encode = prefixq_and_encode(src->encoding());
  3944   emit_byte(0xF7);
  3945   emit_byte(0xF8 | encode);
  3948 void Assembler::imulq(Register dst, Register src) {
  3949   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3950   emit_byte(0x0F);
  3951   emit_byte(0xAF);
  3952   emit_byte(0xC0 | encode);
  3955 void Assembler::imulq(Register dst, Register src, int value) {
  3956   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3957   if (is8bit(value)) {
  3958     emit_byte(0x6B);
  3959     emit_byte(0xC0 | encode);
  3960     emit_byte(value & 0xFF);
  3961   } else {
  3962     emit_byte(0x69);
  3963     emit_byte(0xC0 | encode);
  3964     emit_long(value);
  3968 void Assembler::incl(Register dst) {
  3969   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3970   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3971   int encode = prefix_and_encode(dst->encoding());
  3972   emit_byte(0xFF);
  3973   emit_byte(0xC0 | encode);
  3976 void Assembler::incq(Register dst) {
  3977   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3978   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3979   int encode = prefixq_and_encode(dst->encoding());
  3980   emit_byte(0xFF);
  3981   emit_byte(0xC0 | encode);
  3984 void Assembler::incq(Address dst) {
  3985   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3986   InstructionMark im(this);
  3987   prefixq(dst);
  3988   emit_byte(0xFF);
  3989   emit_operand(rax, dst);
  3992 void Assembler::lea(Register dst, Address src) {
  3993   leaq(dst, src);
  3996 void Assembler::leaq(Register dst, Address src) {
  3997   InstructionMark im(this);
  3998   prefixq(src, dst);
  3999   emit_byte(0x8D);
  4000   emit_operand(dst, src);
  4003 void Assembler::mov64(Register dst, int64_t imm64) {
  4004   InstructionMark im(this);
  4005   int encode = prefixq_and_encode(dst->encoding());
  4006   emit_byte(0xB8 | encode);
  4007   emit_long64(imm64);
  4010 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4011   InstructionMark im(this);
  4012   int encode = prefixq_and_encode(dst->encoding());
  4013   emit_byte(0xB8 | encode);
  4014   emit_data64(imm64, rspec);
  4017 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4018   InstructionMark im(this);
  4019   int encode = prefix_and_encode(dst->encoding());
  4020   emit_byte(0xB8 | encode);
  4021   emit_data((int)imm32, rspec, narrow_oop_operand);
  4024 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4025   InstructionMark im(this);
  4026   prefix(dst);
  4027   emit_byte(0xC7);
  4028   emit_operand(rax, dst, 4);
  4029   emit_data((int)imm32, rspec, narrow_oop_operand);
  4032 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4033   InstructionMark im(this);
  4034   int encode = prefix_and_encode(src1->encoding());
  4035   emit_byte(0x81);
  4036   emit_byte(0xF8 | encode);
  4037   emit_data((int)imm32, rspec, narrow_oop_operand);
  4040 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4041   InstructionMark im(this);
  4042   prefix(src1);
  4043   emit_byte(0x81);
  4044   emit_operand(rax, src1, 4);
  4045   emit_data((int)imm32, rspec, narrow_oop_operand);
  4048 void Assembler::lzcntq(Register dst, Register src) {
  4049   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4050   emit_byte(0xF3);
  4051   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4052   emit_byte(0x0F);
  4053   emit_byte(0xBD);
  4054   emit_byte(0xC0 | encode);
  4057 void Assembler::movdq(XMMRegister dst, Register src) {
  4058   // table D-1 says MMX/SSE2
  4059   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4060   emit_byte(0x66);
  4061   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4062   emit_byte(0x0F);
  4063   emit_byte(0x6E);
  4064   emit_byte(0xC0 | encode);
  4067 void Assembler::movdq(Register dst, XMMRegister src) {
  4068   // table D-1 says MMX/SSE2
  4069   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4070   emit_byte(0x66);
  4071   // swap src/dst to get correct prefix
  4072   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  4073   emit_byte(0x0F);
  4074   emit_byte(0x7E);
  4075   emit_byte(0xC0 | encode);
  4078 void Assembler::movq(Register dst, Register src) {
  4079   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4080   emit_byte(0x8B);
  4081   emit_byte(0xC0 | encode);
  4084 void Assembler::movq(Register dst, Address src) {
  4085   InstructionMark im(this);
  4086   prefixq(src, dst);
  4087   emit_byte(0x8B);
  4088   emit_operand(dst, src);
  4091 void Assembler::movq(Address dst, Register src) {
  4092   InstructionMark im(this);
  4093   prefixq(dst, src);
  4094   emit_byte(0x89);
  4095   emit_operand(src, dst);
  4098 void Assembler::movsbq(Register dst, Address src) {
  4099   InstructionMark im(this);
  4100   prefixq(src, dst);
  4101   emit_byte(0x0F);
  4102   emit_byte(0xBE);
  4103   emit_operand(dst, src);
  4106 void Assembler::movsbq(Register dst, Register src) {
  4107   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4108   emit_byte(0x0F);
  4109   emit_byte(0xBE);
  4110   emit_byte(0xC0 | encode);
  4113 void Assembler::movslq(Register dst, int32_t imm32) {
  4114   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4115   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4116   // as a result we shouldn't use until tested at runtime...
  4117   ShouldNotReachHere();
  4118   InstructionMark im(this);
  4119   int encode = prefixq_and_encode(dst->encoding());
  4120   emit_byte(0xC7 | encode);
  4121   emit_long(imm32);
  4124 void Assembler::movslq(Address dst, int32_t imm32) {
  4125   assert(is_simm32(imm32), "lost bits");
  4126   InstructionMark im(this);
  4127   prefixq(dst);
  4128   emit_byte(0xC7);
  4129   emit_operand(rax, dst, 4);
  4130   emit_long(imm32);
  4133 void Assembler::movslq(Register dst, Address src) {
  4134   InstructionMark im(this);
  4135   prefixq(src, dst);
  4136   emit_byte(0x63);
  4137   emit_operand(dst, src);
  4140 void Assembler::movslq(Register dst, Register src) {
  4141   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4142   emit_byte(0x63);
  4143   emit_byte(0xC0 | encode);
  4146 void Assembler::movswq(Register dst, Address src) {
  4147   InstructionMark im(this);
  4148   prefixq(src, dst);
  4149   emit_byte(0x0F);
  4150   emit_byte(0xBF);
  4151   emit_operand(dst, src);
  4154 void Assembler::movswq(Register dst, Register src) {
  4155   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4156   emit_byte(0x0F);
  4157   emit_byte(0xBF);
  4158   emit_byte(0xC0 | encode);
  4161 void Assembler::movzbq(Register dst, Address src) {
  4162   InstructionMark im(this);
  4163   prefixq(src, dst);
  4164   emit_byte(0x0F);
  4165   emit_byte(0xB6);
  4166   emit_operand(dst, src);
  4169 void Assembler::movzbq(Register dst, Register src) {
  4170   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4171   emit_byte(0x0F);
  4172   emit_byte(0xB6);
  4173   emit_byte(0xC0 | encode);
  4176 void Assembler::movzwq(Register dst, Address src) {
  4177   InstructionMark im(this);
  4178   prefixq(src, dst);
  4179   emit_byte(0x0F);
  4180   emit_byte(0xB7);
  4181   emit_operand(dst, src);
  4184 void Assembler::movzwq(Register dst, Register src) {
  4185   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4186   emit_byte(0x0F);
  4187   emit_byte(0xB7);
  4188   emit_byte(0xC0 | encode);
  4191 void Assembler::negq(Register dst) {
  4192   int encode = prefixq_and_encode(dst->encoding());
  4193   emit_byte(0xF7);
  4194   emit_byte(0xD8 | encode);
  4197 void Assembler::notq(Register dst) {
  4198   int encode = prefixq_and_encode(dst->encoding());
  4199   emit_byte(0xF7);
  4200   emit_byte(0xD0 | encode);
  4203 void Assembler::orq(Address dst, int32_t imm32) {
  4204   InstructionMark im(this);
  4205   prefixq(dst);
  4206   emit_byte(0x81);
  4207   emit_operand(rcx, dst, 4);
  4208   emit_long(imm32);
  4211 void Assembler::orq(Register dst, int32_t imm32) {
  4212   (void) prefixq_and_encode(dst->encoding());
  4213   emit_arith(0x81, 0xC8, dst, imm32);
  4216 void Assembler::orq(Register dst, Address src) {
  4217   InstructionMark im(this);
  4218   prefixq(src, dst);
  4219   emit_byte(0x0B);
  4220   emit_operand(dst, src);
  4223 void Assembler::orq(Register dst, Register src) {
  4224   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4225   emit_arith(0x0B, 0xC0, dst, src);
  4228 void Assembler::popa() { // 64bit
  4229   movq(r15, Address(rsp, 0));
  4230   movq(r14, Address(rsp, wordSize));
  4231   movq(r13, Address(rsp, 2 * wordSize));
  4232   movq(r12, Address(rsp, 3 * wordSize));
  4233   movq(r11, Address(rsp, 4 * wordSize));
  4234   movq(r10, Address(rsp, 5 * wordSize));
  4235   movq(r9,  Address(rsp, 6 * wordSize));
  4236   movq(r8,  Address(rsp, 7 * wordSize));
  4237   movq(rdi, Address(rsp, 8 * wordSize));
  4238   movq(rsi, Address(rsp, 9 * wordSize));
  4239   movq(rbp, Address(rsp, 10 * wordSize));
  4240   // skip rsp
  4241   movq(rbx, Address(rsp, 12 * wordSize));
  4242   movq(rdx, Address(rsp, 13 * wordSize));
  4243   movq(rcx, Address(rsp, 14 * wordSize));
  4244   movq(rax, Address(rsp, 15 * wordSize));
  4246   addq(rsp, 16 * wordSize);
  4249 void Assembler::popcntq(Register dst, Address src) {
  4250   assert(VM_Version::supports_popcnt(), "must support");
  4251   InstructionMark im(this);
  4252   emit_byte(0xF3);
  4253   prefixq(src, dst);
  4254   emit_byte(0x0F);
  4255   emit_byte(0xB8);
  4256   emit_operand(dst, src);
  4259 void Assembler::popcntq(Register dst, Register src) {
  4260   assert(VM_Version::supports_popcnt(), "must support");
  4261   emit_byte(0xF3);
  4262   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4263   emit_byte(0x0F);
  4264   emit_byte(0xB8);
  4265   emit_byte(0xC0 | encode);
  4268 void Assembler::popq(Address dst) {
  4269   InstructionMark im(this);
  4270   prefixq(dst);
  4271   emit_byte(0x8F);
  4272   emit_operand(rax, dst);
  4275 void Assembler::pusha() { // 64bit
  4276   // we have to store original rsp.  ABI says that 128 bytes
  4277   // below rsp are local scratch.
  4278   movq(Address(rsp, -5 * wordSize), rsp);
  4280   subq(rsp, 16 * wordSize);
  4282   movq(Address(rsp, 15 * wordSize), rax);
  4283   movq(Address(rsp, 14 * wordSize), rcx);
  4284   movq(Address(rsp, 13 * wordSize), rdx);
  4285   movq(Address(rsp, 12 * wordSize), rbx);
  4286   // skip rsp
  4287   movq(Address(rsp, 10 * wordSize), rbp);
  4288   movq(Address(rsp, 9 * wordSize), rsi);
  4289   movq(Address(rsp, 8 * wordSize), rdi);
  4290   movq(Address(rsp, 7 * wordSize), r8);
  4291   movq(Address(rsp, 6 * wordSize), r9);
  4292   movq(Address(rsp, 5 * wordSize), r10);
  4293   movq(Address(rsp, 4 * wordSize), r11);
  4294   movq(Address(rsp, 3 * wordSize), r12);
  4295   movq(Address(rsp, 2 * wordSize), r13);
  4296   movq(Address(rsp, wordSize), r14);
  4297   movq(Address(rsp, 0), r15);
  4300 void Assembler::pushq(Address src) {
  4301   InstructionMark im(this);
  4302   prefixq(src);
  4303   emit_byte(0xFF);
  4304   emit_operand(rsi, src);
  4307 void Assembler::rclq(Register dst, int imm8) {
  4308   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4309   int encode = prefixq_and_encode(dst->encoding());
  4310   if (imm8 == 1) {
  4311     emit_byte(0xD1);
  4312     emit_byte(0xD0 | encode);
  4313   } else {
  4314     emit_byte(0xC1);
  4315     emit_byte(0xD0 | encode);
  4316     emit_byte(imm8);
  4319 void Assembler::sarq(Register dst, int imm8) {
  4320   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4321   int encode = prefixq_and_encode(dst->encoding());
  4322   if (imm8 == 1) {
  4323     emit_byte(0xD1);
  4324     emit_byte(0xF8 | encode);
  4325   } else {
  4326     emit_byte(0xC1);
  4327     emit_byte(0xF8 | encode);
  4328     emit_byte(imm8);
  4332 void Assembler::sarq(Register dst) {
  4333   int encode = prefixq_and_encode(dst->encoding());
  4334   emit_byte(0xD3);
  4335   emit_byte(0xF8 | encode);
  4338 void Assembler::sbbq(Address dst, int32_t imm32) {
  4339   InstructionMark im(this);
  4340   prefixq(dst);
  4341   emit_arith_operand(0x81, rbx, dst, imm32);
  4344 void Assembler::sbbq(Register dst, int32_t imm32) {
  4345   (void) prefixq_and_encode(dst->encoding());
  4346   emit_arith(0x81, 0xD8, dst, imm32);
  4349 void Assembler::sbbq(Register dst, Address src) {
  4350   InstructionMark im(this);
  4351   prefixq(src, dst);
  4352   emit_byte(0x1B);
  4353   emit_operand(dst, src);
  4356 void Assembler::sbbq(Register dst, Register src) {
  4357   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4358   emit_arith(0x1B, 0xC0, dst, src);
  4361 void Assembler::shlq(Register dst, int imm8) {
  4362   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4363   int encode = prefixq_and_encode(dst->encoding());
  4364   if (imm8 == 1) {
  4365     emit_byte(0xD1);
  4366     emit_byte(0xE0 | encode);
  4367   } else {
  4368     emit_byte(0xC1);
  4369     emit_byte(0xE0 | encode);
  4370     emit_byte(imm8);
  4374 void Assembler::shlq(Register dst) {
  4375   int encode = prefixq_and_encode(dst->encoding());
  4376   emit_byte(0xD3);
  4377   emit_byte(0xE0 | encode);
  4380 void Assembler::shrq(Register dst, int imm8) {
  4381   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4382   int encode = prefixq_and_encode(dst->encoding());
  4383   emit_byte(0xC1);
  4384   emit_byte(0xE8 | encode);
  4385   emit_byte(imm8);
  4388 void Assembler::shrq(Register dst) {
  4389   int encode = prefixq_and_encode(dst->encoding());
  4390   emit_byte(0xD3);
  4391   emit_byte(0xE8 | encode);
  4394 void Assembler::subq(Address dst, int32_t imm32) {
  4395   InstructionMark im(this);
  4396   prefixq(dst);
  4397   emit_arith_operand(0x81, rbp, dst, imm32);
  4400 void Assembler::subq(Address dst, Register src) {
  4401   InstructionMark im(this);
  4402   prefixq(dst, src);
  4403   emit_byte(0x29);
  4404   emit_operand(src, dst);
  4407 void Assembler::subq(Register dst, int32_t imm32) {
  4408   (void) prefixq_and_encode(dst->encoding());
  4409   emit_arith(0x81, 0xE8, dst, imm32);
  4412 void Assembler::subq(Register dst, Address src) {
  4413   InstructionMark im(this);
  4414   prefixq(src, dst);
  4415   emit_byte(0x2B);
  4416   emit_operand(dst, src);
  4419 void Assembler::subq(Register dst, Register src) {
  4420   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4421   emit_arith(0x2B, 0xC0, dst, src);
  4424 void Assembler::testq(Register dst, int32_t imm32) {
  4425   // not using emit_arith because test
  4426   // doesn't support sign-extension of
  4427   // 8bit operands
  4428   int encode = dst->encoding();
  4429   if (encode == 0) {
  4430     prefix(REX_W);
  4431     emit_byte(0xA9);
  4432   } else {
  4433     encode = prefixq_and_encode(encode);
  4434     emit_byte(0xF7);
  4435     emit_byte(0xC0 | encode);
  4437   emit_long(imm32);
  4440 void Assembler::testq(Register dst, Register src) {
  4441   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4442   emit_arith(0x85, 0xC0, dst, src);
  4445 void Assembler::xaddq(Address dst, Register src) {
  4446   InstructionMark im(this);
  4447   prefixq(dst, src);
  4448   emit_byte(0x0F);
  4449   emit_byte(0xC1);
  4450   emit_operand(src, dst);
  4453 void Assembler::xchgq(Register dst, Address src) {
  4454   InstructionMark im(this);
  4455   prefixq(src, dst);
  4456   emit_byte(0x87);
  4457   emit_operand(dst, src);
  4460 void Assembler::xchgq(Register dst, Register src) {
  4461   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4462   emit_byte(0x87);
  4463   emit_byte(0xc0 | encode);
  4466 void Assembler::xorq(Register dst, Register src) {
  4467   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4468   emit_arith(0x33, 0xC0, dst, src);
  4471 void Assembler::xorq(Register dst, Address src) {
  4472   InstructionMark im(this);
  4473   prefixq(src, dst);
  4474   emit_byte(0x33);
  4475   emit_operand(dst, src);
  4478 #endif // !LP64
  4480 static Assembler::Condition reverse[] = {
  4481     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4482     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4483     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4484     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4485     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4486     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4487     Assembler::above          /* belowEqual    = 0x6 */ ,
  4488     Assembler::belowEqual     /* above         = 0x7 */ ,
  4489     Assembler::positive       /* negative      = 0x8 */ ,
  4490     Assembler::negative       /* positive      = 0x9 */ ,
  4491     Assembler::noParity       /* parity        = 0xa */ ,
  4492     Assembler::parity         /* noParity      = 0xb */ ,
  4493     Assembler::greaterEqual   /* less          = 0xc */ ,
  4494     Assembler::less           /* greaterEqual  = 0xd */ ,
  4495     Assembler::greater        /* lessEqual     = 0xe */ ,
  4496     Assembler::lessEqual      /* greater       = 0xf, */
  4498 };
  4501 // Implementation of MacroAssembler
  4503 // First all the versions that have distinct versions depending on 32/64 bit
  4504 // Unless the difference is trivial (1 line or so).
