src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Wed, 12 Jan 2011 16:34:25 -0500

author
tonyp
date
Wed, 12 Jan 2011 16:34:25 -0500
changeset 2454
b158bed62ef5
parent 2453
2250ee17e258
child 2472
0fa27f37d4d4
permissions
-rw-r--r--

6994297: G1: do first-level slow-path allocations with a CAS
Summary: First attempt to allocate out the current alloc region using a CAS instead of taking the Heap_lock (first level of G1's slow allocation path). Only if that fails and it's necessary to replace the current alloc region take the Heap_lock (that's the second level of G1's slow allocation path).
Reviewed-by: johnc, brutisso, ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1RemSet.hpp"
    30 #include "gc_implementation/g1/heapRegion.hpp"
    31 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    32 #include "memory/barrierSet.hpp"
    33 #include "memory/memRegion.hpp"
    34 #include "memory/sharedHeap.hpp"
    36 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    37 // It uses the "Garbage First" heap organization and algorithm, which
    38 // may combine concurrent marking with parallel, incremental compaction of
    39 // heap subsets that will yield large amounts of garbage.
    41 class HeapRegion;
    42 class HeapRegionSeq;
    43 class PermanentGenerationSpec;
    44 class GenerationSpec;
    45 class OopsInHeapRegionClosure;
    46 class G1ScanHeapEvacClosure;
    47 class ObjectClosure;
    48 class SpaceClosure;
    49 class CompactibleSpaceClosure;
    50 class Space;
    51 class G1CollectorPolicy;
    52 class GenRemSet;
    53 class G1RemSet;
    54 class HeapRegionRemSetIterator;
    55 class ConcurrentMark;
    56 class ConcurrentMarkThread;
    57 class ConcurrentG1Refine;
    58 class ConcurrentZFThread;
    60 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    61 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    63 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    64 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    66 enum G1GCThreadGroups {
    67   G1CRGroup = 0,
    68   G1ZFGroup = 1,
    69   G1CMGroup = 2,
    70   G1CLGroup = 3
    71 };
    73 enum GCAllocPurpose {
    74   GCAllocForTenured,
    75   GCAllocForSurvived,
    76   GCAllocPurposeCount
    77 };
    79 class YoungList : public CHeapObj {
    80 private:
    81   G1CollectedHeap* _g1h;
    83   HeapRegion* _head;
    85   HeapRegion* _survivor_head;
    86   HeapRegion* _survivor_tail;
    88   HeapRegion* _curr;
    90   size_t      _length;
    91   size_t      _survivor_length;
    93   size_t      _last_sampled_rs_lengths;
    94   size_t      _sampled_rs_lengths;
    96   void         empty_list(HeapRegion* list);
    98 public:
    99   YoungList(G1CollectedHeap* g1h);
   101   void         push_region(HeapRegion* hr);
   102   void         add_survivor_region(HeapRegion* hr);
   104   void         empty_list();
   105   bool         is_empty() { return _length == 0; }
   106   size_t       length() { return _length; }
   107   size_t       survivor_length() { return _survivor_length; }
   109   void rs_length_sampling_init();
   110   bool rs_length_sampling_more();
   111   void rs_length_sampling_next();
   113   void reset_sampled_info() {
   114     _last_sampled_rs_lengths =   0;
   115   }
   116   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   118   // for development purposes
   119   void reset_auxilary_lists();
   120   void clear() { _head = NULL; _length = 0; }
   122   void clear_survivors() {
   123     _survivor_head    = NULL;
   124     _survivor_tail    = NULL;
   125     _survivor_length  = 0;
   126   }
   128   HeapRegion* first_region() { return _head; }
   129   HeapRegion* first_survivor_region() { return _survivor_head; }
   130   HeapRegion* last_survivor_region() { return _survivor_tail; }
   132   // debugging
   133   bool          check_list_well_formed();
   134   bool          check_list_empty(bool check_sample = true);
   135   void          print();
   136 };
   138 class RefineCardTableEntryClosure;
   139 class G1CollectedHeap : public SharedHeap {
   140   friend class VM_G1CollectForAllocation;
   141   friend class VM_GenCollectForPermanentAllocation;
   142   friend class VM_G1CollectFull;
   143   friend class VM_G1IncCollectionPause;
   144   friend class VMStructs;
   146   // Closures used in implementation.
   147   friend class G1ParCopyHelper;
   148   friend class G1IsAliveClosure;
   149   friend class G1EvacuateFollowersClosure;
   150   friend class G1ParScanThreadState;
   151   friend class G1ParScanClosureSuper;
   152   friend class G1ParEvacuateFollowersClosure;
   153   friend class G1ParTask;
   154   friend class G1FreeGarbageRegionClosure;
   155   friend class RefineCardTableEntryClosure;
   156   friend class G1PrepareCompactClosure;
   157   friend class RegionSorter;
   158   friend class CountRCClosure;
   159   friend class EvacPopObjClosure;
   160   friend class G1ParCleanupCTTask;
   162   // Other related classes.
   163   friend class G1MarkSweep;
   165 private:
   166   // The one and only G1CollectedHeap, so static functions can find it.
   167   static G1CollectedHeap* _g1h;
   169   static size_t _humongous_object_threshold_in_words;
   171   // Storage for the G1 heap (excludes the permanent generation).
   172   VirtualSpace _g1_storage;
   173   MemRegion    _g1_reserved;
   175   // The part of _g1_storage that is currently committed.
   176   MemRegion _g1_committed;
   178   // The maximum part of _g1_storage that has ever been committed.
   179   MemRegion _g1_max_committed;
   181   // The number of regions that are completely free.
   182   size_t _free_regions;
   184   // The number of regions we could create by expansion.
   185   size_t _expansion_regions;
   187   // Return the number of free regions in the heap (by direct counting.)
   188   size_t count_free_regions();
   189   // Return the number of free regions on the free and unclean lists.
   190   size_t count_free_regions_list();
   192   // The block offset table for the G1 heap.
   193   G1BlockOffsetSharedArray* _bot_shared;
   195   // Move all of the regions off the free lists, then rebuild those free
   196   // lists, before and after full GC.
   197   void tear_down_region_lists();
   198   void rebuild_region_lists();
   199   // This sets all non-empty regions to need zero-fill (which they will if
   200   // they are empty after full collection.)
   201   void set_used_regions_to_need_zero_fill();
   203   // The sequence of all heap regions in the heap.
   204   HeapRegionSeq* _hrs;
   206   // The region from which normal-sized objects are currently being
   207   // allocated.  May be NULL.
   208   HeapRegion* _cur_alloc_region;
   210   // Postcondition: cur_alloc_region == NULL.
   211   void abandon_cur_alloc_region();
   212   void abandon_gc_alloc_regions();
   214   // The to-space memory regions into which objects are being copied during
   215   // a GC.
   216   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   217   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   218   // These are the regions, one per GCAllocPurpose, that are half-full
   219   // at the end of a collection and that we want to reuse during the
   220   // next collection.
   221   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   222   // This specifies whether we will keep the last half-full region at
   223   // the end of a collection so that it can be reused during the next
   224   // collection (this is specified per GCAllocPurpose)
   225   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   227   // A list of the regions that have been set to be alloc regions in the
   228   // current collection.
   229   HeapRegion* _gc_alloc_region_list;
   231   // Determines PLAB size for a particular allocation purpose.
   232   static size_t desired_plab_sz(GCAllocPurpose purpose);
   234   // When called by par thread, require par_alloc_during_gc_lock() to be held.
   235   void push_gc_alloc_region(HeapRegion* hr);
   237   // This should only be called single-threaded.  Undeclares all GC alloc
   238   // regions.
   239   void forget_alloc_region_list();
   241   // Should be used to set an alloc region, because there's other
   242   // associated bookkeeping.
   243   void set_gc_alloc_region(int purpose, HeapRegion* r);
   245   // Check well-formedness of alloc region list.
   246   bool check_gc_alloc_regions();
   248   // Outside of GC pauses, the number of bytes used in all regions other
   249   // than the current allocation region.
   250   size_t _summary_bytes_used;
   252   // This is used for a quick test on whether a reference points into
   253   // the collection set or not. Basically, we have an array, with one
   254   // byte per region, and that byte denotes whether the corresponding
   255   // region is in the collection set or not. The entry corresponding
   256   // the bottom of the heap, i.e., region 0, is pointed to by
   257   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   258   // biased so that it actually points to address 0 of the address
   259   // space, to make the test as fast as possible (we can simply shift
   260   // the address to address into it, instead of having to subtract the
   261   // bottom of the heap from the address before shifting it; basically
   262   // it works in the same way the card table works).
   263   bool* _in_cset_fast_test;
   265   // The allocated array used for the fast test on whether a reference
   266   // points into the collection set or not. This field is also used to
   267   // free the array.
   268   bool* _in_cset_fast_test_base;
   270   // The length of the _in_cset_fast_test_base array.
