src/cpu/sparc/vm/templateTable_sparc.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2314
f95d63e2154a
child 2440
bb8e3b66bde6
child 2447
5577848f5923
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    39 #define __ _masm->
    41 // Misc helpers
    43 // Do an oop store like *(base + index + offset) = val
    44 // index can be noreg,
    45 static void do_oop_store(InterpreterMacroAssembler* _masm,
    46                          Register base,
    47                          Register index,
    48                          int offset,
    49                          Register val,
    50                          Register tmp,
    51                          BarrierSet::Name barrier,
    52                          bool precise) {
    53   assert(tmp != val && tmp != base && tmp != index, "register collision");
    54   assert(index == noreg || offset == 0, "only one offset");
    55   switch (barrier) {
    56 #ifndef SERIALGC
    57     case BarrierSet::G1SATBCT:
    58     case BarrierSet::G1SATBCTLogging:
    59       {
    60         __ g1_write_barrier_pre( base, index, offset, tmp, /*preserve_o_regs*/true);
    61         if (index == noreg ) {
    62           assert(Assembler::is_simm13(offset), "fix this code");
    63           __ store_heap_oop(val, base, offset);
    64         } else {
    65           __ store_heap_oop(val, base, index);
    66         }
    68         // No need for post barrier if storing NULL
    69         if (val != G0) {
    70           if (precise) {
    71             if (index == noreg) {
    72               __ add(base, offset, base);
    73             } else {
    74               __ add(base, index, base);
    75             }
    76           }
    77           __ g1_write_barrier_post(base, val, tmp);
    78         }
    79       }
    80       break;
    81 #endif // SERIALGC
    82     case BarrierSet::CardTableModRef:
    83     case BarrierSet::CardTableExtension:
    84       {
    85         if (index == noreg ) {
    86           assert(Assembler::is_simm13(offset), "fix this code");
    87           __ store_heap_oop(val, base, offset);
    88         } else {
    89           __ store_heap_oop(val, base, index);
    90         }
    91         // No need for post barrier if storing NULL
    92         if (val != G0) {
    93           if (precise) {
    94             if (index == noreg) {
    95               __ add(base, offset, base);
    96             } else {
    97               __ add(base, index, base);
    98             }
    99           }
   100           __ card_write_barrier_post(base, val, tmp);
   101         }
   102       }
   103       break;
   104     case BarrierSet::ModRef:
   105     case BarrierSet::Other:
   106       ShouldNotReachHere();
   107       break;
   108     default      :
   109       ShouldNotReachHere();
   111   }
   112 }
   115 //----------------------------------------------------------------------------------------------------
   116 // Platform-dependent initialization
   118 void TemplateTable::pd_initialize() {
   119   // (none)
   120 }
   123 //----------------------------------------------------------------------------------------------------
   124 // Condition conversion
   125 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   126   switch (cc) {
   127     case TemplateTable::equal        : return Assembler::notEqual;
   128     case TemplateTable::not_equal    : return Assembler::equal;
   129     case TemplateTable::less         : return Assembler::greaterEqual;
   130     case TemplateTable::less_equal   : return Assembler::greater;
   131     case TemplateTable::greater      : return Assembler::lessEqual;
   132     case TemplateTable::greater_equal: return Assembler::less;
   133   }
   134   ShouldNotReachHere();
   135   return Assembler::zero;
   136 }
   138 //----------------------------------------------------------------------------------------------------
   139 // Miscelaneous helper routines
   142 Address TemplateTable::at_bcp(int offset) {
   143   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   144   return Address(Lbcp, offset);
   145 }
   148 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
   149                                    Register Rscratch,
   150                                    bool load_bc_into_scratch /*=true*/) {
   151   // With sharing on, may need to test methodOop flag.
   152   if (!RewriteBytecodes) return;
   153   if (load_bc_into_scratch) __ set(bc, Rbyte_code);
   154   Label patch_done;
   155   if (JvmtiExport::can_post_breakpoint()) {
   156     Label fast_patch;
   157     __ ldub(at_bcp(0), Rscratch);
   158     __ cmp(Rscratch, Bytecodes::_breakpoint);
   159     __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
   160     __ delayed()->nop();  // don't bother to hoist the stb here
   161     // perform the quickening, slowly, in the bowels of the breakpoint table
   162     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
   163     __ ba(false, patch_done);
   164     __ delayed()->nop();
   165     __ bind(fast_patch);
   166   }
   167 #ifdef ASSERT
   168   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   169   Label okay;
   170   __ ldub(at_bcp(0), Rscratch);
   171   __ cmp(Rscratch, orig_bytecode);
   172   __ br(Assembler::equal, false, Assembler::pt, okay);
   173   __ delayed() ->cmp(Rscratch, Rbyte_code);
   174   __ br(Assembler::equal, false, Assembler::pt, okay);
   175   __ delayed()->nop();
   176   __ stop("Rewriting wrong bytecode location");
   177   __ bind(okay);
   178 #endif
   179   __ stb(Rbyte_code, at_bcp(0));
   180   __ bind(patch_done);
   181 }
   183 //----------------------------------------------------------------------------------------------------
   184 // Individual instructions
   186 void TemplateTable::nop() {
   187   transition(vtos, vtos);
   188   // nothing to do
   189 }
   191 void TemplateTable::shouldnotreachhere() {
   192   transition(vtos, vtos);
   193   __ stop("shouldnotreachhere bytecode");
   194 }
   196 void TemplateTable::aconst_null() {
   197   transition(vtos, atos);
   198   __ clr(Otos_i);
   199 }
   202 void TemplateTable::iconst(int value) {
   203   transition(vtos, itos);
   204   __ set(value, Otos_i);
   205 }
   208 void TemplateTable::lconst(int value) {
   209   transition(vtos, ltos);
   210   assert(value >= 0, "check this code");
   211 #ifdef _LP64
   212   __ set(value, Otos_l);
   213 #else
   214   __ set(value, Otos_l2);
   215   __ clr( Otos_l1);
   216 #endif
   217 }
   220 void TemplateTable::fconst(int value) {
   221   transition(vtos, ftos);
   222   static float zero = 0.0, one = 1.0, two = 2.0;
   223   float* p;
   224   switch( value ) {
   225    default: ShouldNotReachHere();
   226    case 0:  p = &zero;  break;
   227    case 1:  p = &one;   break;
   228    case 2:  p = &two;   break;
   229   }
   230   AddressLiteral a(p);
   231   __ sethi(a, G3_scratch);
   232   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   233 }
   236 void TemplateTable::dconst(int value) {
   237   transition(vtos, dtos);
   238   static double zero = 0.0, one = 1.0;
   239   double* p;
   240   switch( value ) {
   241    default: ShouldNotReachHere();
   242    case 0:  p = &zero;  break;
   243    case 1:  p = &one;   break;
   244   }
   245   AddressLiteral a(p);
   246   __ sethi(a, G3_scratch);
   247   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   248 }
   251 // %%%%% Should factore most snippet templates across platforms
   253 void TemplateTable::bipush() {
   254   transition(vtos, itos);
   255   __ ldsb( at_bcp(1), Otos_i );
   256 }
   258 void TemplateTable::sipush() {
   259   transition(vtos, itos);
   260   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   261 }
   263 void TemplateTable::ldc(bool wide) {
   264   transition(vtos, vtos);
   265   Label call_ldc, notInt, notString, notClass, exit;
   267   if (wide) {
   268     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   269   } else {
   270     __ ldub(Lbcp, 1, O1);
   271   }
   272   __ get_cpool_and_tags(O0, O2);
   274   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   275   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   277   // get type from tags
   278   __ add(O2, tags_offset, O2);
   279   __ ldub(O2, O1, O2);
   280   __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
   281   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
   282   __ delayed()->nop();
   284   __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
   285   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
   286   __ delayed()->nop();
   288   __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
   289   __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
   290   __ delayed()->nop();
   292   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   293   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   294   __ delayed()->add(O0, base_offset, O0);
   296   __ bind(call_ldc);
   297   __ set(wide, O1);
   298   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   299   __ push(atos);
   300   __ ba(false, exit);
   301   __ delayed()->nop();
   303   __ bind(notClass);
   304  // __ add(O0, base_offset, O0);
   305   __ sll(O1, LogBytesPerWord, O1);
   306   __ cmp(O2, JVM_CONSTANT_Integer);
   307   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   308   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   309   __ ld(O0, O1, Otos_i);
   310   __ push(itos);
   311   __ ba(false, exit);
   312   __ delayed()->nop();
   314   __ bind(notInt);
   315  // __ cmp(O2, JVM_CONSTANT_String);
   316   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   317   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   318   __ ld_ptr(O0, O1, Otos_i);
   319   __ verify_oop(Otos_i);
   320   __ push(atos);
   321   __ ba(false, exit);
   322   __ delayed()->nop();
   324   __ bind(notString);
   325  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   326   __ push(ftos);
   328   __ bind(exit);
   329 }
   331 // Fast path for caching oop constants.
   332 // %%% We should use this to handle Class and String constants also.
   333 // %%% It will simplify the ldc/primitive path considerably.
   334 void TemplateTable::fast_aldc(bool wide) {
   335   transition(vtos, atos);
   337   if (!EnableMethodHandles) {
   338     // We should not encounter this bytecode if !EnableMethodHandles.
   339     // The verifier will stop it.  However, if we get past the verifier,
   340     // this will stop the thread in a reasonable way, without crashing the JVM.
   341     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   342                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   343     // the call_VM checks for exception, so we should never return here.
   344     __ should_not_reach_here();
   345     return;
   346   }
   348   Register Rcache = G3_scratch;
   349   Register Rscratch = G4_scratch;
   351   resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));
   353   __ verify_oop(Otos_i);
   355   Label L_done;
   356   const Register Rcon_klass = G3_scratch;  // same as Rcache
   357   const Register Rarray_klass = G4_scratch;  // same as Rscratch
   358   __ load_klass(Otos_i, Rcon_klass);
   359   AddressLiteral array_klass_addr((address)Universe::systemObjArrayKlassObj_addr());
   360   __ load_contents(array_klass_addr, Rarray_klass);
   361   __ cmp(Rarray_klass, Rcon_klass);
   362   __ brx(Assembler::notEqual, false, Assembler::pt, L_done);
   363   __ delayed()->nop();
   364   __ ld(Address(Otos_i, arrayOopDesc::length_offset_in_bytes()), Rcon_klass);
   365   __ tst(Rcon_klass);
   366   __ brx(Assembler::zero, true, Assembler::pt, L_done);
   367   __ delayed()->clr(Otos_i);    // executed only if branch is taken
   369   // Load the exception from the system-array which wraps it:
   370   __ load_heap_oop(Otos_i, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   371   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
   373   __ bind(L_done);
   374 }
   376 void TemplateTable::ldc2_w() {
   377   transition(vtos, vtos);
   378   Label retry, resolved, Long, exit;
   380   __ bind(retry);
   381   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   382   __ get_cpool_and_tags(O0, O2);
   384   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   385   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   386   // get type from tags
   387   __ add(O2, tags_offset, O2);
   388   __ ldub(O2, O1, O2);
   390   __ sll(O1, LogBytesPerWord, O1);
   391   __ add(O0, O1, G3_scratch);
   393   __ cmp(O2, JVM_CONSTANT_Double);
   394   __ brx(Assembler::notEqual, false, Assembler::pt, Long);
   395   __ delayed()->nop();
   396   // A double can be placed at word-aligned locations in the constant pool.
   397   // Check out Conversions.java for an example.
   398   // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
   399   // to double-align double on the constant pool.  SG, 11/7/97
   400 #ifdef _LP64
   401   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   402 #else
   403   FloatRegister f = Ftos_d;
   404   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   405   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   406          f->successor());
   407 #endif
   408   __ push(dtos);
   409   __ ba(false, exit);
   410   __ delayed()->nop();
   412   __ bind(Long);
   413 #ifdef _LP64
   414   __ ldx(G3_scratch, base_offset, Otos_l);
   415 #else
   416   __ ld(G3_scratch, base_offset, Otos_l);
   417   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   418 #endif
   419   __ push(ltos);
   421   __ bind(exit);
   422 }
   425 void TemplateTable::locals_index(Register reg, int offset) {
   426   __ ldub( at_bcp(offset), reg );
   427 }
   430 void TemplateTable::locals_index_wide(Register reg) {
   431   // offset is 2, not 1, because Lbcp points to wide prefix code
   432   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   433 }
   435 void TemplateTable::iload() {
   436   transition(vtos, itos);
   437   // Rewrite iload,iload  pair into fast_iload2
   438   //         iload,caload pair into fast_icaload
   439   if (RewriteFrequentPairs) {
   440     Label rewrite, done;
   442     // get next byte
   443     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   445     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   446     // last two iloads in a pair.  Comparing against fast_iload means that
   447     // the next bytecode is neither an iload or a caload, and therefore
   448     // an iload pair.