  4506 #ifndef _LP64
  4508 // 32bit versions
  4510 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4511   return Address(adr.target(), adr.rspec());
  4514 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4515   return Address::make_array(adr);
  4518 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4519                                          Register obj_reg,
  4520                                          Register swap_reg,
  4521                                          Register tmp_reg,
  4522                                          bool swap_reg_contains_mark,
  4523                                          Label& done,
  4524                                          Label* slow_case,
  4525                                          BiasedLockingCounters* counters) {
  4526   assert(UseBiasedLocking, "why call this otherwise?");
  4527   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4528   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4530   if (PrintBiasedLockingStatistics && counters == NULL)
  4531     counters = BiasedLocking::counters();
  4533   bool need_tmp_reg = false;
  4534   if (tmp_reg == noreg) {
  4535     need_tmp_reg = true;
  4536     tmp_reg = lock_reg;
  4537   } else {
  4538     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4540   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4541   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4542   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4543   Address saved_mark_addr(lock_reg, 0);
  4545   // Biased locking
  4546   // See whether the lock is currently biased toward our thread and
  4547   // whether the epoch is still valid
  4548   // Note that the runtime guarantees sufficient alignment of JavaThread
  4549   // pointers to allow age to be placed into low bits
  4550   // First check to see whether biasing is even enabled for this object
  4551   Label cas_label;
  4552   int null_check_offset = -1;
  4553   if (!swap_reg_contains_mark) {
  4554     null_check_offset = offset();
  4555     movl(swap_reg, mark_addr);
  4557   if (need_tmp_reg) {
  4558     push(tmp_reg);
  4560   movl(tmp_reg, swap_reg);
  4561   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4562   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4563   if (need_tmp_reg) {
  4564     pop(tmp_reg);
  4566   jcc(Assembler::notEqual, cas_label);
  4567   // The bias pattern is present in the object's header. Need to check
  4568   // whether the bias owner and the epoch are both still current.
  4569   // Note that because there is no current thread register on x86 we
  4570   // need to store off the mark word we read out of the object to
  4571   // avoid reloading it and needing to recheck invariants below. This
  4572   // store is unfortunate but it makes the overall code shorter and
  4573   // simpler.
  4574   movl(saved_mark_addr, swap_reg);
  4575   if (need_tmp_reg) {
  4576     push(tmp_reg);
  4578   get_thread(tmp_reg);
  4579   xorl(swap_reg, tmp_reg);
  4580   if (swap_reg_contains_mark) {
  4581     null_check_offset = offset();
  4583   movl(tmp_reg, klass_addr);
  4584   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4585   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4586   if (need_tmp_reg) {
  4587     pop(tmp_reg);
  4589   if (counters != NULL) {
  4590     cond_inc32(Assembler::zero,
  4591                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4593   jcc(Assembler::equal, done);
  4595   Label try_revoke_bias;
  4596   Label try_rebias;
  4598   // At this point we know that the header has the bias pattern and
  4599   // that we are not the bias owner in the current epoch. We need to
  4600   // figure out more details about the state of the header in order to
  4601   // know what operations can be legally performed on the object's
  4602   // header.
  4604   // If the low three bits in the xor result aren't clear, that means
  4605   // the prototype header is no longer biased and we have to revoke
  4606   // the bias on this object.
  4607   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4608   jcc(Assembler::notZero, try_revoke_bias);
  4610   // Biasing is still enabled for this data type. See whether the
  4611   // epoch of the current bias is still valid, meaning that the epoch
  4612   // bits of the mark word are equal to the epoch bits of the
  4613   // prototype header. (Note that the prototype header's epoch bits
  4614   // only change at a safepoint.) If not, attempt to rebias the object
  4615   // toward the current thread. Note that we must be absolutely sure
  4616   // that the current epoch is invalid in order to do this because
  4617   // otherwise the manipulations it performs on the mark word are
  4618   // illegal.
  4619   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4620   jcc(Assembler::notZero, try_rebias);
  4622   // The epoch of the current bias is still valid but we know nothing
  4623   // about the owner; it might be set or it might be clear. Try to
  4624   // acquire the bias of the object using an atomic operation. If this
  4625   // fails we will go in to the runtime to revoke the object's bias.
  4626   // Note that we first construct the presumed unbiased header so we
  4627   // don't accidentally blow away another thread's valid bias.
  4628   movl(swap_reg, saved_mark_addr);
  4629   andl(swap_reg,
  4630        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4631   if (need_tmp_reg) {
  4632     push(tmp_reg);
  4634   get_thread(tmp_reg);
  4635   orl(tmp_reg, swap_reg);
  4636   if (os::is_MP()) {
  4637     lock();
  4639   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4640   if (need_tmp_reg) {
  4641     pop(tmp_reg);
  4643   // If the biasing toward our thread failed, this means that
  4644   // another thread succeeded in biasing it toward itself and we
  4645   // need to revoke that bias. The revocation will occur in the
  4646   // interpreter runtime in the slow case.
  4647   if (counters != NULL) {
  4648     cond_inc32(Assembler::zero,
  4649                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4651   if (slow_case != NULL) {
  4652     jcc(Assembler::notZero, *slow_case);
  4654   jmp(done);
  4656   bind(try_rebias);
  4657   // At this point we know the epoch has expired, meaning that the
  4658   // current "bias owner", if any, is actually invalid. Under these
  4659   // circumstances _only_, we are allowed to use the current header's
  4660   // value as the comparison value when doing the cas to acquire the
  4661   // bias in the current epoch. In other words, we allow transfer of
  4662   // the bias from one thread to another directly in this situation.
  4663   //
  4664   // FIXME: due to a lack of registers we currently blow away the age
  4665   // bits in this situation. Should attempt to preserve them.
  4666   if (need_tmp_reg) {
  4667     push(tmp_reg);
  4669   get_thread(tmp_reg);
  4670   movl(swap_reg, klass_addr);
  4671   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4672   movl(swap_reg, saved_mark_addr);
  4673   if (os::is_MP()) {
  4674     lock();
  4676   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4677   if (need_tmp_reg) {
  4678     pop(tmp_reg);
  4680   // If the biasing toward our thread failed, then another thread
  4681   // succeeded in biasing it toward itself and we need to revoke that
  4682   // bias. The revocation will occur in the runtime in the slow case.
  4683   if (counters != NULL) {
  4684     cond_inc32(Assembler::zero,
  4685                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4687   if (slow_case != NULL) {
  4688     jcc(Assembler::notZero, *slow_case);
  4690   jmp(done);
  4692   bind(try_revoke_bias);
  4693   // The prototype mark in the klass doesn't have the bias bit set any
  4694   // more, indicating that objects of this data type are not supposed
  4695   // to be biased any more. We are going to try to reset the mark of
  4696   // this object to the prototype value and fall through to the
  4697   // CAS-based locking scheme. Note that if our CAS fails, it means
  4698   // that another thread raced us for the privilege of revoking the
  4699   // bias of this particular object, so it's okay to continue in the
  4700   // normal locking code.
  4701   //
  4702   // FIXME: due to a lack of registers we currently blow away the age
  4703   // bits in this situation. Should attempt to preserve them.
  4704   movl(swap_reg, saved_mark_addr);
  4705   if (need_tmp_reg) {
  4706     push(tmp_reg);
  4708   movl(tmp_reg, klass_addr);
  4709   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4710   if (os::is_MP()) {
  4711     lock();
  4713   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4714   if (need_tmp_reg) {
  4715     pop(tmp_reg);
  4717   // Fall through to the normal CAS-based lock, because no matter what
  4718   // the result of the above CAS, some thread must have succeeded in
  4719   // removing the bias bit from the object's header.
  4720   if (counters != NULL) {
  4721     cond_inc32(Assembler::zero,
  4722                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4725   bind(cas_label);
  4727   return null_check_offset;
  4729 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4730                                        int number_of_arguments) {
  4731   call(RuntimeAddress(entry_point));
  4732   increment(rsp, number_of_arguments * wordSize);
  4735 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4736   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4739 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4740   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4743 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4744   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4745   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4746     cdql();
  4747   } else {
  4748     movl(hi, lo);
  4749     sarl(hi, 31);
  4753 void MacroAssembler::fat_nop() {
  4754   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4755   emit_byte(0x26); // es:
  4756   emit_byte(0x2e); // cs:
  4757   emit_byte(0x64); // fs:
  4758   emit_byte(0x65); // gs:
  4759   emit_byte(0x90);
  4762 void MacroAssembler::jC2(Register tmp, Label& L) {
  4763   // set parity bit if FPU flag C2 is set (via rax)
  4764   save_rax(tmp);
  4765   fwait(); fnstsw_ax();
  4766   sahf();
  4767   restore_rax(tmp);
  4768   // branch
  4769   jcc(Assembler::parity, L);
  4772 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4773   // set parity bit if FPU flag C2 is set (via rax)
  4774   save_rax(tmp);
  4775   fwait(); fnstsw_ax();
  4776   sahf();
  4777   restore_rax(tmp);
  4778   // branch
  4779   jcc(Assembler::noParity, L);
  4782 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4783 // to be installed in the Address class
  4784 void MacroAssembler::jump(ArrayAddress entry) {
  4785   jmp(as_Address(entry));
  4788 // Note: y_lo will be destroyed
  4789 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4790   // Long compare for Java (semantics as described in JVM spec.)
  4791   Label high, low, done;
  4793   cmpl(x_hi, y_hi);
  4794   jcc(Assembler::less, low);
  4795   jcc(Assembler::greater, high);
  4796   // x_hi is the return register
  4797   xorl(x_hi, x_hi);
  4798   cmpl(x_lo, y_lo);
  4799   jcc(Assembler::below, low);
  4800   jcc(Assembler::equal, done);
  4802   bind(high);
  4803   xorl(x_hi, x_hi);
  4804   increment(x_hi);
  4805   jmp(done);
  4807   bind(low);
  4808   xorl(x_hi, x_hi);
  4809   decrementl(x_hi);
  4811   bind(done);
  4814 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4815     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4818 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4819   // leal(dst, as_Address(adr));
  4820   // see note in movl as to why we must use a move
  4821   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4824 void MacroAssembler::leave() {
  4825   mov(rsp, rbp);
  4826   pop(rbp);
  4829 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4830   // Multiplication of two Java long values stored on the stack
  4831   // as illustrated below. Result is in rdx:rax.
  4832   //
  4833   // rsp ---> [  ??  ] \               \
  4834   //            ....    | y_rsp_offset  |
  4835   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4836   //          [ y_hi ]                  | (in bytes)
  4837   //            ....                    |
  4838   //          [ x_lo ]                 /
  4839   //          [ x_hi ]
  4840   //            ....
  4841   //
  4842   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4843   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4844   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4845   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4846   Label quick;
  4847   // load x_hi, y_hi and check if quick
  4848   // multiplication is possible
  4849   movl(rbx, x_hi);
  4850   movl(rcx, y_hi);
  4851   movl(rax, rbx);
  4852   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4853   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4854   // do full multiplication
  4855   // 1st step
  4856   mull(y_lo);                                    // x_hi * y_lo
  4857   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4858   // 2nd step
  4859   movl(rax, x_lo);
  4860   mull(rcx);                                     // x_lo * y_hi
  4861   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4862   // 3rd step
  4863   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4864   movl(rax, x_lo);
  4865   mull(y_lo);                                    // x_lo * y_lo
  4866   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4869 void MacroAssembler::lneg(Register hi, Register lo) {
  4870   negl(lo);
  4871   adcl(hi, 0);
  4872   negl(hi);
  4875 void MacroAssembler::lshl(Register hi, Register lo) {
  4876   // Java shift left long support (semantics as described in JVM spec., p.305)
  4877   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4878   // shift value is in rcx !
  4879   assert(hi != rcx, "must not use rcx");
  4880   assert(lo != rcx, "must not use rcx");
  4881   const Register s = rcx;                        // shift count
  4882   const int      n = BitsPerWord;
  4883   Label L;
  4884   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4885   cmpl(s, n);                                    // if (s < n)
  4886   jcc(Assembler::less, L);                       // else (s >= n)
  4887   movl(hi, lo);                                  // x := x << n
  4888   xorl(lo, lo);
  4889   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4890   bind(L);                                       // s (mod n) < n
  4891   shldl(hi, lo);                                 // x := x << s
  4892   shll(lo);
  4896 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4897   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4898   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4899   assert(hi != rcx, "must not use rcx");
  4900   assert(lo != rcx, "must not use rcx");
  4901   const Register s = rcx;                        // shift count
  4902   const int      n = BitsPerWord;
  4903   Label L;
  4904   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4905   cmpl(s, n);                                    // if (s < n)
  4906   jcc(Assembler::less, L);                       // else (s >= n)
  4907   movl(lo, hi);                                  // x := x >> n
  4908   if (sign_extension) sarl(hi, 31);
  4909   else                xorl(hi, hi);
  4910   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4911   bind(L);                                       // s (mod n) < n
  4912   shrdl(lo, hi);                                 // x := x >> s
  4913   if (sign_extension) sarl(hi);
  4914   else                shrl(hi);
  4917 void MacroAssembler::movoop(Register dst, jobject obj) {
  4918   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4921 void MacroAssembler::movoop(Address dst, jobject obj) {
  4922   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4925 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4926   if (src.is_lval()) {
  4927     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4928   } else {
  4929     movl(dst, as_Address(src));
  4933 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4934   movl(as_Address(dst), src);
  4937 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4938   movl(dst, as_Address(src));
  4941 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4942 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4943   movl(dst, src);
  4947 void MacroAssembler::pop_callee_saved_registers() {
  4948   pop(rcx);
  4949   pop(rdx);
  4950   pop(rdi);
  4951   pop(rsi);
  4954 void MacroAssembler::pop_fTOS() {
  4955   fld_d(Address(rsp, 0));
  4956   addl(rsp, 2 * wordSize);
  4959 void MacroAssembler::push_callee_saved_registers() {
  4960   push(rsi);
  4961   push(rdi);
  4962   push(rdx);
  4963   push(rcx);
  4966 void MacroAssembler::push_fTOS() {
  4967   subl(rsp, 2 * wordSize);
  4968   fstp_d(Address(rsp, 0));
  4972 void MacroAssembler::pushoop(jobject obj) {
  4973   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  4977 void MacroAssembler::pushptr(AddressLiteral src) {
  4978   if (src.is_lval()) {
  4979     push_literal32((int32_t)src.target(), src.rspec());
  4980   } else {
  4981     pushl(as_Address(src));
  4985 void MacroAssembler::set_word_if_not_zero(Register dst) {
  4986   xorl(dst, dst);
  4987   set_byte_if_not_zero(dst);
  4990 static void pass_arg0(MacroAssembler* masm, Register arg) {
  4991   masm->push(arg);
  4994 static void pass_arg1(MacroAssembler* masm, Register arg) {
  4995   masm->push(arg);
  4998 static void pass_arg2(MacroAssembler* masm, Register arg) {
  4999   masm->push(arg);
  5002 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5003   masm->push(arg);
  5006 #ifndef PRODUCT
  5007 extern "C" void findpc(intptr_t x);
  5008 #endif
  5010 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5011   // In order to get locks to work, we need to fake a in_VM state
  5012   JavaThread* thread = JavaThread::current();
  5013   JavaThreadState saved_state = thread->thread_state();
  5014   thread->set_thread_state(_thread_in_vm);
  5015   if (ShowMessageBoxOnError) {
  5016     JavaThread* thread = JavaThread::current();
  5017     JavaThreadState saved_state = thread->thread_state();
  5018     thread->set_thread_state(_thread_in_vm);
  5019     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5020       ttyLocker ttyl;
  5021       BytecodeCounter::print();
  5023     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5024     // This is the value of eip which points to where verify_oop will return.
  5025     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5026       ttyLocker ttyl;
  5027       tty->print_cr("eip = 0x%08x", eip);
  5028 #ifndef PRODUCT
  5029       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5030         tty->cr();
  5031         findpc(eip);
  5032         tty->cr();
  5034 #endif
  5035       tty->print_cr("rax = 0x%08x", rax);
  5036       tty->print_cr("rbx = 0x%08x", rbx);
  5037       tty->print_cr("rcx = 0x%08x", rcx);
  5038       tty->print_cr("rdx = 0x%08x", rdx);
  5039       tty->print_cr("rdi = 0x%08x", rdi);
  5040       tty->print_cr("rsi = 0x%08x", rsi);
  5041       tty->print_cr("rbp = 0x%08x", rbp);
  5042       tty->print_cr("rsp = 0x%08x", rsp);
  5043       BREAKPOINT;
  5044       assert(false, "start up GDB");
  5046   } else {
  5047     ttyLocker ttyl;
  5048     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5049     assert(false, "DEBUG MESSAGE");
  5051   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5054 void MacroAssembler::stop(const char* msg) {
  5055   ExternalAddress message((address)msg);
  5056   // push address of message
  5057   pushptr(message.addr());
  5058   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5059   pusha();                                           // push registers
  5060   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5061   hlt();
  5064 void MacroAssembler::warn(const char* msg) {
  5065   push_CPU_state();
  5067   ExternalAddress message((address) msg);
  5068   // push address of message
  5069   pushptr(message.addr());
  5071   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5072   addl(rsp, wordSize);       // discard argument
  5073   pop_CPU_state();
  5076 #else // _LP64
  5078 // 64 bit versions
  5080 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5081   // amd64 always does this as a pc-rel
  5082   // we can be absolute or disp based on the instruction type
  5083   // jmp/call are displacements others are absolute
  5084   assert(!adr.is_lval(), "must be rval");
  5085   assert(reachable(adr), "must be");
  5086   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5090 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5091   AddressLiteral base = adr.base();
  5092   lea(rscratch1, base);
  5093   Address index = adr.index();
  5094   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5095   Address array(rscratch1, index._index, index._scale, index._disp);
  5096   return array;
  5099 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5100                                          Register obj_reg,
  5101                                          Register swap_reg,
  5102                                          Register tmp_reg,
  5103                                          bool swap_reg_contains_mark,
  5104                                          Label& done,
  5105                                          Label* slow_case,
  5106                                          BiasedLockingCounters* counters) {
  5107   assert(UseBiasedLocking, "why call this otherwise?");
  5108   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5109   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5110   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5111   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5112   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5113   Address saved_mark_addr(lock_reg, 0);
  5115   if (PrintBiasedLockingStatistics && counters == NULL)
  5116     counters = BiasedLocking::counters();
  5118   // Biased locking
  5119   // See whether the lock is currently biased toward our thread and
  5120   // whether the epoch is still valid
  5121   // Note that the runtime guarantees sufficient alignment of JavaThread
  5122   // pointers to allow age to be placed into low bits
  5123   // First check to see whether biasing is even enabled for this object
  5124   Label cas_label;
  5125   int null_check_offset = -1;
  5126   if (!swap_reg_contains_mark) {
  5127     null_check_offset = offset();
  5128     movq(swap_reg, mark_addr);
  5130   movq(tmp_reg, swap_reg);
  5131   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5132   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5133   jcc(Assembler::notEqual, cas_label);
  5134   // The bias pattern is present in the object's header. Need to check
  5135   // whether the bias owner and the epoch are both still current.
  5136   load_prototype_header(tmp_reg, obj_reg);
  5137   orq(tmp_reg, r15_thread);
  5138   xorq(tmp_reg, swap_reg);
  5139   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5140   if (counters != NULL) {
  5141     cond_inc32(Assembler::zero,
  5142                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5144   jcc(Assembler::equal, done);
  5146   Label try_revoke_bias;
  5147   Label try_rebias;
  5149   // At this point we know that the header has the bias pattern and
  5150   // that we are not the bias owner in the current epoch. We need to
  5151   // figure out more details about the state of the header in order to
  5152   // know what operations can be legally performed on the object's
  5153   // header.
  5155   // If the low three bits in the xor result aren't clear, that means
  5156   // the prototype header is no longer biased and we have to revoke
  5157   // the bias on this object.