   271   size_t _in_cset_fast_test_length;
   273   volatile unsigned _gc_time_stamp;
   275   size_t* _surviving_young_words;
   277   void setup_surviving_young_words();
   278   void update_surviving_young_words(size_t* surv_young_words);
   279   void cleanup_surviving_young_words();
   281   // It decides whether an explicit GC should start a concurrent cycle
   282   // instead of doing a STW GC. Currently, a concurrent cycle is
   283   // explicitly started if:
   284   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   285   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   286   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   288   // Keeps track of how many "full collections" (i.e., Full GCs or
   289   // concurrent cycles) we have completed. The number of them we have
   290   // started is maintained in _total_full_collections in CollectedHeap.
   291   volatile unsigned int _full_collections_completed;
   293   // These are macros so that, if the assert fires, we get the correct
   294   // line number, file, etc.
   296 #define heap_locking_asserts_err_msg(__extra_message)                         \
   297   err_msg("%s : Heap_lock %slocked, %sat a safepoint",                        \
   298           (__extra_message),                                                  \
   299           (!Heap_lock->owned_by_self()) ? "NOT " : "",                        \
   300           (!SafepointSynchronize::is_at_safepoint()) ? "NOT " : "")
   302 #define assert_heap_locked()                                                  \
   303   do {                                                                        \
   304     assert(Heap_lock->owned_by_self(),                                        \
   305            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   306   } while (0)
   308 #define assert_heap_locked_or_at_safepoint()                                  \
   309   do {                                                                        \
   310     assert(Heap_lock->owned_by_self() ||                                      \
   311                                      SafepointSynchronize::is_at_safepoint(), \
   312            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   313                                         "should be at a safepoint"));         \
   314   } while (0)
   316 #define assert_heap_locked_and_not_at_safepoint()                             \
   317   do {                                                                        \
   318     assert(Heap_lock->owned_by_self() &&                                      \
   319                                     !SafepointSynchronize::is_at_safepoint(), \
   320           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   321                                        "should not be at a safepoint"));      \
   322   } while (0)
   324 #define assert_heap_not_locked()                                              \
   325   do {                                                                        \
   326     assert(!Heap_lock->owned_by_self(),                                       \
   327         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   328   } while (0)
   330 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   331   do {                                                                        \
   332     assert(!Heap_lock->owned_by_self() &&                                     \
   333                                     !SafepointSynchronize::is_at_safepoint(), \
   334       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   335                                    "should not be at a safepoint"));          \
   336   } while (0)
   338 #define assert_at_safepoint()                                                 \
   339   do {                                                                        \
   340     assert(SafepointSynchronize::is_at_safepoint(),                           \
   341            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   342   } while (0)
   344 #define assert_not_at_safepoint()                                             \
   345   do {                                                                        \
   346     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   347            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   348   } while (0)
   350 protected:
   352   // Returns "true" iff none of the gc alloc regions have any allocations
   353   // since the last call to "save_marks".
   354   bool all_alloc_regions_no_allocs_since_save_marks();
   355   // Perform finalization stuff on all allocation regions.
   356   void retire_all_alloc_regions();
   358   // The number of regions allocated to hold humongous objects.
   359   int         _num_humongous_regions;
   360   YoungList*  _young_list;
   362   // The current policy object for the collector.
   363   G1CollectorPolicy* _g1_policy;
   365   // Parallel allocation lock to protect the current allocation region.
   366   Mutex  _par_alloc_during_gc_lock;
   367   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
   369   // If possible/desirable, allocate a new HeapRegion for normal object
   370   // allocation sufficient for an allocation of the given "word_size".
   371   // If "do_expand" is true, will attempt to expand the heap if necessary
   372   // to to satisfy the request.  If "zero_filled" is true, requires a
   373   // zero-filled region.
   374   // (Returning NULL will trigger a GC.)
   375   virtual HeapRegion* newAllocRegion_work(size_t word_size,
   376                                           bool do_expand,
   377                                           bool zero_filled);
   379   virtual HeapRegion* newAllocRegion(size_t word_size,
   380                                      bool zero_filled = true) {
   381     return newAllocRegion_work(word_size, false, zero_filled);
   382   }
   383   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
   384                                                   size_t word_size,
   385                                                   bool zero_filled = true);
   387   // Attempt to allocate an object of the given (very large) "word_size".
   388   // Returns "NULL" on failure.
   389   virtual HeapWord* humongous_obj_allocate(size_t word_size);
   391   // The following two methods, allocate_new_tlab() and
   392   // mem_allocate(), are the two main entry points from the runtime
   393   // into the G1's allocation routines. They have the following
   394   // assumptions:
   395   //
   396   // * They should both be called outside safepoints.
   397   //
   398   // * They should both be called without holding the Heap_lock.
   399   //
   400   // * All allocation requests for new TLABs should go to
   401   //   allocate_new_tlab().
   402   //
   403   // * All non-TLAB allocation requests should go to mem_allocate()
   404   //   and mem_allocate() should never be called with is_tlab == true.
   405   //
   406   // * If the GC locker is active we currently stall until we can
   407   //   allocate a new young region. This will be changed in the
   408   //   near future (see CR 6994056).
   409   //
   410   // * If either call cannot satisfy the allocation request using the
   411   //   current allocating region, they will try to get a new one. If
   412   //   this fails, they will attempt to do an evacuation pause and
   413   //   retry the allocation.
   414   //
   415   // * If all allocation attempts fail, even after trying to schedule
   416   //   an evacuation pause, allocate_new_tlab() will return NULL,
   417   //   whereas mem_allocate() will attempt a heap expansion and/or
   418   //   schedule a Full GC.
   419   //
   420   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   421   //   should never be called with word_size being humongous. All
   422   //   humongous allocation requests should go to mem_allocate() which
   423   //   will satisfy them with a special path.
   425   virtual HeapWord* allocate_new_tlab(size_t word_size);
   427   virtual HeapWord* mem_allocate(size_t word_size,
   428                                  bool   is_noref,
   429                                  bool   is_tlab, /* expected to be false */
   430                                  bool*  gc_overhead_limit_was_exceeded);
   432   // The following methods, allocate_from_cur_allocation_region(),
   433   // attempt_allocation(), attempt_allocation_locked(),
   434   // replace_cur_alloc_region_and_allocate(),
   435   // attempt_allocation_slow(), and attempt_allocation_humongous()
   436   // have very awkward pre- and post-conditions with respect to
   437   // locking:
   438   //
   439   // If they are called outside a safepoint they assume the caller
   440   // holds the Heap_lock when it calls them. However, on exit they
   441   // will release the Heap_lock if they return a non-NULL result, but
   442   // keep holding the Heap_lock if they return a NULL result. The
   443   // reason for this is that we need to dirty the cards that span
   444   // allocated blocks on young regions to avoid having to take the
   445   // slow path of the write barrier (for performance reasons we don't
   446   // update RSets for references whose source is a young region, so we
   447   // don't need to look at dirty cards on young regions). But, doing
   448   // this card dirtying while holding the Heap_lock can be a
   449   // scalability bottleneck, especially given that some allocation
   450   // requests might be of non-trivial size (and the larger the region
   451   // size is, the fewer allocations requests will be considered
   452   // humongous, as the humongous size limit is a fraction of the
   453   // region size). So, when one of these calls succeeds in allocating
   454   // a block it does the card dirtying after it releases the Heap_lock
   455   // which is why it will return without holding it.
   456   //
   457   // The above assymetry is the reason why locking / unlocking is done
   458   // explicitly (i.e., with Heap_lock->lock() and
   459   // Heap_lock->unlocked()) instead of using MutexLocker and
   460   // MutexUnlocker objects. The latter would ensure that the lock is
   461   // unlocked / re-locked at every possible exit out of the basic
   462   // block. However, we only want that action to happen in selected
   463   // places.
   464   //
   465   // Further, if the above methods are called during a safepoint, then
   466   // naturally there's no assumption about the Heap_lock being held or
   467   // there's no attempt to unlock it. The parameter at_safepoint
   468   // indicates whether the call is made during a safepoint or not (as
   469   // an optimization, to avoid reading the global flag with
   470   // SafepointSynchronize::is_at_safepoint()).
   471   //
   472   // The methods share these parameters:
   473   //
   474   // * word_size     : the size of the allocation request in words
   475   // * at_safepoint  : whether the call is done at a safepoint; this
   476   //                   also determines whether a GC is permitted
   477   //                   (at_safepoint == false) or not (at_safepoint == true)
   478   // * do_dirtying   : whether the method should dirty the allocated
   479   //                   block before returning
   480   //
   481   // They all return either the address of the block, if they
   482   // successfully manage to allocate it, or NULL.
   484   // It tries to satisfy an allocation request out of the current
   485   // alloc region, which is passed as a parameter. It assumes that the
   486   // caller has checked that the current alloc region is not NULL.