   449     __ cmp(G3_scratch, (int)Bytecodes::_iload);
   450     __ br(Assembler::equal, false, Assembler::pn, done);
   451     __ delayed()->nop();
   453     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   454     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   455     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   457     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   458     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   459     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   461     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   462     // rewrite
   463     // G4_scratch: fast bytecode
   464     __ bind(rewrite);
   465     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   466     __ bind(done);
   467   }
   469   // Get the local value into tos
   470   locals_index(G3_scratch);
   471   __ access_local_int( G3_scratch, Otos_i );
   472 }
   474 void TemplateTable::fast_iload2() {
   475   transition(vtos, itos);
   476   locals_index(G3_scratch);
   477   __ access_local_int( G3_scratch, Otos_i );
   478   __ push_i();
   479   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   480   __ access_local_int( G3_scratch, Otos_i );
   481 }
   483 void TemplateTable::fast_iload() {
   484   transition(vtos, itos);
   485   locals_index(G3_scratch);
   486   __ access_local_int( G3_scratch, Otos_i );
   487 }
   489 void TemplateTable::lload() {
   490   transition(vtos, ltos);
   491   locals_index(G3_scratch);
   492   __ access_local_long( G3_scratch, Otos_l );
   493 }
   496 void TemplateTable::fload() {
   497   transition(vtos, ftos);
   498   locals_index(G3_scratch);
   499   __ access_local_float( G3_scratch, Ftos_f );
   500 }
   503 void TemplateTable::dload() {
   504   transition(vtos, dtos);
   505   locals_index(G3_scratch);
   506   __ access_local_double( G3_scratch, Ftos_d );
   507 }
   510 void TemplateTable::aload() {
   511   transition(vtos, atos);
   512   locals_index(G3_scratch);
   513   __ access_local_ptr( G3_scratch, Otos_i);
   514 }
   517 void TemplateTable::wide_iload() {
   518   transition(vtos, itos);
   519   locals_index_wide(G3_scratch);
   520   __ access_local_int( G3_scratch, Otos_i );
   521 }
   524 void TemplateTable::wide_lload() {
   525   transition(vtos, ltos);
   526   locals_index_wide(G3_scratch);
   527   __ access_local_long( G3_scratch, Otos_l );
   528 }
   531 void TemplateTable::wide_fload() {
   532   transition(vtos, ftos);
   533   locals_index_wide(G3_scratch);
   534   __ access_local_float( G3_scratch, Ftos_f );
   535 }
   538 void TemplateTable::wide_dload() {
   539   transition(vtos, dtos);
   540   locals_index_wide(G3_scratch);
   541   __ access_local_double( G3_scratch, Ftos_d );
   542 }
   545 void TemplateTable::wide_aload() {
   546   transition(vtos, atos);
   547   locals_index_wide(G3_scratch);
   548   __ access_local_ptr( G3_scratch, Otos_i );
   549   __ verify_oop(Otos_i);
   550 }
   553 void TemplateTable::iaload() {
   554   transition(itos, itos);
   555   // Otos_i: index
   556   // tos: array
   557   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   558   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   559 }
   562 void TemplateTable::laload() {
   563   transition(itos, ltos);
   564   // Otos_i: index
   565   // O2: array
   566   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   567   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   568 }
   571 void TemplateTable::faload() {
   572   transition(itos, ftos);
   573   // Otos_i: index
   574   // O2: array
   575   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   576   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   577 }
   580 void TemplateTable::daload() {
   581   transition(itos, dtos);
   582   // Otos_i: index
   583   // O2: array
   584   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   585   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   586 }
   589 void TemplateTable::aaload() {
   590   transition(itos, atos);
   591   // Otos_i: index
   592   // tos: array
   593   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   594   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   595   __ verify_oop(Otos_i);
   596 }
   599 void TemplateTable::baload() {
   600   transition(itos, itos);
   601   // Otos_i: index
   602   // tos: array
   603   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   604   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   605 }
   608 void TemplateTable::caload() {
   609   transition(itos, itos);
   610   // Otos_i: index
   611   // tos: array
   612   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   613   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   614 }
   616 void TemplateTable::fast_icaload() {
   617   transition(vtos, itos);
   618   // Otos_i: index
   619   // tos: array
   620   locals_index(G3_scratch);
   621   __ access_local_int( G3_scratch, Otos_i );
   622   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   623   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   624 }
   627 void TemplateTable::saload() {
   628   transition(itos, itos);
   629   // Otos_i: index
   630   // tos: array
   631   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   632   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   633 }
   636 void TemplateTable::iload(int n) {
   637   transition(vtos, itos);
   638   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   639 }
   642 void TemplateTable::lload(int n) {
   643   transition(vtos, ltos);
   644   assert(n+1 < Argument::n_register_parameters, "would need more code");
   645   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   646 }
   649 void TemplateTable::fload(int n) {
   650   transition(vtos, ftos);
   651   assert(n < Argument::n_register_parameters, "would need more code");
   652   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   653 }
   656 void TemplateTable::dload(int n) {
   657   transition(vtos, dtos);
   658   FloatRegister dst = Ftos_d;
   659   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   660 }
   663 void TemplateTable::aload(int n) {
   664   transition(vtos, atos);
   665   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   666 }
   669 void TemplateTable::aload_0() {
   670   transition(vtos, atos);
   672   // According to bytecode histograms, the pairs:
   673   //
   674   // _aload_0, _fast_igetfield (itos)
   675   // _aload_0, _fast_agetfield (atos)
   676   // _aload_0, _fast_fgetfield (ftos)
   677   //
   678   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   679   // bytecode checks the next bytecode and then rewrites the current
   680   // bytecode into a pair bytecode; otherwise it rewrites the current
   681   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   682   //
   683   if (RewriteFrequentPairs) {
   684     Label rewrite, done;
   686     // get next byte
   687     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   689     // do actual aload_0
   690     aload(0);
   692     // if _getfield then wait with rewrite
   693     __ cmp(G3_scratch, (int)Bytecodes::_getfield);
   694     __ br(Assembler::equal, false, Assembler::pn, done);
   695     __ delayed()->nop();
   697     // if _igetfield then rewrite to _fast_iaccess_0
   698     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   699     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   700     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   701     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   703     // if _agetfield then rewrite to _fast_aaccess_0
   704     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   705     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   706     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   707     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   709     // if _fgetfield then rewrite to _fast_faccess_0
   710     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   711     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   712     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   713     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   715     // else rewrite to _fast_aload0
   716     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   717     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   719     // rewrite
   720     // G4_scratch: fast bytecode
   721     __ bind(rewrite);
   722     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   723     __ bind(done);
   724   } else {
   725     aload(0);
   726   }
   727 }
   730 void TemplateTable::istore() {
   731   transition(itos, vtos);
   732   locals_index(G3_scratch);
   733   __ store_local_int( G3_scratch, Otos_i );
   734 }
   737 void TemplateTable::lstore() {
   738   transition(ltos, vtos);
   739   locals_index(G3_scratch);
   740   __ store_local_long( G3_scratch, Otos_l );
   741 }
   744 void TemplateTable::fstore() {
   745   transition(ftos, vtos);
   746   locals_index(G3_scratch);
   747   __ store_local_float( G3_scratch, Ftos_f );
   748 }
   751 void TemplateTable::dstore() {
   752   transition(dtos, vtos);
   753   locals_index(G3_scratch);
   754   __ store_local_double( G3_scratch, Ftos_d );
   755 }
   758 void TemplateTable::astore() {
   759   transition(vtos, vtos);
   760   __ load_ptr(0, Otos_i);
   761   __ inc(Lesp, Interpreter::stackElementSize);
   762   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   763   locals_index(G3_scratch);
   764   __ store_local_ptr(G3_scratch, Otos_i);
   765 }
   768 void TemplateTable::wide_istore() {
   769   transition(vtos, vtos);
   770   __ pop_i();
   771   locals_index_wide(G3_scratch);
   772   __ store_local_int( G3_scratch, Otos_i );
   773 }
   776 void TemplateTable::wide_lstore() {
   777   transition(vtos, vtos);
   778   __ pop_l();
   779   locals_index_wide(G3_scratch);
   780   __ store_local_long( G3_scratch, Otos_l );
   781 }
   784 void TemplateTable::wide_fstore() {
   785   transition(vtos, vtos);
   786   __ pop_f();
   787   locals_index_wide(G3_scratch);
   788   __ store_local_float( G3_scratch, Ftos_f );
   789 }
   792 void TemplateTable::wide_dstore() {
   793   transition(vtos, vtos);
   794   __ pop_d();
   795   locals_index_wide(G3_scratch);
   796   __ store_local_double( G3_scratch, Ftos_d );
   797 }
   800 void TemplateTable::wide_astore() {
   801   transition(vtos, vtos);
   802   __ load_ptr(0, Otos_i);
   803   __ inc(Lesp, Interpreter::stackElementSize);
   804   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   805   locals_index_wide(G3_scratch);
   806   __ store_local_ptr(G3_scratch, Otos_i);
   807 }
   810 void TemplateTable::iastore() {
   811   transition(itos, vtos);
   812   __ pop_i(O2); // index
   813   // Otos_i: val
   814   // O3: array
   815   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   816   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   817 }
   820 void TemplateTable::lastore() {
   821   transition(ltos, vtos);
   822   __ pop_i(O2); // index
   823   // Otos_l: val
   824   // O3: array
   825   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   826   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   827 }
   830 void TemplateTable::fastore() {
   831   transition(ftos, vtos);
   832   __ pop_i(O2); // index
   833   // Ftos_f: val
   834   // O3: array
   835   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   836   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   837 }
   840 void TemplateTable::dastore() {
   841   transition(dtos, vtos);
   842   __ pop_i(O2); // index
   843   // Fos_d: val
   844   // O3: array
   845   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   846   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   847 }
   850 void TemplateTable::aastore() {
   851   Label store_ok, is_null, done;
   852   transition(vtos, vtos);
   853   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   854   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   855   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   856   // Otos_i: val
   857   // O2: index
   858   // O3: array
   859   __ verify_oop(Otos_i);
   860   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   862   // do array store check - check for NULL value first
   863   __ br_null( Otos_i, false, Assembler::pn, is_null );
   864   __ delayed()->nop();
   866   __ load_klass(O3, O4); // get array klass
   867   __ load_klass(Otos_i, O5); // get value klass
   869   // do fast instanceof cache test
   871   __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
   873   assert(Otos_i == O0, "just checking");
   875   // Otos_i:    value
   876   // O1:        addr - offset
   877   // O2:        index
   878   // O3:        array
   879   // O4:        array element klass
   880   // O5:        value klass
   882   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   884   // Generate a fast subtype check.  Branch to store_ok if no
   885   // failure.  Throw if failure.
   886   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   888   // Not a subtype; so must throw exception
   889   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   891   // Store is OK.
   892   __ bind(store_ok);
   893   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   895   __ ba(false,done);
   896   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   898   __ bind(is_null);
   899   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   901   __ profile_null_seen(G3_scratch);
   902   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   903   __ bind(done);
   904 }
   907 void TemplateTable::bastore() {
   908   transition(itos, vtos);
   909   __ pop_i(O2); // index
   910   // Otos_i: val
   911   // O3: array
   912   __ index_check(O3, O2, 0, G3_scratch, O2);
   913   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   914 }
   917 void TemplateTable::castore() {
   918   transition(itos, vtos);
   919   __ pop_i(O2); // index
   920   // Otos_i: val
   921   // O3: array
   922   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   923   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   924 }
   927 void TemplateTable::sastore() {
   928   // %%%%% Factor across platform
   929   castore();
   930 }
   933 void TemplateTable::istore(int n) {
   934   transition(itos, vtos);
   935   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   936 }
   939 void TemplateTable::lstore(int n) {
   940   transition(ltos, vtos);
   941   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   942   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   944 }
   947 void TemplateTable::fstore(int n) {
   948   transition(ftos, vtos);
   949   assert(n < Argument::n_register_parameters, "only handle register cases");
   950   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   951 }
   954 void TemplateTable::dstore(int n) {
   955   transition(dtos, vtos);
   956   FloatRegister src = Ftos_d;
   957   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   958 }
   961 void TemplateTable::astore(int n) {
   962   transition(vtos, vtos);
   963   __ load_ptr(0, Otos_i);
   964   __ inc(Lesp, Interpreter::stackElementSize);
   965   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   966   __ store_local_ptr(n, Otos_i);
   967 }
   970 void TemplateTable::pop() {
   971   transition(vtos, vtos);
   972   __ inc(Lesp, Interpreter::stackElementSize);
   973 }
   976 void TemplateTable::pop2() {
   977   transition(vtos, vtos);
   978   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   979 }
   982 void TemplateTable::dup() {
   983   transition(vtos, vtos);
   984   // stack: ..., a
   985   // load a and tag
   986   __ load_ptr(0, Otos_i);
   987   __ push_ptr(Otos_i);
   988   // stack: ..., a, a
   989 }
   992 void TemplateTable::dup_x1() {
   993   transition(vtos, vtos);
   994   // stack: ..., a, b
   995   __ load_ptr( 1, G3_scratch);  // get a
   996   __ load_ptr( 0, Otos_l1);     // get b
   997   __ store_ptr(1, Otos_l1);     // put b
   998   __ store_ptr(0, G3_scratch);  // put a - like swap
   999   __ push_ptr(Otos_l1);         // push b
  1000   // stack: ..., b, a, b
  1004 void TemplateTable::dup_x2() {
  1005   transition(vtos, vtos);
  1006   // stack: ..., a, b, c
  1007   // get c and push on stack, reuse registers
  1008   __ load_ptr( 0, G3_scratch);  // get c
  1009   __ push_ptr(G3_scratch);      // push c with tag
  1010   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  1011   // (stack offsets n+1 now)
  1012   __ load_ptr( 3, Otos_l1);     // get a
  1013   __ store_ptr(3, G3_scratch);  // put c at 3
  1014   // stack: ..., c, b, c, c  (a in reg)
  1015   __ load_ptr( 2, G3_scratch);  // get b
  1016   __ store_ptr(2, Otos_l1);     // put a at 2
  1017   // stack: ..., c, a, c, c  (b in reg)
  1018   __ store_ptr(1, G3_scratch);  // put b at 1
  1019   // stack: ..., c, a, b, c
  1023 void TemplateTable::dup2() {
  1024   transition(vtos, vtos);
  1025   __ load_ptr(1, G3_scratch);  // get a
  1026   __ load_ptr(0, Otos_l1);     // get b
  1027   __ push_ptr(G3_scratch);     // push a
  1028   __ push_ptr(Otos_l1);        // push b
  1029   // stack: ..., a, b, a, b
  1033 void TemplateTable::dup2_x1() {
  1034   transition(vtos, vtos);
  1035   // stack: ..., a, b, c
  1036   __ load_ptr( 1, Lscratch);    // get b
  1037   __ load_ptr( 2, Otos_l1);     // get a
  1038   __ store_ptr(2, Lscratch);    // put b at a
  1039   // stack: ..., b, b, c
  1040   __ load_ptr( 0, G3_scratch);  // get c
  1041   __ store_ptr(1, G3_scratch);  // put c at b
  1042   // stack: ..., b, c, c
  1043   __ store_ptr(0, Otos_l1);     // put a at c
  1044   // stack: ..., b, c, a
  1045   __ push_ptr(Lscratch);        // push b
  1046   __ push_ptr(G3_scratch);      // push c
  1047   // stack: ..., b, c, a, b, c
  1051 // The spec says that these types can be a mixture of category 1 (1 word)
  1052 // types and/or category 2 types (long and doubles)
  1053 void TemplateTable::dup2_x2() {
  1054   transition(vtos, vtos);
  1055   // stack: ..., a, b, c, d
  1056   __ load_ptr( 1, Lscratch);    // get c
  1057   __ load_ptr( 3, Otos_l1);     // get a
  1058   __ store_ptr(3, Lscratch);    // put c at 3
  1059   __ store_ptr(1, Otos_l1);     // put a at 1
  1060   // stack: ..., c, b, a, d
  1061   __ load_ptr( 2, G3_scratch);  // get b
  1062   __ load_ptr( 0, Otos_l1);     // get d
  1063   __ store_ptr(0, G3_scratch);  // put b at 0
  1064   __ store_ptr(2, Otos_l1);     // put d at 2
  1065   // stack: ..., c, d, a, b
  1066   __ push_ptr(Lscratch);        // push c
  1067   __ push_ptr(Otos_l1);         // push d
  1068   // stack: ..., c, d, a, b, c, d
  1072 void TemplateTable::swap() {
  1073   transition(vtos, vtos);
  1074   // stack: ..., a, b
  1075   __ load_ptr( 1, G3_scratch);  // get a
  1076   __ load_ptr( 0, Otos_l1);     // get b
  1077   __ store_ptr(0, G3_scratch);  // put b
  1078   __ store_ptr(1, Otos_l1);     // put a
  1079   // stack: ..., b, a
  1083 void TemplateTable::iop2(Operation op) {
  1084   transition(itos, itos);
  1085   __ pop_i(O1);
  1086   switch (op) {
  1087    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1088    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1089      // %%%%% Mul may not exist: better to call .mul?