  5158   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5159   jcc(Assembler::notZero, try_revoke_bias);
  5161   // Biasing is still enabled for this data type. See whether the
  5162   // epoch of the current bias is still valid, meaning that the epoch
  5163   // bits of the mark word are equal to the epoch bits of the
  5164   // prototype header. (Note that the prototype header's epoch bits
  5165   // only change at a safepoint.) If not, attempt to rebias the object
  5166   // toward the current thread. Note that we must be absolutely sure
  5167   // that the current epoch is invalid in order to do this because
  5168   // otherwise the manipulations it performs on the mark word are
  5169   // illegal.
  5170   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5171   jcc(Assembler::notZero, try_rebias);
  5173   // The epoch of the current bias is still valid but we know nothing
  5174   // about the owner; it might be set or it might be clear. Try to
  5175   // acquire the bias of the object using an atomic operation. If this
  5176   // fails we will go in to the runtime to revoke the object's bias.
  5177   // Note that we first construct the presumed unbiased header so we
  5178   // don't accidentally blow away another thread's valid bias.
  5179   andq(swap_reg,
  5180        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5181   movq(tmp_reg, swap_reg);
  5182   orq(tmp_reg, r15_thread);
  5183   if (os::is_MP()) {
  5184     lock();
  5186   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5187   // If the biasing toward our thread failed, this means that
  5188   // another thread succeeded in biasing it toward itself and we
  5189   // need to revoke that bias. The revocation will occur in the
  5190   // interpreter runtime in the slow case.
  5191   if (counters != NULL) {
  5192     cond_inc32(Assembler::zero,
  5193                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5195   if (slow_case != NULL) {
  5196     jcc(Assembler::notZero, *slow_case);
  5198   jmp(done);
  5200   bind(try_rebias);
  5201   // At this point we know the epoch has expired, meaning that the
  5202   // current "bias owner", if any, is actually invalid. Under these
  5203   // circumstances _only_, we are allowed to use the current header's
  5204   // value as the comparison value when doing the cas to acquire the
  5205   // bias in the current epoch. In other words, we allow transfer of
  5206   // the bias from one thread to another directly in this situation.
  5207   //
  5208   // FIXME: due to a lack of registers we currently blow away the age
  5209   // bits in this situation. Should attempt to preserve them.
  5210   load_prototype_header(tmp_reg, obj_reg);
  5211   orq(tmp_reg, r15_thread);
  5212   if (os::is_MP()) {
  5213     lock();
  5215   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5216   // If the biasing toward our thread failed, then another thread
  5217   // succeeded in biasing it toward itself and we need to revoke that
  5218   // bias. The revocation will occur in the runtime in the slow case.
  5219   if (counters != NULL) {
  5220     cond_inc32(Assembler::zero,
  5221                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5223   if (slow_case != NULL) {
  5224     jcc(Assembler::notZero, *slow_case);
  5226   jmp(done);
  5228   bind(try_revoke_bias);
  5229   // The prototype mark in the klass doesn't have the bias bit set any
  5230   // more, indicating that objects of this data type are not supposed
  5231   // to be biased any more. We are going to try to reset the mark of
  5232   // this object to the prototype value and fall through to the
  5233   // CAS-based locking scheme. Note that if our CAS fails, it means
  5234   // that another thread raced us for the privilege of revoking the
  5235   // bias of this particular object, so it's okay to continue in the
  5236   // normal locking code.
  5237   //
  5238   // FIXME: due to a lack of registers we currently blow away the age
  5239   // bits in this situation. Should attempt to preserve them.
  5240   load_prototype_header(tmp_reg, obj_reg);
  5241   if (os::is_MP()) {
  5242     lock();
  5244   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5245   // Fall through to the normal CAS-based lock, because no matter what
  5246   // the result of the above CAS, some thread must have succeeded in
  5247   // removing the bias bit from the object's header.
  5248   if (counters != NULL) {
  5249     cond_inc32(Assembler::zero,
  5250                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5253   bind(cas_label);
  5255   return null_check_offset;
  5258 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5259   Label L, E;
  5261 #ifdef _WIN64
  5262   // Windows always allocates space for it's register args
  5263   assert(num_args <= 4, "only register arguments supported");
  5264   subq(rsp,  frame::arg_reg_save_area_bytes);
  5265 #endif
  5267   // Align stack if necessary
  5268   testl(rsp, 15);
  5269   jcc(Assembler::zero, L);
  5271   subq(rsp, 8);
  5273     call(RuntimeAddress(entry_point));
  5275   addq(rsp, 8);
  5276   jmp(E);
  5278   bind(L);
  5280     call(RuntimeAddress(entry_point));
  5283   bind(E);
  5285 #ifdef _WIN64
  5286   // restore stack pointer
  5287   addq(rsp, frame::arg_reg_save_area_bytes);
  5288 #endif
  5292 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5293   assert(!src2.is_lval(), "should use cmpptr");
  5295   if (reachable(src2)) {
  5296     cmpq(src1, as_Address(src2));
  5297   } else {
  5298     lea(rscratch1, src2);
  5299     Assembler::cmpq(src1, Address(rscratch1, 0));
  5303 int MacroAssembler::corrected_idivq(Register reg) {
  5304   // Full implementation of Java ldiv and lrem; checks for special
  5305   // case as described in JVM spec., p.243 & p.271.  The function
  5306   // returns the (pc) offset of the idivl instruction - may be needed
  5307   // for implicit exceptions.
  5308   //
  5309   //         normal case                           special case
  5310   //
  5311   // input : rax: dividend                         min_long
  5312   //         reg: divisor   (may not be eax/edx)   -1
  5313   //
  5314   // output: rax: quotient  (= rax idiv reg)       min_long
  5315   //         rdx: remainder (= rax irem reg)       0
  5316   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5317   static const int64_t min_long = 0x8000000000000000;
  5318   Label normal_case, special_case;
  5320   // check for special case
  5321   cmp64(rax, ExternalAddress((address) &min_long));
  5322   jcc(Assembler::notEqual, normal_case);
  5323   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5324                   // remainder = 0)
  5325   cmpq(reg, -1);
  5326   jcc(Assembler::equal, special_case);
  5328   // handle normal case
  5329   bind(normal_case);
  5330   cdqq();
  5331   int idivq_offset = offset();
  5332   idivq(reg);
  5334   // normal and special case exit
  5335   bind(special_case);
  5337   return idivq_offset;
  5340 void MacroAssembler::decrementq(Register reg, int value) {
  5341   if (value == min_jint) { subq(reg, value); return; }
  5342   if (value <  0) { incrementq(reg, -value); return; }
  5343   if (value == 0) {                        ; return; }
  5344   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5345   /* else */      { subq(reg, value)       ; return; }
  5348 void MacroAssembler::decrementq(Address dst, int value) {
  5349   if (value == min_jint) { subq(dst, value); return; }
  5350   if (value <  0) { incrementq(dst, -value); return; }
  5351   if (value == 0) {                        ; return; }
  5352   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5353   /* else */      { subq(dst, value)       ; return; }
  5356 void MacroAssembler::fat_nop() {
  5357   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5358   // Recommened sequence from 'Software Optimization Guide for the AMD
  5359   // Hammer Processor'
  5360   emit_byte(0x66);
  5361   emit_byte(0x66);
  5362   emit_byte(0x90);
  5363   emit_byte(0x66);
  5364   emit_byte(0x90);
  5367 void MacroAssembler::incrementq(Register reg, int value) {
  5368   if (value == min_jint) { addq(reg, value); return; }
  5369   if (value <  0) { decrementq(reg, -value); return; }
  5370   if (value == 0) {                        ; return; }
  5371   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5372   /* else */      { addq(reg, value)       ; return; }
  5375 void MacroAssembler::incrementq(Address dst, int value) {
  5376   if (value == min_jint) { addq(dst, value); return; }
  5377   if (value <  0) { decrementq(dst, -value); return; }
  5378   if (value == 0) {                        ; return; }
  5379   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5380   /* else */      { addq(dst, value)       ; return; }
  5383 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5384 // to be installed in the Address class
  5385 void MacroAssembler::jump(ArrayAddress entry) {
  5386   lea(rscratch1, entry.base());
  5387   Address dispatch = entry.index();
  5388   assert(dispatch._base == noreg, "must be");
  5389   dispatch._base = rscratch1;
  5390   jmp(dispatch);
  5393 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5394   ShouldNotReachHere(); // 64bit doesn't use two regs
  5395   cmpq(x_lo, y_lo);
  5398 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5399     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5402 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5403   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5404   movptr(dst, rscratch1);
  5407 void MacroAssembler::leave() {
  5408   // %%% is this really better? Why not on 32bit too?
  5409   emit_byte(0xC9); // LEAVE
  5412 void MacroAssembler::lneg(Register hi, Register lo) {
  5413   ShouldNotReachHere(); // 64bit doesn't use two regs
  5414   negq(lo);
  5417 void MacroAssembler::movoop(Register dst, jobject obj) {
  5418   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5421 void MacroAssembler::movoop(Address dst, jobject obj) {
  5422   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5423   movq(dst, rscratch1);
  5426 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5427   if (src.is_lval()) {
  5428     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5429   } else {
  5430     if (reachable(src)) {
  5431       movq(dst, as_Address(src));
  5432     } else {
  5433       lea(rscratch1, src);
  5434       movq(dst, Address(rscratch1,0));
  5439 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5440   movq(as_Address(dst), src);
  5443 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5444   movq(dst, as_Address(src));
  5447 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5448 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5449   mov64(rscratch1, src);
  5450   movq(dst, rscratch1);
  5453 // These are mostly for initializing NULL
  5454 void MacroAssembler::movptr(Address dst, int32_t src) {
  5455   movslq(dst, src);
  5458 void MacroAssembler::movptr(Register dst, int32_t src) {
  5459   mov64(dst, (intptr_t)src);
  5462 void MacroAssembler::pushoop(jobject obj) {
  5463   movoop(rscratch1, obj);
  5464   push(rscratch1);
  5467 void MacroAssembler::pushptr(AddressLiteral src) {
  5468   lea(rscratch1, src);
  5469   if (src.is_lval()) {
  5470     push(rscratch1);
  5471   } else {
  5472     pushq(Address(rscratch1, 0));
  5476 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5477                                            bool clear_pc) {
  5478   // we must set sp to zero to clear frame
  5479   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5480   // must clear fp, so that compiled frames are not confused; it is
  5481   // possible that we need it only for debugging
  5482   if (clear_fp) {
  5483     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5486   if (clear_pc) {
  5487     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5491 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5492                                          Register last_java_fp,
  5493                                          address  last_java_pc) {
  5494   // determine last_java_sp register
  5495   if (!last_java_sp->is_valid()) {
  5496     last_java_sp = rsp;
  5499   // last_java_fp is optional
  5500   if (last_java_fp->is_valid()) {
  5501     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5502            last_java_fp);
  5505   // last_java_pc is optional
  5506   if (last_java_pc != NULL) {
  5507     Address java_pc(r15_thread,
  5508                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5509     lea(rscratch1, InternalAddress(last_java_pc));
  5510     movptr(java_pc, rscratch1);
  5513   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5516 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5517   if (c_rarg0 != arg ) {
  5518     masm->mov(c_rarg0, arg);
  5522 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5523   if (c_rarg1 != arg ) {
  5524     masm->mov(c_rarg1, arg);
  5528 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5529   if (c_rarg2 != arg ) {
  5530     masm->mov(c_rarg2, arg);
  5534 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5535   if (c_rarg3 != arg ) {
  5536     masm->mov(c_rarg3, arg);
  5540 void MacroAssembler::stop(const char* msg) {
  5541   address rip = pc();
  5542   pusha(); // get regs on stack
  5543   lea(c_rarg0, ExternalAddress((address) msg));
  5544   lea(c_rarg1, InternalAddress(rip));
  5545   movq(c_rarg2, rsp); // pass pointer to regs array
  5546   andq(rsp, -16); // align stack as required by ABI
  5547   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5548   hlt();
  5551 void MacroAssembler::warn(const char* msg) {
  5552   push(rsp);
  5553   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5555   push_CPU_state();   // keeps alignment at 16 bytes
  5556   lea(c_rarg0, ExternalAddress((address) msg));
  5557   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5558   pop_CPU_state();
  5559   pop(rsp);
  5562 #ifndef PRODUCT
  5563 extern "C" void findpc(intptr_t x);
  5564 #endif
  5566 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5567   // In order to get locks to work, we need to fake a in_VM state
  5568   if (ShowMessageBoxOnError ) {
  5569     JavaThread* thread = JavaThread::current();
  5570     JavaThreadState saved_state = thread->thread_state();
  5571     thread->set_thread_state(_thread_in_vm);
  5572 #ifndef PRODUCT
  5573     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5574       ttyLocker ttyl;
  5575       BytecodeCounter::print();
  5577 #endif
  5578     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5579     // XXX correct this offset for amd64
  5580     // This is the value of eip which points to where verify_oop will return.
  5581     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5582       ttyLocker ttyl;
  5583       tty->print_cr("rip = 0x%016lx", pc);
  5584 #ifndef PRODUCT
  5585       tty->cr();
  5586       findpc(pc);
  5587       tty->cr();
  5588 #endif
  5589       tty->print_cr("rax = 0x%016lx", regs[15]);
  5590       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5591       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5592       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5593       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5594       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5595       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5596       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5597       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5598       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5599       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5600       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5601       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5602       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5603       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5604       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5605       BREAKPOINT;
  5607     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5608   } else {
  5609     ttyLocker ttyl;
  5610     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5611                     msg);
  5615 #endif // _LP64
  5617 // Now versions that are common to 32/64 bit
  5619 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5620   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5623 void MacroAssembler::addptr(Register dst, Register src) {
  5624   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5627 void MacroAssembler::addptr(Address dst, Register src) {
  5628   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5631 void MacroAssembler::align(int modulus) {
  5632   if (offset() % modulus != 0) {
  5633     nop(modulus - (offset() % modulus));
  5637 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5638   if (reachable(src)) {
  5639     andpd(dst, as_Address(src));
  5640   } else {
  5641     lea(rscratch1, src);
  5642     andpd(dst, Address(rscratch1, 0));
  5646 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5647   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5650 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5651   pushf();
  5652   if (os::is_MP())
  5653     lock();
  5654   incrementl(counter_addr);
  5655   popf();
  5658 // Writes to stack successive pages until offset reached to check for
  5659 // stack overflow + shadow pages.  This clobbers tmp.
  5660 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5661   movptr(tmp, rsp);
  5662   // Bang stack for total size given plus shadow page size.
  5663   // Bang one page at a time because large size can bang beyond yellow and
  5664   // red zones.
  5665   Label loop;
  5666   bind(loop);
  5667   movl(Address(tmp, (-os::vm_page_size())), size );
  5668   subptr(tmp, os::vm_page_size());
  5669   subl(size, os::vm_page_size());
  5670   jcc(Assembler::greater, loop);
  5672   // Bang down shadow pages too.
  5673   // The -1 because we already subtracted 1 page.
  5674   for (int i = 0; i< StackShadowPages-1; i++) {
  5675     // this could be any sized move but this is can be a debugging crumb
  5676     // so the bigger the better.
  5677     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5681 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5682   assert(UseBiasedLocking, "why call this otherwise?");
  5684   // Check for biased locking unlock case, which is a no-op
  5685   // Note: we do not have to check the thread ID for two reasons.
  5686   // First, the interpreter checks for IllegalMonitorStateException at
  5687   // a higher level. Second, if the bias was revoked while we held the
  5688   // lock, the object could not be rebiased toward another thread, so
  5689   // the bias bit would be clear.
  5690   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5691   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5692   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5693   jcc(Assembler::equal, done);
  5696 void MacroAssembler::c2bool(Register x) {
  5697   // implements x == 0 ? 0 : 1
  5698   // note: must only look at least-significant byte of x
  5699   //       since C-style booleans are stored in one byte
  5700   //       only! (was bug)
  5701   andl(x, 0xFF);
  5702   setb(Assembler::notZero, x);
  5705 // Wouldn't need if AddressLiteral version had new name
  5706 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5707   Assembler::call(L, rtype);
  5710 void MacroAssembler::call(Register entry) {
  5711   Assembler::call(entry);
  5714 void MacroAssembler::call(AddressLiteral entry) {
  5715   if (reachable(entry)) {
  5716     Assembler::call_literal(entry.target(), entry.rspec());
  5717   } else {
  5718     lea(rscratch1, entry);
  5719     Assembler::call(rscratch1);
  5723 // Implementation of call_VM versions
  5725 void MacroAssembler::call_VM(Register oop_result,
  5726                              address entry_point,
  5727                              bool check_exceptions) {
  5728   Label C, E;
  5729   call(C, relocInfo::none);
  5730   jmp(E);
  5732   bind(C);
  5733   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5734   ret(0);
  5736   bind(E);
  5739 void MacroAssembler::call_VM(Register oop_result,
  5740                              address entry_point,
  5741                              Register arg_1,
  5742                              bool check_exceptions) {
  5743   Label C, E;
  5744   call(C, relocInfo::none);
  5745   jmp(E);
  5747   bind(C);
  5748   pass_arg1(this, arg_1);
  5749   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5750   ret(0);
  5752   bind(E);
  5755 void MacroAssembler::call_VM(Register oop_result,
  5756                              address entry_point,
  5757                              Register arg_1,
  5758                              Register arg_2,
  5759                              bool check_exceptions) {
  5760   Label C, E;
  5761   call(C, relocInfo::none);
  5762   jmp(E);
  5764   bind(C);
  5766   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5768   pass_arg2(this, arg_2);
  5769   pass_arg1(this, arg_1);
  5770   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5771   ret(0);
  5773   bind(E);
  5776 void MacroAssembler::call_VM(Register oop_result,
  5777                              address entry_point,
  5778                              Register arg_1,
  5779                              Register arg_2,
  5780                              Register arg_3,
  5781                              bool check_exceptions) {
  5782   Label C, E;
  5783   call(C, relocInfo::none);
  5784   jmp(E);
  5786   bind(C);
  5788   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5789   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5790   pass_arg3(this, arg_3);
  5792   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5793   pass_arg2(this, arg_2);
  5795   pass_arg1(this, arg_1);
  5796   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5797   ret(0);
  5799   bind(E);
  5802 void MacroAssembler::call_VM(Register oop_result,
  5803                              Register last_java_sp,
  5804                              address entry_point,
  5805                              int number_of_arguments,
  5806                              bool check_exceptions) {
  5807   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5808   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5811 void MacroAssembler::call_VM(Register oop_result,
  5812                              Register last_java_sp,
  5813                              address entry_point,
  5814                              Register arg_1,
  5815                              bool check_exceptions) {
  5816   pass_arg1(this, arg_1);
  5817   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5820 void MacroAssembler::call_VM(Register oop_result,
  5821                              Register last_java_sp,
  5822                              address entry_point,
  5823                              Register arg_1,
  5824                              Register arg_2,
  5825                              bool check_exceptions) {
  5827   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5828   pass_arg2(this, arg_2);
  5829   pass_arg1(this, arg_1);
  5830   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5833 void MacroAssembler::call_VM(Register oop_result,
  5834                              Register last_java_sp,
  5835                              address entry_point,
  5836                              Register arg_1,
  5837                              Register arg_2,
  5838                              Register arg_3,
  5839                              bool check_exceptions) {
  5840   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5841   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5842   pass_arg3(this, arg_3);
  5843   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5844   pass_arg2(this, arg_2);
  5845   pass_arg1(this, arg_1);
  5846   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5849 void MacroAssembler::call_VM_base(Register oop_result,
  5850                                   Register java_thread,
  5851                                   Register last_java_sp,
  5852                                   address  entry_point,
  5853                                   int      number_of_arguments,
  5854                                   bool     check_exceptions) {
  5855   // determine java_thread register
  5856   if (!java_thread->is_valid()) {
  5857 #ifdef _LP64
  5858     java_thread = r15_thread;
  5859 #else
  5860     java_thread = rdi;
  5861     get_thread(java_thread);
  5862 #endif // LP64
  5864   // determine last_java_sp register
  5865   if (!last_java_sp->is_valid()) {
  5866     last_java_sp = rsp;
  5868   // debugging support
  5869   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5870   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5871 #ifdef ASSERT
  5872   LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");)
  5873 #endif // ASSERT
  5875   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5876   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5878   // push java thread (becomes first argument of C function)
  5880   NOT_LP64(push(java_thread); number_of_arguments++);
  5881   LP64_ONLY(mov(c_rarg0, r15_thread));
  5883   // set last Java frame before call
  5884   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5886   // Only interpreter should have to set fp
  5887   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5889   // do the call, remove parameters
  5890   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5892   // restore the thread (cannot use the pushed argument since arguments
  5893   // may be overwritten by C code generated by an optimizing compiler);
  5894   // however can use the register value directly if it is callee saved.