   487   // Given that the caller has to check the current alloc region for
   488   // at least NULL, it might as well pass it as the first parameter so
   489   // that the method doesn't have to read it from the
   490   // _cur_alloc_region field again. It is called from both
   491   // attempt_allocation() and attempt_allocation_locked() and the
   492   // with_heap_lock parameter indicates whether the caller was holding
   493   // the heap lock when it called it or not.
   494   inline HeapWord* allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
   495                                                   size_t word_size,
   496                                                   bool with_heap_lock);
   498   // First-level of allocation slow path: it attempts to allocate out
   499   // of the current alloc region in a lock-free manner using a CAS. If
   500   // that fails it takes the Heap_lock and calls
   501   // attempt_allocation_locked() for the second-level slow path.
   502   inline HeapWord* attempt_allocation(size_t word_size);
   504   // Second-level of allocation slow path: while holding the Heap_lock
   505   // it tries to allocate out of the current alloc region and, if that
   506   // fails, tries to allocate out of a new current alloc region.
   507   inline HeapWord* attempt_allocation_locked(size_t word_size);
   509   // It assumes that the current alloc region has been retired and
   510   // tries to allocate a new one. If it's successful, it performs the
   511   // allocation out of the new current alloc region and updates
   512   // _cur_alloc_region. Normally, it would try to allocate a new
   513   // region if the young gen is not full, unless can_expand is true in
   514   // which case it would always try to allocate a new region.
   515   HeapWord* replace_cur_alloc_region_and_allocate(size_t word_size,
   516                                                   bool at_safepoint,
   517                                                   bool do_dirtying,
   518                                                   bool can_expand);
   520   // Third-level of allocation slow path: when we are unable to
   521   // allocate a new current alloc region to satisfy an allocation
   522   // request (i.e., when attempt_allocation_locked() fails). It will
   523   // try to do an evacuation pause, which might stall due to the GC
   524   // locker, and retry the allocation attempt when appropriate.
   525   HeapWord* attempt_allocation_slow(size_t word_size);
   527   // The method that tries to satisfy a humongous allocation
   528   // request. If it cannot satisfy it it will try to do an evacuation
   529   // pause to perhaps reclaim enough space to be able to satisfy the
   530   // allocation request afterwards.
   531   HeapWord* attempt_allocation_humongous(size_t word_size,
   532                                          bool at_safepoint);
   534   // It does the common work when we are retiring the current alloc region.
   535   inline void retire_cur_alloc_region_common(HeapRegion* cur_alloc_region);
   537   // It retires the current alloc region, which is passed as a
   538   // parameter (since, typically, the caller is already holding on to
   539   // it). It sets _cur_alloc_region to NULL.
   540   void retire_cur_alloc_region(HeapRegion* cur_alloc_region);
   542   // It attempts to do an allocation immediately before or after an
   543   // evacuation pause and can only be called by the VM thread. It has
   544   // slightly different assumptions that the ones before (i.e.,
   545   // assumes that the current alloc region has been retired).
   546   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   547                                             bool expect_null_cur_alloc_region);
   549   // It dirties the cards that cover the block so that so that the post
   550   // write barrier never queues anything when updating objects on this
   551   // block. It is assumed (and in fact we assert) that the block
   552   // belongs to a young region.
   553   inline void dirty_young_block(HeapWord* start, size_t word_size);
   555   // Allocate blocks during garbage collection. Will ensure an
   556   // allocation region, either by picking one or expanding the
   557   // heap, and then allocate a block of the given size. The block
   558   // may not be a humongous - it must fit into a single heap region.
   559   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   561   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   562                                     HeapRegion*    alloc_region,
   563                                     bool           par,
   564                                     size_t         word_size);
   566   // Ensure that no further allocations can happen in "r", bearing in mind
   567   // that parallel threads might be attempting allocations.
   568   void par_allocate_remaining_space(HeapRegion* r);
   570   // Retires an allocation region when it is full or at the end of a
   571   // GC pause.
   572   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   574   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   575   //   inspection request and should collect the entire heap
   576   // - if clear_all_soft_refs is true, all soft references should be
   577   //   cleared during the GC
   578   // - if explicit_gc is false, word_size describes the allocation that
   579   //   the GC should attempt (at least) to satisfy
   580   // - it returns false if it is unable to do the collection due to the
   581   //   GC locker being active, true otherwise
   582   bool do_collection(bool explicit_gc,
   583                      bool clear_all_soft_refs,
   584                      size_t word_size);
   586   // Callback from VM_G1CollectFull operation.
   587   // Perform a full collection.
   588   void do_full_collection(bool clear_all_soft_refs);
   590   // Resize the heap if necessary after a full collection.  If this is
   591   // after a collect-for allocation, "word_size" is the allocation size,
   592   // and will be considered part of the used portion of the heap.
   593   void resize_if_necessary_after_full_collection(size_t word_size);
   595   // Callback from VM_G1CollectForAllocation operation.
   596   // This function does everything necessary/possible to satisfy a
   597   // failed allocation request (including collection, expansion, etc.)
   598   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   600   // Attempting to expand the heap sufficiently
   601   // to support an allocation of the given "word_size".  If
   602   // successful, perform the allocation and return the address of the
   603   // allocated block, or else "NULL".
   604   HeapWord* expand_and_allocate(size_t word_size);
   606 public:
   607   // Expand the garbage-first heap by at least the given size (in bytes!).
   608   // (Rounds up to a HeapRegion boundary.)
   609   virtual void expand(size_t expand_bytes);
   611   // Do anything common to GC's.
   612   virtual void gc_prologue(bool full);
   613   virtual void gc_epilogue(bool full);
   615   // We register a region with the fast "in collection set" test. We
   616   // simply set to true the array slot corresponding to this region.
   617   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   618     assert(_in_cset_fast_test_base != NULL, "sanity");
   619     assert(r->in_collection_set(), "invariant");
   620     int index = r->hrs_index();
   621     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
   622     assert(!_in_cset_fast_test_base[index], "invariant");
   623     _in_cset_fast_test_base[index] = true;
   624   }
   626   // This is a fast test on whether a reference points into the
   627   // collection set or not. It does not assume that the reference
   628   // points into the heap; if it doesn't, it will return false.
   629   bool in_cset_fast_test(oop obj) {
   630     assert(_in_cset_fast_test != NULL, "sanity");
   631     if (_g1_committed.contains((HeapWord*) obj)) {
   632       // no need to subtract the bottom of the heap from obj,
   633       // _in_cset_fast_test is biased
   634       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   635       bool ret = _in_cset_fast_test[index];
   636       // let's make sure the result is consistent with what the slower
   637       // test returns
   638       assert( ret || !obj_in_cs(obj), "sanity");
   639       assert(!ret ||  obj_in_cs(obj), "sanity");
   640       return ret;
   641     } else {
   642       return false;
   643     }
   644   }
   646   void clear_cset_fast_test() {
   647     assert(_in_cset_fast_test_base != NULL, "sanity");
   648     memset(_in_cset_fast_test_base, false,
   649         _in_cset_fast_test_length * sizeof(bool));
   650   }
   652   // This is called at the end of either a concurrent cycle or a Full
   653   // GC to update the number of full collections completed. Those two
   654   // can happen in a nested fashion, i.e., we start a concurrent
   655   // cycle, a Full GC happens half-way through it which ends first,
   656   // and then the cycle notices that a Full GC happened and ends
   657   // too. The concurrent parameter is a boolean to help us do a bit
   658   // tighter consistency checking in the method. If concurrent is
   659   // false, the caller is the inner caller in the nesting (i.e., the
   660   // Full GC). If concurrent is true, the caller is the outer caller
   661   // in this nesting (i.e., the concurrent cycle). Further nesting is
   662   // not currently supported. The end of the this call also notifies
   663   // the FullGCCount_lock in case a Java thread is waiting for a full
   664   // GC to happen (e.g., it called System.gc() with
   665   // +ExplicitGCInvokesConcurrent).
   666   void increment_full_collections_completed(bool concurrent);
   668   unsigned int full_collections_completed() {
   669     return _full_collections_completed;
   670   }
   672 protected:
   674   // Shrink the garbage-first heap by at most the given size (in bytes!).
   675   // (Rounds down to a HeapRegion boundary.)
   676   virtual void shrink(size_t expand_bytes);
   677   void shrink_helper(size_t expand_bytes);
   679   #if TASKQUEUE_STATS
   680   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   681   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   682   void reset_taskqueue_stats();
   683   #endif // TASKQUEUE_STATS
   685   // Schedule the VM operation that will do an evacuation pause to
   686   // satisfy an allocation request of word_size. *succeeded will
   687   // return whether the VM operation was successful (it did do an
   688   // evacuation pause) or not (another thread beat us to it or the GC
   689   // locker was active). Given that we should not be holding the
   690   // Heap_lock when we enter this method, we will pass the
   691   // gc_count_before (i.e., total_collections()) as a parameter since
   692   // it has to be read while holding the Heap_lock. Currently, both
   693   // methods that call do_collection_pause() release the Heap_lock
   694   // before the call, so it's easy to read gc_count_before just before.