  1090    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1091    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1092    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1093    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1094    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1095    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1096    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1097    default: ShouldNotReachHere();
  1102 void TemplateTable::lop2(Operation op) {
  1103   transition(ltos, ltos);
  1104   __ pop_l(O2);
  1105   switch (op) {
  1106 #ifdef _LP64
  1107    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1108    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1109    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1110    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1111    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1112 #else
  1113    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1114    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1115    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1116    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1117    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1118 #endif
  1119    default: ShouldNotReachHere();
  1124 void TemplateTable::idiv() {
  1125   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1126   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1128   transition(itos, itos);
  1129   __ pop_i(O1); // get 1st op
  1131   // Y contains upper 32 bits of result, set it to 0 or all ones
  1132   __ wry(G0);
  1133   __ mov(~0, G3_scratch);
  1135   __ tst(O1);
  1136      Label neg;
  1137   __ br(Assembler::negative, true, Assembler::pn, neg);
  1138   __ delayed()->wry(G3_scratch);
  1139   __ bind(neg);
  1141      Label ok;
  1142   __ tst(Otos_i);
  1143   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1145   const int min_int = 0x80000000;
  1146   Label regular;
  1147   __ cmp(Otos_i, -1);
  1148   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1149 #ifdef _LP64
  1150   // Don't put set in delay slot
  1151   // Set will turn into multiple instructions in 64 bit mode
  1152   __ delayed()->nop();
  1153   __ set(min_int, G4_scratch);
  1154 #else
  1155   __ delayed()->set(min_int, G4_scratch);
  1156 #endif
  1157   Label done;
  1158   __ cmp(O1, G4_scratch);
  1159   __ br(Assembler::equal, true, Assembler::pt, done);
  1160   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1162   __ bind(regular);
  1163   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1164   __ bind(done);
  1168 void TemplateTable::irem() {
  1169   transition(itos, itos);
  1170   __ mov(Otos_i, O2); // save divisor
  1171   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1172   __ smul(Otos_i, O2, Otos_i);
  1173   __ sub(O1, Otos_i, Otos_i);
  1177 void TemplateTable::lmul() {
  1178   transition(ltos, ltos);
  1179   __ pop_l(O2);
  1180 #ifdef _LP64
  1181   __ mulx(Otos_l, O2, Otos_l);
  1182 #else
  1183   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1184 #endif
  1189 void TemplateTable::ldiv() {
  1190   transition(ltos, ltos);
  1192   // check for zero
  1193   __ pop_l(O2);
  1194 #ifdef _LP64
  1195   __ tst(Otos_l);
  1196   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1197   __ sdivx(O2, Otos_l, Otos_l);
  1198 #else
  1199   __ orcc(Otos_l1, Otos_l2, G0);
  1200   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1201   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1202 #endif
  1206 void TemplateTable::lrem() {
  1207   transition(ltos, ltos);
  1209   // check for zero
  1210   __ pop_l(O2);
  1211 #ifdef _LP64
  1212   __ tst(Otos_l);
  1213   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1214   __ sdivx(O2, Otos_l, Otos_l2);
  1215   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1216   __ sub  (O2, Otos_l2, Otos_l);
  1217 #else
  1218   __ orcc(Otos_l1, Otos_l2, G0);
  1219   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1220   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1221 #endif
  1225 void TemplateTable::lshl() {
  1226   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1228   __ pop_l(O2);                          // shift value in O2, O3
  1229 #ifdef _LP64
  1230   __ sllx(O2, Otos_i, Otos_l);
  1231 #else
  1232   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1233 #endif
  1237 void TemplateTable::lshr() {
  1238   transition(itos, ltos); // %%%% see lshl comment
  1240   __ pop_l(O2);                          // shift value in O2, O3
  1241 #ifdef _LP64
  1242   __ srax(O2, Otos_i, Otos_l);
  1243 #else
  1244   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1245 #endif
  1250 void TemplateTable::lushr() {
  1251   transition(itos, ltos); // %%%% see lshl comment
  1253   __ pop_l(O2);                          // shift value in O2, O3
  1254 #ifdef _LP64
  1255   __ srlx(O2, Otos_i, Otos_l);
  1256 #else
  1257   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1258 #endif
  1262 void TemplateTable::fop2(Operation op) {
  1263   transition(ftos, ftos);
  1264   switch (op) {
  1265    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1266    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1267    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1268    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1269    case  rem:
  1270      assert(Ftos_f == F0, "just checking");
  1271 #ifdef _LP64
  1272      // LP64 calling conventions use F1, F3 for passing 2 floats
  1273      __ pop_f(F1);
  1274      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1275 #else
  1276      __ pop_i(O0);
  1277      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1278      __ ld( __ d_tmp, O1 );
  1279 #endif
  1280      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1281      assert( Ftos_f == F0, "fix this code" );
  1282      break;
  1284    default: ShouldNotReachHere();
  1289 void TemplateTable::dop2(Operation op) {
  1290   transition(dtos, dtos);
  1291   switch (op) {
  1292    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1293    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1294    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1295    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1296    case  rem:
  1297 #ifdef _LP64
  1298      // Pass arguments in D0, D2
  1299      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1300      __ pop_d( F0 );
  1301 #else
  1302      // Pass arguments in O0O1, O2O3
  1303      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1304      __ ldd( __ d_tmp, O2 );
  1305      __ pop_d(Ftos_f);
  1306      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1307      __ ldd( __ d_tmp, O0 );
  1308 #endif
  1309      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1310      assert( Ftos_d == F0, "fix this code" );
  1311      break;
  1313    default: ShouldNotReachHere();
  1318 void TemplateTable::ineg() {
  1319   transition(itos, itos);
  1320   __ neg(Otos_i);
  1324 void TemplateTable::lneg() {
  1325   transition(ltos, ltos);
  1326 #ifdef _LP64
  1327   __ sub(G0, Otos_l, Otos_l);
  1328 #else
  1329   __ lneg(Otos_l1, Otos_l2);
  1330 #endif
  1334 void TemplateTable::fneg() {
  1335   transition(ftos, ftos);
  1336   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1340 void TemplateTable::dneg() {
  1341   transition(dtos, dtos);
  1342   // v8 has fnegd if source and dest are the same
  1343   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1347 void TemplateTable::iinc() {
  1348   transition(vtos, vtos);
  1349   locals_index(G3_scratch);
  1350   __ ldsb(Lbcp, 2, O2);  // load constant
  1351   __ access_local_int(G3_scratch, Otos_i);
  1352   __ add(Otos_i, O2, Otos_i);
  1353   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1357 void TemplateTable::wide_iinc() {
  1358   transition(vtos, vtos);
  1359   locals_index_wide(G3_scratch);
  1360   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1361   __ access_local_int(G3_scratch, Otos_i);
  1362   __ add(Otos_i, O3, Otos_i);
  1363   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1367 void TemplateTable::convert() {
  1368 // %%%%% Factor this first part accross platforms
  1369   #ifdef ASSERT
  1370     TosState tos_in  = ilgl;
  1371     TosState tos_out = ilgl;
  1372     switch (bytecode()) {
  1373       case Bytecodes::_i2l: // fall through
  1374       case Bytecodes::_i2f: // fall through
  1375       case Bytecodes::_i2d: // fall through
  1376       case Bytecodes::_i2b: // fall through
  1377       case Bytecodes::_i2c: // fall through
  1378       case Bytecodes::_i2s: tos_in = itos; break;
  1379       case Bytecodes::_l2i: // fall through
  1380       case Bytecodes::_l2f: // fall through
  1381       case Bytecodes::_l2d: tos_in = ltos; break;
  1382       case Bytecodes::_f2i: // fall through
  1383       case Bytecodes::_f2l: // fall through
  1384       case Bytecodes::_f2d: tos_in = ftos; break;
  1385       case Bytecodes::_d2i: // fall through
  1386       case Bytecodes::_d2l: // fall through
  1387       case Bytecodes::_d2f: tos_in = dtos; break;
  1388       default             : ShouldNotReachHere();
  1390     switch (bytecode()) {
  1391       case Bytecodes::_l2i: // fall through
  1392       case Bytecodes::_f2i: // fall through
  1393       case Bytecodes::_d2i: // fall through
  1394       case Bytecodes::_i2b: // fall through
  1395       case Bytecodes::_i2c: // fall through
  1396       case Bytecodes::_i2s: tos_out = itos; break;
  1397       case Bytecodes::_i2l: // fall through
  1398       case Bytecodes::_f2l: // fall through
  1399       case Bytecodes::_d2l: tos_out = ltos; break;
  1400       case Bytecodes::_i2f: // fall through
  1401       case Bytecodes::_l2f: // fall through
  1402       case Bytecodes::_d2f: tos_out = ftos; break;
  1403       case Bytecodes::_i2d: // fall through
  1404       case Bytecodes::_l2d: // fall through
  1405       case Bytecodes::_f2d: tos_out = dtos; break;
  1406       default             : ShouldNotReachHere();
  1408     transition(tos_in, tos_out);
  1409   #endif
  1412   // Conversion
  1413   Label done;
  1414   switch (bytecode()) {
  1415    case Bytecodes::_i2l:
  1416 #ifdef _LP64
  1417     // Sign extend the 32 bits
  1418     __ sra ( Otos_i, 0, Otos_l );
  1419 #else
  1420     __ addcc(Otos_i, 0, Otos_l2);
  1421     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1422     __ delayed()->clr(Otos_l1);
  1423     __ set(~0, Otos_l1);
  1424 #endif
  1425     break;
  1427    case Bytecodes::_i2f:
  1428     __ st(Otos_i, __ d_tmp );
  1429     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1430     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1431     break;
  1433    case Bytecodes::_i2d:
  1434     __ st(Otos_i, __ d_tmp);
  1435     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1436     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1437     break;
  1439    case Bytecodes::_i2b:
  1440     __ sll(Otos_i, 24, Otos_i);
  1441     __ sra(Otos_i, 24, Otos_i);
  1442     break;
  1444    case Bytecodes::_i2c:
  1445     __ sll(Otos_i, 16, Otos_i);
  1446     __ srl(Otos_i, 16, Otos_i);
  1447     break;
  1449    case Bytecodes::_i2s:
  1450     __ sll(Otos_i, 16, Otos_i);
  1451     __ sra(Otos_i, 16, Otos_i);
  1452     break;
  1454    case Bytecodes::_l2i:
  1455 #ifndef _LP64
  1456     __ mov(Otos_l2, Otos_i);
  1457 #else
  1458     // Sign-extend into the high 32 bits
  1459     __ sra(Otos_l, 0, Otos_i);
  1460 #endif
  1461     break;
  1463    case Bytecodes::_l2f:
  1464    case Bytecodes::_l2d:
  1465     __ st_long(Otos_l, __ d_tmp);
  1466     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1468     if (VM_Version::v9_instructions_work()) {
  1469       if (bytecode() == Bytecodes::_l2f) {
  1470         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1471       } else {
  1472         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1474     } else {
  1475       __ call_VM_leaf(
  1476         Lscratch,
  1477         bytecode() == Bytecodes::_l2f
  1478           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1479           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1480       );
  1482     break;
  1484   case Bytecodes::_f2i:  {
  1485       Label isNaN;
  1486       // result must be 0 if value is NaN; test by comparing value to itself
  1487       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1488       // According to the v8 manual, you have to have a non-fp instruction
  1489       // between fcmp and fb.