  5895   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5896     // rdi & rsi (also r15) are callee saved -> nothing to do
  5897 #ifdef ASSERT
  5898     guarantee(java_thread != rax, "change this code");
  5899     push(rax);
  5900     { Label L;
  5901       get_thread(rax);
  5902       cmpptr(java_thread, rax);
  5903       jcc(Assembler::equal, L);
  5904       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5905       bind(L);
  5907     pop(rax);
  5908 #endif
  5909   } else {
  5910     get_thread(java_thread);
  5912   // reset last Java frame
  5913   // Only interpreter should have to clear fp
  5914   reset_last_Java_frame(java_thread, true, false);
  5916 #ifndef CC_INTERP
  5917    // C++ interp handles this in the interpreter
  5918   check_and_handle_popframe(java_thread);
  5919   check_and_handle_earlyret(java_thread);
  5920 #endif /* CC_INTERP */
  5922   if (check_exceptions) {
  5923     // check for pending exceptions (java_thread is set upon return)
  5924     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5925 #ifndef _LP64
  5926     jump_cc(Assembler::notEqual,
  5927             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5928 #else
  5929     // This used to conditionally jump to forward_exception however it is
  5930     // possible if we relocate that the branch will not reach. So we must jump
  5931     // around so we can always reach
  5933     Label ok;
  5934     jcc(Assembler::equal, ok);
  5935     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5936     bind(ok);
  5937 #endif // LP64
  5940   // get oop result if there is one and reset the value in the thread
  5941   if (oop_result->is_valid()) {
  5942     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5943     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5944     verify_oop(oop_result, "broken oop in call_VM_base");
  5948 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5950   // Calculate the value for last_Java_sp
  5951   // somewhat subtle. call_VM does an intermediate call
  5952   // which places a return address on the stack just under the
  5953   // stack pointer as the user finsihed with it. This allows
  5954   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5955   // On 32bit we then have to push additional args on the stack to accomplish
  5956   // the actual requested call. On 64bit call_VM only can use register args
  5957   // so the only extra space is the return address that call_VM created.
  5958   // This hopefully explains the calculations here.
  5960 #ifdef _LP64
  5961   // We've pushed one address, correct last_Java_sp
  5962   lea(rax, Address(rsp, wordSize));
  5963 #else
  5964   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  5965 #endif // LP64
  5967   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  5971 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  5972   call_VM_leaf_base(entry_point, number_of_arguments);
  5975 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  5976   pass_arg0(this, arg_0);
  5977   call_VM_leaf(entry_point, 1);
  5980 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  5982   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5983   pass_arg1(this, arg_1);
  5984   pass_arg0(this, arg_0);
  5985   call_VM_leaf(entry_point, 2);
  5988 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  5989   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  5990   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5991   pass_arg2(this, arg_2);
  5992   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5993   pass_arg1(this, arg_1);
  5994   pass_arg0(this, arg_0);
  5995   call_VM_leaf(entry_point, 3);
  5998 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6001 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6004 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6005   if (reachable(src1)) {
  6006     cmpl(as_Address(src1), imm);
  6007   } else {
  6008     lea(rscratch1, src1);
  6009     cmpl(Address(rscratch1, 0), imm);
  6013 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6014   assert(!src2.is_lval(), "use cmpptr");
  6015   if (reachable(src2)) {
  6016     cmpl(src1, as_Address(src2));
  6017   } else {
  6018     lea(rscratch1, src2);
  6019     cmpl(src1, Address(rscratch1, 0));
  6023 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6024   Assembler::cmpl(src1, imm);
  6027 void MacroAssembler::cmp32(Register src1, Address src2) {
  6028   Assembler::cmpl(src1, src2);
  6031 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6032   ucomisd(opr1, opr2);
  6034   Label L;
  6035   if (unordered_is_less) {
  6036     movl(dst, -1);
  6037     jcc(Assembler::parity, L);
  6038     jcc(Assembler::below , L);
  6039     movl(dst, 0);
  6040     jcc(Assembler::equal , L);
  6041     increment(dst);
  6042   } else { // unordered is greater
  6043     movl(dst, 1);
  6044     jcc(Assembler::parity, L);
  6045     jcc(Assembler::above , L);
  6046     movl(dst, 0);
  6047     jcc(Assembler::equal , L);
  6048     decrementl(dst);
  6050   bind(L);
  6053 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6054   ucomiss(opr1, opr2);
  6056   Label L;
  6057   if (unordered_is_less) {
  6058     movl(dst, -1);
  6059     jcc(Assembler::parity, L);
  6060     jcc(Assembler::below , L);
  6061     movl(dst, 0);
  6062     jcc(Assembler::equal , L);
  6063     increment(dst);
  6064   } else { // unordered is greater
  6065     movl(dst, 1);
  6066     jcc(Assembler::parity, L);
  6067     jcc(Assembler::above , L);
  6068     movl(dst, 0);
  6069     jcc(Assembler::equal , L);
  6070     decrementl(dst);
  6072   bind(L);
  6076 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6077   if (reachable(src1)) {
  6078     cmpb(as_Address(src1), imm);
  6079   } else {
  6080     lea(rscratch1, src1);
  6081     cmpb(Address(rscratch1, 0), imm);
  6085 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6086 #ifdef _LP64
  6087   if (src2.is_lval()) {
  6088     movptr(rscratch1, src2);
  6089     Assembler::cmpq(src1, rscratch1);
  6090   } else if (reachable(src2)) {
  6091     cmpq(src1, as_Address(src2));
  6092   } else {
  6093     lea(rscratch1, src2);
  6094     Assembler::cmpq(src1, Address(rscratch1, 0));
  6096 #else
  6097   if (src2.is_lval()) {
  6098     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6099   } else {
  6100     cmpl(src1, as_Address(src2));
  6102 #endif // _LP64
  6105 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6106   assert(src2.is_lval(), "not a mem-mem compare");
  6107 #ifdef _LP64
  6108   // moves src2's literal address
  6109   movptr(rscratch1, src2);
  6110   Assembler::cmpq(src1, rscratch1);
  6111 #else
  6112   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6113 #endif // _LP64
  6116 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6117   if (reachable(adr)) {
  6118     if (os::is_MP())
  6119       lock();
  6120     cmpxchgptr(reg, as_Address(adr));
  6121   } else {
  6122     lea(rscratch1, adr);
  6123     if (os::is_MP())
  6124       lock();
  6125     cmpxchgptr(reg, Address(rscratch1, 0));
  6129 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6130   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6133 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6134   if (reachable(src)) {
  6135     comisd(dst, as_Address(src));
  6136   } else {
  6137     lea(rscratch1, src);
  6138     comisd(dst, Address(rscratch1, 0));
  6142 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6143   if (reachable(src)) {
  6144     comiss(dst, as_Address(src));
  6145   } else {
  6146     lea(rscratch1, src);
  6147     comiss(dst, Address(rscratch1, 0));
  6152 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6153   Condition negated_cond = negate_condition(cond);
  6154   Label L;
  6155   jcc(negated_cond, L);
  6156   atomic_incl(counter_addr);
  6157   bind(L);
  6160 int MacroAssembler::corrected_idivl(Register reg) {
  6161   // Full implementation of Java idiv and irem; checks for
  6162   // special case as described in JVM spec., p.243 & p.271.
  6163   // The function returns the (pc) offset of the idivl
  6164   // instruction - may be needed for implicit exceptions.
  6165   //
  6166   //         normal case                           special case
  6167   //
  6168   // input : rax,: dividend                         min_int
  6169   //         reg: divisor   (may not be rax,/rdx)   -1
  6170   //
  6171   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6172   //         rdx: remainder (= rax, irem reg)       0
  6173   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6174   const int min_int = 0x80000000;
  6175   Label normal_case, special_case;
  6177   // check for special case
  6178   cmpl(rax, min_int);
  6179   jcc(Assembler::notEqual, normal_case);
  6180   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6181   cmpl(reg, -1);
  6182   jcc(Assembler::equal, special_case);
  6184   // handle normal case
  6185   bind(normal_case);
  6186   cdql();
  6187   int idivl_offset = offset();
  6188   idivl(reg);
  6190   // normal and special case exit
  6191   bind(special_case);
  6193   return idivl_offset;
  6198 void MacroAssembler::decrementl(Register reg, int value) {
  6199   if (value == min_jint) {subl(reg, value) ; return; }
  6200   if (value <  0) { incrementl(reg, -value); return; }
  6201   if (value == 0) {                        ; return; }
  6202   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6203   /* else */      { subl(reg, value)       ; return; }
  6206 void MacroAssembler::decrementl(Address dst, int value) {
  6207   if (value == min_jint) {subl(dst, value) ; return; }
  6208   if (value <  0) { incrementl(dst, -value); return; }
  6209   if (value == 0) {                        ; return; }
  6210   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6211   /* else */      { subl(dst, value)       ; return; }
  6214 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6215   assert (shift_value > 0, "illegal shift value");
  6216   Label _is_positive;
  6217   testl (reg, reg);
  6218   jcc (Assembler::positive, _is_positive);
  6219   int offset = (1 << shift_value) - 1 ;
  6221   if (offset == 1) {
  6222     incrementl(reg);
  6223   } else {
  6224     addl(reg, offset);
  6227   bind (_is_positive);
  6228   sarl(reg, shift_value);
  6231 // !defined(COMPILER2) is because of stupid core builds
  6232 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6233 void MacroAssembler::empty_FPU_stack() {
  6234   if (VM_Version::supports_mmx()) {
  6235     emms();
  6236   } else {
  6237     for (int i = 8; i-- > 0; ) ffree(i);
  6240 #endif // !LP64 || C1 || !C2
  6243 // Defines obj, preserves var_size_in_bytes
  6244 void MacroAssembler::eden_allocate(Register obj,
  6245                                    Register var_size_in_bytes,
  6246                                    int con_size_in_bytes,
  6247                                    Register t1,
  6248                                    Label& slow_case) {
  6249   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6250   assert_different_registers(obj, var_size_in_bytes, t1);
  6251   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6252     jmp(slow_case);
  6253   } else {
  6254     Register end = t1;
  6255     Label retry;
  6256     bind(retry);
  6257     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6258     movptr(obj, heap_top);
  6259     if (var_size_in_bytes == noreg) {
  6260       lea(end, Address(obj, con_size_in_bytes));
  6261     } else {
  6262       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6264     // if end < obj then we wrapped around => object too long => slow case
  6265     cmpptr(end, obj);
  6266     jcc(Assembler::below, slow_case);
  6267     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6268     jcc(Assembler::above, slow_case);
  6269     // Compare obj with the top addr, and if still equal, store the new top addr in
  6270     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6271     // it otherwise. Use lock prefix for atomicity on MPs.
  6272     locked_cmpxchgptr(end, heap_top);
  6273     jcc(Assembler::notEqual, retry);
  6277 void MacroAssembler::enter() {
  6278   push(rbp);
  6279   mov(rbp, rsp);
  6282 void MacroAssembler::fcmp(Register tmp) {
  6283   fcmp(tmp, 1, true, true);
  6286 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6287   assert(!pop_right || pop_left, "usage error");
  6288   if (VM_Version::supports_cmov()) {
  6289     assert(tmp == noreg, "unneeded temp");
  6290     if (pop_left) {
  6291       fucomip(index);
  6292     } else {
  6293       fucomi(index);
  6295     if (pop_right) {
  6296       fpop();
  6298   } else {
  6299     assert(tmp != noreg, "need temp");
  6300     if (pop_left) {
  6301       if (pop_right) {
  6302         fcompp();
  6303       } else {
  6304         fcomp(index);
  6306     } else {
  6307       fcom(index);
  6309     // convert FPU condition into eflags condition via rax,
  6310     save_rax(tmp);
  6311     fwait(); fnstsw_ax();
  6312     sahf();
  6313     restore_rax(tmp);
  6315   // condition codes set as follows:
  6316   //
  6317   // CF (corresponds to C0) if x < y
  6318   // PF (corresponds to C2) if unordered
  6319   // ZF (corresponds to C3) if x = y
  6322 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6323   fcmp2int(dst, unordered_is_less, 1, true, true);
  6326 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6327   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6328   Label L;
  6329   if (unordered_is_less) {
  6330     movl(dst, -1);
  6331     jcc(Assembler::parity, L);
  6332     jcc(Assembler::below , L);
  6333     movl(dst, 0);
  6334     jcc(Assembler::equal , L);
  6335     increment(dst);
  6336   } else { // unordered is greater
  6337     movl(dst, 1);
  6338     jcc(Assembler::parity, L);
  6339     jcc(Assembler::above , L);
  6340     movl(dst, 0);
  6341     jcc(Assembler::equal , L);
  6342     decrementl(dst);
  6344   bind(L);
  6347 void MacroAssembler::fld_d(AddressLiteral src) {
  6348   fld_d(as_Address(src));
  6351 void MacroAssembler::fld_s(AddressLiteral src) {
  6352   fld_s(as_Address(src));
  6355 void MacroAssembler::fld_x(AddressLiteral src) {
  6356   Assembler::fld_x(as_Address(src));
  6359 void MacroAssembler::fldcw(AddressLiteral src) {
  6360   Assembler::fldcw(as_Address(src));
  6363 void MacroAssembler::fpop() {
  6364   ffree();
  6365   fincstp();
  6368 void MacroAssembler::fremr(Register tmp) {
  6369   save_rax(tmp);
  6370   { Label L;
  6371     bind(L);
  6372     fprem();
  6373     fwait(); fnstsw_ax();
  6374 #ifdef _LP64
  6375     testl(rax, 0x400);
  6376     jcc(Assembler::notEqual, L);
  6377 #else
  6378     sahf();
  6379     jcc(Assembler::parity, L);
  6380 #endif // _LP64
  6382   restore_rax(tmp);
  6383   // Result is in ST0.
  6384   // Note: fxch & fpop to get rid of ST1
  6385   // (otherwise FPU stack could overflow eventually)
  6386   fxch(1);
  6387   fpop();
  6391 void MacroAssembler::incrementl(AddressLiteral dst) {
  6392   if (reachable(dst)) {
  6393     incrementl(as_Address(dst));
  6394   } else {
  6395     lea(rscratch1, dst);
  6396     incrementl(Address(rscratch1, 0));
  6400 void MacroAssembler::incrementl(ArrayAddress dst) {
  6401   incrementl(as_Address(dst));
  6404 void MacroAssembler::incrementl(Register reg, int value) {
  6405   if (value == min_jint) {addl(reg, value) ; return; }
  6406   if (value <  0) { decrementl(reg, -value); return; }
  6407   if (value == 0) {                        ; return; }
  6408   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6409   /* else */      { addl(reg, value)       ; return; }
  6412 void MacroAssembler::incrementl(Address dst, int value) {
  6413   if (value == min_jint) {addl(dst, value) ; return; }
  6414   if (value <  0) { decrementl(dst, -value); return; }
  6415   if (value == 0) {                        ; return; }
  6416   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6417   /* else */      { addl(dst, value)       ; return; }
  6420 void MacroAssembler::jump(AddressLiteral dst) {
  6421   if (reachable(dst)) {
  6422     jmp_literal(dst.target(), dst.rspec());
  6423   } else {
  6424     lea(rscratch1, dst);
  6425     jmp(rscratch1);
  6429 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6430   if (reachable(dst)) {
  6431     InstructionMark im(this);
  6432     relocate(dst.reloc());
  6433     const int short_size = 2;
  6434     const int long_size = 6;
  6435     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6436     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6437       // 0111 tttn #8-bit disp
  6438       emit_byte(0x70 | cc);
  6439       emit_byte((offs - short_size) & 0xFF);
  6440     } else {
  6441       // 0000 1111 1000 tttn #32-bit disp
  6442       emit_byte(0x0F);
  6443       emit_byte(0x80 | cc);
  6444       emit_long(offs - long_size);
  6446   } else {
  6447 #ifdef ASSERT
  6448     warning("reversing conditional branch");
  6449 #endif /* ASSERT */
  6450     Label skip;
  6451     jccb(reverse[cc], skip);
  6452     lea(rscratch1, dst);
  6453     Assembler::jmp(rscratch1);
  6454     bind(skip);
  6458 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6459   if (reachable(src)) {
  6460     Assembler::ldmxcsr(as_Address(src));
  6461   } else {
  6462     lea(rscratch1, src);
  6463     Assembler::ldmxcsr(Address(rscratch1, 0));
  6467 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6468   int off;
  6469   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6470     off = offset();
  6471     movsbl(dst, src); // movsxb
  6472   } else {
  6473     off = load_unsigned_byte(dst, src);
  6474     shll(dst, 24);
  6475     sarl(dst, 24);
  6477   return off;
  6480 // Note: load_signed_short used to be called load_signed_word.
  6481 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6482 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6483 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6484 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6485   int off;
  6486   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6487     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6488     // version but this is what 64bit has always done. This seems to imply
  6489     // that users are only using 32bits worth.
  6490     off = offset();
  6491     movswl(dst, src); // movsxw
  6492   } else {
  6493     off = load_unsigned_short(dst, src);
  6494     shll(dst, 16);
  6495     sarl(dst, 16);
  6497   return off;
  6500 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6501   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6502   // and "3.9 Partial Register Penalties", p. 22).
  6503   int off;
  6504   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6505     off = offset();
  6506     movzbl(dst, src); // movzxb
  6507   } else {
  6508     xorl(dst, dst);
  6509     off = offset();
  6510     movb(dst, src);
  6512   return off;
  6515 // Note: load_unsigned_short used to be called load_unsigned_word.
  6516 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6517   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6518   // and "3.9 Partial Register Penalties", p. 22).
  6519   int off;
  6520   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6521     off = offset();
  6522     movzwl(dst, src); // movzxw
  6523   } else {
  6524     xorl(dst, dst);
  6525     off = offset();
  6526     movw(dst, src);
  6528   return off;
  6531 void MacroAssembler::load_sized_value(Register dst, Address src,
  6532                                       size_t size_in_bytes, bool is_signed) {
  6533   switch (size_in_bytes) {
  6534 #ifndef _LP64
  6535   // For case 8, caller is responsible for manually loading
  6536   // the second word into another register.