   695   HeapWord* do_collection_pause(size_t       word_size,
   696                                 unsigned int gc_count_before,
   697                                 bool*        succeeded);
   699   // The guts of the incremental collection pause, executed by the vm
   700   // thread. It returns false if it is unable to do the collection due
   701   // to the GC locker being active, true otherwise
   702   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   704   // Actually do the work of evacuating the collection set.
   705   void evacuate_collection_set();
   707   // The g1 remembered set of the heap.
   708   G1RemSet* _g1_rem_set;
   709   // And it's mod ref barrier set, used to track updates for the above.
   710   ModRefBarrierSet* _mr_bs;
   712   // A set of cards that cover the objects for which the Rsets should be updated
   713   // concurrently after the collection.
   714   DirtyCardQueueSet _dirty_card_queue_set;
   716   // The Heap Region Rem Set Iterator.
   717   HeapRegionRemSetIterator** _rem_set_iterator;
   719   // The closure used to refine a single card.
   720   RefineCardTableEntryClosure* _refine_cte_cl;
   722   // A function to check the consistency of dirty card logs.
   723   void check_ct_logs_at_safepoint();
   725   // A DirtyCardQueueSet that is used to hold cards that contain
   726   // references into the current collection set. This is used to
   727   // update the remembered sets of the regions in the collection
   728   // set in the event of an evacuation failure.
   729   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   731   // After a collection pause, make the regions in the CS into free
   732   // regions.
   733   void free_collection_set(HeapRegion* cs_head);
   735   // Abandon the current collection set without recording policy
   736   // statistics or updating free lists.
   737   void abandon_collection_set(HeapRegion* cs_head);
   739   // Applies "scan_non_heap_roots" to roots outside the heap,
   740   // "scan_rs" to roots inside the heap (having done "set_region" to
   741   // indicate the region in which the root resides), and does "scan_perm"
   742   // (setting the generation to the perm generation.)  If "scan_rs" is
   743   // NULL, then this step is skipped.  The "worker_i"
   744   // param is for use with parallel roots processing, and should be
   745   // the "i" of the calling parallel worker thread's work(i) function.
   746   // In the sequential case this param will be ignored.
   747   void g1_process_strong_roots(bool collecting_perm_gen,
   748                                SharedHeap::ScanningOption so,
   749                                OopClosure* scan_non_heap_roots,
   750                                OopsInHeapRegionClosure* scan_rs,
   751                                OopsInGenClosure* scan_perm,
   752                                int worker_i);
   754   // Apply "blk" to all the weak roots of the system.  These include
   755   // JNI weak roots, the code cache, system dictionary, symbol table,
   756   // string table, and referents of reachable weak refs.
   757   void g1_process_weak_roots(OopClosure* root_closure,
   758                              OopClosure* non_root_closure);
   760   // Invoke "save_marks" on all heap regions.
   761   void save_marks();
   763   // Free a heap region.
   764   void free_region(HeapRegion* hr);
   765   // A component of "free_region", exposed for 'batching'.
   766   // All the params after "hr" are out params: the used bytes of the freed
   767   // region(s), the number of H regions cleared, the number of regions
   768   // freed, and pointers to the head and tail of a list of freed contig
   769   // regions, linked throught the "next_on_unclean_list" field.
   770   void free_region_work(HeapRegion* hr,
   771                         size_t& pre_used,
   772                         size_t& cleared_h,
   773                         size_t& freed_regions,
   774                         UncleanRegionList* list,
   775                         bool par = false);
   778   // The concurrent marker (and the thread it runs in.)
   779   ConcurrentMark* _cm;
   780   ConcurrentMarkThread* _cmThread;
   781   bool _mark_in_progress;
   783   // The concurrent refiner.
   784   ConcurrentG1Refine* _cg1r;
   786   // The concurrent zero-fill thread.
   787   ConcurrentZFThread* _czft;
   789   // The parallel task queues
   790   RefToScanQueueSet *_task_queues;
   792   // True iff a evacuation has failed in the current collection.
   793   bool _evacuation_failed;
   795   // Set the attribute indicating whether evacuation has failed in the
   796   // current collection.
   797   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   799   // Failed evacuations cause some logical from-space objects to have
   800   // forwarding pointers to themselves.  Reset them.
   801   void remove_self_forwarding_pointers();
   803   // When one is non-null, so is the other.  Together, they each pair is
   804   // an object with a preserved mark, and its mark value.
   805   GrowableArray<oop>*     _objs_with_preserved_marks;
   806   GrowableArray<markOop>* _preserved_marks_of_objs;
   808   // Preserve the mark of "obj", if necessary, in preparation for its mark
   809   // word being overwritten with a self-forwarding-pointer.
   810   void preserve_mark_if_necessary(oop obj, markOop m);
   812   // The stack of evac-failure objects left to be scanned.
   813   GrowableArray<oop>*    _evac_failure_scan_stack;
   814   // The closure to apply to evac-failure objects.
   816   OopsInHeapRegionClosure* _evac_failure_closure;
   817   // Set the field above.
   818   void
   819   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   820     _evac_failure_closure = evac_failure_closure;
   821   }
   823   // Push "obj" on the scan stack.
   824   void push_on_evac_failure_scan_stack(oop obj);
   825   // Process scan stack entries until the stack is empty.
   826   void drain_evac_failure_scan_stack();
   827   // True iff an invocation of "drain_scan_stack" is in progress; to
   828   // prevent unnecessary recursion.
   829   bool _drain_in_progress;
   831   // Do any necessary initialization for evacuation-failure handling.
   832   // "cl" is the closure that will be used to process evac-failure
   833   // objects.
   834   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   835   // Do any necessary cleanup for evacuation-failure handling data
   836   // structures.
   837   void finalize_for_evac_failure();
   839   // An attempt to evacuate "obj" has failed; take necessary steps.
   840   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   841   void handle_evacuation_failure_common(oop obj, markOop m);
   844   // Ensure that the relevant gc_alloc regions are set.
   845   void get_gc_alloc_regions();
   846   // We're done with GC alloc regions. We are going to tear down the
   847   // gc alloc list and remove the gc alloc tag from all the regions on
   848   // that list. However, we will also retain the last (i.e., the one
   849   // that is half-full) GC alloc region, per GCAllocPurpose, for
   850   // possible reuse during the next collection, provided
   851   // _retain_gc_alloc_region[] indicates that it should be the
   852   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   853   // array. If the parameter totally is set, we will not retain any
   854   // regions, irrespective of what _retain_gc_alloc_region[]
   855   // indicates.
   856   void release_gc_alloc_regions(bool totally);
   857 #ifndef PRODUCT
   858   // Useful for debugging.
   859   void print_gc_alloc_regions();
   860 #endif // !PRODUCT
   862   // Instance of the concurrent mark is_alive closure for embedding
   863   // into the reference processor as the is_alive_non_header. This
   864   // prevents unnecessary additions to the discovered lists during
   865   // concurrent discovery.
   866   G1CMIsAliveClosure _is_alive_closure;
   868   // ("Weak") Reference processing support
   869   ReferenceProcessor* _ref_processor;
   871   enum G1H_process_strong_roots_tasks {
   872     G1H_PS_mark_stack_oops_do,
   873     G1H_PS_refProcessor_oops_do,
   874     // Leave this one last.
   875     G1H_PS_NumElements
   876   };
   878   SubTasksDone* _process_strong_tasks;
   880   // List of regions which require zero filling.
   881   UncleanRegionList _unclean_region_list;
   882   bool _unclean_regions_coming;
   884 public:
   886   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   888   void set_refine_cte_cl_concurrency(bool concurrent);
   890   RefToScanQueue *task_queue(int i) const;
   892   // A set of cards where updates happened during the GC
   893   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   895   // A DirtyCardQueueSet that is used to hold cards that contain
   896   // references into the current collection set. This is used to
   897   // update the remembered sets of the regions in the collection
   898   // set in the event of an evacuation failure.
   899   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   900         { return _into_cset_dirty_card_queue_set; }
   902   // Create a G1CollectedHeap with the specified policy.
   903   // Must call the initialize method afterwards.
   904   // May not return if something goes wrong.
   905   G1CollectedHeap(G1CollectorPolicy* policy);
   907   // Initialize the G1CollectedHeap to have the initial and
   908   // maximum sizes, permanent generation, and remembered and barrier sets
   909   // specified by the policy object.
   910   jint initialize();
   912   virtual void ref_processing_init();
   914   void set_par_threads(int t) {
   915     SharedHeap::set_par_threads(t);
   916     _process_strong_tasks->set_n_threads(t);
   917   }
   919   virtual CollectedHeap::Name kind() const {
   920     return CollectedHeap::G1CollectedHeap;
   921   }
   923   // The current policy object for the collector.