  1490       if (!VM_Version::v9_instructions_work()) {
  1491         __ nop();
  1493       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1494       __ delayed()->clr(Otos_i);                                     // NaN
  1495       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1496       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1497       __ ld(__ d_tmp, Otos_i);
  1498       __ bind(isNaN);
  1500     break;
  1502    case Bytecodes::_f2l:
  1503     // must uncache tos
  1504     __ push_f();
  1505 #ifdef _LP64
  1506     __ pop_f(F1);
  1507 #else
  1508     __ pop_i(O0);
  1509 #endif
  1510     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1511     break;
  1513    case Bytecodes::_f2d:
  1514     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1515     break;
  1517    case Bytecodes::_d2i:
  1518    case Bytecodes::_d2l:
  1519     // must uncache tos
  1520     __ push_d();
  1521 #ifdef _LP64
  1522     // LP64 calling conventions pass first double arg in D0
  1523     __ pop_d( Ftos_d );
  1524 #else
  1525     __ pop_i( O0 );
  1526     __ pop_i( O1 );
  1527 #endif
  1528     __ call_VM_leaf(Lscratch,
  1529         bytecode() == Bytecodes::_d2i
  1530           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1531           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1532     break;
  1534     case Bytecodes::_d2f:
  1535     if (VM_Version::v9_instructions_work()) {
  1536       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1538     else {
  1539       // must uncache tos
  1540       __ push_d();
  1541       __ pop_i(O0);
  1542       __ pop_i(O1);
  1543       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1545     break;
  1547     default: ShouldNotReachHere();
  1549   __ bind(done);
  1553 void TemplateTable::lcmp() {
  1554   transition(ltos, itos);
  1556 #ifdef _LP64
  1557   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1558   __ lcmp( O1, Otos_l, Otos_i );
  1559 #else
  1560   __ pop_l(O2); // cmp O2,3 to O0,1
  1561   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1562 #endif
  1566 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1568   if (is_float) __ pop_f(F2);
  1569   else          __ pop_d(F2);
  1571   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1573   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1576 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1577   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1578   __ verify_oop(Lmethod);
  1579   __ verify_thread();
  1581   const Register O2_bumped_count = O2;
  1582   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1584   // get (wide) offset to O1_disp
  1585   const Register O1_disp = O1;
  1586   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1587   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1589   // Handle all the JSR stuff here, then exit.
  1590   // It's much shorter and cleaner than intermingling with the
  1591   // non-JSR normal-branch stuff occurring below.
  1592   if( is_jsr ) {
  1593     // compute return address as bci in Otos_i
  1594     __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1595     __ sub(Lbcp, G3_scratch, G3_scratch);
  1596     __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1598     // Bump Lbcp to target of JSR
  1599     __ add(Lbcp, O1_disp, Lbcp);
  1600     // Push returnAddress for "ret" on stack
  1601     __ push_ptr(Otos_i);
  1602     // And away we go!
  1603     __ dispatch_next(vtos);
  1604     return;
  1607   // Normal (non-jsr) branch handling
  1609   // Save the current Lbcp
  1610   const Register O0_cur_bcp = O0;
  1611   __ mov( Lbcp, O0_cur_bcp );
  1614   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1615   if ( increment_invocation_counter_for_backward_branches ) {
  1616     Label Lforward;
  1617     // check branch direction
  1618     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1619     // Bump bytecode pointer by displacement (take the branch)
  1620     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1622     if (TieredCompilation) {
  1623       Label Lno_mdo, Loverflow;
  1624       int increment = InvocationCounter::count_increment;
  1625       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1626       if (ProfileInterpreter) {
  1627         // If no method data exists, go to profile_continue.
  1628         __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
  1629         __ br_null(G4_scratch, false, Assembler::pn, Lno_mdo);
  1630         __ delayed()->nop();
  1632         // Increment backedge counter in the MDO
  1633         Address mdo_backedge_counter(G4_scratch, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1634                                                  in_bytes(InvocationCounter::counter_offset()));
  1635         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
  1636                                    Assembler::notZero, &Lforward);
  1637         __ ba(false, Loverflow);
  1638         __ delayed()->nop();
  1641       // If there's no MDO, increment counter in methodOop
  1642       __ bind(Lno_mdo);
  1643       Address backedge_counter(Lmethod, in_bytes(methodOopDesc::backedge_counter_offset()) +
  1644                                         in_bytes(InvocationCounter::counter_offset()));
  1645       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
  1646                                  Assembler::notZero, &Lforward);
  1647       __ bind(Loverflow);
  1649       // notify point for loop, pass branch bytecode
  1650       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
  1652       // Was an OSR adapter generated?
  1653       // O0 = osr nmethod
  1654       __ br_null(O0, false, Assembler::pn, Lforward);
  1655       __ delayed()->nop();
  1657       // Has the nmethod been invalidated already?
  1658       __ ld(O0, nmethod::entry_bci_offset(), O2);
  1659       __ cmp(O2, InvalidOSREntryBci);
  1660       __ br(Assembler::equal, false, Assembler::pn, Lforward);
  1661       __ delayed()->nop();
  1663       // migrate the interpreter frame off of the stack
  1665       __ mov(G2_thread, L7);
  1666       // save nmethod
  1667       __ mov(O0, L6);
  1668       __ set_last_Java_frame(SP, noreg);
  1669       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  1670       __ reset_last_Java_frame();
  1671       __ mov(L7, G2_thread);
  1673       // move OSR nmethod to I1
  1674       __ mov(L6, I1);
  1676       // OSR buffer to I0
  1677       __ mov(O0, I0);
  1679       // remove the interpreter frame
  1680       __ restore(I5_savedSP, 0, SP);
  1682       // Jump to the osr code.
  1683       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  1684       __ jmp(O2, G0);
  1685       __ delayed()->nop();
  1687     } else {
  1688       // Update Backedge branch separately from invocations
  1689       const Register G4_invoke_ctr = G4;
  1690       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
  1691       if (ProfileInterpreter) {
  1692         __ test_invocation_counter_for_mdp(G4_invoke_ctr, Lbcp, G3_scratch, Lforward);
  1693         if (UseOnStackReplacement) {
  1694           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
  1696       } else {
  1697         if (UseOnStackReplacement) {
  1698           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
  1703     __ bind(Lforward);
  1704   } else
  1705     // Bump bytecode pointer by displacement (take the branch)
  1706     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1708   // continue with bytecode @ target
  1709   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1710   // %%%%% and changing dispatch_next to dispatch_only
  1711   __ dispatch_next(vtos);
  1715 // Note Condition in argument is TemplateTable::Condition
  1716 // arg scope is within class scope
  1718 void TemplateTable::if_0cmp(Condition cc) {
  1719   // no pointers, integer only!
  1720   transition(itos, vtos);
  1721   // assume branch is more often taken than not (loops use backward branches)
  1722   __ cmp( Otos_i, 0);
  1723   __ if_cmp(ccNot(cc), false);
  1727 void TemplateTable::if_icmp(Condition cc) {
  1728   transition(itos, vtos);
  1729   __ pop_i(O1);
  1730   __ cmp(O1, Otos_i);
  1731   __ if_cmp(ccNot(cc), false);
  1735 void TemplateTable::if_nullcmp(Condition cc) {
  1736   transition(atos, vtos);
  1737   __ tst(Otos_i);
  1738   __ if_cmp(ccNot(cc), true);
  1742 void TemplateTable::if_acmp(Condition cc) {
  1743   transition(atos, vtos);
  1744   __ pop_ptr(O1);
  1745   __ verify_oop(O1);
  1746   __ verify_oop(Otos_i);
  1747   __ cmp(O1, Otos_i);
  1748   __ if_cmp(ccNot(cc), true);
  1753 void TemplateTable::ret() {
  1754   transition(vtos, vtos);
  1755   locals_index(G3_scratch);
  1756   __ access_local_returnAddress(G3_scratch, Otos_i);
  1757   // Otos_i contains the bci, compute the bcp from that
  1759 #ifdef _LP64
  1760 #ifdef ASSERT
  1761   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1762   // the result.  The return address (really a BCI) was stored with an
  1763   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1764   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1765   // loaded value.
  1766   { Label zzz ;
  1767      __ set (65536, G3_scratch) ;
  1768      __ cmp (Otos_i, G3_scratch) ;
  1769      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1770      __ delayed()->nop();
  1771      __ stop("BCI is in the wrong register half?");
  1772      __ bind (zzz) ;
  1774 #endif
  1775 #endif
  1777   __ profile_ret(vtos, Otos_i, G4_scratch);
  1779   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1780   __ add(G3_scratch, Otos_i, G3_scratch);
  1781   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1782   __ dispatch_next(vtos);
  1786 void TemplateTable::wide_ret() {
  1787   transition(vtos, vtos);
  1788   locals_index_wide(G3_scratch);
  1789   __ access_local_returnAddress(G3_scratch, Otos_i);
  1790   // Otos_i contains the bci, compute the bcp from that
  1792   __ profile_ret(vtos, Otos_i, G4_scratch);
  1794   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1795   __ add(G3_scratch, Otos_i, G3_scratch);
  1796   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1797   __ dispatch_next(vtos);
  1801 void TemplateTable::tableswitch() {
  1802   transition(itos, vtos);
  1803   Label default_case, continue_execution;
  1805   // align bcp
  1806   __ add(Lbcp, BytesPerInt, O1);
  1807   __ and3(O1, -BytesPerInt, O1);
  1808   // load lo, hi
  1809   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1810   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1811 #ifdef _LP64
  1812   // Sign extend the 32 bits
  1813   __ sra ( Otos_i, 0, Otos_i );
  1814 #endif /* _LP64 */
  1816   // check against lo & hi
  1817   __ cmp( Otos_i, O2);
  1818   __ br( Assembler::less, false, Assembler::pn, default_case);
  1819   __ delayed()->cmp( Otos_i, O3 );
  1820   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1821   // lookup dispatch offset
  1822   __ delayed()->sub(Otos_i, O2, O2);
  1823   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1824   __ sll(O2, LogBytesPerInt, O2);
  1825   __ add(O2, 3 * BytesPerInt, O2);
  1826   __ ba(false, continue_execution);
  1827   __ delayed()->ld(O1, O2, O2);
  1828   // handle default
  1829   __ bind(default_case);
  1830   __ profile_switch_default(O3);
  1831   __ ld(O1, 0, O2); // get default offset
  1832   // continue execution
  1833   __ bind(continue_execution);
  1834   __ add(Lbcp, O2, Lbcp);
  1835   __ dispatch_next(vtos);
  1839 void TemplateTable::lookupswitch() {
  1840   transition(itos, itos);
  1841   __ stop("lookupswitch bytecode should have been rewritten");
  1844 void TemplateTable::fast_linearswitch() {
  1845   transition(itos, vtos);
  1846     Label loop_entry, loop, found, continue_execution;
  1847   // align bcp
  1848   __ add(Lbcp, BytesPerInt, O1);
  1849   __ and3(O1, -BytesPerInt, O1);
  1850  // set counter
  1851   __ ld(O1, BytesPerInt, O2);
  1852   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1853   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1854   __ ba(false, loop_entry);
  1855   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1857   // table search
  1858   __ bind(loop);
  1859   __ cmp(O4, Otos_i);
  1860   __ br(Assembler::equal, true, Assembler::pn, found);
  1861   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1862   __ inc(O3, 2 * BytesPerInt);
  1864   __ bind(loop_entry);
  1865   __ cmp(O2, O3);
  1866   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1867   __ delayed()->ld(O3, 0, O4);
  1869   // default case
  1870   __ ld(O1, 0, O4); // get default offset
  1871   if (ProfileInterpreter) {
  1872     __ profile_switch_default(O3);
  1873     __ ba(false, continue_execution);
  1874     __ delayed()->nop();
  1877   // entry found -> get offset
  1878   __ bind(found);
  1879   if (ProfileInterpreter) {
  1880     __ sub(O3, O1, O3);
  1881     __ sub(O3, 2*BytesPerInt, O3);
  1882     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1883     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1885     __ bind(continue_execution);
  1887   __ add(Lbcp, O4, Lbcp);
  1888   __ dispatch_next(vtos);
  1892 void TemplateTable::fast_binaryswitch() {
  1893   transition(itos, vtos);
  1894   // Implementation using the following core algorithm: (copied from Intel)
  1895   //
  1896   // int binary_search(int key, LookupswitchPair* array, int n) {
  1897   //   // Binary search according to "Methodik des Programmierens" by
  1898   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1899   //   int i = 0;
  1900   //   int j = n;
  1901   //   while (i+1 < j) {
  1902   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1903   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1904   //     // where a stands for the array and assuming that the (inexisting)
  1905   //     // element a[n] is infinitely big.
  1906   //     int h = (i + j) >> 1;
  1907   //     // i < h < j
  1908   //     if (key < array[h].fast_match()) {
  1909   //       j = h;
  1910   //     } else {
  1911   //       i = h;
  1912   //     }
  1913   //   }
  1914   //   // R: a[i] <= key < a[i+1] or Q
  1915   //   // (i.e., if key is within array, i is the correct index)
  1916   //   return i;
  1917   // }
  1919   // register allocation
  1920   assert(Otos_i == O0, "alias checking");
  1921   const Register Rkey     = Otos_i;                    // already set (tosca)
  1922   const Register Rarray   = O1;
  1923   const Register Ri       = O2;
  1924   const Register Rj       = O3;
  1925   const Register Rh       = O4;
  1926   const Register Rscratch = O5;
  1928   const int log_entry_size = 3;
  1929   const int entry_size = 1 << log_entry_size;
  1931   Label found;
  1932   // Find Array start
  1933   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1934   __ and3(Rarray, -BytesPerInt, Rarray);
  1935   // initialize i & j (in delay slot)
  1936   __ clr( Ri );
  1938   // and start
  1939   Label entry;
  1940   __ ba(false, entry);
  1941   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1942   // (Rj is already in the native byte-ordering.)