  6537   case  8: movl(dst, src); break;
  6538 #else
  6539   case  8: movq(dst, src); break;
  6540 #endif
  6541   case  4: movl(dst, src); break;
  6542   case  2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  6543   case  1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  6544   default: ShouldNotReachHere();
  6548 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6549   if (reachable(dst)) {
  6550     movl(as_Address(dst), src);
  6551   } else {
  6552     lea(rscratch1, dst);
  6553     movl(Address(rscratch1, 0), src);
  6557 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6558   if (reachable(src)) {
  6559     movl(dst, as_Address(src));
  6560   } else {
  6561     lea(rscratch1, src);
  6562     movl(dst, Address(rscratch1, 0));
  6566 // C++ bool manipulation
  6568 void MacroAssembler::movbool(Register dst, Address src) {
  6569   if(sizeof(bool) == 1)
  6570     movb(dst, src);
  6571   else if(sizeof(bool) == 2)
  6572     movw(dst, src);
  6573   else if(sizeof(bool) == 4)
  6574     movl(dst, src);
  6575   else
  6576     // unsupported
  6577     ShouldNotReachHere();
  6580 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6581   if(sizeof(bool) == 1)
  6582     movb(dst, (int) boolconst);
  6583   else if(sizeof(bool) == 2)
  6584     movw(dst, (int) boolconst);
  6585   else if(sizeof(bool) == 4)
  6586     movl(dst, (int) boolconst);
  6587   else
  6588     // unsupported
  6589     ShouldNotReachHere();
  6592 void MacroAssembler::movbool(Address dst, Register src) {
  6593   if(sizeof(bool) == 1)
  6594     movb(dst, src);
  6595   else if(sizeof(bool) == 2)
  6596     movw(dst, src);
  6597   else if(sizeof(bool) == 4)
  6598     movl(dst, src);
  6599   else
  6600     // unsupported
  6601     ShouldNotReachHere();
  6604 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6605   movb(as_Address(dst), src);
  6608 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6609   if (reachable(src)) {
  6610     if (UseXmmLoadAndClearUpper) {
  6611       movsd (dst, as_Address(src));
  6612     } else {
  6613       movlpd(dst, as_Address(src));
  6615   } else {
  6616     lea(rscratch1, src);
  6617     if (UseXmmLoadAndClearUpper) {
  6618       movsd (dst, Address(rscratch1, 0));
  6619     } else {
  6620       movlpd(dst, Address(rscratch1, 0));
  6625 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6626   if (reachable(src)) {
  6627     movss(dst, as_Address(src));
  6628   } else {
  6629     lea(rscratch1, src);
  6630     movss(dst, Address(rscratch1, 0));
  6634 void MacroAssembler::movptr(Register dst, Register src) {
  6635   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6638 void MacroAssembler::movptr(Register dst, Address src) {
  6639   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6642 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6643 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6644   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6647 void MacroAssembler::movptr(Address dst, Register src) {
  6648   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6651 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6652   if (reachable(src)) {
  6653     movss(dst, as_Address(src));
  6654   } else {
  6655     lea(rscratch1, src);
  6656     movss(dst, Address(rscratch1, 0));
  6660 void MacroAssembler::null_check(Register reg, int offset) {
  6661   if (needs_explicit_null_check(offset)) {
  6662     // provoke OS NULL exception if reg = NULL by
  6663     // accessing M[reg] w/o changing any (non-CC) registers
  6664     // NOTE: cmpl is plenty here to provoke a segv
  6665     cmpptr(rax, Address(reg, 0));
  6666     // Note: should probably use testl(rax, Address(reg, 0));
  6667     //       may be shorter code (however, this version of
  6668     //       testl needs to be implemented first)
  6669   } else {
  6670     // nothing to do, (later) access of M[reg + offset]
  6671     // will provoke OS NULL exception if reg = NULL
  6675 void MacroAssembler::os_breakpoint() {
  6676   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6677   // (e.g., MSVC can't call ps() otherwise)
  6678   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6681 void MacroAssembler::pop_CPU_state() {
  6682   pop_FPU_state();
  6683   pop_IU_state();
  6686 void MacroAssembler::pop_FPU_state() {
  6687   NOT_LP64(frstor(Address(rsp, 0));)
  6688   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6689   addptr(rsp, FPUStateSizeInWords * wordSize);
  6692 void MacroAssembler::pop_IU_state() {
  6693   popa();
  6694   LP64_ONLY(addq(rsp, 8));
  6695   popf();
  6698 // Save Integer and Float state
  6699 // Warning: Stack must be 16 byte aligned (64bit)
  6700 void MacroAssembler::push_CPU_state() {
  6701   push_IU_state();
  6702   push_FPU_state();
  6705 void MacroAssembler::push_FPU_state() {
  6706   subptr(rsp, FPUStateSizeInWords * wordSize);
  6707 #ifndef _LP64
  6708   fnsave(Address(rsp, 0));
  6709   fwait();
  6710 #else
  6711   fxsave(Address(rsp, 0));
  6712 #endif // LP64
  6715 void MacroAssembler::push_IU_state() {
  6716   // Push flags first because pusha kills them
  6717   pushf();
  6718   // Make sure rsp stays 16-byte aligned
  6719   LP64_ONLY(subq(rsp, 8));
  6720   pusha();
  6723 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6724   // determine java_thread register
  6725   if (!java_thread->is_valid()) {
  6726     java_thread = rdi;
  6727     get_thread(java_thread);
  6729   // we must set sp to zero to clear frame
  6730   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6731   if (clear_fp) {
  6732     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6735   if (clear_pc)
  6736     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6740 void MacroAssembler::restore_rax(Register tmp) {
  6741   if (tmp == noreg) pop(rax);
  6742   else if (tmp != rax) mov(rax, tmp);
  6745 void MacroAssembler::round_to(Register reg, int modulus) {
  6746   addptr(reg, modulus - 1);
  6747   andptr(reg, -modulus);
  6750 void MacroAssembler::save_rax(Register tmp) {
  6751   if (tmp == noreg) push(rax);
  6752   else if (tmp != rax) mov(tmp, rax);
  6755 // Write serialization page so VM thread can do a pseudo remote membar.
  6756 // We use the current thread pointer to calculate a thread specific
  6757 // offset to write to within the page. This minimizes bus traffic
  6758 // due to cache line collision.
  6759 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6760   movl(tmp, thread);
  6761   shrl(tmp, os::get_serialize_page_shift_count());
  6762   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6764   Address index(noreg, tmp, Address::times_1);
  6765   ExternalAddress page(os::get_memory_serialize_page());
  6767   // Size of store must match masking code above
  6768   movl(as_Address(ArrayAddress(page, index)), tmp);
  6771 // Calls to C land
  6772 //
  6773 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6774 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6775 // has to be reset to 0. This is required to allow proper stack traversal.
  6776 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6777                                          Register last_java_sp,
  6778                                          Register last_java_fp,
  6779                                          address  last_java_pc) {
  6780   // determine java_thread register
  6781   if (!java_thread->is_valid()) {
  6782     java_thread = rdi;
  6783     get_thread(java_thread);
  6785   // determine last_java_sp register
  6786   if (!last_java_sp->is_valid()) {
  6787     last_java_sp = rsp;
  6790   // last_java_fp is optional
  6792   if (last_java_fp->is_valid()) {
  6793     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6796   // last_java_pc is optional
  6798   if (last_java_pc != NULL) {
  6799     lea(Address(java_thread,
  6800                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6801         InternalAddress(last_java_pc));
  6804   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6807 void MacroAssembler::shlptr(Register dst, int imm8) {
  6808   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6811 void MacroAssembler::shrptr(Register dst, int imm8) {
  6812   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6815 void MacroAssembler::sign_extend_byte(Register reg) {
  6816   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6817     movsbl(reg, reg); // movsxb
  6818   } else {
  6819     shll(reg, 24);
  6820     sarl(reg, 24);
  6824 void MacroAssembler::sign_extend_short(Register reg) {
  6825   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6826     movswl(reg, reg); // movsxw
  6827   } else {
  6828     shll(reg, 16);
  6829     sarl(reg, 16);
  6833 //////////////////////////////////////////////////////////////////////////////////
  6834 #ifndef SERIALGC
  6836 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6837 #ifndef _LP64
  6838                                           Register thread,
  6839 #endif
  6840                                           Register tmp,
  6841                                           Register tmp2,
  6842                                           bool tosca_live) {
  6843   LP64_ONLY(Register thread = r15_thread;)
  6844   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6845                                        PtrQueue::byte_offset_of_active()));
  6847   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6848                                        PtrQueue::byte_offset_of_index()));
  6849   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6850                                        PtrQueue::byte_offset_of_buf()));
  6853   Label done;
  6854   Label runtime;
  6856   // if (!marking_in_progress) goto done;
  6857   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6858     cmpl(in_progress, 0);
  6859   } else {
  6860     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6861     cmpb(in_progress, 0);
  6863   jcc(Assembler::equal, done);
  6865   // if (x.f == NULL) goto done;
  6866 #ifdef _LP64
  6867   load_heap_oop(tmp2, Address(obj, 0));
  6868 #else
  6869   movptr(tmp2, Address(obj, 0));
  6870 #endif
  6871   cmpptr(tmp2, (int32_t) NULL_WORD);
  6872   jcc(Assembler::equal, done);
  6874   // Can we store original value in the thread's buffer?
  6876 #ifdef _LP64
  6877   movslq(tmp, index);
  6878   cmpq(tmp, 0);
  6879 #else
  6880   cmpl(index, 0);
  6881 #endif
  6882   jcc(Assembler::equal, runtime);
  6883 #ifdef _LP64
  6884   subq(tmp, wordSize);
  6885   movl(index, tmp);
  6886   addq(tmp, buffer);
  6887 #else
  6888   subl(index, wordSize);
  6889   movl(tmp, buffer);
  6890   addl(tmp, index);
  6891 #endif
  6892   movptr(Address(tmp, 0), tmp2);
  6893   jmp(done);
  6894   bind(runtime);
  6895   // save the live input values
  6896   if(tosca_live) push(rax);
  6897   push(obj);
  6898 #ifdef _LP64
  6899   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, r15_thread);
  6900 #else
  6901   push(thread);
  6902   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6903   pop(thread);
  6904 #endif
  6905   pop(obj);
  6906   if(tosca_live) pop(rax);
  6907   bind(done);
  6911 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6912                                            Register new_val,
  6913 #ifndef _LP64
  6914                                            Register thread,
  6915 #endif
  6916                                            Register tmp,
  6917                                            Register tmp2) {
  6919   LP64_ONLY(Register thread = r15_thread;)
  6920   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6921                                        PtrQueue::byte_offset_of_index()));
  6922   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6923                                        PtrQueue::byte_offset_of_buf()));
  6924   BarrierSet* bs = Universe::heap()->barrier_set();
  6925   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6926   Label done;
  6927   Label runtime;
  6929   // Does store cross heap regions?
  6931   movptr(tmp, store_addr);
  6932   xorptr(tmp, new_val);
  6933   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  6934   jcc(Assembler::equal, done);
  6936   // crosses regions, storing NULL?
  6938   cmpptr(new_val, (int32_t) NULL_WORD);
  6939   jcc(Assembler::equal, done);
  6941   // storing region crossing non-NULL, is card already dirty?
  6943   ExternalAddress cardtable((address) ct->byte_map_base);
  6944   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6945 #ifdef _LP64
  6946   const Register card_addr = tmp;
  6948   movq(card_addr, store_addr);
  6949   shrq(card_addr, CardTableModRefBS::card_shift);
  6951   lea(tmp2, cardtable);
  6953   // get the address of the card
  6954   addq(card_addr, tmp2);
  6955 #else
  6956   const Register card_index = tmp;
  6958   movl(card_index, store_addr);
  6959   shrl(card_index, CardTableModRefBS::card_shift);
  6961   Address index(noreg, card_index, Address::times_1);
  6962   const Register card_addr = tmp;
  6963   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  6964 #endif
  6965   cmpb(Address(card_addr, 0), 0);
  6966   jcc(Assembler::equal, done);
  6968   // storing a region crossing, non-NULL oop, card is clean.
  6969   // dirty card and log.
  6971   movb(Address(card_addr, 0), 0);
  6973   cmpl(queue_index, 0);
  6974   jcc(Assembler::equal, runtime);
  6975   subl(queue_index, wordSize);
  6976   movptr(tmp2, buffer);
  6977 #ifdef _LP64
  6978   movslq(rscratch1, queue_index);
  6979   addq(tmp2, rscratch1);
  6980   movq(Address(tmp2, 0), card_addr);
  6981 #else
  6982   addl(tmp2, queue_index);
  6983   movl(Address(tmp2, 0), card_index);
  6984 #endif
  6985   jmp(done);
  6987   bind(runtime);
  6988   // save the live input values
  6989   push(store_addr);
  6990   push(new_val);
  6991 #ifdef _LP64
  6992   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  6993 #else
  6994   push(thread);
  6995   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  6996   pop(thread);
  6997 #endif
  6998   pop(new_val);
  6999   pop(store_addr);
  7001   bind(done);
  7005 #endif // SERIALGC
  7006 //////////////////////////////////////////////////////////////////////////////////
  7009 void MacroAssembler::store_check(Register obj) {
  7010   // Does a store check for the oop in register obj. The content of
  7011   // register obj is destroyed afterwards.
  7012   store_check_part_1(obj);
  7013   store_check_part_2(obj);
  7016 void MacroAssembler::store_check(Register obj, Address dst) {
  7017   store_check(obj);
  7021 // split the store check operation so that other instructions can be scheduled inbetween
  7022 void MacroAssembler::store_check_part_1(Register obj) {
  7023   BarrierSet* bs = Universe::heap()->barrier_set();
  7024   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7025   shrptr(obj, CardTableModRefBS::card_shift);
  7028 void MacroAssembler::store_check_part_2(Register obj) {
  7029   BarrierSet* bs = Universe::heap()->barrier_set();
  7030   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7031   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7032   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7034   // The calculation for byte_map_base is as follows:
  7035   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7036   // So this essentially converts an address to a displacement and
  7037   // it will never need to be relocated. On 64bit however the value may be too
  7038   // large for a 32bit displacement
  7040   intptr_t disp = (intptr_t) ct->byte_map_base;
  7041   if (is_simm32(disp)) {
  7042     Address cardtable(noreg, obj, Address::times_1, disp);
  7043     movb(cardtable, 0);
  7044   } else {
  7045     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7046     // displacement and done in a single instruction given favorable mapping and
  7047     // a smarter version of as_Address. Worst case it is two instructions which
  7048     // is no worse off then loading disp into a register and doing as a simple
  7049     // Address() as above.
  7050     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7051     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7052     // in some cases we'll get a single instruction version.
  7054     ExternalAddress cardtable((address)disp);
  7055     Address index(noreg, obj, Address::times_1);
  7056     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7060 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7061   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7064 void MacroAssembler::subptr(Register dst, Register src) {
  7065   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7068 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  7069   // src2 must be rval
  7071   if (reachable(src2)) {
  7072     testl(src1, as_Address(src2));
  7073   } else {
  7074     lea(rscratch1, src2);
  7075     testl(src1, Address(rscratch1, 0));
  7079 // C++ bool manipulation
  7080 void MacroAssembler::testbool(Register dst) {
  7081   if(sizeof(bool) == 1)
  7082     testb(dst, 0xff);
  7083   else if(sizeof(bool) == 2) {
  7084     // testw implementation needed for two byte bools
  7085     ShouldNotReachHere();
  7086   } else if(sizeof(bool) == 4)
  7087     testl(dst, dst);
  7088   else
  7089     // unsupported
  7090     ShouldNotReachHere();
  7093 void MacroAssembler::testptr(Register dst, Register src) {
  7094   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7097 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7098 void MacroAssembler::tlab_allocate(Register obj,
  7099                                    Register var_size_in_bytes,
  7100                                    int con_size_in_bytes,
  7101                                    Register t1,
  7102                                    Register t2,
  7103                                    Label& slow_case) {
  7104   assert_different_registers(obj, t1, t2);
  7105   assert_different_registers(obj, var_size_in_bytes, t1);
  7106   Register end = t2;
  7107   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7109   verify_tlab();
  7111   NOT_LP64(get_thread(thread));
  7113   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7114   if (var_size_in_bytes == noreg) {
  7115     lea(end, Address(obj, con_size_in_bytes));
  7116   } else {
  7117     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7119   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7120   jcc(Assembler::above, slow_case);
  7122   // update the tlab top pointer
  7123   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7125   // recover var_size_in_bytes if necessary
  7126   if (var_size_in_bytes == end) {
  7127     subptr(var_size_in_bytes, obj);
  7129   verify_tlab();
  7132 // Preserves rbx, and rdx.
  7133 Register MacroAssembler::tlab_refill(Label& retry,
  7134                                      Label& try_eden,
  7135                                      Label& slow_case) {
  7136   Register top = rax;
  7137   Register t1  = rcx;
  7138   Register t2  = rsi;
  7139   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7140   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7141   Label do_refill, discard_tlab;
  7143   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7144     // No allocation in the shared eden.
  7145     jmp(slow_case);
  7148   NOT_LP64(get_thread(thread_reg));
  7150   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7151   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7153   // calculate amount of free space
  7154   subptr(t1, top);
  7155   shrptr(t1, LogHeapWordSize);
  7157   // Retain tlab and allocate object in shared space if
  7158   // the amount free in the tlab is too large to discard.
  7159   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7160   jcc(Assembler::lessEqual, discard_tlab);
  7162   // Retain
  7163   // %%% yuck as movptr...
  7164   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7165   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7166   if (TLABStats) {
  7167     // increment number of slow_allocations
  7168     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7170   jmp(try_eden);
  7172   bind(discard_tlab);
  7173   if (TLABStats) {
  7174     // increment number of refills
  7175     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7176     // accumulate wastage -- t1 is amount free in tlab
  7177     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7180   // if tlab is currently allocated (top or end != null) then
  7181   // fill [top, end + alignment_reserve) with array object
  7182   testptr(top, top);
  7183   jcc(Assembler::zero, do_refill);
  7185   // set up the mark word
  7186   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7187   // set the length to the remaining space
  7188   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7189   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7190   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7191   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7192   // set klass to intArrayKlass
  7193   // dubious reloc why not an oop reloc?
  7194   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  7195   // store klass last.  concurrent gcs assumes klass length is valid if
  7196   // klass field is not null.
  7197   store_klass(top, t1);
  7199   movptr(t1, top);
  7200   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7201   incr_allocated_bytes(thread_reg, t1, 0);
  7203   // refill the tlab with an eden allocation
  7204   bind(do_refill);
  7205   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7206   shlptr(t1, LogHeapWordSize);
  7207   // allocate new tlab, address returned in top
  7208   eden_allocate(top, t1, 0, t2, slow_case);
  7210   // Check that t1 was preserved in eden_allocate.