   924   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   926   // Adaptive size policy.  No such thing for g1.
   927   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   929   // The rem set and barrier set.
   930   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   931   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   933   // The rem set iterator.
   934   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   935     return _rem_set_iterator[i];
   936   }
   938   HeapRegionRemSetIterator* rem_set_iterator() {
   939     return _rem_set_iterator[0];
   940   }
   942   unsigned get_gc_time_stamp() {
   943     return _gc_time_stamp;
   944   }
   946   void reset_gc_time_stamp() {
   947     _gc_time_stamp = 0;
   948     OrderAccess::fence();
   949   }
   951   void increment_gc_time_stamp() {
   952     ++_gc_time_stamp;
   953     OrderAccess::fence();
   954   }
   956   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   957                                   DirtyCardQueue* into_cset_dcq,
   958                                   bool concurrent, int worker_i);
   960   // The shared block offset table array.
   961   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   963   // Reference Processing accessor
   964   ReferenceProcessor* ref_processor() { return _ref_processor; }
   966   // Reserved (g1 only; super method includes perm), capacity and the used
   967   // portion in bytes.
   968   size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); }
   969   virtual size_t capacity() const;
   970   virtual size_t used() const;
   971   // This should be called when we're not holding the heap lock. The
   972   // result might be a bit inaccurate.
   973   size_t used_unlocked() const;
   974   size_t recalculate_used() const;
   975 #ifndef PRODUCT
   976   size_t recalculate_used_regions() const;
   977 #endif // PRODUCT
   979   // These virtual functions do the actual allocation.
   980   // Some heaps may offer a contiguous region for shared non-blocking
   981   // allocation, via inlined code (by exporting the address of the top and
   982   // end fields defining the extent of the contiguous allocation region.)
   983   // But G1CollectedHeap doesn't yet support this.
   985   // Return an estimate of the maximum allocation that could be performed
   986   // without triggering any collection or expansion activity.  In a
   987   // generational collector, for example, this is probably the largest
   988   // allocation that could be supported (without expansion) in the youngest
   989   // generation.  It is "unsafe" because no locks are taken; the result
   990   // should be treated as an approximation, not a guarantee, for use in
   991   // heuristic resizing decisions.
   992   virtual size_t unsafe_max_alloc();
   994   virtual bool is_maximal_no_gc() const {
   995     return _g1_storage.uncommitted_size() == 0;
   996   }
   998   // The total number of regions in the heap.
   999   size_t n_regions();
  1001   // The number of regions that are completely free.
  1002   size_t max_regions();
  1004   // The number of regions that are completely free.
  1005   size_t free_regions();
  1007   // The number of regions that are not completely free.
  1008   size_t used_regions() { return n_regions() - free_regions(); }
  1010   // True iff the ZF thread should run.
  1011   bool should_zf();
  1013   // The number of regions available for "regular" expansion.
  1014   size_t expansion_regions() { return _expansion_regions; }
  1016 #ifndef PRODUCT
  1017   bool regions_accounted_for();
  1018   bool print_region_accounting_info();
  1019   void print_region_counts();
  1020 #endif
  1022   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
  1023   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
  1025   void put_region_on_unclean_list(HeapRegion* r);
  1026   void put_region_on_unclean_list_locked(HeapRegion* r);
  1028   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
  1029   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
  1031   void set_unclean_regions_coming(bool b);
  1032   void set_unclean_regions_coming_locked(bool b);
  1033   // Wait for cleanup to be complete.
  1034   void wait_for_cleanup_complete();
  1035   // Like above, but assumes that the calling thread owns the Heap_lock.
  1036   void wait_for_cleanup_complete_locked();
  1038   // Return the head of the unclean list.
  1039   HeapRegion* peek_unclean_region_list_locked();
  1040   // Remove and return the head of the unclean list.
  1041   HeapRegion* pop_unclean_region_list_locked();
  1043   // List of regions which are zero filled and ready for allocation.
  1044   HeapRegion* _free_region_list;
  1045   // Number of elements on the free list.
  1046   size_t _free_region_list_size;
  1048   // If the head of the unclean list is ZeroFilled, move it to the free
  1049   // list.
  1050   bool move_cleaned_region_to_free_list_locked();
  1051   bool move_cleaned_region_to_free_list();
  1053   void put_free_region_on_list_locked(HeapRegion* r);
  1054   void put_free_region_on_list(HeapRegion* r);
  1056   // Remove and return the head element of the free list.
  1057   HeapRegion* pop_free_region_list_locked();
  1059   // If "zero_filled" is true, we first try the free list, then we try the
  1060   // unclean list, zero-filling the result.  If "zero_filled" is false, we
  1061   // first try the unclean list, then the zero-filled list.
  1062   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
  1064   // Verify the integrity of the region lists.
  1065   void remove_allocated_regions_from_lists();
  1066   bool verify_region_lists();
  1067   bool verify_region_lists_locked();
  1068   size_t unclean_region_list_length();
  1069   size_t free_region_list_length();
  1071   // Perform a collection of the heap; intended for use in implementing
  1072   // "System.gc".  This probably implies as full a collection as the
  1073   // "CollectedHeap" supports.
  1074   virtual void collect(GCCause::Cause cause);
  1076   // The same as above but assume that the caller holds the Heap_lock.
  1077   void collect_locked(GCCause::Cause cause);
  1079   // This interface assumes that it's being called by the
  1080   // vm thread. It collects the heap assuming that the
  1081   // heap lock is already held and that we are executing in
  1082   // the context of the vm thread.
  1083   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1085   // True iff a evacuation has failed in the most-recent collection.
  1086   bool evacuation_failed() { return _evacuation_failed; }
  1088   // Free a region if it is totally full of garbage.  Returns the number of
  1089   // bytes freed (0 ==> didn't free it).
  1090   size_t free_region_if_totally_empty(HeapRegion *hr);
  1091   void free_region_if_totally_empty_work(HeapRegion *hr,
  1092                                          size_t& pre_used,
  1093                                          size_t& cleared_h_regions,
  1094                                          size_t& freed_regions,
  1095                                          UncleanRegionList* list,
  1096                                          bool par = false);
  1098   // If we've done free region work that yields the given changes, update
  1099   // the relevant global variables.
  1100   void finish_free_region_work(size_t pre_used,
  1101                                size_t cleared_h_regions,
  1102                                size_t freed_regions,
  1103                                UncleanRegionList* list);
  1106   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1107   virtual bool is_in(const void* p) const;
  1109   // Return "TRUE" iff the given object address is within the collection
  1110   // set.
  1111   inline bool obj_in_cs(oop obj);
  1113   // Return "TRUE" iff the given object address is in the reserved
  1114   // region of g1 (excluding the permanent generation).
  1115   bool is_in_g1_reserved(const void* p) const {
  1116     return _g1_reserved.contains(p);
  1119   // Returns a MemRegion that corresponds to the space that  has been
  1120   // committed in the heap
  1121   MemRegion g1_committed() {
  1122     return _g1_committed;
  1125   NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
  1127   // Dirty card table entries covering a list of young regions.
  1128   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1130   // This resets the card table to all zeros.  It is used after
  1131   // a collection pause which used the card table to claim cards.
  1132   void cleanUpCardTable();
  1134   // Iteration functions.
  1136   // Iterate over all the ref-containing fields of all objects, calling
  1137   // "cl.do_oop" on each.
  1138   virtual void oop_iterate(OopClosure* cl) {
  1139     oop_iterate(cl, true);
  1141   void oop_iterate(OopClosure* cl, bool do_perm);
  1143   // Same as above, restricted to a memory region.
  1144   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1145     oop_iterate(mr, cl, true);
  1147   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1149   // Iterate over all objects, calling "cl.do_object" on each.
  1150   virtual void object_iterate(ObjectClosure* cl) {
  1151     object_iterate(cl, true);
  1153   virtual void safe_object_iterate(ObjectClosure* cl) {
  1154     object_iterate(cl, true);
  1156   void object_iterate(ObjectClosure* cl, bool do_perm);
  1158   // Iterate over all objects allocated since the last collection, calling
  1159   // "cl.do_object" on each.  The heap must have been initialized properly
  1160   // to support this function, or else this call will fail.
  1161   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1163   // Iterate over all spaces in use in the heap, in ascending address order.
  1164   virtual void space_iterate(SpaceClosure* cl);
  1166   // Iterate over heap regions, in address order, terminating the
  1167   // iteration early if the "doHeapRegion" method returns "true".
  1168   void heap_region_iterate(HeapRegionClosure* blk);
  1170   // Iterate over heap regions starting with r (or the first region if "r"
  1171   // is NULL), in address order, terminating early if the "doHeapRegion"
  1172   // method returns "true".
  1173   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
  1175   // As above but starting from the region at index idx.