  1944   // binary search loop
  1945   { Label loop;
  1946     __ bind( loop );
  1947     // int h = (i + j) >> 1;
  1948     __ sra( Rh, 1, Rh );
  1949     // if (key < array[h].fast_match()) {
  1950     //   j = h;
  1951     // } else {
  1952     //   i = h;
  1953     // }
  1954     __ sll( Rh, log_entry_size, Rscratch );
  1955     __ ld( Rarray, Rscratch, Rscratch );
  1956     // (Rscratch is already in the native byte-ordering.)
  1957     __ cmp( Rkey, Rscratch );
  1958     if ( VM_Version::v9_instructions_work() ) {
  1959       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1960       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1962     else {
  1963       Label end_of_if;
  1964       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1965       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1966       __ mov( Rh, Ri );            // else i = h
  1967       __ bind(end_of_if);          // }
  1970     // while (i+1 < j)
  1971     __ bind( entry );
  1972     __ add( Ri, 1, Rscratch );
  1973     __ cmp(Rscratch, Rj);
  1974     __ br( Assembler::less, true, Assembler::pt, loop );
  1975     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1978   // end of binary search, result index is i (must check again!)
  1979   Label default_case;
  1980   Label continue_execution;
  1981   if (ProfileInterpreter) {
  1982     __ mov( Ri, Rh );              // Save index in i for profiling
  1984   __ sll( Ri, log_entry_size, Ri );
  1985   __ ld( Rarray, Ri, Rscratch );
  1986   // (Rscratch is already in the native byte-ordering.)
  1987   __ cmp( Rkey, Rscratch );
  1988   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1989   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1991   // entry found -> j = offset
  1992   __ inc( Ri, BytesPerInt );
  1993   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1994   __ ld( Rarray, Ri, Rj );
  1995   // (Rj is already in the native byte-ordering.)
  1997   if (ProfileInterpreter) {
  1998     __ ba(false, continue_execution);
  1999     __ delayed()->nop();
  2002   __ bind(default_case); // fall through (if not profiling)
  2003   __ profile_switch_default(Ri);
  2005   __ bind(continue_execution);
  2006   __ add( Lbcp, Rj, Lbcp );
  2007   __ dispatch_next( vtos );
  2011 void TemplateTable::_return(TosState state) {
  2012   transition(state, state);
  2013   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  2015   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2016     assert(state == vtos, "only valid state");
  2017     __ mov(G0, G3_scratch);
  2018     __ access_local_ptr(G3_scratch, Otos_i);
  2019     __ load_klass(Otos_i, O2);
  2020     __ set(JVM_ACC_HAS_FINALIZER, G3);
  2021     __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
  2022     __ andcc(G3, O2, G0);
  2023     Label skip_register_finalizer;
  2024     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  2025     __ delayed()->nop();
  2027     // Call out to do finalizer registration
  2028     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  2030     __ bind(skip_register_finalizer);
  2033   __ remove_activation(state, /* throw_monitor_exception */ true);
  2035   // The caller's SP was adjusted upon method entry to accomodate
  2036   // the callee's non-argument locals. Undo that adjustment.
  2037   __ ret();                             // return to caller
  2038   __ delayed()->restore(I5_savedSP, G0, SP);
  2042 // ----------------------------------------------------------------------------
  2043 // Volatile variables demand their effects be made known to all CPU's in
  2044 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2045 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2046 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2047 // reorder volatile references, the hardware also must not reorder them).
  2048 //
  2049 // According to the new Java Memory Model (JMM):
  2050 // (1) All volatiles are serialized wrt to each other.
  2051 // ALSO reads & writes act as aquire & release, so:
  2052 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2053 // the read float up to before the read.  It's OK for non-volatile memory refs
  2054 // that happen before the volatile read to float down below it.
  2055 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2056 // that happen BEFORE the write float down to after the write.  It's OK for
  2057 // non-volatile memory refs that happen after the volatile write to float up
  2058 // before it.
  2059 //
  2060 // We only put in barriers around volatile refs (they are expensive), not
  2061 // _between_ memory refs (that would require us to track the flavor of the
  2062 // previous memory refs).  Requirements (2) and (3) require some barriers
  2063 // before volatile stores and after volatile loads.  These nearly cover
  2064 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2065 // case is placed after volatile-stores although it could just as well go
  2066 // before volatile-loads.
  2067 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  2068   // Helper function to insert a is-volatile test and memory barrier
  2069   // All current sparc implementations run in TSO, needing only StoreLoad
  2070   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  2071   __ membar( order_constraint );
  2074 // ----------------------------------------------------------------------------
  2075 void TemplateTable::resolve_cache_and_index(int byte_no,
  2076                                             Register result,
  2077                                             Register Rcache,
  2078                                             Register index,
  2079                                             size_t index_size) {
  2080   // Depends on cpCacheOop layout!
  2081   Label resolved;
  2083   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2084   if (byte_no == f1_oop) {
  2085     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2086     // This kind of CP cache entry does not need to match the flags byte, because
  2087     // there is a 1-1 relation between bytecode type and CP entry type.
  2088     assert_different_registers(result, Rcache);
  2089     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2090               ConstantPoolCacheEntry::f1_offset(), result);
  2091     __ tst(result);
  2092     __ br(Assembler::notEqual, false, Assembler::pt, resolved);
  2093     __ delayed()->set((int)bytecode(), O1);
  2094   } else {
  2095     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2096     assert(result == noreg, "");  //else change code for setting result
  2097     const int shift_count = (1 + byte_no)*BitsPerByte;
  2099     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2100               ConstantPoolCacheEntry::indices_offset(), Lbyte_code);
  2102     __ srl(  Lbyte_code, shift_count, Lbyte_code );
  2103     __ and3( Lbyte_code,        0xFF, Lbyte_code );
  2104     __ cmp(  Lbyte_code, (int)bytecode());
  2105     __ br(   Assembler::equal, false, Assembler::pt, resolved);
  2106     __ delayed()->set((int)bytecode(), O1);
  2109   address entry;
  2110   switch (bytecode()) {
  2111     case Bytecodes::_getstatic      : // fall through
  2112     case Bytecodes::_putstatic      : // fall through
  2113     case Bytecodes::_getfield       : // fall through
  2114     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2115     case Bytecodes::_invokevirtual  : // fall through
  2116     case Bytecodes::_invokespecial  : // fall through
  2117     case Bytecodes::_invokestatic   : // fall through
  2118     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2119     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2120     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2121     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2122     default                         : ShouldNotReachHere();                                 break;
  2124   // first time invocation - must resolve first
  2125   __ call_VM(noreg, entry, O1);
  2126   // Update registers with resolved info
  2127   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2128   if (result != noreg)
  2129     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  2130               ConstantPoolCacheEntry::f1_offset(), result);
  2131   __ bind(resolved);
  2134 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2135                                                Register Rmethod,
  2136                                                Register Ritable_index,
  2137                                                Register Rflags,
  2138                                                bool is_invokevirtual,
  2139                                                bool is_invokevfinal,
  2140                                                bool is_invokedynamic) {
  2141   // Uses both G3_scratch and G4_scratch
  2142   Register Rcache = G3_scratch;
  2143   Register Rscratch = G4_scratch;
  2144   assert_different_registers(Rcache, Rmethod, Ritable_index);
  2146   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2148   // determine constant pool cache field offsets
  2149   const int method_offset = in_bytes(
  2150     cp_base_offset +
  2151       (is_invokevirtual
  2152        ? ConstantPoolCacheEntry::f2_offset()
  2153        : ConstantPoolCacheEntry::f1_offset()
  2155     );
  2156   const int flags_offset = in_bytes(cp_base_offset +
  2157                                     ConstantPoolCacheEntry::flags_offset());
  2158   // access constant pool cache fields
  2159   const int index_offset = in_bytes(cp_base_offset +
  2160                                     ConstantPoolCacheEntry::f2_offset());
  2162   if (is_invokevfinal) {
  2163     __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
  2164     __ ld_ptr(Rcache, method_offset, Rmethod);
  2165   } else if (byte_no == f1_oop) {
  2166     // Resolved f1_oop goes directly into 'method' register.
  2167     resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4));
  2168   } else {
  2169     resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2));
  2170     __ ld_ptr(Rcache, method_offset, Rmethod);
  2173   if (Ritable_index != noreg) {
  2174     __ ld_ptr(Rcache, index_offset, Ritable_index);
  2176   __ ld_ptr(Rcache, flags_offset, Rflags);
  2179 // The Rcache register must be set before call
  2180 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2181                                               Register Rcache,
  2182                                               Register index,
  2183                                               Register Roffset,
  2184                                               Register Rflags,
  2185                                               bool is_static) {
  2186   assert_different_registers(Rcache, Rflags, Roffset);
  2188   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2190   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2191   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2192   if (is_static) {
  2193     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2197 // The registers Rcache and index expected to be set before call.
  2198 // Correct values of the Rcache and index registers are preserved.
  2199 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2200                                             Register index,
  2201                                             bool is_static,
  2202                                             bool has_tos) {
  2203   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2205   if (JvmtiExport::can_post_field_access()) {
  2206     // Check to see if a field access watch has been set before we take
  2207     // the time to call into the VM.
  2208     Label Label1;
  2209     assert_different_registers(Rcache, index, G1_scratch);
  2210     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2211     __ load_contents(get_field_access_count_addr, G1_scratch);
  2212     __ tst(G1_scratch);
  2213     __ br(Assembler::zero, false, Assembler::pt, Label1);
  2214     __ delayed()->nop();
  2216     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2218     if (is_static) {
  2219       __ clr(Otos_i);
  2220     } else {
  2221       if (has_tos) {
  2222       // save object pointer before call_VM() clobbers it
  2223         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2224       } else {
  2225         // Load top of stack (do not pop the value off the stack);
  2226         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2228       __ verify_oop(Otos_i);
  2230     // Otos_i: object pointer or NULL if static
  2231     // Rcache: cache entry pointer
  2232     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2233                Otos_i, Rcache);
  2234     if (!is_static && has_tos) {
  2235       __ pop_ptr(Otos_i);  // restore object pointer
  2236       __ verify_oop(Otos_i);
  2238     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2239     __ bind(Label1);
  2243 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2244   transition(vtos, vtos);
  2246   Register Rcache = G3_scratch;
  2247   Register index  = G4_scratch;
  2248   Register Rclass = Rcache;
  2249   Register Roffset= G4_scratch;
  2250   Register Rflags = G1_scratch;
  2251   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2253   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  2254   jvmti_post_field_access(Rcache, index, is_static, false);
  2255   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2257   if (!is_static) {
  2258     pop_and_check_object(Rclass);
  2259   } else {
  2260     __ verify_oop(Rclass);
  2263   Label exit;
  2265   Assembler::Membar_mask_bits membar_bits =
  2266     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2268   if (__ membar_has_effect(membar_bits)) {
  2269     // Get volatile flag
  2270     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2271     __ and3(Rflags, Lscratch, Lscratch);
  2274   Label checkVolatile;
  2276   // compute field type
  2277   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2278   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2279   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2280   ConstantPoolCacheEntry::verify_tosBits();
  2282   // Check atos before itos for getstatic, more likely (in Queens at least)
  2283   __ cmp(Rflags, atos);
  2284   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2285   __ delayed() ->cmp(Rflags, itos);
  2287   // atos
  2288   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2289   __ verify_oop(Otos_i);
  2290   __ push(atos);
  2291   if (!is_static) {
  2292     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2294   __ ba(false, checkVolatile);
  2295   __ delayed()->tst(Lscratch);
  2297   __ bind(notObj);
  2299   // cmp(Rflags, itos);
  2300   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2301   __ delayed() ->cmp(Rflags, ltos);
  2303   // itos
  2304   __ ld(Rclass, Roffset, Otos_i);
  2305   __ push(itos);
  2306   if (!is_static) {
  2307     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2309   __ ba(false, checkVolatile);
  2310   __ delayed()->tst(Lscratch);
  2312   __ bind(notInt);
  2314   // cmp(Rflags, ltos);
  2315   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2316   __ delayed() ->cmp(Rflags, btos);
  2318   // ltos
  2319   // load must be atomic
  2320   __ ld_long(Rclass, Roffset, Otos_l);
  2321   __ push(ltos);
  2322   if (!is_static) {
  2323     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2325   __ ba(false, checkVolatile);
  2326   __ delayed()->tst(Lscratch);
  2328   __ bind(notLong);
  2330   // cmp(Rflags, btos);
  2331   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2332   __ delayed() ->cmp(Rflags, ctos);
  2334   // btos
  2335   __ ldsb(Rclass, Roffset, Otos_i);
  2336   __ push(itos);
  2337   if (!is_static) {
  2338     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2340   __ ba(false, checkVolatile);
  2341   __ delayed()->tst(Lscratch);
  2343   __ bind(notByte);
  2345   // cmp(Rflags, ctos);
  2346   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2347   __ delayed() ->cmp(Rflags, stos);
  2349   // ctos
  2350   __ lduh(Rclass, Roffset, Otos_i);
  2351   __ push(itos);
  2352   if (!is_static) {
  2353     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2355   __ ba(false, checkVolatile);
  2356   __ delayed()->tst(Lscratch);
  2358   __ bind(notChar);
  2360   // cmp(Rflags, stos);
  2361   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2362   __ delayed() ->cmp(Rflags, ftos);
  2364   // stos
  2365   __ ldsh(Rclass, Roffset, Otos_i);
  2366   __ push(itos);
  2367   if (!is_static) {
  2368     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2370   __ ba(false, checkVolatile);
  2371   __ delayed()->tst(Lscratch);
  2373   __ bind(notShort);
  2376   // cmp(Rflags, ftos);
  2377   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2378   __ delayed() ->tst(Lscratch);
  2380   // ftos
  2381   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2382   __ push(ftos);
  2383   if (!is_static) {
  2384     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2386   __ ba(false, checkVolatile);
  2387   __ delayed()->tst(Lscratch);
  2389   __ bind(notFloat);
  2392   // dtos
  2393   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2394   __ push(dtos);
  2395   if (!is_static) {
  2396     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2399   __ bind(checkVolatile);
  2400   if (__ membar_has_effect(membar_bits)) {
  2401     // __ tst(Lscratch); executed in delay slot
  2402     __ br(Assembler::zero, false, Assembler::pt, exit);
  2403     __ delayed()->nop();
  2404     volatile_barrier(membar_bits);
  2407   __ bind(exit);
  2411 void TemplateTable::getfield(int byte_no) {
  2412   getfield_or_static(byte_no, false);
  2415 void TemplateTable::getstatic(int byte_no) {
  2416   getfield_or_static(byte_no, true);
  2420 void TemplateTable::fast_accessfield(TosState state) {
  2421   transition(atos, state);
  2422   Register Rcache  = G3_scratch;
  2423   Register index   = G4_scratch;
  2424   Register Roffset = G4_scratch;
  2425   Register Rflags  = Rcache;
  2426   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2428   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2429   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2431   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2433   __ null_check(Otos_i);
  2434   __ verify_oop(Otos_i);
  2436   Label exit;
  2438   Assembler::Membar_mask_bits membar_bits =
  2439     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2440   if (__ membar_has_effect(membar_bits)) {
  2441     // Get volatile flag
  2442     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2443     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2446   switch (bytecode()) {
  2447     case Bytecodes::_fast_bgetfield:
  2448       __ ldsb(Otos_i, Roffset, Otos_i);
  2449       break;
  2450     case Bytecodes::_fast_cgetfield:
  2451       __ lduh(Otos_i, Roffset, Otos_i);
  2452       break;
  2453     case Bytecodes::_fast_sgetfield:
  2454       __ ldsh(Otos_i, Roffset, Otos_i);
  2455       break;
  2456     case Bytecodes::_fast_igetfield:
  2457       __ ld(Otos_i, Roffset, Otos_i);
  2458       break;
  2459     case Bytecodes::_fast_lgetfield:
  2460       __ ld_long(Otos_i, Roffset, Otos_l);
  2461       break;
  2462     case Bytecodes::_fast_fgetfield:
  2463       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2464       break;
  2465     case Bytecodes::_fast_dgetfield:
  2466       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2467       break;
  2468     case Bytecodes::_fast_agetfield:
  2469       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2470       break;
  2471     default:
  2472       ShouldNotReachHere();
  2475   if (__ membar_has_effect(membar_bits)) {
  2476     __ btst(Lscratch, Rflags);
  2477     __ br(Assembler::zero, false, Assembler::pt, exit);
  2478     __ delayed()->nop();
  2479     volatile_barrier(membar_bits);
  2480     __ bind(exit);
  2483   if (state == atos) {
  2484     __ verify_oop(Otos_i);    // does not blow flags!