  7211 #ifdef ASSERT
  7212   if (UseTLAB) {
  7213     Label ok;
  7214     Register tsize = rsi;
  7215     assert_different_registers(tsize, thread_reg, t1);
  7216     push(tsize);
  7217     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7218     shlptr(tsize, LogHeapWordSize);
  7219     cmpptr(t1, tsize);
  7220     jcc(Assembler::equal, ok);
  7221     stop("assert(t1 != tlab size)");
  7222     should_not_reach_here();
  7224     bind(ok);
  7225     pop(tsize);
  7227 #endif
  7228   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7229   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7230   addptr(top, t1);
  7231   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7232   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7233   verify_tlab();
  7234   jmp(retry);
  7236   return thread_reg; // for use by caller
  7239 void MacroAssembler::incr_allocated_bytes(Register thread,
  7240                                           Register var_size_in_bytes,
  7241                                           int con_size_in_bytes,
  7242                                           Register t1) {
  7243 #ifdef _LP64
  7244   if (var_size_in_bytes->is_valid()) {
  7245     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  7246   } else {
  7247     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  7249 #else
  7250   if (!thread->is_valid()) {
  7251     assert(t1->is_valid(), "need temp reg");
  7252     thread = t1;
  7253     get_thread(thread);
  7256   if (var_size_in_bytes->is_valid()) {
  7257     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  7258   } else {
  7259     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  7261   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  7262 #endif
  7265 static const double     pi_4 =  0.7853981633974483;
  7267 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7268   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7269   // was attempted in this code; unfortunately it appears that the
  7270   // switch to 80-bit precision and back causes this to be
  7271   // unprofitable compared with simply performing a runtime call if
  7272   // the argument is out of the (-pi/4, pi/4) range.
  7274   Register tmp = noreg;
  7275   if (!VM_Version::supports_cmov()) {
  7276     // fcmp needs a temporary so preserve rbx,
  7277     tmp = rbx;
  7278     push(tmp);
  7281   Label slow_case, done;
  7283   ExternalAddress pi4_adr = (address)&pi_4;
  7284   if (reachable(pi4_adr)) {
  7285     // x ?<= pi/4
  7286     fld_d(pi4_adr);
  7287     fld_s(1);                // Stack:  X  PI/4  X
  7288     fabs();                  // Stack: |X| PI/4  X
  7289     fcmp(tmp);
  7290     jcc(Assembler::above, slow_case);
  7292     // fastest case: -pi/4 <= x <= pi/4
  7293     switch(trig) {
  7294     case 's':
  7295       fsin();
  7296       break;
  7297     case 'c':
  7298       fcos();
  7299       break;
  7300     case 't':
  7301       ftan();
  7302       break;
  7303     default:
  7304       assert(false, "bad intrinsic");
  7305       break;
  7307     jmp(done);
  7310   // slow case: runtime call
  7311   bind(slow_case);
  7312   // Preserve registers across runtime call
  7313   pusha();
  7314   int incoming_argument_and_return_value_offset = -1;
  7315   if (num_fpu_regs_in_use > 1) {
  7316     // Must preserve all other FPU regs (could alternatively convert
  7317     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7318     // FPU state, but can not trust C compiler)
  7319     NEEDS_CLEANUP;
  7320     // NOTE that in this case we also push the incoming argument to
  7321     // the stack and restore it later; we also use this stack slot to
  7322     // hold the return value from dsin or dcos.
  7323     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7324       subptr(rsp, sizeof(jdouble));
  7325       fstp_d(Address(rsp, 0));
  7327     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7328     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7330   subptr(rsp, sizeof(jdouble));
  7331   fstp_d(Address(rsp, 0));
  7332 #ifdef _LP64
  7333   movdbl(xmm0, Address(rsp, 0));
  7334 #endif // _LP64
  7336   // NOTE: we must not use call_VM_leaf here because that requires a
  7337   // complete interpreter frame in debug mode -- same bug as 4387334
  7338   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7339   // do proper 64bit abi
  7341   NEEDS_CLEANUP;
  7342   // Need to add stack banging before this runtime call if it needs to
  7343   // be taken; however, there is no generic stack banging routine at
  7344   // the MacroAssembler level
  7345   switch(trig) {
  7346   case 's':
  7348       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7350     break;
  7351   case 'c':
  7353       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7355     break;
  7356   case 't':
  7358       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7360     break;
  7361   default:
  7362     assert(false, "bad intrinsic");
  7363     break;
  7365 #ifdef _LP64
  7366     movsd(Address(rsp, 0), xmm0);
  7367     fld_d(Address(rsp, 0));
  7368 #endif // _LP64
  7369   addptr(rsp, sizeof(jdouble));
  7370   if (num_fpu_regs_in_use > 1) {
  7371     // Must save return value to stack and then restore entire FPU stack
  7372     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7373     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7374       fld_d(Address(rsp, 0));
  7375       addptr(rsp, sizeof(jdouble));
  7378   popa();
  7380   // Come here with result in F-TOS
  7381   bind(done);
  7383   if (tmp != noreg) {
  7384     pop(tmp);
  7389 // Look up the method for a megamorphic invokeinterface call.
  7390 // The target method is determined by <intf_klass, itable_index>.
  7391 // The receiver klass is in recv_klass.
  7392 // On success, the result will be in method_result, and execution falls through.
  7393 // On failure, execution transfers to the given label.
  7394 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7395                                              Register intf_klass,
  7396                                              RegisterOrConstant itable_index,
  7397                                              Register method_result,
  7398                                              Register scan_temp,
  7399                                              Label& L_no_such_interface) {
  7400   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7401   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7402          "caller must use same register for non-constant itable index as for method");
  7404   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7405   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7406   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7407   int scan_step   = itableOffsetEntry::size() * wordSize;
  7408   int vte_size    = vtableEntry::size() * wordSize;
  7409   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7410   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7412   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7414   // %%% Could store the aligned, prescaled offset in the klassoop.
  7415   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7416   if (HeapWordsPerLong > 1) {
  7417     // Round up to align_object_offset boundary
  7418     // see code for instanceKlass::start_of_itable!
  7419     round_to(scan_temp, BytesPerLong);
  7422   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7423   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7424   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7426   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7427   //   if (scan->interface() == intf) {
  7428   //     result = (klass + scan->offset() + itable_index);
  7429   //   }
  7430   // }
  7431   Label search, found_method;
  7433   for (int peel = 1; peel >= 0; peel--) {
  7434     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7435     cmpptr(intf_klass, method_result);
  7437     if (peel) {
  7438       jccb(Assembler::equal, found_method);
  7439     } else {
  7440       jccb(Assembler::notEqual, search);
  7441       // (invert the test to fall through to found_method...)
  7444     if (!peel)  break;
  7446     bind(search);
  7448     // Check that the previous entry is non-null.  A null entry means that
  7449     // the receiver class doesn't implement the interface, and wasn't the
  7450     // same as when the caller was compiled.
  7451     testptr(method_result, method_result);
  7452     jcc(Assembler::zero, L_no_such_interface);
  7453     addptr(scan_temp, scan_step);
  7456   bind(found_method);
  7458   // Got a hit.
  7459   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7460   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7464 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7465                            Register super_klass,
  7466                            Register temp_reg,
  7467                            Label& L_success) {
  7468   Label L_failure;
  7469   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7470   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7471   bind(L_failure);
  7475 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7476                                                    Register super_klass,
  7477                                                    Register temp_reg,
  7478                                                    Label* L_success,
  7479                                                    Label* L_failure,
  7480                                                    Label* L_slow_path,
  7481                                         RegisterOrConstant super_check_offset) {
  7482   assert_different_registers(sub_klass, super_klass, temp_reg);
  7483   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7484   if (super_check_offset.is_register()) {
  7485     assert_different_registers(sub_klass, super_klass,
  7486                                super_check_offset.as_register());
  7487   } else if (must_load_sco) {
  7488     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7491   Label L_fallthrough;
  7492   int label_nulls = 0;
  7493   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7494   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7495   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7496   assert(label_nulls <= 1, "at most one NULL in the batch");
  7498   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7499                    Klass::secondary_super_cache_offset_in_bytes());
  7500   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7501                     Klass::super_check_offset_offset_in_bytes());
  7502   Address super_check_offset_addr(super_klass, sco_offset);
  7504   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7505   // range of a jccb.  If this routine grows larger, reconsider at
  7506   // least some of these.
  7507 #define local_jcc(assembler_cond, label)                                \
  7508   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7509   else                             jcc( assembler_cond, label) /*omit semi*/
  7511   // Hacked jmp, which may only be used just before L_fallthrough.
  7512 #define final_jmp(label)                                                \
  7513   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7514   else                            jmp(label)                /*omit semi*/
  7516   // If the pointers are equal, we are done (e.g., String[] elements).
  7517   // This self-check enables sharing of secondary supertype arrays among
  7518   // non-primary types such as array-of-interface.  Otherwise, each such
  7519   // type would need its own customized SSA.
  7520   // We move this check to the front of the fast path because many
  7521   // type checks are in fact trivially successful in this manner,
  7522   // so we get a nicely predicted branch right at the start of the check.
  7523   cmpptr(sub_klass, super_klass);
  7524   local_jcc(Assembler::equal, *L_success);
  7526   // Check the supertype display:
  7527   if (must_load_sco) {
  7528     // Positive movl does right thing on LP64.
  7529     movl(temp_reg, super_check_offset_addr);
  7530     super_check_offset = RegisterOrConstant(temp_reg);
  7532   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7533   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7535   // This check has worked decisively for primary supers.
  7536   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7537   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7538   // This works in the same check above because of a tricky aliasing
  7539   // between the super_cache and the primary super display elements.
  7540   // (The 'super_check_addr' can address either, as the case requires.)
  7541   // Note that the cache is updated below if it does not help us find
  7542   // what we need immediately.
  7543   // So if it was a primary super, we can just fail immediately.
  7544   // Otherwise, it's the slow path for us (no success at this point).
  7546   if (super_check_offset.is_register()) {
  7547     local_jcc(Assembler::equal, *L_success);
  7548     cmpl(super_check_offset.as_register(), sc_offset);
  7549     if (L_failure == &L_fallthrough) {
  7550       local_jcc(Assembler::equal, *L_slow_path);
  7551     } else {
  7552       local_jcc(Assembler::notEqual, *L_failure);
  7553       final_jmp(*L_slow_path);
  7555   } else if (super_check_offset.as_constant() == sc_offset) {
  7556     // Need a slow path; fast failure is impossible.
  7557     if (L_slow_path == &L_fallthrough) {
  7558       local_jcc(Assembler::equal, *L_success);
  7559     } else {
  7560       local_jcc(Assembler::notEqual, *L_slow_path);
  7561       final_jmp(*L_success);
  7563   } else {
  7564     // No slow path; it's a fast decision.
  7565     if (L_failure == &L_fallthrough) {
  7566       local_jcc(Assembler::equal, *L_success);
  7567     } else {
  7568       local_jcc(Assembler::notEqual, *L_failure);
  7569       final_jmp(*L_success);
  7573   bind(L_fallthrough);
  7575 #undef local_jcc
  7576 #undef final_jmp
  7580 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7581                                                    Register super_klass,
  7582                                                    Register temp_reg,
  7583                                                    Register temp2_reg,
  7584                                                    Label* L_success,
  7585                                                    Label* L_failure,
  7586                                                    bool set_cond_codes) {
  7587   assert_different_registers(sub_klass, super_klass, temp_reg);
  7588   if (temp2_reg != noreg)
  7589     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7590 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7592   Label L_fallthrough;
  7593   int label_nulls = 0;
  7594   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7595   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7596   assert(label_nulls <= 1, "at most one NULL in the batch");
  7598   // a couple of useful fields in sub_klass:
  7599   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7600                    Klass::secondary_supers_offset_in_bytes());
  7601   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7602                    Klass::secondary_super_cache_offset_in_bytes());
  7603   Address secondary_supers_addr(sub_klass, ss_offset);
  7604   Address super_cache_addr(     sub_klass, sc_offset);
  7606   // Do a linear scan of the secondary super-klass chain.
  7607   // This code is rarely used, so simplicity is a virtue here.
  7608   // The repne_scan instruction uses fixed registers, which we must spill.
  7609   // Don't worry too much about pre-existing connections with the input regs.
  7611   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7612   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7614   // Get super_klass value into rax (even if it was in rdi or rcx).
  7615   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7616   if (super_klass != rax || UseCompressedOops) {
  7617     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7618     mov(rax, super_klass);
  7620   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7621   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7623 #ifndef PRODUCT
  7624   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7625   ExternalAddress pst_counter_addr((address) pst_counter);
  7626   NOT_LP64(  incrementl(pst_counter_addr) );
  7627   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7628   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7629 #endif //PRODUCT
  7631   // We will consult the secondary-super array.
  7632   movptr(rdi, secondary_supers_addr);
  7633   // Load the array length.  (Positive movl does right thing on LP64.)
  7634   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7635   // Skip to start of data.
  7636   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7638   // Scan RCX words at [RDI] for an occurrence of RAX.
  7639   // Set NZ/Z based on last compare.
  7640   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  7641   // not change flags (only scas instruction which is repeated sets flags).
  7642   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  7643 #ifdef _LP64
  7644   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7645   // and we store values in objArrays always encoded, thus we need to encode
  7646   // the value of rax before repne.  Note that rax is dead after the repne.
  7647   if (UseCompressedOops) {
  7648     encode_heap_oop_not_null(rax); // Changes flags.
  7649     // The superclass is never null; it would be a basic system error if a null
  7650     // pointer were to sneak in here.  Note that we have already loaded the
  7651     // Klass::super_check_offset from the super_klass in the fast path,
  7652     // so if there is a null in that register, we are already in the afterlife.
  7653     testl(rax,rax); // Set Z = 0
  7654     repne_scanl();
  7655   } else
  7656 #endif // _LP64
  7658     testptr(rax,rax); // Set Z = 0
  7659     repne_scan();
  7661   // Unspill the temp. registers:
  7662   if (pushed_rdi)  pop(rdi);
  7663   if (pushed_rcx)  pop(rcx);
  7664   if (pushed_rax)  pop(rax);
  7666   if (set_cond_codes) {
  7667     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7668     assert(!pushed_rdi, "rdi must be left non-NULL");
  7669     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7672   if (L_failure == &L_fallthrough)
  7673         jccb(Assembler::notEqual, *L_failure);
  7674   else  jcc(Assembler::notEqual, *L_failure);
  7676   // Success.  Cache the super we found and proceed in triumph.
  7677   movptr(super_cache_addr, super_klass);
  7679   if (L_success != &L_fallthrough) {
  7680     jmp(*L_success);
  7683 #undef IS_A_TEMP
  7685   bind(L_fallthrough);
  7689 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7690   ucomisd(dst, as_Address(src));
  7693 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7694   ucomiss(dst, as_Address(src));
  7697 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7698   if (reachable(src)) {
  7699     xorpd(dst, as_Address(src));
  7700   } else {
  7701     lea(rscratch1, src);
  7702     xorpd(dst, Address(rscratch1, 0));
  7706 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7707   if (reachable(src)) {
  7708     xorps(dst, as_Address(src));
  7709   } else {
  7710     lea(rscratch1, src);
  7711     xorps(dst, Address(rscratch1, 0));
  7715 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7716   if (!VerifyOops) return;
  7718   // Pass register number to verify_oop_subroutine
  7719   char* b = new char[strlen(s) + 50];
  7720   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7721 #ifdef _LP64
  7722   push(rscratch1);                    // save r10, trashed by movptr()
  7723 #endif
  7724   push(rax);                          // save rax,
  7725   push(reg);                          // pass register argument
  7726   ExternalAddress buffer((address) b);
  7727   // avoid using pushptr, as it modifies scratch registers
  7728   // and our contract is not to modify anything
  7729   movptr(rax, buffer.addr());
  7730   push(rax);
  7731   // call indirectly to solve generation ordering problem
  7732   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7733   call(rax);
  7734   // Caller pops the arguments (oop, message) and restores rax, r10
  7738 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7739                                                       Register tmp,
  7740                                                       int offset) {
  7741   intptr_t value = *delayed_value_addr;
  7742   if (value != 0)
  7743     return RegisterOrConstant(value + offset);
  7745   // load indirectly to solve generation ordering problem
  7746   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7748 #ifdef ASSERT
  7749   { Label L;
  7750     testptr(tmp, tmp);
  7751     if (WizardMode) {
  7752       jcc(Assembler::notZero, L);
  7753       char* buf = new char[40];
  7754       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  7755       stop(buf);
  7756     } else {
  7757       jccb(Assembler::notZero, L);
  7758       hlt();
  7760     bind(L);
  7762 #endif
  7764   if (offset != 0)
  7765     addptr(tmp, offset);
  7767   return RegisterOrConstant(tmp);
  7771 // registers on entry:
  7772 //  - rax ('check' register): required MethodType
  7773 //  - rcx: method handle
  7774 //  - rdx, rsi, or ?: killable temp
  7775 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  7776                                               Register temp_reg,
  7777                                               Label& wrong_method_type) {
  7778   Address type_addr(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg));
  7779   // compare method type against that of the receiver
  7780   if (UseCompressedOops) {
  7781     load_heap_oop(temp_reg, type_addr);
  7782     cmpptr(mtype_reg, temp_reg);
  7783   } else {
  7784     cmpptr(mtype_reg, type_addr);
  7786   jcc(Assembler::notEqual, wrong_method_type);
  7790 // A method handle has a "vmslots" field which gives the size of its
  7791 // argument list in JVM stack slots.  This field is either located directly
  7792 // in every method handle, or else is indirectly accessed through the
  7793 // method handle's MethodType.  This macro hides the distinction.
  7794 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  7795                                                 Register temp_reg) {
  7796   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  7797   // load mh.type.form.vmslots
  7798   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
  7799     // hoist vmslots into every mh to avoid dependent load chain
  7800     movl(vmslots_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
  7801   } else {
  7802     Register temp2_reg = vmslots_reg;
  7803     load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
  7804     load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)));
  7805     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  7810 // registers on entry:
  7811 //  - rcx: method handle
  7812 //  - rdx: killable temp (interpreted only)
  7813 //  - rax: killable temp (compiled only)
  7814 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  7815   assert(mh_reg == rcx, "caller must put MH object in rcx");
  7816   assert_different_registers(mh_reg, temp_reg);
  7818   // pick out the interpreted side of the handler
  7819   // NOTE: vmentry is not an oop!
  7820   movptr(temp_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  7822   // off we go...
  7823   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  7825   // for the various stubs which take control at this point,
  7826   // see MethodHandles::generate_method_handle_stub
  7830 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  7831                                          int extra_slot_offset) {
  7832   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  7833   int stackElementSize = Interpreter::stackElementSize;
  7834   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  7835 #ifdef ASSERT
  7836   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  7837   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  7838 #endif
  7839   Register             scale_reg    = noreg;
  7840   Address::ScaleFactor scale_factor = Address::no_scale;
  7841   if (arg_slot.is_constant()) {
  7842     offset += arg_slot.as_constant() * stackElementSize;
  7843   } else {
  7844     scale_reg    = arg_slot.as_register();
  7845     scale_factor = Address::times(stackElementSize);
  7847   offset += wordSize;           // return PC is on stack
  7848   return Address(rsp, scale_reg, scale_factor, offset);
  7852 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7853   if (!VerifyOops) return;
  7855   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7856   // Pass register number to verify_oop_subroutine
  7857   char* b = new char[strlen(s) + 50];
  7858   sprintf(b, "verify_oop_addr: %s", s);
  7860 #ifdef _LP64
  7861   push(rscratch1);                    // save r10, trashed by movptr()
  7862 #endif
  7863   push(rax);                          // save rax,
  7864   // addr may contain rsp so we will have to adjust it based on the push
  7865   // we just did
  7866   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7867   // stores rax into addr which is backwards of what was intended.