  1176   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
  1178   HeapRegion* region_at(size_t idx);
  1180   // Divide the heap region sequence into "chunks" of some size (the number
  1181   // of regions divided by the number of parallel threads times some
  1182   // overpartition factor, currently 4).  Assumes that this will be called
  1183   // in parallel by ParallelGCThreads worker threads with discinct worker
  1184   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1185   // calls will use the same "claim_value", and that that claim value is
  1186   // different from the claim_value of any heap region before the start of
  1187   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1188   // attempting to claim the first region in each chunk, and, if
  1189   // successful, applying the closure to each region in the chunk (and
  1190   // setting the claim value of the second and subsequent regions of the
  1191   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1192   // i.e., that a closure never attempt to abort a traversal.
  1193   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1194                                        int worker,
  1195                                        jint claim_value);
  1197   // It resets all the region claim values to the default.
  1198   void reset_heap_region_claim_values();
  1200 #ifdef ASSERT
  1201   bool check_heap_region_claim_values(jint claim_value);
  1202 #endif // ASSERT
  1204   // Iterate over the regions (if any) in the current collection set.
  1205   void collection_set_iterate(HeapRegionClosure* blk);
  1207   // As above but starting from region r
  1208   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1210   // Returns the first (lowest address) compactible space in the heap.
  1211   virtual CompactibleSpace* first_compactible_space();
  1213   // A CollectedHeap will contain some number of spaces.  This finds the
  1214   // space containing a given address, or else returns NULL.
  1215   virtual Space* space_containing(const void* addr) const;
  1217   // A G1CollectedHeap will contain some number of heap regions.  This
  1218   // finds the region containing a given address, or else returns NULL.
  1219   HeapRegion* heap_region_containing(const void* addr) const;
  1221   // Like the above, but requires "addr" to be in the heap (to avoid a
  1222   // null-check), and unlike the above, may return an continuing humongous
  1223   // region.
  1224   HeapRegion* heap_region_containing_raw(const void* addr) const;
  1226   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1227   // each address in the (reserved) heap is a member of exactly
  1228   // one block.  The defining characteristic of a block is that it is
  1229   // possible to find its size, and thus to progress forward to the next
  1230   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1231   // represent Java objects, or they might be free blocks in a
  1232   // free-list-based heap (or subheap), as long as the two kinds are
  1233   // distinguishable and the size of each is determinable.
  1235   // Returns the address of the start of the "block" that contains the
  1236   // address "addr".  We say "blocks" instead of "object" since some heaps
  1237   // may not pack objects densely; a chunk may either be an object or a
  1238   // non-object.
  1239   virtual HeapWord* block_start(const void* addr) const;
  1241   // Requires "addr" to be the start of a chunk, and returns its size.
  1242   // "addr + size" is required to be the start of a new chunk, or the end
  1243   // of the active area of the heap.
  1244   virtual size_t block_size(const HeapWord* addr) const;
  1246   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1247   // the block is an object.
  1248   virtual bool block_is_obj(const HeapWord* addr) const;
  1250   // Does this heap support heap inspection? (+PrintClassHistogram)
  1251   virtual bool supports_heap_inspection() const { return true; }
  1253   // Section on thread-local allocation buffers (TLABs)
  1254   // See CollectedHeap for semantics.
  1256   virtual bool supports_tlab_allocation() const;
  1257   virtual size_t tlab_capacity(Thread* thr) const;
  1258   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1260   // Can a compiler initialize a new object without store barriers?
  1261   // This permission only extends from the creation of a new object
  1262   // via a TLAB up to the first subsequent safepoint. If such permission
  1263   // is granted for this heap type, the compiler promises to call
  1264   // defer_store_barrier() below on any slow path allocation of
  1265   // a new object for which such initializing store barriers will
  1266   // have been elided. G1, like CMS, allows this, but should be
  1267   // ready to provide a compensating write barrier as necessary
  1268   // if that storage came out of a non-young region. The efficiency
  1269   // of this implementation depends crucially on being able to
  1270   // answer very efficiently in constant time whether a piece of
  1271   // storage in the heap comes from a young region or not.
  1272   // See ReduceInitialCardMarks.
  1273   virtual bool can_elide_tlab_store_barriers() const {
  1274     // 6920090: Temporarily disabled, because of lingering
  1275     // instabilities related to RICM with G1. In the
  1276     // interim, the option ReduceInitialCardMarksForG1
  1277     // below is left solely as a debugging device at least
  1278     // until 6920109 fixes the instabilities.
  1279     return ReduceInitialCardMarksForG1;
  1282   virtual bool card_mark_must_follow_store() const {
  1283     return true;
  1286   bool is_in_young(oop obj) {
  1287     HeapRegion* hr = heap_region_containing(obj);
  1288     return hr != NULL && hr->is_young();
  1291   // We don't need barriers for initializing stores to objects
  1292   // in the young gen: for the SATB pre-barrier, there is no
  1293   // pre-value that needs to be remembered; for the remembered-set
  1294   // update logging post-barrier, we don't maintain remembered set
  1295   // information for young gen objects. Note that non-generational
  1296   // G1 does not have any "young" objects, should not elide
  1297   // the rs logging barrier and so should always answer false below.
  1298   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1299   // bit-rotted so was not tested below.
  1300   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1301     // Re 6920090, 6920109 above.
  1302     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1303     assert(G1Gen || !is_in_young(new_obj),
  1304            "Non-generational G1 should never return true below");
  1305     return is_in_young(new_obj);
  1308   // Can a compiler elide a store barrier when it writes
  1309   // a permanent oop into the heap?  Applies when the compiler
  1310   // is storing x to the heap, where x->is_perm() is true.
  1311   virtual bool can_elide_permanent_oop_store_barriers() const {
  1312     // At least until perm gen collection is also G1-ified, at
  1313     // which point this should return false.
  1314     return true;
  1317   virtual bool allocs_are_zero_filled();
  1319   // The boundary between a "large" and "small" array of primitives, in
  1320   // words.
  1321   virtual size_t large_typearray_limit();
  1323   // Returns "true" iff the given word_size is "very large".
  1324   static bool isHumongous(size_t word_size) {
  1325     // Note this has to be strictly greater-than as the TLABs
  1326     // are capped at the humongous thresold and we want to
  1327     // ensure that we don't try to allocate a TLAB as
  1328     // humongous and that we don't allocate a humongous
  1329     // object in a TLAB.
  1330     return word_size > _humongous_object_threshold_in_words;
  1333   // Update mod union table with the set of dirty cards.
  1334   void updateModUnion();
  1336   // Set the mod union bits corresponding to the given memRegion.  Note
  1337   // that this is always a safe operation, since it doesn't clear any
  1338   // bits.
  1339   void markModUnionRange(MemRegion mr);
  1341   // Records the fact that a marking phase is no longer in progress.
  1342   void set_marking_complete() {
  1343     _mark_in_progress = false;
  1345   void set_marking_started() {
  1346     _mark_in_progress = true;
  1348   bool mark_in_progress() {
  1349     return _mark_in_progress;
  1352   // Print the maximum heap capacity.
  1353   virtual size_t max_capacity() const;
  1355   virtual jlong millis_since_last_gc();
  1357   // Perform any cleanup actions necessary before allowing a verification.
  1358   virtual void prepare_for_verify();
  1360   // Perform verification.
  1362   // use_prev_marking == true  -> use "prev" marking information,
  1363   // use_prev_marking == false -> use "next" marking information
  1364   // NOTE: Only the "prev" marking information is guaranteed to be
  1365   // consistent most of the time, so most calls to this should use
  1366   // use_prev_marking == true. Currently, there is only one case where
  1367   // this is called with use_prev_marking == false, which is to verify
  1368   // the "next" marking information at the end of remark.
  1369   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1371   // Override; it uses the "prev" marking information
  1372   virtual void verify(bool allow_dirty, bool silent);
  1373   // Default behavior by calling print(tty);
  1374   virtual void print() const;
  1375   // This calls print_on(st, PrintHeapAtGCExtended).
  1376   virtual void print_on(outputStream* st) const;
  1377   // If extended is true, it will print out information for all
  1378   // regions in the heap by calling print_on_extended(st).
  1379   virtual void print_on(outputStream* st, bool extended) const;
  1380   virtual void print_on_extended(outputStream* st) const;
  1382   virtual void print_gc_threads_on(outputStream* st) const;
  1383   virtual void gc_threads_do(ThreadClosure* tc) const;
  1385   // Override
  1386   void print_tracing_info() const;
  1388   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1389   // number indicating the "arena" within the heap in which "addr" falls.
  1390   // Or else returns 0.
  1391   virtual int addr_to_arena_id(void* addr) const;
  1393   // Convenience function to be used in situations where the heap type can be
  1394   // asserted to be this type.