  2488 void TemplateTable::jvmti_post_fast_field_mod() {
  2489   if (JvmtiExport::can_post_field_modification()) {
  2490     // Check to see if a field modification watch has been set before we take
  2491     // the time to call into the VM.
  2492     Label done;
  2493     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2494     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2495     __ tst(G4_scratch);
  2496     __ br(Assembler::zero, false, Assembler::pt, done);
  2497     __ delayed()->nop();
  2498     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2499     __ verify_oop(G4_scratch);
  2500     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2501     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2502     // Save tos values before call_VM() clobbers them. Since we have
  2503     // to do it for every data type, we use the saved values as the
  2504     // jvalue object.
  2505     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2506     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2507     case Bytecodes::_fast_bputfield: // fall through
  2508     case Bytecodes::_fast_sputfield: // fall through
  2509     case Bytecodes::_fast_cputfield: // fall through
  2510     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2511     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2512     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2513     // get words in right order for use as jvalue object
  2514     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2516     // setup pointer to jvalue object
  2517     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2518     // G4_scratch:  object pointer
  2519     // G1_scratch: cache entry pointer
  2520     // G3_scratch: jvalue object on the stack
  2521     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2522     switch (bytecode()) {             // restore tos values
  2523     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2524     case Bytecodes::_fast_bputfield: // fall through
  2525     case Bytecodes::_fast_sputfield: // fall through
  2526     case Bytecodes::_fast_cputfield: // fall through
  2527     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2528     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2529     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2530     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2532     __ bind(done);
  2536 // The registers Rcache and index expected to be set before call.
  2537 // The function may destroy various registers, just not the Rcache and index registers.
  2538 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2539   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2541   if (JvmtiExport::can_post_field_modification()) {
  2542     // Check to see if a field modification watch has been set before we take
  2543     // the time to call into the VM.
  2544     Label Label1;
  2545     assert_different_registers(Rcache, index, G1_scratch);
  2546     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2547     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2548     __ tst(G1_scratch);
  2549     __ br(Assembler::zero, false, Assembler::pt, Label1);
  2550     __ delayed()->nop();
  2552     // The Rcache and index registers have been already set.
  2553     // This allows to eliminate this call but the Rcache and index
  2554     // registers must be correspondingly used after this line.
  2555     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2557     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2558     if (is_static) {
  2559       // Life is simple.  Null out the object pointer.
  2560       __ clr(G4_scratch);
  2561     } else {
  2562       Register Rflags = G1_scratch;
  2563       // Life is harder. The stack holds the value on top, followed by the
  2564       // object.  We don't know the size of the value, though; it could be
  2565       // one or two words depending on its type. As a result, we must find
  2566       // the type to determine where the object is.
  2568       Label two_word, valsizeknown;
  2569       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2570       __ mov(Lesp, G4_scratch);
  2571       __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2572       // Make sure we don't need to mask Rflags for tosBits after the above shift
  2573       ConstantPoolCacheEntry::verify_tosBits();
  2574       __ cmp(Rflags, ltos);
  2575       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2576       __ delayed()->cmp(Rflags, dtos);
  2577       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2578       __ delayed()->nop();
  2579       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2580       __ br(Assembler::always, false, Assembler::pt, valsizeknown);
  2581       __ delayed()->nop();
  2582       __ bind(two_word);
  2584       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2586       __ bind(valsizeknown);
  2587       // setup object pointer
  2588       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2589       __ verify_oop(G4_scratch);
  2591     // setup pointer to jvalue object
  2592     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2593     // G4_scratch:  object pointer or NULL if static
  2594     // G3_scratch: cache entry pointer
  2595     // G1_scratch: jvalue object on the stack
  2596     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2597                G4_scratch, G3_scratch, G1_scratch);
  2598     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2599     __ bind(Label1);
  2603 void TemplateTable::pop_and_check_object(Register r) {
  2604   __ pop_ptr(r);
  2605   __ null_check(r);  // for field access must check obj.
  2606   __ verify_oop(r);
  2609 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2610   transition(vtos, vtos);
  2611   Register Rcache = G3_scratch;
  2612   Register index  = G4_scratch;
  2613   Register Rclass = Rcache;
  2614   Register Roffset= G4_scratch;
  2615   Register Rflags = G1_scratch;
  2616   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2618   resolve_cache_and_index(byte_no, noreg, Rcache, index, sizeof(u2));
  2619   jvmti_post_field_mod(Rcache, index, is_static);
  2620   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2622   Assembler::Membar_mask_bits read_bits =
  2623     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2624   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2626   Label notVolatile, checkVolatile, exit;
  2627   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2628     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2629     __ and3(Rflags, Lscratch, Lscratch);
  2631     if (__ membar_has_effect(read_bits)) {
  2632       __ tst(Lscratch);
  2633       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2634       __ delayed()->nop();
  2635       volatile_barrier(read_bits);
  2636       __ bind(notVolatile);
  2640   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2641   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2642   ConstantPoolCacheEntry::verify_tosBits();
  2644   // compute field type
  2645   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2647   if (is_static) {
  2648     // putstatic with object type most likely, check that first
  2649     __ cmp(Rflags, atos );
  2650     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2651     __ delayed() ->cmp(Rflags, itos );
  2653     // atos
  2654     __ pop_ptr();
  2655     __ verify_oop(Otos_i);
  2657     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2659     __ ba(false, checkVolatile);
  2660     __ delayed()->tst(Lscratch);
  2662     __ bind(notObj);
  2664     // cmp(Rflags, itos );
  2665     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2666     __ delayed() ->cmp(Rflags, btos );
  2668     // itos
  2669     __ pop_i();
  2670     __ st(Otos_i, Rclass, Roffset);
  2671     __ ba(false, checkVolatile);
  2672     __ delayed()->tst(Lscratch);
  2674     __ bind(notInt);
  2676   } else {
  2677     // putfield with int type most likely, check that first
  2678     __ cmp(Rflags, itos );
  2679     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2680     __ delayed() ->cmp(Rflags, atos );
  2682     // itos
  2683     __ pop_i();
  2684     pop_and_check_object(Rclass);
  2685     __ st(Otos_i, Rclass, Roffset);
  2686     patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
  2687     __ ba(false, checkVolatile);
  2688     __ delayed()->tst(Lscratch);
  2690     __ bind(notInt);
  2691     // cmp(Rflags, atos );
  2692     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2693     __ delayed() ->cmp(Rflags, btos );
  2695     // atos
  2696     __ pop_ptr();
  2697     pop_and_check_object(Rclass);
  2698     __ verify_oop(Otos_i);
  2700     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2702     patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
  2703     __ ba(false, checkVolatile);
  2704     __ delayed()->tst(Lscratch);
  2706     __ bind(notObj);
  2709   // cmp(Rflags, btos );
  2710   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2711   __ delayed() ->cmp(Rflags, ltos );
  2713   // btos
  2714   __ pop_i();
  2715   if (!is_static) pop_and_check_object(Rclass);
  2716   __ stb(Otos_i, Rclass, Roffset);
  2717   if (!is_static) {
  2718     patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
  2720   __ ba(false, checkVolatile);
  2721   __ delayed()->tst(Lscratch);
  2723   __ bind(notByte);
  2725   // cmp(Rflags, ltos );
  2726   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2727   __ delayed() ->cmp(Rflags, ctos );
  2729   // ltos
  2730   __ pop_l();
  2731   if (!is_static) pop_and_check_object(Rclass);
  2732   __ st_long(Otos_l, Rclass, Roffset);
  2733   if (!is_static) {
  2734     patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
  2736   __ ba(false, checkVolatile);
  2737   __ delayed()->tst(Lscratch);
  2739   __ bind(notLong);
  2741   // cmp(Rflags, ctos );
  2742   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2743   __ delayed() ->cmp(Rflags, stos );
  2745   // ctos (char)
  2746   __ pop_i();
  2747   if (!is_static) pop_and_check_object(Rclass);
  2748   __ sth(Otos_i, Rclass, Roffset);
  2749   if (!is_static) {
  2750     patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
  2752   __ ba(false, checkVolatile);
  2753   __ delayed()->tst(Lscratch);
  2755   __ bind(notChar);
  2756   // cmp(Rflags, stos );
  2757   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2758   __ delayed() ->cmp(Rflags, ftos );
  2760   // stos (char)
  2761   __ pop_i();
  2762   if (!is_static) pop_and_check_object(Rclass);
  2763   __ sth(Otos_i, Rclass, Roffset);
  2764   if (!is_static) {
  2765     patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
  2767   __ ba(false, checkVolatile);
  2768   __ delayed()->tst(Lscratch);
  2770   __ bind(notShort);
  2771   // cmp(Rflags, ftos );
  2772   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2773   __ delayed()->nop();
  2775   // ftos
  2776   __ pop_f();
  2777   if (!is_static) pop_and_check_object(Rclass);
  2778   __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2779   if (!is_static) {
  2780     patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
  2782   __ ba(false, checkVolatile);
  2783   __ delayed()->tst(Lscratch);
  2785   __ bind(notFloat);
  2787   // dtos
  2788   __ pop_d();
  2789   if (!is_static) pop_and_check_object(Rclass);
  2790   __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2791   if (!is_static) {
  2792     patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
  2795   __ bind(checkVolatile);
  2796   __ tst(Lscratch);
  2798   if (__ membar_has_effect(write_bits)) {
  2799     // __ tst(Lscratch); in delay slot
  2800     __ br(Assembler::zero, false, Assembler::pt, exit);
  2801     __ delayed()->nop();
  2802     volatile_barrier(Assembler::StoreLoad);
  2803     __ bind(exit);
  2807 void TemplateTable::fast_storefield(TosState state) {
  2808   transition(state, vtos);
  2809   Register Rcache = G3_scratch;
  2810   Register Rclass = Rcache;
  2811   Register Roffset= G4_scratch;
  2812   Register Rflags = G1_scratch;
  2813   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2815   jvmti_post_fast_field_mod();
  2817   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2819   Assembler::Membar_mask_bits read_bits =
  2820     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2821   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2823   Label notVolatile, checkVolatile, exit;
  2824   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2825     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2826     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2827     __ and3(Rflags, Lscratch, Lscratch);
  2828     if (__ membar_has_effect(read_bits)) {
  2829       __ tst(Lscratch);
  2830       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2831       __ delayed()->nop();
  2832       volatile_barrier(read_bits);
  2833       __ bind(notVolatile);
  2837   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2838   pop_and_check_object(Rclass);
  2840   switch (bytecode()) {
  2841     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2842     case Bytecodes::_fast_cputfield: /* fall through */
  2843     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2844     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2845     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2846     case Bytecodes::_fast_fputfield:
  2847       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2848       break;
  2849     case Bytecodes::_fast_dputfield:
  2850       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2851       break;
  2852     case Bytecodes::_fast_aputfield:
  2853       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2854       break;
  2855     default:
  2856       ShouldNotReachHere();
  2859   if (__ membar_has_effect(write_bits)) {
  2860     __ tst(Lscratch);
  2861     __ br(Assembler::zero, false, Assembler::pt, exit);
  2862     __ delayed()->nop();
  2863     volatile_barrier(Assembler::StoreLoad);
  2864     __ bind(exit);
  2869 void TemplateTable::putfield(int byte_no) {
  2870   putfield_or_static(byte_no, false);
  2873 void TemplateTable::putstatic(int byte_no) {
  2874   putfield_or_static(byte_no, true);
  2878 void TemplateTable::fast_xaccess(TosState state) {
  2879   transition(vtos, state);
  2880   Register Rcache = G3_scratch;
  2881   Register Roffset = G4_scratch;
  2882   Register Rflags  = G4_scratch;
  2883   Register Rreceiver = Lscratch;
  2885   __ ld_ptr(Llocals, 0, Rreceiver);
  2887   // access constant pool cache  (is resolved)
  2888   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2889   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2890   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2892   __ verify_oop(Rreceiver);
  2893   __ null_check(Rreceiver);
  2894   if (state == atos) {
  2895     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2896   } else if (state == itos) {
  2897     __ ld (Rreceiver, Roffset, Otos_i) ;
  2898   } else if (state == ftos) {
  2899     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2900   } else {
  2901     ShouldNotReachHere();
  2904   Assembler::Membar_mask_bits membar_bits =
  2905     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2906   if (__ membar_has_effect(membar_bits)) {
  2908     // Get is_volatile value in Rflags and check if membar is needed
  2909     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2911     // Test volatile
  2912     Label notVolatile;
  2913     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2914     __ btst(Rflags, Lscratch);
  2915     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2916     __ delayed()->nop();
  2917     volatile_barrier(membar_bits);
  2918     __ bind(notVolatile);
  2921   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2922   __ sub(Lbcp, 1, Lbcp);