  7868   if (addr.uses(rsp)) {
  7869     lea(rax, addr);
  7870     pushptr(Address(rax, BytesPerWord));
  7871   } else {
  7872     pushptr(addr);
  7875   ExternalAddress buffer((address) b);
  7876   // pass msg argument
  7877   // avoid using pushptr, as it modifies scratch registers
  7878   // and our contract is not to modify anything
  7879   movptr(rax, buffer.addr());
  7880   push(rax);
  7882   // call indirectly to solve generation ordering problem
  7883   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7884   call(rax);
  7885   // Caller pops the arguments (addr, message) and restores rax, r10.
  7888 void MacroAssembler::verify_tlab() {
  7889 #ifdef ASSERT
  7890   if (UseTLAB && VerifyOops) {
  7891     Label next, ok;
  7892     Register t1 = rsi;
  7893     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7895     push(t1);
  7896     NOT_LP64(push(thread_reg));
  7897     NOT_LP64(get_thread(thread_reg));
  7899     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7900     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7901     jcc(Assembler::aboveEqual, next);
  7902     stop("assert(top >= start)");
  7903     should_not_reach_here();
  7905     bind(next);
  7906     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7907     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7908     jcc(Assembler::aboveEqual, ok);
  7909     stop("assert(top <= end)");
  7910     should_not_reach_here();
  7912     bind(ok);
  7913     NOT_LP64(pop(thread_reg));
  7914     pop(t1);
  7916 #endif
  7919 class ControlWord {
  7920  public:
  7921   int32_t _value;
  7923   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  7924   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  7925   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7926   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7927   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7928   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7929   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7930   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7932   void print() const {
  7933     // rounding control
  7934     const char* rc;
  7935     switch (rounding_control()) {
  7936       case 0: rc = "round near"; break;
  7937       case 1: rc = "round down"; break;
  7938       case 2: rc = "round up  "; break;
  7939       case 3: rc = "chop      "; break;
  7940     };
  7941     // precision control
  7942     const char* pc;
  7943     switch (precision_control()) {
  7944       case 0: pc = "24 bits "; break;
  7945       case 1: pc = "reserved"; break;
  7946       case 2: pc = "53 bits "; break;
  7947       case 3: pc = "64 bits "; break;
  7948     };
  7949     // flags
  7950     char f[9];
  7951     f[0] = ' ';
  7952     f[1] = ' ';
  7953     f[2] = (precision   ()) ? 'P' : 'p';
  7954     f[3] = (underflow   ()) ? 'U' : 'u';
  7955     f[4] = (overflow    ()) ? 'O' : 'o';
  7956     f[5] = (zero_divide ()) ? 'Z' : 'z';
  7957     f[6] = (denormalized()) ? 'D' : 'd';
  7958     f[7] = (invalid     ()) ? 'I' : 'i';
  7959     f[8] = '\x0';
  7960     // output
  7961     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  7964 };
  7966 class StatusWord {
  7967  public:
  7968   int32_t _value;
  7970   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  7971   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  7972   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  7973   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  7974   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  7975   int  top() const                     { return  (_value >> 11) & 7      ; }
  7976   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  7977   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  7978   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7979   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7980   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7981   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7982   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7983   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7985   void print() const {
  7986     // condition codes
  7987     char c[5];
  7988     c[0] = (C3()) ? '3' : '-';
  7989     c[1] = (C2()) ? '2' : '-';
  7990     c[2] = (C1()) ? '1' : '-';
  7991     c[3] = (C0()) ? '0' : '-';
  7992     c[4] = '\x0';
  7993     // flags
  7994     char f[9];
  7995     f[0] = (error_status()) ? 'E' : '-';
  7996     f[1] = (stack_fault ()) ? 'S' : '-';
  7997     f[2] = (precision   ()) ? 'P' : '-';
  7998     f[3] = (underflow   ()) ? 'U' : '-';
  7999     f[4] = (overflow    ()) ? 'O' : '-';
  8000     f[5] = (zero_divide ()) ? 'Z' : '-';
  8001     f[6] = (denormalized()) ? 'D' : '-';
  8002     f[7] = (invalid     ()) ? 'I' : '-';
  8003     f[8] = '\x0';
  8004     // output
  8005     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  8008 };
  8010 class TagWord {
  8011  public:
  8012   int32_t _value;
  8014   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  8016   void print() const {
  8017     printf("%04x", _value & 0xFFFF);
  8020 };
  8022 class FPU_Register {
  8023  public:
  8024   int32_t _m0;
  8025   int32_t _m1;
  8026   int16_t _ex;
  8028   bool is_indefinite() const           {
  8029     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  8032   void print() const {
  8033     char  sign = (_ex < 0) ? '-' : '+';
  8034     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  8035     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  8036   };
  8038 };
  8040 class FPU_State {
  8041  public:
  8042   enum {
  8043     register_size       = 10,
  8044     number_of_registers =  8,
  8045     register_mask       =  7
  8046   };
  8048   ControlWord  _control_word;
  8049   StatusWord   _status_word;
  8050   TagWord      _tag_word;
  8051   int32_t      _error_offset;
  8052   int32_t      _error_selector;
  8053   int32_t      _data_offset;
  8054   int32_t      _data_selector;
  8055   int8_t       _register[register_size * number_of_registers];
  8057   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  8058   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  8060   const char* tag_as_string(int tag) const {
  8061     switch (tag) {
  8062       case 0: return "valid";
  8063       case 1: return "zero";
  8064       case 2: return "special";
  8065       case 3: return "empty";
  8067     ShouldNotReachHere();
  8068     return NULL;
  8071   void print() const {
  8072     // print computation registers
  8073     { int t = _status_word.top();
  8074       for (int i = 0; i < number_of_registers; i++) {
  8075         int j = (i - t) & register_mask;
  8076         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8077         st(j)->print();
  8078         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8081     printf("\n");
  8082     // print control registers
  8083     printf("ctrl = "); _control_word.print(); printf("\n");
  8084     printf("stat = "); _status_word .print(); printf("\n");
  8085     printf("tags = "); _tag_word    .print(); printf("\n");
  8088 };
  8090 class Flag_Register {
  8091  public:
  8092   int32_t _value;
  8094   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8095   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8096   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8097   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8098   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8099   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8100   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8102   void print() const {
  8103     // flags
  8104     char f[8];
  8105     f[0] = (overflow       ()) ? 'O' : '-';
  8106     f[1] = (direction      ()) ? 'D' : '-';
  8107     f[2] = (sign           ()) ? 'S' : '-';
  8108     f[3] = (zero           ()) ? 'Z' : '-';
  8109     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8110     f[5] = (parity         ()) ? 'P' : '-';
  8111     f[6] = (carry          ()) ? 'C' : '-';
  8112     f[7] = '\x0';
  8113     // output
  8114     printf("%08x  flags = %s", _value, f);
  8117 };
  8119 class IU_Register {
  8120  public:
  8121   int32_t _value;
  8123   void print() const {
  8124     printf("%08x  %11d", _value, _value);
  8127 };
  8129 class IU_State {
  8130  public:
  8131   Flag_Register _eflags;
  8132   IU_Register   _rdi;
  8133   IU_Register   _rsi;
  8134   IU_Register   _rbp;
  8135   IU_Register   _rsp;
  8136   IU_Register   _rbx;
  8137   IU_Register   _rdx;
  8138   IU_Register   _rcx;
  8139   IU_Register   _rax;
  8141   void print() const {
  8142     // computation registers
  8143     printf("rax,  = "); _rax.print(); printf("\n");
  8144     printf("rbx,  = "); _rbx.print(); printf("\n");
  8145     printf("rcx  = "); _rcx.print(); printf("\n");
  8146     printf("rdx  = "); _rdx.print(); printf("\n");
  8147     printf("rdi  = "); _rdi.print(); printf("\n");
  8148     printf("rsi  = "); _rsi.print(); printf("\n");
  8149     printf("rbp,  = "); _rbp.print(); printf("\n");
  8150     printf("rsp  = "); _rsp.print(); printf("\n");
  8151     printf("\n");
  8152     // control registers
  8153     printf("flgs = "); _eflags.print(); printf("\n");
  8155 };
  8158 class CPU_State {
  8159  public:
  8160   FPU_State _fpu_state;
  8161   IU_State  _iu_state;
  8163   void print() const {
  8164     printf("--------------------------------------------------\n");
  8165     _iu_state .print();
  8166     printf("\n");
  8167     _fpu_state.print();
  8168     printf("--------------------------------------------------\n");
  8171 };
  8174 static void _print_CPU_state(CPU_State* state) {
  8175   state->print();
  8176 };
  8179 void MacroAssembler::print_CPU_state() {
  8180   push_CPU_state();
  8181   push(rsp);                // pass CPU state
  8182   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8183   addptr(rsp, wordSize);       // discard argument
  8184   pop_CPU_state();
  8188 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8189   static int counter = 0;
  8190   FPU_State* fs = &state->_fpu_state;
  8191   counter++;
  8192   // For leaf calls, only verify that the top few elements remain empty.
  8193   // We only need 1 empty at the top for C2 code.
  8194   if( stack_depth < 0 ) {
  8195     if( fs->tag_for_st(7) != 3 ) {
  8196       printf("FPR7 not empty\n");
  8197       state->print();
  8198       assert(false, "error");
  8199       return false;
  8201     return true;                // All other stack states do not matter
  8204   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8205          "bad FPU control word");
  8207   // compute stack depth
  8208   int i = 0;
  8209   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8210   int d = i;
  8211   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8212   // verify findings
  8213   if (i != FPU_State::number_of_registers) {
  8214     // stack not contiguous
  8215     printf("%s: stack not contiguous at ST%d\n", s, i);
  8216     state->print();
  8217     assert(false, "error");
  8218     return false;
  8220   // check if computed stack depth corresponds to expected stack depth
  8221   if (stack_depth < 0) {
  8222     // expected stack depth is -stack_depth or less
  8223     if (d > -stack_depth) {
  8224       // too many elements on the stack
  8225       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8226       state->print();
  8227       assert(false, "error");
  8228       return false;
  8230   } else {
  8231     // expected stack depth is stack_depth
  8232     if (d != stack_depth) {
  8233       // wrong stack depth
  8234       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8235       state->print();
  8236       assert(false, "error");
  8237       return false;
  8240   // everything is cool
  8241   return true;
  8245 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8246   if (!VerifyFPU) return;
  8247   push_CPU_state();
  8248   push(rsp);                // pass CPU state
  8249   ExternalAddress msg((address) s);
  8250   // pass message string s
  8251   pushptr(msg.addr());
  8252   push(stack_depth);        // pass stack depth
  8253   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8254   addptr(rsp, 3 * wordSize);   // discard arguments
  8255   // check for error
  8256   { Label L;
  8257     testl(rax, rax);
  8258     jcc(Assembler::notZero, L);
  8259     int3();                  // break if error condition
  8260     bind(L);
  8262   pop_CPU_state();
  8265 void MacroAssembler::load_klass(Register dst, Register src) {
  8266 #ifdef _LP64
  8267   if (UseCompressedOops) {
  8268     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8269     decode_heap_oop_not_null(dst);
  8270   } else
  8271 #endif
  8272     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8275 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8276 #ifdef _LP64
  8277   if (UseCompressedOops) {
  8278     assert (Universe::heap() != NULL, "java heap should be initialized");
  8279     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8280     if (Universe::narrow_oop_shift() != 0) {
  8281       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8282       if (LogMinObjAlignmentInBytes == Address::times_8) {
  8283         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8284       } else {
  8285         // OK to use shift since we don't need to preserve flags.
  8286         shlq(dst, LogMinObjAlignmentInBytes);
  8287         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8289     } else {
  8290       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8292   } else
  8293 #endif
  8295     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8296     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8300 void MacroAssembler::store_klass(Register dst, Register src) {
  8301 #ifdef _LP64
  8302   if (UseCompressedOops) {
  8303     encode_heap_oop_not_null(src);
  8304     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8305   } else
  8306 #endif
  8307     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8310 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8311 #ifdef _LP64
  8312   if (UseCompressedOops) {
  8313     movl(dst, src);
  8314     decode_heap_oop(dst);
  8315   } else
  8316 #endif
  8317     movptr(dst, src);
  8320 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8321 #ifdef _LP64
  8322   if (UseCompressedOops) {
  8323     assert(!dst.uses(src), "not enough registers");
  8324     encode_heap_oop(src);
  8325     movl(dst, src);
  8326   } else
  8327 #endif
  8328     movptr(dst, src);
  8331 // Used for storing NULLs.
  8332 void MacroAssembler::store_heap_oop_null(Address dst) {
  8333 #ifdef _LP64
  8334   if (UseCompressedOops) {
  8335     movl(dst, (int32_t)NULL_WORD);
  8336   } else {
  8337     movslq(dst, (int32_t)NULL_WORD);
  8339 #else
  8340   movl(dst, (int32_t)NULL_WORD);
  8341 #endif
  8344 #ifdef _LP64
  8345 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8346   if (UseCompressedOops) {
  8347     // Store to klass gap in destination
  8348     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8352 #ifdef ASSERT
  8353 void MacroAssembler::verify_heapbase(const char* msg) {
  8354   assert (UseCompressedOops, "should be compressed");
  8355   assert (Universe::heap() != NULL, "java heap should be initialized");
  8356   if (CheckCompressedOops) {
  8357     Label ok;
  8358     push(rscratch1); // cmpptr trashes rscratch1
  8359     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8360     jcc(Assembler::equal, ok);
  8361     stop(msg);
  8362     bind(ok);
  8363     pop(rscratch1);
  8366 #endif
  8368 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8369 void MacroAssembler::encode_heap_oop(Register r) {
  8370 #ifdef ASSERT
  8371   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8372 #endif
  8373   verify_oop(r, "broken oop in encode_heap_oop");
  8374   if (Universe::narrow_oop_base() == NULL) {
  8375     if (Universe::narrow_oop_shift() != 0) {
  8376       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8377       shrq(r, LogMinObjAlignmentInBytes);
  8379     return;
  8381   testq(r, r);
  8382   cmovq(Assembler::equal, r, r12_heapbase);
  8383   subq(r, r12_heapbase);
  8384   shrq(r, LogMinObjAlignmentInBytes);
  8387 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8388 #ifdef ASSERT
  8389   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  8390   if (CheckCompressedOops) {
  8391     Label ok;
  8392     testq(r, r);
  8393     jcc(Assembler::notEqual, ok);
  8394     stop("null oop passed to encode_heap_oop_not_null");
  8395     bind(ok);
  8397 #endif
  8398   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8399   if (Universe::narrow_oop_base() != NULL) {
  8400     subq(r, r12_heapbase);
  8402   if (Universe::narrow_oop_shift() != 0) {
  8403     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8404     shrq(r, LogMinObjAlignmentInBytes);
  8408 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8409 #ifdef ASSERT
  8410   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  8411   if (CheckCompressedOops) {
  8412     Label ok;
  8413     testq(src, src);
  8414     jcc(Assembler::notEqual, ok);
  8415     stop("null oop passed to encode_heap_oop_not_null2");
  8416     bind(ok);
  8418 #endif
  8419   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8420   if (dst != src) {
  8421     movq(dst, src);
  8423   if (Universe::narrow_oop_base() != NULL) {
  8424     subq(dst, r12_heapbase);
  8426   if (Universe::narrow_oop_shift() != 0) {
  8427     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8428     shrq(dst, LogMinObjAlignmentInBytes);
  8432 void  MacroAssembler::decode_heap_oop(Register r) {
  8433 #ifdef ASSERT
  8434   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8435 #endif
  8436   if (Universe::narrow_oop_base() == NULL) {
  8437     if (Universe::narrow_oop_shift() != 0) {
  8438       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8439       shlq(r, LogMinObjAlignmentInBytes);
  8441   } else {
  8442     Label done;
  8443     shlq(r, LogMinObjAlignmentInBytes);
  8444     jccb(Assembler::equal, done);
  8445     addq(r, r12_heapbase);
  8446     bind(done);
  8448   verify_oop(r, "broken oop in decode_heap_oop");
  8451 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8452   // Note: it will change flags
  8453   assert (UseCompressedOops, "should only be used for compressed headers");
  8454   assert (Universe::heap() != NULL, "java heap should be initialized");
  8455   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8456   // vtableStubs also counts instructions in pd_code_size_limit.
  8457   // Also do not verify_oop as this is called by verify_oop.
  8458   if (Universe::narrow_oop_shift() != 0) {
  8459     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8460     shlq(r, LogMinObjAlignmentInBytes);
  8461     if (Universe::narrow_oop_base() != NULL) {
  8462       addq(r, r12_heapbase);
  8464   } else {
  8465     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8469 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8470   // Note: it will change flags
  8471   assert (UseCompressedOops, "should only be used for compressed headers");
  8472   assert (Universe::heap() != NULL, "java heap should be initialized");
  8473   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8474   // vtableStubs also counts instructions in pd_code_size_limit.
  8475   // Also do not verify_oop as this is called by verify_oop.
  8476   if (Universe::narrow_oop_shift() != 0) {
  8477     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8478     if (LogMinObjAlignmentInBytes == Address::times_8) {
  8479       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8480     } else {
  8481       if (dst != src) {
  8482         movq(dst, src);
  8484       shlq(dst, LogMinObjAlignmentInBytes);
  8485       if (Universe::narrow_oop_base() != NULL) {
  8486         addq(dst, r12_heapbase);
  8489   } else {
  8490     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8491     if (dst != src) {
  8492       movq(dst, src);
  8497 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8498   assert (UseCompressedOops, "should only be used for compressed headers");
  8499   assert (Universe::heap() != NULL, "java heap should be initialized");
  8500   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8501   int oop_index = oop_recorder()->find_index(obj);
  8502   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8503   mov_narrow_oop(dst, oop_index, rspec);
  8506 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8507   assert (UseCompressedOops, "should only be used for compressed headers");
  8508   assert (Universe::heap() != NULL, "java heap should be initialized");
  8509   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8510   int oop_index = oop_recorder()->find_index(obj);
  8511   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8512   mov_narrow_oop(dst, oop_index, rspec);
  8515 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8516   assert (UseCompressedOops, "should only be used for compressed headers");
  8517   assert (Universe::heap() != NULL, "java heap should be initialized");
  8518   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8519   int oop_index = oop_recorder()->find_index(obj);
  8520   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8521   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8524 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8525   assert (UseCompressedOops, "should only be used for compressed headers");
  8526   assert (Universe::heap() != NULL, "java heap should be initialized");
  8527   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8528   int oop_index = oop_recorder()->find_index(obj);
  8529   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8530   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8533 void MacroAssembler::reinit_heapbase() {
  8534   if (UseCompressedOops) {
  8535     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8538 #endif // _LP64
  8540 // IndexOf substring.
  8541 void MacroAssembler::string_indexof(Register str1, Register str2,
  8542                                     Register cnt1, Register cnt2, Register result,
  8543                                     XMMRegister vec, Register tmp) {
  8544   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8546   Label RELOAD_SUBSTR, PREP_FOR_SCAN, SCAN_TO_SUBSTR,
  8547         SCAN_SUBSTR, RET_NOT_FOUND, CLEANUP;
  8549   push(str1); // string addr
  8550   push(str2); // substr addr
  8551   push(cnt2); // substr count
  8552   jmpb(PREP_FOR_SCAN);
  8554   // Substr count saved at sp
  8555   // Substr saved at sp+1*wordSize
  8556   // String saved at sp+2*wordSize
  8558   // Reload substr for rescan
  8559   bind(RELOAD_SUBSTR);
  8560   movl(cnt2, Address(rsp, 0));
  8561   movptr(str2, Address(rsp, wordSize));
  8562   // We came here after the beginninig of the substring was
  8563   // matched but the rest of it was not so we need to search
  8564   // again. Start from the next element after the previous match.
  8565   subptr(str1, result); // Restore counter
  8566   shrl(str1, 1);
  8567   addl(cnt1, str1);
  8568   decrementl(cnt1);
  8569   lea(str1, Address(result, 2)); // Reload string
  8571   // Load substr
  8572   bind(PREP_FOR_SCAN);
  8573   movdqu(vec, Address(str2, 0));
  8574   addl(cnt1, 8);  // prime the loop
  8575   subptr(str1, 16);
  8577   // Scan string for substr in 16-byte vectors
  8578   bind(SCAN_TO_SUBSTR);
  8579   subl(cnt1, 8);
  8580   addptr(str1, 16);
  8582   // pcmpestri
  8583   //   inputs:
  8584   //     xmm - substring
  8585   //     rax - substring length (elements count)
  8586   //     mem - scaned string
  8587   //     rdx - string length (elements count)
  8588   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8589   //   outputs:
  8590   //     rcx - matched index in string
  8591   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8593   pcmpestri(vec, Address(str1, 0), 0x0d);
  8594   jcc(Assembler::above, SCAN_TO_SUBSTR);      // CF == 0 && ZF == 0
  8595   jccb(Assembler::aboveEqual, RET_NOT_FOUND); // CF == 0
  8597   // Fallthrough: found a potential substr
  8599   // Make sure string is still long enough
  8600   subl(cnt1, tmp);
  8601   cmpl(cnt1, cnt2);
  8602   jccb(Assembler::negative, RET_NOT_FOUND);
  8603   // Compute start addr of substr
  8604   lea(str1, Address(str1, tmp, Address::times_2));
  8605   movptr(result, str1); // save
  8607   // Compare potential substr
  8608   addl(cnt1, 8);     // prime the loop
  8609   addl(cnt2, 8);
  8610   subptr(str1, 16);
  8611   subptr(str2, 16);
  8613   // Scan 16-byte vectors of string and substr
  8614   bind(SCAN_SUBSTR);
  8615   subl(cnt1, 8);
  8616   subl(cnt2, 8);
  8617   addptr(str1, 16);
  8618   addptr(str2, 16);
  8619   movdqu(vec, Address(str2, 0));
  8620   pcmpestri(vec, Address(str1, 0), 0x0d);
  8621   jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  8622   jcc(Assembler::positive, SCAN_SUBSTR);     // SF == 0
  8624   // Compute substr offset
  8625   subptr(result, Address(rsp, 2*wordSize));
  8626   shrl(result, 1); // index
  8627   jmpb(CLEANUP);
  8629   bind(RET_NOT_FOUND);
  8630   movl(result, -1);
  8632   bind(CLEANUP);
  8633   addptr(rsp, 3*wordSize);
  8636 // Compare strings.
  8637 void MacroAssembler::string_compare(Register str1, Register str2,
  8638                                     Register cnt1, Register cnt2, Register result,
  8639                                     XMMRegister vec1, XMMRegister vec2) {
  8640   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  8642   // Compute the minimum of the string lengths and the
  8643   // difference of the string lengths (stack).
  8644   // Do the conditional move stuff
  8645   movl(result, cnt1);
  8646   subl(cnt1, cnt2);
  8647   push(cnt1);
  8648   if (VM_Version::supports_cmov()) {
  8649     cmovl(Assembler::lessEqual, cnt2, result);
  8650   } else {
  8651     Label GT_LABEL;
  8652     jccb(Assembler::greater, GT_LABEL);
  8653     movl(cnt2, result);
  8654     bind(GT_LABEL);
  8657   // Is the minimum length zero?
  8658   testl(cnt2, cnt2);
  8659   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  8661   // Load first characters
  8662   load_unsigned_short(result, Address(str1, 0));
  8663   load_unsigned_short(cnt1, Address(str2, 0));
  8665   // Compare first characters
  8666   subl(result, cnt1);
  8667   jcc(Assembler::notZero,  POP_LABEL);
  8668   decrementl(cnt2);
  8669   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  8672     // Check after comparing first character to see if strings are equivalent
  8673     Label LSkip2;
  8674     // Check if the strings start at same location
  8675     cmpptr(str1, str2);
  8676     jccb(Assembler::notEqual, LSkip2);
  8678     // Check if the length difference is zero (from stack)
  8679     cmpl(Address(rsp, 0), 0x0);
  8680     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  8682     // Strings might not be equivalent
  8683     bind(LSkip2);
  8686   // Advance to next character
  8687   addptr(str1, 2);
  8688   addptr(str2, 2);
  8690   if (UseSSE42Intrinsics) {
  8691     // With SSE4.2, use double quad vector compare
  8692     Label COMPARE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  8693     // Setup to compare 16-byte vectors
  8694     movl(cnt1, cnt2);
  8695     andl(cnt2, 0xfffffff8); // cnt2 holds the vector count
  8696     andl(cnt1, 0x00000007); // cnt1 holds the tail count
  8697     testl(cnt2, cnt2);
  8698     jccb(Assembler::zero, COMPARE_TAIL);
  8700     lea(str2, Address(str2, cnt2, Address::times_2));
  8701     lea(str1, Address(str1, cnt2, Address::times_2));
  8702     negptr(cnt2);
  8704     bind(COMPARE_VECTORS);
  8705     movdqu(vec1, Address(str1, cnt2, Address::times_2));
  8706     movdqu(vec2, Address(str2, cnt2, Address::times_2));
  8707     pxor(vec1, vec2);
  8708     ptest(vec1, vec1);
  8709     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  8710     addptr(cnt2, 8);
  8711     jcc(Assembler::notZero, COMPARE_VECTORS);
  8712     jmpb(COMPARE_TAIL);
  8714     // Mismatched characters in the vectors
  8715     bind(VECTOR_NOT_EQUAL);
  8716     lea(str1, Address(str1, cnt2, Address::times_2));
  8717     lea(str2, Address(str2, cnt2, Address::times_2));
  8718     movl(cnt1, 8);
  8720     // Compare tail (< 8 chars), or rescan last vectors to
  8721     // find 1st mismatched characters
  8722     bind(COMPARE_TAIL);
  8723     testl(cnt1, cnt1);
  8724     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  8725     movl(cnt2, cnt1);
  8726     // Fallthru to tail compare
  8729   // Shift str2 and str1 to the end of the arrays, negate min
  8730   lea(str1, Address(str1, cnt2, Address::times_2, 0));
  8731   lea(str2, Address(str2, cnt2, Address::times_2, 0));
  8732   negptr(cnt2);
  8734     // Compare the rest of the characters
  8735   bind(WHILE_HEAD_LABEL);
  8736   load_unsigned_short(result, Address(str1, cnt2, Address::times_2, 0));
  8737   load_unsigned_short(cnt1, Address(str2, cnt2, Address::times_2, 0));
  8738   subl(result, cnt1);
  8739   jccb(Assembler::notZero, POP_LABEL);
  8740   increment(cnt2);
  8741   jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  8743   // Strings are equal up to min length.  Return the length difference.
  8744   bind(LENGTH_DIFF_LABEL);
  8745   pop(result);
  8746   jmpb(DONE_LABEL);
  8748   // Discard the stored length difference
  8749   bind(POP_LABEL);
  8750   addptr(rsp, wordSize);
  8752   // That's it
  8753   bind(DONE_LABEL);
  8756 // Compare char[] arrays aligned to 4 bytes or substrings.
  8757 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  8758                                         Register limit, Register result, Register chr,
  8759                                         XMMRegister vec1, XMMRegister vec2) {
  8760   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  8762   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  8763   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  8765   // Check the input args
  8766   cmpptr(ary1, ary2);
  8767   jcc(Assembler::equal, TRUE_LABEL);
  8769   if (is_array_equ) {
  8770     // Need additional checks for arrays_equals.
  8771     testptr(ary1, ary1);
  8772     jcc(Assembler::zero, FALSE_LABEL);
  8773     testptr(ary2, ary2);
  8774     jcc(Assembler::zero, FALSE_LABEL);
  8776     // Check the lengths
  8777     movl(limit, Address(ary1, length_offset));
  8778     cmpl(limit, Address(ary2, length_offset));
  8779     jcc(Assembler::notEqual, FALSE_LABEL);
  8782   // count == 0
  8783   testl(limit, limit);
  8784   jcc(Assembler::zero, TRUE_LABEL);
  8786   if (is_array_equ) {
  8787     // Load array address
  8788     lea(ary1, Address(ary1, base_offset));
  8789     lea(ary2, Address(ary2, base_offset));
  8792   shll(limit, 1);      // byte count != 0
  8793   movl(result, limit); // copy
  8795   if (UseSSE42Intrinsics) {
  8796     // With SSE4.2, use double quad vector compare
  8797     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  8798     // Compare 16-byte vectors
  8799     andl(result, 0x0000000e);  //   tail count (in bytes)
  8800     andl(limit, 0xfffffff0);   // vector count (in bytes)
  8801     jccb(Assembler::zero, COMPARE_TAIL);
  8803     lea(ary1, Address(ary1, limit, Address::times_1));
  8804     lea(ary2, Address(ary2, limit, Address::times_1));
  8805     negptr(limit);
  8807     bind(COMPARE_WIDE_VECTORS);
  8808     movdqu(vec1, Address(ary1, limit, Address::times_1));
  8809     movdqu(vec2, Address(ary2, limit, Address::times_1));
  8810     pxor(vec1, vec2);
  8811     ptest(vec1, vec1);
  8812     jccb(Assembler::notZero, FALSE_LABEL);
  8813     addptr(limit, 16);
  8814     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  8816     bind(COMPARE_TAIL); // limit is zero
  8817     movl(limit, result);
  8818     // Fallthru to tail compare
  8821   // Compare 4-byte vectors
  8822   andl(limit, 0xfffffffc); // vector count (in bytes)
  8823   jccb(Assembler::zero, COMPARE_CHAR);
  8825   lea(ary1, Address(ary1, limit, Address::times_1));
  8826   lea(ary2, Address(ary2, limit, Address::times_1));
  8827   negptr(limit);
  8829   bind(COMPARE_VECTORS);
  8830   movl(chr, Address(ary1, limit, Address::times_1));
  8831   cmpl(chr, Address(ary2, limit, Address::times_1));
  8832   jccb(Assembler::notEqual, FALSE_LABEL);
  8833   addptr(limit, 4);
  8834   jcc(Assembler::notZero, COMPARE_VECTORS);
  8836   // Compare trailing char (final 2 bytes), if any
  8837   bind(COMPARE_CHAR);
  8838   testl(result, 0x2);   // tail  char
  8839   jccb(Assembler::zero, TRUE_LABEL);
  8840   load_unsigned_short(chr, Address(ary1, 0));
  8841   load_unsigned_short(limit, Address(ary2, 0));
  8842   cmpl(chr, limit);
  8843   jccb(Assembler::notEqual, FALSE_LABEL);
  8845   bind(TRUE_LABEL);
  8846   movl(result, 1);   // return true
  8847   jmpb(DONE);
  8849   bind(FALSE_LABEL);
  8850   xorl(result, result); // return false
  8852   // That's it
  8853   bind(DONE);
  8856 #ifdef PRODUCT
  8857 #define BLOCK_COMMENT(str) /* nothing */
  8858 #else
  8859 #define BLOCK_COMMENT(str) block_comment(str)
  8860 #endif
  8862 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  8863 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  8864                                    Register to, Register value, Register count,
  8865                                    Register rtmp, XMMRegister xtmp) {
  8866   assert_different_registers(to, value, count, rtmp);
  8867   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  8868   Label L_fill_2_bytes, L_fill_4_bytes;
  8870   int shift = -1;
  8871   switch (t) {
  8872     case T_BYTE:
  8873       shift = 2;
  8874       break;
  8875     case T_SHORT:
  8876       shift = 1;
  8877       break;
  8878     case T_INT:
  8879       shift = 0;
  8880       break;
  8881     default: ShouldNotReachHere();
  8884   if (t == T_BYTE) {
  8885     andl(value, 0xff);
  8886     movl(rtmp, value);
  8887     shll(rtmp, 8);
  8888     orl(value, rtmp);
  8890   if (t == T_SHORT) {
  8891     andl(value, 0xffff);
  8893   if (t == T_BYTE || t == T_SHORT) {
  8894     movl(rtmp, value);
  8895     shll(rtmp, 16);
  8896     orl(value, rtmp);
  8899   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  8900   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  8901   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  8902     // align source address at 4 bytes address boundary
  8903     if (t == T_BYTE) {
  8904       // One byte misalignment happens only for byte arrays
  8905       testptr(to, 1);
  8906       jccb(Assembler::zero, L_skip_align1);
  8907       movb(Address(to, 0), value);
  8908       increment(to);
  8909       decrement(count);
  8910       BIND(L_skip_align1);
  8912     // Two bytes misalignment happens only for byte and short (char) arrays
  8913     testptr(to, 2);
  8914     jccb(Assembler::zero, L_skip_align2);
  8915     movw(Address(to, 0), value);
  8916     addptr(to, 2);
  8917     subl(count, 1<<(shift-1));
  8918     BIND(L_skip_align2);
  8920   if (UseSSE < 2) {
  8921     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  8922     // Fill 32-byte chunks
  8923     subl(count, 8 << shift);
  8924     jcc(Assembler::less, L_check_fill_8_bytes);
  8925     align(16);
  8927     BIND(L_fill_32_bytes_loop);
  8929     for (int i = 0; i < 32; i += 4) {
  8930       movl(Address(to, i), value);
  8933     addptr(to, 32);
  8934     subl(count, 8 << shift);
  8935     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  8936     BIND(L_check_fill_8_bytes);
  8937     addl(count, 8 << shift);
  8938     jccb(Assembler::zero, L_exit);
  8939     jmpb(L_fill_8_bytes);
  8941     //
  8942     // length is too short, just fill qwords
  8943     //
  8944     BIND(L_fill_8_bytes_loop);
  8945     movl(Address(to, 0), value);
  8946     movl(Address(to, 4), value);
  8947     addptr(to, 8);
  8948     BIND(L_fill_8_bytes);
  8949     subl(count, 1 << (shift + 1));
  8950     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  8951     // fall through to fill 4 bytes
  8952   } else {
  8953     Label L_fill_32_bytes;
  8954     if (!UseUnalignedLoadStores) {
  8955       // align to 8 bytes, we know we are 4 byte aligned to start
  8956       testptr(to, 4);
  8957       jccb(Assembler::zero, L_fill_32_bytes);
  8958       movl(Address(to, 0), value);
  8959       addptr(to, 4);
  8960       subl(count, 1<<shift);
  8962     BIND(L_fill_32_bytes);
  8964       assert( UseSSE >= 2, "supported cpu only" );
  8965       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  8966       // Fill 32-byte chunks
  8967       movdl(xtmp, value);
  8968       pshufd(xtmp, xtmp, 0);
  8970       subl(count, 8 << shift);
  8971       jcc(Assembler::less, L_check_fill_8_bytes);
  8972       align(16);
  8974       BIND(L_fill_32_bytes_loop);
  8976       if (UseUnalignedLoadStores) {
  8977         movdqu(Address(to, 0), xtmp);
  8978         movdqu(Address(to, 16), xtmp);
  8979       } else {
  8980         movq(Address(to, 0), xtmp);
  8981         movq(Address(to, 8), xtmp);
  8982         movq(Address(to, 16), xtmp);
  8983         movq(Address(to, 24), xtmp);
  8986       addptr(to, 32);
  8987       subl(count, 8 << shift);
  8988       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  8989       BIND(L_check_fill_8_bytes);
  8990       addl(count, 8 << shift);
  8991       jccb(Assembler::zero, L_exit);
  8992       jmpb(L_fill_8_bytes);
  8994       //
  8995       // length is too short, just fill qwords
  8996       //
  8997       BIND(L_fill_8_bytes_loop);
  8998       movq(Address(to, 0), xtmp);
  8999       addptr(to, 8);
  9000       BIND(L_fill_8_bytes);
  9001       subl(count, 1 << (shift + 1));
  9002       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  9005   // fill trailing 4 bytes
  9006   BIND(L_fill_4_bytes);
  9007   testl(count, 1<<shift);
  9008   jccb(Assembler::zero, L_fill_2_bytes);
  9009   movl(Address(to, 0), value);
  9010   if (t == T_BYTE || t == T_SHORT) {
  9011     addptr(to, 4);
  9012     BIND(L_fill_2_bytes);
  9013     // fill trailing 2 bytes
  9014     testl(count, 1<<(shift-1));
  9015     jccb(Assembler::zero, L_fill_byte);
  9016     movw(Address(to, 0), value);
  9017     if (t == T_BYTE) {
  9018       addptr(to, 2);
  9019       BIND(L_fill_byte);
  9020       // fill trailing byte
  9021       testl(count, 1);
  9022       jccb(Assembler::zero, L_exit);
  9023       movb(Address(to, 0), value);
  9024     } else {
  9025       BIND(L_fill_byte);
  9027   } else {
  9028     BIND(L_fill_2_bytes);
  9030   BIND(L_exit);
  9032 #undef BIND
  9033 #undef BLOCK_COMMENT
  9036 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  9037   switch (cond) {
  9038     // Note some conditions are synonyms for others
  9039     case Assembler::zero:         return Assembler::notZero;
  9040     case Assembler::notZero:      return Assembler::zero;
  9041     case Assembler::less:         return Assembler::greaterEqual;
  9042     case Assembler::lessEqual:    return Assembler::greater;
  9043     case Assembler::greater:      return Assembler::lessEqual;
  9044     case Assembler::greaterEqual: return Assembler::less;
  9045     case Assembler::below:        return Assembler::aboveEqual;
  9046     case Assembler::belowEqual:   return Assembler::above;
  9047     case Assembler::above:        return Assembler::belowEqual;
  9048     case Assembler::aboveEqual:   return Assembler::below;
  9049     case Assembler::overflow:     return Assembler::noOverflow;
  9050     case Assembler::noOverflow:   return Assembler::overflow;
  9051     case Assembler::negative:     return Assembler::positive;
  9052     case Assembler::positive:     return Assembler::negative;
  9053     case Assembler::parity:       return Assembler::noParity;
  9054     case Assembler::noParity:     return Assembler::parity;
  9056   ShouldNotReachHere(); return Assembler::overflow;
  9059 SkipIfEqual::SkipIfEqual(
  9060     MacroAssembler* masm, const bool* flag_addr, bool value) {
  9061   _masm = masm;
  9062   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  9063   _masm->jcc(Assembler::equal, _label);
  9066 SkipIfEqual::~SkipIfEqual() {
  9067   _masm->bind(_label);

mercurial