  1395   static G1CollectedHeap* heap();
  1397   void empty_young_list();
  1399   void set_region_short_lived_locked(HeapRegion* hr);
  1400   // add appropriate methods for any other surv rate groups
  1402   YoungList* young_list() { return _young_list; }
  1404   // debugging
  1405   bool check_young_list_well_formed() {
  1406     return _young_list->check_list_well_formed();
  1409   bool check_young_list_empty(bool check_heap,
  1410                               bool check_sample = true);
  1412   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1413   // many of these need to be public.
  1415   // The functions below are helper functions that a subclass of
  1416   // "CollectedHeap" can use in the implementation of its virtual
  1417   // functions.
  1418   // This performs a concurrent marking of the live objects in a
  1419   // bitmap off to the side.
  1420   void doConcurrentMark();
  1422   // This is called from the marksweep collector which then does
  1423   // a concurrent mark and verifies that the results agree with
  1424   // the stop the world marking.
  1425   void checkConcurrentMark();
  1426   void do_sync_mark();
  1428   bool isMarkedPrev(oop obj) const;
  1429   bool isMarkedNext(oop obj) const;
  1431   // use_prev_marking == true  -> use "prev" marking information,
  1432   // use_prev_marking == false -> use "next" marking information
  1433   bool is_obj_dead_cond(const oop obj,
  1434                         const HeapRegion* hr,
  1435                         const bool use_prev_marking) const {
  1436     if (use_prev_marking) {
  1437       return is_obj_dead(obj, hr);
  1438     } else {
  1439       return is_obj_ill(obj, hr);
  1443   // Determine if an object is dead, given the object and also
  1444   // the region to which the object belongs. An object is dead
  1445   // iff a) it was not allocated since the last mark and b) it
  1446   // is not marked.
  1448   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1449     return
  1450       !hr->obj_allocated_since_prev_marking(obj) &&
  1451       !isMarkedPrev(obj);
  1454   // This is used when copying an object to survivor space.
  1455   // If the object is marked live, then we mark the copy live.
  1456   // If the object is allocated since the start of this mark
  1457   // cycle, then we mark the copy live.
  1458   // If the object has been around since the previous mark
  1459   // phase, and hasn't been marked yet during this phase,
  1460   // then we don't mark it, we just wait for the
  1461   // current marking cycle to get to it.
  1463   // This function returns true when an object has been
  1464   // around since the previous marking and hasn't yet
  1465   // been marked during this marking.
  1467   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1468     return
  1469       !hr->obj_allocated_since_next_marking(obj) &&
  1470       !isMarkedNext(obj);
  1473   // Determine if an object is dead, given only the object itself.
  1474   // This will find the region to which the object belongs and
  1475   // then call the region version of the same function.
  1477   // Added if it is in permanent gen it isn't dead.
  1478   // Added if it is NULL it isn't dead.
  1480   // use_prev_marking == true  -> use "prev" marking information,
  1481   // use_prev_marking == false -> use "next" marking information
  1482   bool is_obj_dead_cond(const oop obj,
  1483                         const bool use_prev_marking) {
  1484     if (use_prev_marking) {
  1485       return is_obj_dead(obj);
  1486     } else {
  1487       return is_obj_ill(obj);
  1491   bool is_obj_dead(const oop obj) {
  1492     const HeapRegion* hr = heap_region_containing(obj);
  1493     if (hr == NULL) {
  1494       if (Universe::heap()->is_in_permanent(obj))
  1495         return false;
  1496       else if (obj == NULL) return false;
  1497       else return true;
  1499     else return is_obj_dead(obj, hr);
  1502   bool is_obj_ill(const oop obj) {
  1503     const HeapRegion* hr = heap_region_containing(obj);
  1504     if (hr == NULL) {
  1505       if (Universe::heap()->is_in_permanent(obj))
  1506         return false;
  1507       else if (obj == NULL) return false;
  1508       else return true;
  1510     else return is_obj_ill(obj, hr);
  1513   // The following is just to alert the verification code
  1514   // that a full collection has occurred and that the
  1515   // remembered sets are no longer up to date.
  1516   bool _full_collection;
  1517   void set_full_collection() { _full_collection = true;}
  1518   void clear_full_collection() {_full_collection = false;}
  1519   bool full_collection() {return _full_collection;}
  1521   ConcurrentMark* concurrent_mark() const { return _cm; }
  1522   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1524   // The dirty cards region list is used to record a subset of regions
  1525   // whose cards need clearing. The list if populated during the
  1526   // remembered set scanning and drained during the card table
  1527   // cleanup. Although the methods are reentrant, population/draining
  1528   // phases must not overlap. For synchronization purposes the last
  1529   // element on the list points to itself.
  1530   HeapRegion* _dirty_cards_region_list;
  1531   void push_dirty_cards_region(HeapRegion* hr);
  1532   HeapRegion* pop_dirty_cards_region();
  1534 public:
  1535   void stop_conc_gc_threads();
  1537   // <NEW PREDICTION>
  1539   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1540   void check_if_region_is_too_expensive(double predicted_time_ms);
  1541   size_t pending_card_num();
  1542   size_t max_pending_card_num();
  1543   size_t cards_scanned();
  1545   // </NEW PREDICTION>
  1547 protected:
  1548   size_t _max_heap_capacity;
  1550 public:
  1551   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
  1552   // MemoryService).  In productization, we can make this assert false
  1553   // to catch such places (as well as searching for calls to this...)
  1554   static void g1_unimplemented();
  1556 };
  1558 #define use_local_bitmaps         1
  1559 #define verify_local_bitmaps      0
  1560 #define oop_buffer_length       256
  1562 #ifndef PRODUCT
  1563 class GCLabBitMap;
  1564 class GCLabBitMapClosure: public BitMapClosure {
  1565 private:
  1566   ConcurrentMark* _cm;
  1567   GCLabBitMap*    _bitmap;
  1569 public:
  1570   GCLabBitMapClosure(ConcurrentMark* cm,
  1571                      GCLabBitMap* bitmap) {
  1572     _cm     = cm;
  1573     _bitmap = bitmap;
  1576   virtual bool do_bit(size_t offset);
  1577 };
  1578 #endif // !PRODUCT
  1580 class GCLabBitMap: public BitMap {
  1581 private:
  1582   ConcurrentMark* _cm;
  1584   int       _shifter;
  1585   size_t    _bitmap_word_covers_words;
  1587   // beginning of the heap
  1588   HeapWord* _heap_start;
  1590   // this is the actual start of the GCLab
  1591   HeapWord* _real_start_word;
  1593   // this is the actual end of the GCLab
  1594   HeapWord* _real_end_word;
  1596   // this is the first word, possibly located before the actual start
  1597   // of the GCLab, that corresponds to the first bit of the bitmap
  1598   HeapWord* _start_word;
  1600   // size of a GCLab in words
  1601   size_t _gclab_word_size;
  1603   static int shifter() {
  1604     return MinObjAlignment - 1;
  1607   // how many heap words does a single bitmap word corresponds to?
  1608   static size_t bitmap_word_covers_words() {
  1609     return BitsPerWord << shifter();
  1612   size_t gclab_word_size() const {
  1613     return _gclab_word_size;
  1616   // Calculates actual GCLab size in words
  1617   size_t gclab_real_word_size() const {
  1618     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1619            / BitsPerWord;
  1622   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1623     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1624     // We are going to ensure that the beginning of a word in this
  1625     // bitmap also corresponds to the beginning of a word in the
  1626     // global marking bitmap. To handle the case where a GCLab
  1627     // starts from the middle of the bitmap, we need to add enough
  1628     // space (i.e. up to a bitmap word) to ensure that we have
  1629     // enough bits in the bitmap.