  2925 //----------------------------------------------------------------------------------------------------
  2926 // Calls
  2928 void TemplateTable::count_calls(Register method, Register temp) {
  2929   // implemented elsewhere
  2930   ShouldNotReachHere();
  2933 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2934   Register Rtemp = G4_scratch;
  2935   Register Rcall = Rindex;
  2936   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2938   // get target methodOop & entry point
  2939   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2940   if (vtableEntry::size() % 3 == 0) {
  2941     // scale the vtable index by 12:
  2942     int one_third = vtableEntry::size() / 3;
  2943     __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
  2944     __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
  2945     __ add(Rindex, Rtemp, Rindex);
  2946   } else {
  2947     // scale the vtable index by 8:
  2948     __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
  2951   __ add(Rrecv, Rindex, Rrecv);
  2952   __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
  2954   __ call_from_interpreter(Rcall, Gargs, Rret);
  2957 void TemplateTable::invokevirtual(int byte_no) {
  2958   transition(vtos, vtos);
  2959   assert(byte_no == f2_byte, "use this argument");
  2961   Register Rscratch = G3_scratch;
  2962   Register Rtemp = G4_scratch;
  2963   Register Rret = Lscratch;
  2964   Register Rrecv = G5_method;
  2965   Label notFinal;
  2967   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  2968   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2970   // Check for vfinal
  2971   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
  2972   __ btst(Rret, G4_scratch);
  2973   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2974   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  2976   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  2978   invokevfinal_helper(Rscratch, Rret);
  2980   __ bind(notFinal);
  2982   __ mov(G5_method, Rscratch);  // better scratch register
  2983   __ load_receiver(G4_scratch, O0);  // gets receiverOop
  2984   // receiver is in O0
  2985   __ verify_oop(O0);
  2987   // get return address
  2988   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2989   __ set(table, Rtemp);
  2990   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2991   // Make sure we don't need to mask Rret for tosBits after the above shift
  2992   ConstantPoolCacheEntry::verify_tosBits();
  2993   __ sll(Rret,  LogBytesPerWord, Rret);
  2994   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2996   // get receiver klass
  2997   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  2998   __ load_klass(O0, Rrecv);
  2999   __ verify_oop(Rrecv);
  3001   __ profile_virtual_call(Rrecv, O4);
  3003   generate_vtable_call(Rrecv, Rscratch, Rret);
  3006 void TemplateTable::fast_invokevfinal(int byte_no) {
  3007   transition(vtos, vtos);
  3008   assert(byte_no == f2_byte, "use this argument");
  3010   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  3011                              /*is_invokevfinal*/true, false);
  3012   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3013   invokevfinal_helper(G3_scratch, Lscratch);
  3016 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  3017   Register Rtemp = G4_scratch;
  3019   __ verify_oop(G5_method);
  3021   // Load receiver from stack slot
  3022   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  3023   __ load_receiver(G4_scratch, O0);
  3025   // receiver NULL check
  3026   __ null_check(O0);
  3028   __ profile_final_call(O4);
  3030   // get return address
  3031   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3032   __ set(table, Rtemp);
  3033   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3034   // Make sure we don't need to mask Rret for tosBits after the above shift
  3035   ConstantPoolCacheEntry::verify_tosBits();
  3036   __ sll(Rret,  LogBytesPerWord, Rret);
  3037   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3040   // do the call
  3041   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3044 void TemplateTable::invokespecial(int byte_no) {
  3045   transition(vtos, vtos);
  3046   assert(byte_no == f1_byte, "use this argument");
  3048   Register Rscratch = G3_scratch;
  3049   Register Rtemp = G4_scratch;
  3050   Register Rret = Lscratch;
  3052   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  3053   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3055   __ verify_oop(G5_method);
  3057   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  3058   __ load_receiver(G4_scratch, O0);
  3060   // receiver NULL check
  3061   __ null_check(O0);
  3063   __ profile_call(O4);
  3065   // get return address
  3066   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3067   __ set(table, Rtemp);
  3068   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3069   // Make sure we don't need to mask Rret for tosBits after the above shift
  3070   ConstantPoolCacheEntry::verify_tosBits();
  3071   __ sll(Rret,  LogBytesPerWord, Rret);
  3072   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3074   // do the call
  3075   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3078 void TemplateTable::invokestatic(int byte_no) {
  3079   transition(vtos, vtos);
  3080   assert(byte_no == f1_byte, "use this argument");
  3082   Register Rscratch = G3_scratch;
  3083   Register Rtemp = G4_scratch;
  3084   Register Rret = Lscratch;
  3086   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false);
  3087   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3089   __ verify_oop(G5_method);
  3091   __ profile_call(O4);
  3093   // get return address
  3094   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3095   __ set(table, Rtemp);
  3096   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3097   // Make sure we don't need to mask Rret for tosBits after the above shift
  3098   ConstantPoolCacheEntry::verify_tosBits();
  3099   __ sll(Rret,  LogBytesPerWord, Rret);
  3100   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3102   // do the call
  3103   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3107 void TemplateTable::invokeinterface_object_method(Register RklassOop,
  3108                                                   Register Rcall,
  3109                                                   Register Rret,
  3110                                                   Register Rflags) {
  3111   Register Rscratch = G4_scratch;
  3112   Register Rindex = Lscratch;
  3114   assert_different_registers(Rscratch, Rindex, Rret);
  3116   Label notFinal;
  3118   // Check for vfinal
  3119   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
  3120   __ btst(Rflags, Rscratch);
  3121   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3122   __ delayed()->nop();
  3124   __ profile_final_call(O4);
  3126   // do the call - the index (f2) contains the methodOop
  3127   assert_different_registers(G5_method, Gargs, Rcall);
  3128   __ mov(Rindex, G5_method);
  3129   __ call_from_interpreter(Rcall, Gargs, Rret);
  3130   __ bind(notFinal);
  3132   __ profile_virtual_call(RklassOop, O4);
  3133   generate_vtable_call(RklassOop, Rindex, Rret);
  3137 void TemplateTable::invokeinterface(int byte_no) {
  3138   transition(vtos, vtos);
  3139   assert(byte_no == f1_byte, "use this argument");
  3141   Register Rscratch = G4_scratch;
  3142   Register Rret = G3_scratch;
  3143   Register Rindex = Lscratch;
  3144   Register Rinterface = G1_scratch;
  3145   Register RklassOop = G5_method;
  3146   Register Rflags = O1;
  3147   assert_different_registers(Rscratch, G5_method);
  3149   load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false);
  3150   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3152   // get receiver
  3153   __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
  3154   __ load_receiver(Rscratch, O0);
  3155   __ verify_oop(O0);
  3157   __ mov(Rflags, Rret);
  3159   // get return address
  3160   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3161   __ set(table, Rscratch);
  3162   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3163   // Make sure we don't need to mask Rret for tosBits after the above shift
  3164   ConstantPoolCacheEntry::verify_tosBits();
  3165   __ sll(Rret,  LogBytesPerWord, Rret);
  3166   __ ld_ptr(Rscratch, Rret, Rret);      // get return address
  3168   // get receiver klass
  3169   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  3170   __ load_klass(O0, RklassOop);
  3171   __ verify_oop(RklassOop);
  3173   // Special case of invokeinterface called for virtual method of
  3174   // java.lang.Object.  See cpCacheOop.cpp for details.
  3175   // This code isn't produced by javac, but could be produced by
  3176   // another compliant java compiler.
  3177   Label notMethod;
  3178   __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
  3179   __ btst(Rflags, Rscratch);
  3180   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3181   __ delayed()->nop();
  3183   invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
  3185   __ bind(notMethod);
  3187   __ profile_virtual_call(RklassOop, O4);
  3189   //
  3190   // find entry point to call
  3191   //
  3193   // compute start of first itableOffsetEntry (which is at end of vtable)
  3194   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3195   Label search;
  3196   Register Rtemp = Rflags;
  3198   __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3199   if (align_object_offset(1) > 1) {
  3200     __ round_to(Rtemp, align_object_offset(1));
  3202   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3203   if (Assembler::is_simm13(base)) {
  3204     __ add(Rtemp, base, Rtemp);
  3205   } else {
  3206     __ set(base, Rscratch);
  3207     __ add(Rscratch, Rtemp, Rtemp);
  3209   __ add(RklassOop, Rtemp, Rscratch);
  3211   __ bind(search);
  3213   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3215     Label ok;
  3217     // Check that entry is non-null.  Null entries are probably a bytecode
  3218     // problem.  If the interface isn't implemented by the receiver class,
  3219     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3220     // this too but that's only if the entry isn't already resolved, so we
  3221     // need to check again.
  3222     __ br_notnull( Rtemp, false, Assembler::pt, ok);
  3223     __ delayed()->nop();
  3224     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3225     __ should_not_reach_here();
  3226     __ bind(ok);
  3227     __ verify_oop(Rtemp);
  3230   __ verify_oop(Rinterface);
  3232   __ cmp(Rinterface, Rtemp);
  3233   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3234   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3236   // entry found and Rscratch points to it
  3237   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3239   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3240   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3241   __ add(Rscratch, Rindex, Rscratch);
  3242   __ ld_ptr(RklassOop, Rscratch, G5_method);
  3244   // Check for abstract method error.
  3246     Label ok;
  3247     __ tst(G5_method);
  3248     __ brx(Assembler::notZero, false, Assembler::pt, ok);
  3249     __ delayed()->nop();
  3250     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3251     __ should_not_reach_here();
  3252     __ bind(ok);
  3255   Register Rcall = Rinterface;
  3256   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3258   __ verify_oop(G5_method);
  3259   __ call_from_interpreter(Rcall, Gargs, Rret);
  3264 void TemplateTable::invokedynamic(int byte_no) {
  3265   transition(vtos, vtos);
  3266   assert(byte_no == f1_oop, "use this argument");
  3268   if (!EnableInvokeDynamic) {
  3269     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3270     // The verifier will stop it.  However, if we get past the verifier,
  3271     // this will stop the thread in a reasonable way, without crashing the JVM.
  3272     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3273                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3274     // the call_VM checks for exception, so we should never return here.
  3275     __ should_not_reach_here();
  3276     return;
  3279   // G5: CallSite object (f1)
  3280   // XX: unused (f2)
  3281   // XX: flags (unused)
  3283   Register G5_callsite = G5_method;
  3284   Register Rscratch    = G3_scratch;
  3285   Register Rtemp       = G1_scratch;
  3286   Register Rret        = Lscratch;
  3288   load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret,
  3289                              /*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
  3290   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  3292   __ verify_oop(G5_callsite);
  3294   // profile this call
  3295   __ profile_call(O4);
  3297   // get return address
  3298   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3299   __ set(table, Rtemp);
  3300   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);  // get return type
  3301   // Make sure we don't need to mask Rret for tosBits after the above shift
  3302   ConstantPoolCacheEntry::verify_tosBits();
  3303   __ sll(Rret, LogBytesPerWord, Rret);
  3304   __ ld_ptr(Rtemp, Rret, Rret);  // get return address
  3306   __ load_heap_oop(G5_callsite, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
  3307   __ null_check(G3_method_handle);
  3309   // Adjust Rret first so Llast_SP can be same as Rret
  3310   __ add(Rret, -frame::pc_return_offset, O7);
  3311   __ add(Lesp, BytesPerWord, Gargs);  // setup parameter pointer
  3312   __ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
  3313   // Record SP so we can remove any stack space allocated by adapter transition
  3314   __ delayed()->mov(SP, Llast_SP);
  3318 //----------------------------------------------------------------------------------------------------
  3319 // Allocation
  3321 void TemplateTable::_new() {
  3322   transition(vtos, atos);
  3324   Label slow_case;
  3325   Label done;
  3326   Label initialize_header;
  3327   Label initialize_object;  // including clearing the fields
  3329   Register RallocatedObject = Otos_i;
  3330   Register RinstanceKlass = O1;
  3331   Register Roffset = O3;
  3332   Register Rscratch = O4;
  3334   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3335   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3336   // make sure the class we're about to instantiate has been resolved
  3337   // This is done before loading instanceKlass to be consistent with the order
  3338   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3339   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3340   __ ldub(G3_scratch, Roffset, G3_scratch);
  3341   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3342   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3343   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3344   // get instanceKlass
  3345   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3346   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3347   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3349   // make sure klass is fully initialized:
  3350   __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
  3351   __ cmp(G3_scratch, instanceKlass::fully_initialized);
  3352   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3353   __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3355   // get instance_size in instanceKlass (already aligned)
  3356   //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3358   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3359   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3360   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3361   __ delayed()->nop();
  3363   // allocate the instance
  3364   // 1) Try to allocate in the TLAB
  3365   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3366   // 3) if the above fails (or is not applicable), go to a slow case
  3367   // (creates a new TLAB, etc.)
  3369   const bool allow_shared_alloc =
  3370     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3372   if(UseTLAB) {
  3373     Register RoldTopValue = RallocatedObject;
  3374     Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
  3375     Register RnewTopValue = G1_scratch;
  3376     Register RendValue = Rscratch;
  3377     Register RfreeValue = RnewTopValue;
  3379     // check if we can allocate in the TLAB
  3380     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3381     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3382     __ add(RoldTopValue, Roffset, RnewTopValue);
  3384     // if there is enough space, we do not CAS and do not clear
  3385     __ cmp(RnewTopValue, RendValue);
  3386     if(ZeroTLAB) {
  3387       // the fields have already been cleared
  3388       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3389     } else {
  3390       // initialize both the header and fields
  3391       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3393     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3395     if (allow_shared_alloc) {
  3396       // Check if tlab should be discarded (refill_waste_limit >= free)
  3397       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3398       __ sub(RendValue, RoldTopValue, RfreeValue);
  3399 #ifdef _LP64
  3400       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3401 #else
  3402       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3403 #endif
  3404       __ cmp(RtlabWasteLimitValue, RfreeValue);
  3405       __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
  3406       __ delayed()->nop();
  3408       // increment waste limit to prevent getting stuck on this slow path
  3409       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3410       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3411     } else {
  3412       // No allocation in the shared eden.
  3413       __ br(Assembler::always, false, Assembler::pt, slow_case);
  3414       __ delayed()->nop();
  3418   // Allocation in the shared Eden
  3419   if (allow_shared_alloc) {
  3420     Register RoldTopValue = G1_scratch;
  3421     Register RtopAddr = G3_scratch;
  3422     Register RnewTopValue = RallocatedObject;
  3423     Register RendValue = Rscratch;
  3425     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3427     Label retry;
  3428     __ bind(retry);
  3429     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3430     __ ld_ptr(RendValue, 0, RendValue);
  3431     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3432     __ add(RoldTopValue, Roffset, RnewTopValue);
  3434     // RnewTopValue contains the top address after the new object
  3435     // has been allocated.
  3436     __ cmp(RnewTopValue, RendValue);
  3437     __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
  3438     __ delayed()->nop();
  3440     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3441       VM_Version::v9_instructions_work() ? NULL :
  3442       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3444     // if someone beat us on the allocation, try again, otherwise continue
  3445     __ cmp(RoldTopValue, RnewTopValue);
  3446     __ brx(Assembler::notEqual, false, Assembler::pn, retry);
  3447     __ delayed()->nop();
  3449     // bump total bytes allocated by this thread
  3450     __ incr_allocated_bytes(Roffset, 0, G1_scratch);
  3453   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3454     // clear object fields
  3455     __ bind(initialize_object);
  3456     __ deccc(Roffset, sizeof(oopDesc));
  3457     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3458     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3460     // initialize remaining object fields
  3461     { Label loop;
  3462       __ subcc(Roffset, wordSize, Roffset);
  3463       __ bind(loop);
  3464       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3465       __ st_ptr(G0, G3_scratch, Roffset);
  3466       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3467       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3469     __ br(Assembler::always, false, Assembler::pt, initialize_header);
  3470     __ delayed()->nop();
  3473   // slow case
  3474   __ bind(slow_case);
  3475   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3476   __ get_constant_pool(O1);
  3478   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3480   __ ba(false, done);
  3481   __ delayed()->nop();
  3483   // Initialize the header: mark, klass
  3484   __ bind(initialize_header);
  3486   if (UseBiasedLocking) {
  3487     __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
  3488   } else {
  3489     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3491   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3492   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3493   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3496     SkipIfEqual skip_if(
  3497       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3498     // Trigger dtrace event
  3499     __ push(atos);
  3500     __ call_VM_leaf(noreg,
  3501        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3502     __ pop(atos);
  3505   // continue
  3506   __ bind(done);
  3511 void TemplateTable::newarray() {
  3512   transition(itos, atos);
  3513   __ ldub(Lbcp, 1, O1);
  3514      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3518 void TemplateTable::anewarray() {
  3519   transition(itos, atos);
  3520   __ get_constant_pool(O1);
  3521   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3522      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3526 void TemplateTable::arraylength() {
  3527   transition(atos, itos);
  3528   Label ok;
  3529   __ verify_oop(Otos_i);
  3530   __ tst(Otos_i);
  3531   __ throw_if_not_1_x( Assembler::notZero, ok );
  3532   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3533   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3537 void TemplateTable::checkcast() {
  3538   transition(atos, atos);
  3539   Label done, is_null, quicked, cast_ok, resolved;
  3540   Register Roffset = G1_scratch;
  3541   Register RobjKlass = O5;
  3542   Register RspecifiedKlass = O4;
  3544   // Check for casting a NULL
  3545   __ br_null(Otos_i, false, Assembler::pn, is_null);
  3546   __ delayed()->nop();
  3548   // Get value klass in RobjKlass
  3549   __ load_klass(Otos_i, RobjKlass); // get value klass
  3551   // Get constant pool tag
  3552   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3554   // See if the checkcast has been quickened
  3555   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3556   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3557   __ ldub(G3_scratch, Roffset, G3_scratch);
  3558   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3559   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3560   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3562   __ push_ptr(); // save receiver for result, and for GC
  3563   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3564   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3566   __ br(Assembler::always, false, Assembler::pt, resolved);
  3567   __ delayed()->nop();
  3569   // Extract target class from constant pool
  3570   __ bind(quicked);
  3571   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3572   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3573   __ bind(resolved);
  3574   __ load_klass(Otos_i, RobjKlass); // get value klass
  3576   // Generate a fast subtype check.  Branch to cast_ok if no
  3577   // failure.  Throw exception if failure.
  3578   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3580   // Not a subtype; so must throw exception
  3581   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3583   __ bind(cast_ok);
  3585   if (ProfileInterpreter) {
  3586     __ ba(false, done);
  3587     __ delayed()->nop();
  3589   __ bind(is_null);
  3590   __ profile_null_seen(G3_scratch);
  3591   __ bind(done);
  3595 void TemplateTable::instanceof() {
  3596   Label done, is_null, quicked, resolved;
  3597   transition(atos, itos);
  3598   Register Roffset = G1_scratch;
  3599   Register RobjKlass = O5;
  3600   Register RspecifiedKlass = O4;
  3602   // Check for casting a NULL
  3603   __ br_null(Otos_i, false, Assembler::pt, is_null);
  3604   __ delayed()->nop();
  3606   // Get value klass in RobjKlass
  3607   __ load_klass(Otos_i, RobjKlass); // get value klass
  3609   // Get constant pool tag
  3610   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3612   // See if the checkcast has been quickened
  3613   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3614   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3615   __ ldub(G3_scratch, Roffset, G3_scratch);
  3616   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3617   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3618   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3620   __ push_ptr(); // save receiver for result, and for GC
  3621   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3622   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3624   __ br(Assembler::always, false, Assembler::pt, resolved);
  3625   __ delayed()->nop();
  3628   // Extract target class from constant pool
  3629   __ bind(quicked);
  3630   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3631   __ get_constant_pool(Lscratch);
  3632   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3633   __ bind(resolved);
  3634   __ load_klass(Otos_i, RobjKlass); // get value klass
  3636   // Generate a fast subtype check.  Branch to cast_ok if no
  3637   // failure.  Return 0 if failure.
  3638   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3639   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3640   // Not a subtype; return 0;
  3641   __ clr( Otos_i );
  3643   if (ProfileInterpreter) {
  3644     __ ba(false, done);
  3645     __ delayed()->nop();
  3647   __ bind(is_null);
  3648   __ profile_null_seen(G3_scratch);
  3649   __ bind(done);
  3652 void TemplateTable::_breakpoint() {
  3654    // Note: We get here even if we are single stepping..
  3655    // jbug inists on setting breakpoints at every bytecode
  3656    // even if we are in single step mode.
  3658    transition(vtos, vtos);
  3659    // get the unpatched byte code
  3660    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3661    __ mov(O0, Lbyte_code);
  3663    // post the breakpoint event
  3664    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3666    // complete the execution of original bytecode
  3667    __ dispatch_normal(vtos);
  3671 //----------------------------------------------------------------------------------------------------
  3672 // Exceptions
  3674 void TemplateTable::athrow() {
  3675   transition(atos, vtos);
  3677   // This works because exception is cached in Otos_i which is same as O0,
  3678   // which is same as what throw_exception_entry_expects
  3679   assert(Otos_i == Oexception, "see explanation above");
  3681   __ verify_oop(Otos_i);
  3682   __ null_check(Otos_i);
  3683   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3687 //----------------------------------------------------------------------------------------------------
  3688 // Synchronization
  3691 // See frame_sparc.hpp for monitor block layout.
  3692 // Monitor elements are dynamically allocated by growing stack as needed.
  3694 void TemplateTable::monitorenter() {
  3695   transition(atos, vtos);
  3696   __ verify_oop(Otos_i);
  3697   // Try to acquire a lock on the object
  3698   // Repeat until succeeded (i.e., until
  3699   // monitorenter returns true).
  3701   {   Label ok;
  3702     __ tst(Otos_i);
  3703     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3704     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3705     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3708   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3710   // find a free slot in the monitor block
  3713   // initialize entry pointer
  3714   __ clr(O1); // points to free slot or NULL
  3717     Label entry, loop, exit;
  3718     __ add( __ top_most_monitor(), O2 ); // last one to check
  3719     __ ba( false, entry );
  3720     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3723     __ bind( loop );
  3725     __ verify_oop(O4);          // verify each monitor's oop
  3726     __ tst(O4); // is this entry unused?
  3727     if (VM_Version::v9_instructions_work())
  3728       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3729     else {
  3730       Label L;
  3731       __ br( Assembler::zero, true, Assembler::pn, L );
  3732       __ delayed()->mov(O3, O1); // rememeber this one if match
  3733       __ bind(L);
  3736     __ cmp(O4, O0); // check if current entry is for same object
  3737     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3738     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3740     __ bind( entry );
  3742     __ cmp( O3, O2 );
  3743     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3744     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3746     __ bind( exit );
  3749   { Label allocated;
  3751     // found free slot?
  3752     __ br_notnull(O1, false, Assembler::pn, allocated);
  3753     __ delayed()->nop();
  3755     __ add_monitor_to_stack( false, O2, O3 );
  3756     __ mov(Lmonitors, O1);
  3758     __ bind(allocated);
  3761   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3762   // The object has already been poped from the stack, so the expression stack looks correct.
  3763   __ inc(Lbcp);
  3765   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3766   __ lock_object(O1, O0);
  3768   // check if there's enough space on the stack for the monitors after locking
  3769   __ generate_stack_overflow_check(0);
  3771   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3772   __ dispatch_next(vtos);
  3776 void TemplateTable::monitorexit() {
  3777   transition(atos, vtos);
  3778   __ verify_oop(Otos_i);
  3779   __ tst(Otos_i);
  3780   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3782   assert(O0 == Otos_i, "just checking");
  3784   { Label entry, loop, found;
  3785     __ add( __ top_most_monitor(), O2 ); // last one to check
  3786     __ ba(false, entry );
  3787     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3788     // By using a local it survives the call to the C routine.
  3789     __ delayed()->mov( Lmonitors, Lscratch );
  3791     __ bind( loop );
  3793     __ verify_oop(O4);          // verify each monitor's oop
  3794     __ cmp(O4, O0); // check if current entry is for desired object
  3795     __ brx( Assembler::equal, true, Assembler::pt, found );
  3796     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3798     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3800     __ bind( entry );
  3802     __ cmp( Lscratch, O2 );
  3803     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3804     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3806     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3807     __ should_not_reach_here();
  3809     __ bind(found);
  3811   __ unlock_object(O1);
  3815 //----------------------------------------------------------------------------------------------------
  3816 // Wide instructions
  3818 void TemplateTable::wide() {
  3819   transition(vtos, vtos);
  3820   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3821   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3822   AddressLiteral ep(Interpreter::_wentry_point);
  3823   __ set(ep, G4_scratch);
  3824   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3825   __ jmp(G3_scratch, G0);
  3826   __ delayed()->nop();
  3827   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3831 //----------------------------------------------------------------------------------------------------
  3832 // Multi arrays
  3834 void TemplateTable::multianewarray() {
  3835   transition(vtos, atos);
  3836      // put ndims * wordSize into Lscratch
  3837   __ ldub( Lbcp,     3,               Lscratch);
  3838   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3839      // Lesp points past last_dim, so set to O1 to first_dim address
  3840   __ add(  Lesp,     Lscratch,        O1);
  3841      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3842   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3844 #endif /* !CC_INTERP */

mercurial