  1630     return bits_in_bitmap + BitsPerWord - 1;
  1632 public:
  1633   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1634     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1635       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1636       _shifter(shifter()),
  1637       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1638       _heap_start(heap_start),
  1639       _gclab_word_size(gclab_word_size),
  1640       _real_start_word(NULL),
  1641       _real_end_word(NULL),
  1642       _start_word(NULL)
  1644     guarantee( size_in_words() >= bitmap_size_in_words(),
  1645                "just making sure");
  1648   inline unsigned heapWordToOffset(HeapWord* addr) {
  1649     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1650     assert(offset < size(), "offset should be within bounds");
  1651     return offset;
  1654   inline HeapWord* offsetToHeapWord(size_t offset) {
  1655     HeapWord* addr =  _start_word + (offset << _shifter);
  1656     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1657     return addr;
  1660   bool fields_well_formed() {
  1661     bool ret1 = (_real_start_word == NULL) &&
  1662                 (_real_end_word == NULL) &&
  1663                 (_start_word == NULL);
  1664     if (ret1)
  1665       return true;
  1667     bool ret2 = _real_start_word >= _start_word &&
  1668       _start_word < _real_end_word &&
  1669       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1670       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1671                                                               > _real_end_word;
  1672     return ret2;
  1675   inline bool mark(HeapWord* addr) {
  1676     guarantee(use_local_bitmaps, "invariant");
  1677     assert(fields_well_formed(), "invariant");
  1679     if (addr >= _real_start_word && addr < _real_end_word) {
  1680       assert(!isMarked(addr), "should not have already been marked");
  1682       // first mark it on the bitmap
  1683       at_put(heapWordToOffset(addr), true);
  1685       return true;
  1686     } else {
  1687       return false;
  1691   inline bool isMarked(HeapWord* addr) {
  1692     guarantee(use_local_bitmaps, "invariant");
  1693     assert(fields_well_formed(), "invariant");
  1695     return at(heapWordToOffset(addr));
  1698   void set_buffer(HeapWord* start) {
  1699     guarantee(use_local_bitmaps, "invariant");
  1700     clear();
  1702     assert(start != NULL, "invariant");
  1703     _real_start_word = start;
  1704     _real_end_word   = start + _gclab_word_size;
  1706     size_t diff =
  1707       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1708     _start_word = start - diff;
  1710     assert(fields_well_formed(), "invariant");
  1713 #ifndef PRODUCT
  1714   void verify() {
  1715     // verify that the marks have been propagated
  1716     GCLabBitMapClosure cl(_cm, this);
  1717     iterate(&cl);
  1719 #endif // PRODUCT
  1721   void retire() {
  1722     guarantee(use_local_bitmaps, "invariant");
  1723     assert(fields_well_formed(), "invariant");
  1725     if (_start_word != NULL) {
  1726       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1728       // this means that the bitmap was set up for the GCLab
  1729       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1731       mark_bitmap->mostly_disjoint_range_union(this,
  1732                                 0, // always start from the start of the bitmap
  1733                                 _start_word,
  1734                                 gclab_real_word_size());
  1735       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1737 #ifndef PRODUCT
  1738       if (use_local_bitmaps && verify_local_bitmaps)
  1739         verify();
  1740 #endif // PRODUCT
  1741     } else {
  1742       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1746   size_t bitmap_size_in_words() const {
  1747     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1750 };
  1752 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1753 private:
  1754   bool        _retired;
  1755   bool        _during_marking;
  1756   GCLabBitMap _bitmap;
  1758 public:
  1759   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1760     ParGCAllocBuffer(gclab_word_size),
  1761     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1762     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1763     _retired(false)
  1764   { }
  1766   inline bool mark(HeapWord* addr) {
  1767     guarantee(use_local_bitmaps, "invariant");
  1768     assert(_during_marking, "invariant");
  1769     return _bitmap.mark(addr);
  1772   inline void set_buf(HeapWord* buf) {
  1773     if (use_local_bitmaps && _during_marking)
  1774       _bitmap.set_buffer(buf);
  1775     ParGCAllocBuffer::set_buf(buf);
  1776     _retired = false;
  1779   inline void retire(bool end_of_gc, bool retain) {
  1780     if (_retired)
  1781       return;
  1782     if (use_local_bitmaps && _during_marking) {
  1783       _bitmap.retire();
  1785     ParGCAllocBuffer::retire(end_of_gc, retain);
  1786     _retired = true;
  1788 };
  1790 class G1ParScanThreadState : public StackObj {
  1791 protected:
  1792   G1CollectedHeap* _g1h;
  1793   RefToScanQueue*  _refs;
  1794   DirtyCardQueue   _dcq;
  1795   CardTableModRefBS* _ct_bs;
  1796   G1RemSet* _g1_rem;
  1798   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1799   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1800   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1801   ageTable            _age_table;
  1803   size_t           _alloc_buffer_waste;
  1804   size_t           _undo_waste;
  1806   OopsInHeapRegionClosure*      _evac_failure_cl;
  1807   G1ParScanHeapEvacClosure*     _evac_cl;
  1808   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1810   int _hash_seed;
  1811   int _queue_num;
  1813   size_t _term_attempts;
  1815   double _start;
  1816   double _start_strong_roots;
  1817   double _strong_roots_time;
  1818   double _start_term;
  1819   double _term_time;
  1821   // Map from young-age-index (0 == not young, 1 is youngest) to
  1822   // surviving words. base is what we get back from the malloc call
  1823   size_t* _surviving_young_words_base;
  1824   // this points into the array, as we use the first few entries for padding
  1825   size_t* _surviving_young_words;
  1827 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1829   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1831   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1833   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1834   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1836   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1837     if (!from->is_survivor()) {
  1838       _g1_rem->par_write_ref(from, p, tid);
  1842   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1843     // If the new value of the field points to the same region or
  1844     // is the to-space, we don't need to include it in the Rset updates.
  1845     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1846       size_t card_index = ctbs()->index_for(p);
  1847       // If the card hasn't been added to the buffer, do it.
  1848       if (ctbs()->mark_card_deferred(card_index)) {
  1849         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1854 public:
  1855   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1857   ~G1ParScanThreadState() {
  1858     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1861   RefToScanQueue*   refs()            { return _refs;             }
  1862   ageTable*         age_table()       { return &_age_table;       }
  1864   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1865     return _alloc_buffers[purpose];
  1868   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1869   size_t undo_waste() const                      { return _undo_waste; }
  1871 #ifdef ASSERT
  1872   bool verify_ref(narrowOop* ref) const;
  1873   bool verify_ref(oop* ref) const;
  1874   bool verify_task(StarTask ref) const;
  1875 #endif // ASSERT
  1877   template <class T> void push_on_queue(T* ref) {
  1878     assert(verify_ref(ref), "sanity");
  1879     refs()->push(ref);
  1882   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1883     if (G1DeferredRSUpdate) {
  1884       deferred_rs_update(from, p, tid);
  1885     } else {
  1886       immediate_rs_update(from, p, tid);
  1890   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1892     HeapWord* obj = NULL;
  1893     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1894     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1895       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1896       assert(gclab_word_size == alloc_buf->word_sz(),
  1897              "dynamic resizing is not supported");
  1898       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1899       alloc_buf->retire(false, false);
  1901       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1902       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1903       // Otherwise.
  1904       alloc_buf->set_buf(buf);
  1906       obj = alloc_buf->allocate(word_sz);
  1907       assert(obj != NULL, "buffer was definitely big enough...");
  1908     } else {
  1909       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1911     return obj;
  1914   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1915     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1916     if (obj != NULL) return obj;
  1917     return allocate_slow(purpose, word_sz);
  1920   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1921     if (alloc_buffer(purpose)->contains(obj)) {
  1922       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1923              "should contain whole object");
  1924       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1925     } else {
  1926       CollectedHeap::fill_with_object(obj, word_sz);
  1927       add_to_undo_waste(word_sz);
  1931   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1932     _evac_failure_cl = evac_failure_cl;
  1934   OopsInHeapRegionClosure* evac_failure_closure() {
  1935     return _evac_failure_cl;
  1938   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1939     _evac_cl = evac_cl;
  1942   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1943     _partial_scan_cl = partial_scan_cl;
  1946   int* hash_seed() { return &_hash_seed; }
  1947   int  queue_num() { return _queue_num; }
  1949   size_t term_attempts() const  { return _term_attempts; }
  1950   void note_term_attempt() { _term_attempts++; }
  1952   void start_strong_roots() {
  1953     _start_strong_roots = os::elapsedTime();
  1955   void end_strong_roots() {
  1956     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1958   double strong_roots_time() const { return _strong_roots_time; }
  1960   void start_term_time() {
  1961     note_term_attempt();
  1962     _start_term = os::elapsedTime();
  1964   void end_term_time() {
  1965     _term_time += (os::elapsedTime() - _start_term);
  1967   double term_time() const { return _term_time; }
  1969   double elapsed_time() const {
  1970     return os::elapsedTime() - _start;
  1973   static void
  1974     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1975   void
  1976     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1978   size_t* surviving_young_words() {
  1979     // We add on to hide entry 0 which accumulates surviving words for
  1980     // age -1 regions (i.e. non-young ones)
  1981     return _surviving_young_words;
  1984   void retire_alloc_buffers() {
  1985     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1986       size_t waste = _alloc_buffers[ap]->words_remaining();
  1987       add_to_alloc_buffer_waste(waste);
  1988       _alloc_buffers[ap]->retire(true, false);
  1992   template <class T> void deal_with_reference(T* ref_to_scan) {
  1993     if (has_partial_array_mask(ref_to_scan)) {
  1994       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1995     } else {
  1996       // Note: we can use "raw" versions of "region_containing" because
  1997       // "obj_to_scan" is definitely in the heap, and is not in a
  1998       // humongous region.
  1999       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2000       _evac_cl->set_region(r);
  2001       _evac_cl->do_oop_nv(ref_to_scan);
  2005   void deal_with_reference(StarTask ref) {
  2006     assert(verify_task(ref), "sanity");
  2007     if (ref.is_narrow()) {
  2008       deal_with_reference((narrowOop*)ref);
  2009     } else {
  2010       deal_with_reference((oop*)ref);
  2014 public:
  2015   void trim_queue();
  2016 };
  2018 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial