src/share/vm/opto/memnode.cpp

Wed, 23 Apr 2008 11:20:36 -0700

author
kvn
date
Wed, 23 Apr 2008 11:20:36 -0700
changeset 559
b130b98db9cf
parent 554
d1a5218d7eaf
child 563
a76240c8b133
permissions
-rw-r--r--

6689060: Escape Analysis does not work with Compressed Oops
Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *prev = NULL;
    98   Node *result = mchain;
    99   while (prev != result) {
   100     prev = result;
   101     // skip over a call which does not affect this memory slice
   102     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   103       Node *proj_in = result->in(0);
   104       if (proj_in->is_Call()) {
   105         CallNode *call = proj_in->as_Call();
   106         if (!call->may_modify(t_adr, phase)) {
   107           result = call->in(TypeFunc::Memory);
   108         }
   109       } else if (proj_in->is_Initialize()) {
   110         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   111         // Stop if this is the initialization for the object instance which
   112         // which contains this memory slice, otherwise skip over it.
   113         if (alloc != NULL && alloc->_idx != instance_id) {
   114           result = proj_in->in(TypeFunc::Memory);
   115         }
   116       } else if (proj_in->is_MemBar()) {
   117         result = proj_in->in(TypeFunc::Memory);
   118       }
   119     } else if (result->is_MergeMem()) {
   120       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   121     }
   122   }
   123   return result;
   124 }
   126 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   127   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   128   bool is_instance = (t_oop != NULL) && t_oop->is_instance_field();
   129   PhaseIterGVN *igvn = phase->is_IterGVN();
   130   Node *result = mchain;
   131   result = optimize_simple_memory_chain(result, t_adr, phase);
   132   if (is_instance && igvn != NULL  && result->is_Phi()) {
   133     PhiNode *mphi = result->as_Phi();
   134     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   135     const TypePtr *t = mphi->adr_type();
   136     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM) {
   137       // clone the Phi with our address type
   138       result = mphi->split_out_instance(t_adr, igvn);
   139     } else {
   140       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   141     }
   142   }
   143   return result;
   144 }
   146 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   147   uint alias_idx = phase->C->get_alias_index(tp);
   148   Node *mem = mmem;
   149 #ifdef ASSERT
   150   {
   151     // Check that current type is consistent with the alias index used during graph construction
   152     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   153     bool consistent =  adr_check == NULL || adr_check->empty() ||
   154                        phase->C->must_alias(adr_check, alias_idx );
   155     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   156     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   157            tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   158         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   159         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   160           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   161           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   162       // don't assert if it is dead code.
   163       consistent = true;
   164     }
   165     if( !consistent ) {
   166       st->print("alias_idx==%d, adr_check==", alias_idx);
   167       if( adr_check == NULL ) {
   168         st->print("NULL");
   169       } else {
   170         adr_check->dump();
   171       }
   172       st->cr();
   173       print_alias_types();
   174       assert(consistent, "adr_check must match alias idx");
   175     }
   176   }
   177 #endif
   178   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   179   // means an array I have not precisely typed yet.  Do not do any
   180   // alias stuff with it any time soon.
   181   const TypeOopPtr *tinst = tp->isa_oopptr();
   182   if( tp->base() != Type::AnyPtr &&
   183       !(tinst &&
   184         tinst->klass()->is_java_lang_Object() &&
   185         tinst->offset() == Type::OffsetBot) ) {
   186     // compress paths and change unreachable cycles to TOP
   187     // If not, we can update the input infinitely along a MergeMem cycle
   188     // Equivalent code in PhiNode::Ideal
   189     Node* m  = phase->transform(mmem);
   190     // If tranformed to a MergeMem, get the desired slice
   191     // Otherwise the returned node represents memory for every slice
   192     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   193     // Update input if it is progress over what we have now
   194   }
   195   return mem;
   196 }
   198 //--------------------------Ideal_common---------------------------------------
   199 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   200 // Unhook non-raw memories from complete (macro-expanded) initializations.
   201 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   202   // If our control input is a dead region, kill all below the region
   203   Node *ctl = in(MemNode::Control);
   204   if (ctl && remove_dead_region(phase, can_reshape))
   205     return this;
   207   // Ignore if memory is dead, or self-loop
   208   Node *mem = in(MemNode::Memory);
   209   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   210   assert( mem != this, "dead loop in MemNode::Ideal" );
   212   Node *address = in(MemNode::Address);
   213   const Type *t_adr = phase->type( address );
   214   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   216   // Avoid independent memory operations
   217   Node* old_mem = mem;
   219   // The code which unhooks non-raw memories from complete (macro-expanded)
   220   // initializations was removed. After macro-expansion all stores catched
   221   // by Initialize node became raw stores and there is no information
   222   // which memory slices they modify. So it is unsafe to move any memory
   223   // operation above these stores. Also in most cases hooked non-raw memories
   224   // were already unhooked by using information from detect_ptr_independence()
   225   // and find_previous_store().
   227   if (mem->is_MergeMem()) {
   228     MergeMemNode* mmem = mem->as_MergeMem();
   229     const TypePtr *tp = t_adr->is_ptr();
   231     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   232   }
   234   if (mem != old_mem) {
   235     set_req(MemNode::Memory, mem);
   236     return this;
   237   }
   239   // let the subclass continue analyzing...
   240   return NULL;
   241 }
   243 // Helper function for proving some simple control dominations.
   244 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   245 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   246 // is not a constant (dominated by the method's StartNode).
   247 // Used by MemNode::find_previous_store to prove that the
   248 // control input of a memory operation predates (dominates)
   249 // an allocation it wants to look past.
   250 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   251   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   252     return false; // Conservative answer for dead code
   254   // Check 'dom'.
   255   dom = dom->find_exact_control(dom);
   256   if (dom == NULL || dom->is_top())
   257     return false; // Conservative answer for dead code
   259   if (dom->is_Start() || dom->is_Root() || dom == sub)
   260     return true;
   262   // 'dom' dominates 'sub' if its control edge and control edges
   263   // of all its inputs dominate or equal to sub's control edge.
   265   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   266   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start(), "expecting only these nodes");
   268   // Get control edge of 'sub'.
   269   sub = sub->find_exact_control(sub->in(0));
   270   if (sub == NULL || sub->is_top())
   271     return false; // Conservative answer for dead code
   273   assert(sub->is_CFG(), "expecting control");
   275   if (sub == dom)
   276     return true;
   278   if (sub->is_Start() || sub->is_Root())
   279     return false;
   281   {
   282     // Check all control edges of 'dom'.
   284     ResourceMark rm;
   285     Arena* arena = Thread::current()->resource_area();
   286     Node_List nlist(arena);
   287     Unique_Node_List dom_list(arena);
   289     dom_list.push(dom);
   290     bool only_dominating_controls = false;
   292     for (uint next = 0; next < dom_list.size(); next++) {
   293       Node* n = dom_list.at(next);
   294       if (!n->is_CFG() && n->pinned()) {
   295         // Check only own control edge for pinned non-control nodes.
   296         n = n->find_exact_control(n->in(0));
   297         if (n == NULL || n->is_top())
   298           return false; // Conservative answer for dead code
   299         assert(n->is_CFG(), "expecting control");
   300       }
   301       if (n->is_Start() || n->is_Root()) {
   302         only_dominating_controls = true;
   303       } else if (n->is_CFG()) {
   304         if (n->dominates(sub, nlist))
   305           only_dominating_controls = true;
   306         else
   307           return false;
   308       } else {
   309         // First, own control edge.
   310         Node* m = n->find_exact_control(n->in(0));
   311         if (m == NULL)
   312           continue;
   313         if (m->is_top())
   314           return false; // Conservative answer for dead code
   315         dom_list.push(m);
   317         // Now, the rest of edges.
   318         uint cnt = n->req();
   319         for (uint i = 1; i < cnt; i++) {
   320           m = n->find_exact_control(n->in(i));
   321           if (m == NULL || m->is_top())
   322             continue;
   323           dom_list.push(m);
   324         }
   325       }
   326     }
   327     return only_dominating_controls;
   328   }
   329 }
   331 //---------------------detect_ptr_independence---------------------------------
   332 // Used by MemNode::find_previous_store to prove that two base
   333 // pointers are never equal.
   334 // The pointers are accompanied by their associated allocations,
   335 // if any, which have been previously discovered by the caller.
   336 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   337                                       Node* p2, AllocateNode* a2,
   338                                       PhaseTransform* phase) {
   339   // Attempt to prove that these two pointers cannot be aliased.
   340   // They may both manifestly be allocations, and they should differ.
   341   // Or, if they are not both allocations, they can be distinct constants.
   342   // Otherwise, one is an allocation and the other a pre-existing value.
   343   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   344     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   345   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   346     return (a1 != a2);
   347   } else if (a1 != NULL) {                  // one allocation a1
   348     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   349     return all_controls_dominate(p2, a1);
   350   } else { //(a2 != NULL)                   // one allocation a2
   351     return all_controls_dominate(p1, a2);
   352   }
   353   return false;
   354 }
   357 // The logic for reordering loads and stores uses four steps:
   358 // (a) Walk carefully past stores and initializations which we
   359 //     can prove are independent of this load.
   360 // (b) Observe that the next memory state makes an exact match
   361 //     with self (load or store), and locate the relevant store.
   362 // (c) Ensure that, if we were to wire self directly to the store,
   363 //     the optimizer would fold it up somehow.
   364 // (d) Do the rewiring, and return, depending on some other part of
   365 //     the optimizer to fold up the load.
   366 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   367 // specific to loads and stores, so they are handled by the callers.
   368 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   369 //
   370 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   371   Node*         ctrl   = in(MemNode::Control);
   372   Node*         adr    = in(MemNode::Address);
   373   intptr_t      offset = 0;
   374   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   375   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   377   if (offset == Type::OffsetBot)
   378     return NULL;            // cannot unalias unless there are precise offsets
   380   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   382   intptr_t size_in_bytes = memory_size();
   384   Node* mem = in(MemNode::Memory);   // start searching here...
   386   int cnt = 50;             // Cycle limiter
   387   for (;;) {                // While we can dance past unrelated stores...
   388     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   390     if (mem->is_Store()) {
   391       Node* st_adr = mem->in(MemNode::Address);
   392       intptr_t st_offset = 0;
   393       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   394       if (st_base == NULL)
   395         break;              // inscrutable pointer
   396       if (st_offset != offset && st_offset != Type::OffsetBot) {
   397         const int MAX_STORE = BytesPerLong;
   398         if (st_offset >= offset + size_in_bytes ||
   399             st_offset <= offset - MAX_STORE ||
   400             st_offset <= offset - mem->as_Store()->memory_size()) {
   401           // Success:  The offsets are provably independent.
   402           // (You may ask, why not just test st_offset != offset and be done?
   403           // The answer is that stores of different sizes can co-exist
   404           // in the same sequence of RawMem effects.  We sometimes initialize
   405           // a whole 'tile' of array elements with a single jint or jlong.)
   406           mem = mem->in(MemNode::Memory);
   407           continue;           // (a) advance through independent store memory
   408         }
   409       }
   410       if (st_base != base &&
   411           detect_ptr_independence(base, alloc,
   412                                   st_base,
   413                                   AllocateNode::Ideal_allocation(st_base, phase),
   414                                   phase)) {
   415         // Success:  The bases are provably independent.
   416         mem = mem->in(MemNode::Memory);
   417         continue;           // (a) advance through independent store memory
   418       }
   420       // (b) At this point, if the bases or offsets do not agree, we lose,
   421       // since we have not managed to prove 'this' and 'mem' independent.
   422       if (st_base == base && st_offset == offset) {
   423         return mem;         // let caller handle steps (c), (d)
   424       }
   426     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   427       InitializeNode* st_init = mem->in(0)->as_Initialize();
   428       AllocateNode*  st_alloc = st_init->allocation();
   429       if (st_alloc == NULL)
   430         break;              // something degenerated
   431       bool known_identical = false;
   432       bool known_independent = false;
   433       if (alloc == st_alloc)
   434         known_identical = true;
   435       else if (alloc != NULL)
   436         known_independent = true;
   437       else if (all_controls_dominate(this, st_alloc))
   438         known_independent = true;
   440       if (known_independent) {
   441         // The bases are provably independent: Either they are
   442         // manifestly distinct allocations, or else the control
   443         // of this load dominates the store's allocation.
   444         int alias_idx = phase->C->get_alias_index(adr_type());
   445         if (alias_idx == Compile::AliasIdxRaw) {
   446           mem = st_alloc->in(TypeFunc::Memory);
   447         } else {
   448           mem = st_init->memory(alias_idx);
   449         }
   450         continue;           // (a) advance through independent store memory
   451       }
   453       // (b) at this point, if we are not looking at a store initializing
   454       // the same allocation we are loading from, we lose.
   455       if (known_identical) {
   456         // From caller, can_see_stored_value will consult find_captured_store.
   457         return mem;         // let caller handle steps (c), (d)
   458       }
   460     } else if (addr_t != NULL && addr_t->is_instance_field()) {
   461       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   462       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   463         CallNode *call = mem->in(0)->as_Call();
   464         if (!call->may_modify(addr_t, phase)) {
   465           mem = call->in(TypeFunc::Memory);
   466           continue;         // (a) advance through independent call memory
   467         }
   468       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   469         mem = mem->in(0)->in(TypeFunc::Memory);
   470         continue;           // (a) advance through independent MemBar memory
   471       } else if (mem->is_MergeMem()) {
   472         int alias_idx = phase->C->get_alias_index(adr_type());
   473         mem = mem->as_MergeMem()->memory_at(alias_idx);
   474         continue;           // (a) advance through independent MergeMem memory
   475       }
   476     }
   478     // Unless there is an explicit 'continue', we must bail out here,
   479     // because 'mem' is an inscrutable memory state (e.g., a call).
   480     break;
   481   }
   483   return NULL;              // bail out
   484 }
   486 //----------------------calculate_adr_type-------------------------------------
   487 // Helper function.  Notices when the given type of address hits top or bottom.
   488 // Also, asserts a cross-check of the type against the expected address type.
   489 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   490   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   491   #ifdef PRODUCT
   492   cross_check = NULL;
   493   #else
   494   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   495   #endif
   496   const TypePtr* tp = t->isa_ptr();
   497   if (tp == NULL) {
   498     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   499     return TypePtr::BOTTOM;           // touches lots of memory
   500   } else {
   501     #ifdef ASSERT
   502     // %%%% [phh] We don't check the alias index if cross_check is
   503     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   504     if (cross_check != NULL &&
   505         cross_check != TypePtr::BOTTOM &&
   506         cross_check != TypeRawPtr::BOTTOM) {
   507       // Recheck the alias index, to see if it has changed (due to a bug).
   508       Compile* C = Compile::current();
   509       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   510              "must stay in the original alias category");
   511       // The type of the address must be contained in the adr_type,
   512       // disregarding "null"-ness.
   513       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   514       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   515       assert(cross_check->meet(tp_notnull) == cross_check,
   516              "real address must not escape from expected memory type");
   517     }
   518     #endif
   519     return tp;
   520   }
   521 }
   523 //------------------------adr_phi_is_loop_invariant----------------------------
   524 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   525 // loop is loop invariant. Make a quick traversal of Phi and associated
   526 // CastPP nodes, looking to see if they are a closed group within the loop.
   527 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   528   // The idea is that the phi-nest must boil down to only CastPP nodes
   529   // with the same data. This implies that any path into the loop already
   530   // includes such a CastPP, and so the original cast, whatever its input,
   531   // must be covered by an equivalent cast, with an earlier control input.
   532   ResourceMark rm;
   534   // The loop entry input of the phi should be the unique dominating
   535   // node for every Phi/CastPP in the loop.
   536   Unique_Node_List closure;
   537   closure.push(adr_phi->in(LoopNode::EntryControl));
   539   // Add the phi node and the cast to the worklist.
   540   Unique_Node_List worklist;
   541   worklist.push(adr_phi);
   542   if( cast != NULL ){
   543     if( !cast->is_ConstraintCast() ) return false;
   544     worklist.push(cast);
   545   }
   547   // Begin recursive walk of phi nodes.
   548   while( worklist.size() ){
   549     // Take a node off the worklist
   550     Node *n = worklist.pop();
   551     if( !closure.member(n) ){
   552       // Add it to the closure.
   553       closure.push(n);
   554       // Make a sanity check to ensure we don't waste too much time here.
   555       if( closure.size() > 20) return false;
   556       // This node is OK if:
   557       //  - it is a cast of an identical value
   558       //  - or it is a phi node (then we add its inputs to the worklist)
   559       // Otherwise, the node is not OK, and we presume the cast is not invariant
   560       if( n->is_ConstraintCast() ){
   561         worklist.push(n->in(1));
   562       } else if( n->is_Phi() ) {
   563         for( uint i = 1; i < n->req(); i++ ) {
   564           worklist.push(n->in(i));
   565         }
   566       } else {
   567         return false;
   568       }
   569     }
   570   }
   572   // Quit when the worklist is empty, and we've found no offending nodes.
   573   return true;
   574 }
   576 //------------------------------Ideal_DU_postCCP-------------------------------
   577 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   578 // going away in this pass and we need to make this memory op depend on the
   579 // gating null check.
   581 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   582 // some sense; we get to keep around the knowledge that an oop is not-null
   583 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   584 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   585 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   586 // some of the more trivial cases in the optimizer.  Removing more useless
   587 // Phi's started allowing Loads to illegally float above null checks.  I gave
   588 // up on this approach.  CNC 10/20/2000
   589 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   590   Node *ctr = in(MemNode::Control);
   591   Node *mem = in(MemNode::Memory);
   592   Node *adr = in(MemNode::Address);
   593   Node *skipped_cast = NULL;
   594   // Need a null check?  Regular static accesses do not because they are
   595   // from constant addresses.  Array ops are gated by the range check (which
   596   // always includes a NULL check).  Just check field ops.
   597   if( !ctr ) {
   598     // Scan upwards for the highest location we can place this memory op.
   599     while( true ) {
   600       switch( adr->Opcode() ) {
   602       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   603         adr = adr->in(AddPNode::Base);
   604         continue;
   606       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   607         adr = adr->in(1);
   608         continue;
   610       case Op_CastPP:
   611         // If the CastPP is useless, just peek on through it.
   612         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   613           // Remember the cast that we've peeked though. If we peek
   614           // through more than one, then we end up remembering the highest
   615           // one, that is, if in a loop, the one closest to the top.
   616           skipped_cast = adr;
   617           adr = adr->in(1);
   618           continue;
   619         }
   620         // CastPP is going away in this pass!  We need this memory op to be
   621         // control-dependent on the test that is guarding the CastPP.
   622         ccp->hash_delete(this);
   623         set_req(MemNode::Control, adr->in(0));
   624         ccp->hash_insert(this);
   625         return this;
   627       case Op_Phi:
   628         // Attempt to float above a Phi to some dominating point.
   629         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   630           // If we've already peeked through a Cast (which could have set the
   631           // control), we can't float above a Phi, because the skipped Cast
   632           // may not be loop invariant.
   633           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   634             adr = adr->in(1);
   635             continue;
   636           }
   637         }
   639         // Intentional fallthrough!
   641         // No obvious dominating point.  The mem op is pinned below the Phi
   642         // by the Phi itself.  If the Phi goes away (no true value is merged)
   643         // then the mem op can float, but not indefinitely.  It must be pinned
   644         // behind the controls leading to the Phi.
   645       case Op_CheckCastPP:
   646         // These usually stick around to change address type, however a
   647         // useless one can be elided and we still need to pick up a control edge
   648         if (adr->in(0) == NULL) {
   649           // This CheckCastPP node has NO control and is likely useless. But we
   650           // need check further up the ancestor chain for a control input to keep
   651           // the node in place. 4959717.
   652           skipped_cast = adr;
   653           adr = adr->in(1);
   654           continue;
   655         }
   656         ccp->hash_delete(this);
   657         set_req(MemNode::Control, adr->in(0));
   658         ccp->hash_insert(this);
   659         return this;
   661         // List of "safe" opcodes; those that implicitly block the memory
   662         // op below any null check.
   663       case Op_CastX2P:          // no null checks on native pointers
   664       case Op_Parm:             // 'this' pointer is not null
   665       case Op_LoadP:            // Loading from within a klass
   666       case Op_LoadN:            // Loading from within a klass
   667       case Op_LoadKlass:        // Loading from within a klass
   668       case Op_ConP:             // Loading from a klass
   669       case Op_CreateEx:         // Sucking up the guts of an exception oop
   670       case Op_Con:              // Reading from TLS
   671       case Op_CMoveP:           // CMoveP is pinned
   672         break;                  // No progress
   674       case Op_Proj:             // Direct call to an allocation routine
   675       case Op_SCMemProj:        // Memory state from store conditional ops
   676 #ifdef ASSERT
   677         {
   678           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   679           const Node* call = adr->in(0);
   680           if (call->is_CallStaticJava()) {
   681             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   682             const TypeTuple *r = call_java->tf()->range();
   683             assert(r->cnt() > TypeFunc::Parms, "must return value");
   684             const Type* ret_type = r->field_at(TypeFunc::Parms);
   685             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   686             // We further presume that this is one of
   687             // new_instance_Java, new_array_Java, or
   688             // the like, but do not assert for this.
   689           } else if (call->is_Allocate()) {
   690             // similar case to new_instance_Java, etc.
   691           } else if (!call->is_CallLeaf()) {
   692             // Projections from fetch_oop (OSR) are allowed as well.
   693             ShouldNotReachHere();
   694           }
   695         }
   696 #endif
   697         break;
   698       default:
   699         ShouldNotReachHere();
   700       }
   701       break;
   702     }
   703   }
   705   return  NULL;               // No progress
   706 }
   709 //=============================================================================
   710 uint LoadNode::size_of() const { return sizeof(*this); }
   711 uint LoadNode::cmp( const Node &n ) const
   712 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   713 const Type *LoadNode::bottom_type() const { return _type; }
   714 uint LoadNode::ideal_reg() const {
   715   return Matcher::base2reg[_type->base()];
   716 }
   718 #ifndef PRODUCT
   719 void LoadNode::dump_spec(outputStream *st) const {
   720   MemNode::dump_spec(st);
   721   if( !Verbose && !WizardMode ) {
   722     // standard dump does this in Verbose and WizardMode
   723     st->print(" #"); _type->dump_on(st);
   724   }
   725 }
   726 #endif
   729 //----------------------------LoadNode::make-----------------------------------
   730 // Polymorphic factory method:
   731 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   732   Compile* C = gvn.C;
   734   // sanity check the alias category against the created node type
   735   assert(!(adr_type->isa_oopptr() &&
   736            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   737          "use LoadKlassNode instead");
   738   assert(!(adr_type->isa_aryptr() &&
   739            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   740          "use LoadRangeNode instead");
   741   switch (bt) {
   742   case T_BOOLEAN:
   743   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   744   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   745   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   746   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   747   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   748   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   749   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   750   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   751   case T_OBJECT:
   752 #ifdef _LP64
   753     if (adr->bottom_type()->is_narrow()) {
   754       const TypeNarrowOop* narrowtype;
   755       if (rt->isa_narrowoop()) {
   756         narrowtype = rt->is_narrowoop();
   757       } else {
   758         narrowtype = rt->is_oopptr()->make_narrowoop();
   759       }
   760       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, narrowtype));
   762       return DecodeNNode::decode(&gvn, load);
   763     } else
   764 #endif
   765       {
   766         assert(!adr->bottom_type()->is_narrow(), "should have got back a narrow oop");
   767         return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   768       }
   769   }
   770   ShouldNotReachHere();
   771   return (LoadNode*)NULL;
   772 }
   774 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   775   bool require_atomic = true;
   776   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   777 }
   782 //------------------------------hash-------------------------------------------
   783 uint LoadNode::hash() const {
   784   // unroll addition of interesting fields
   785   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   786 }
   788 //---------------------------can_see_stored_value------------------------------
   789 // This routine exists to make sure this set of tests is done the same
   790 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   791 // will change the graph shape in a way which makes memory alive twice at the
   792 // same time (uses the Oracle model of aliasing), then some
   793 // LoadXNode::Identity will fold things back to the equivalence-class model
   794 // of aliasing.
   795 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   796   Node* ld_adr = in(MemNode::Address);
   798   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   799   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   800   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   801       atp->field() != NULL && !atp->field()->is_volatile()) {
   802     uint alias_idx = atp->index();
   803     bool final = atp->field()->is_final();
   804     Node* result = NULL;
   805     Node* current = st;
   806     // Skip through chains of MemBarNodes checking the MergeMems for
   807     // new states for the slice of this load.  Stop once any other
   808     // kind of node is encountered.  Loads from final memory can skip
   809     // through any kind of MemBar but normal loads shouldn't skip
   810     // through MemBarAcquire since the could allow them to move out of
   811     // a synchronized region.
   812     while (current->is_Proj()) {
   813       int opc = current->in(0)->Opcode();
   814       if ((final && opc == Op_MemBarAcquire) ||
   815           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   816         Node* mem = current->in(0)->in(TypeFunc::Memory);
   817         if (mem->is_MergeMem()) {
   818           MergeMemNode* merge = mem->as_MergeMem();
   819           Node* new_st = merge->memory_at(alias_idx);
   820           if (new_st == merge->base_memory()) {
   821             // Keep searching
   822             current = merge->base_memory();
   823             continue;
   824           }
   825           // Save the new memory state for the slice and fall through
   826           // to exit.
   827           result = new_st;
   828         }
   829       }
   830       break;
   831     }
   832     if (result != NULL) {
   833       st = result;
   834     }
   835   }
   838   // Loop around twice in the case Load -> Initialize -> Store.
   839   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   840   for (int trip = 0; trip <= 1; trip++) {
   842     if (st->is_Store()) {
   843       Node* st_adr = st->in(MemNode::Address);
   844       if (!phase->eqv(st_adr, ld_adr)) {
   845         // Try harder before giving up...  Match raw and non-raw pointers.
   846         intptr_t st_off = 0;
   847         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   848         if (alloc == NULL)       return NULL;
   849         intptr_t ld_off = 0;
   850         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   851         if (alloc != allo2)      return NULL;
   852         if (ld_off != st_off)    return NULL;
   853         // At this point we have proven something like this setup:
   854         //  A = Allocate(...)
   855         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   856         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   857         // (Actually, we haven't yet proven the Q's are the same.)
   858         // In other words, we are loading from a casted version of
   859         // the same pointer-and-offset that we stored to.
   860         // Thus, we are able to replace L by V.
   861       }
   862       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   863       if (store_Opcode() != st->Opcode())
   864         return NULL;
   865       return st->in(MemNode::ValueIn);
   866     }
   868     intptr_t offset = 0;  // scratch
   870     // A load from a freshly-created object always returns zero.
   871     // (This can happen after LoadNode::Ideal resets the load's memory input
   872     // to find_captured_store, which returned InitializeNode::zero_memory.)
   873     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   874         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   875         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   876       // return a zero value for the load's basic type
   877       // (This is one of the few places where a generic PhaseTransform
   878       // can create new nodes.  Think of it as lazily manifesting
   879       // virtually pre-existing constants.)
   880       return phase->zerocon(memory_type());
   881     }
   883     // A load from an initialization barrier can match a captured store.
   884     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   885       InitializeNode* init = st->in(0)->as_Initialize();
   886       AllocateNode* alloc = init->allocation();
   887       if (alloc != NULL &&
   888           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   889         // examine a captured store value
   890         st = init->find_captured_store(offset, memory_size(), phase);
   891         if (st != NULL)
   892           continue;             // take one more trip around
   893       }
   894     }
   896     break;
   897   }
   899   return NULL;
   900 }
   902 //----------------------is_instance_field_load_with_local_phi------------------
   903 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   904   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   905       in(MemNode::Address)->is_AddP() ) {
   906     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   907     // Only instances.
   908     if( t_oop != NULL && t_oop->is_instance_field() &&
   909         t_oop->offset() != Type::OffsetBot &&
   910         t_oop->offset() != Type::OffsetTop) {
   911       return true;
   912     }
   913   }
   914   return false;
   915 }
   917 //------------------------------Identity---------------------------------------
   918 // Loads are identity if previous store is to same address
   919 Node *LoadNode::Identity( PhaseTransform *phase ) {
   920   // If the previous store-maker is the right kind of Store, and the store is
   921   // to the same address, then we are equal to the value stored.
   922   Node* mem = in(MemNode::Memory);
   923   Node* value = can_see_stored_value(mem, phase);
   924   if( value ) {
   925     // byte, short & char stores truncate naturally.
   926     // A load has to load the truncated value which requires
   927     // some sort of masking operation and that requires an
   928     // Ideal call instead of an Identity call.
   929     if (memory_size() < BytesPerInt) {
   930       // If the input to the store does not fit with the load's result type,
   931       // it must be truncated via an Ideal call.
   932       if (!phase->type(value)->higher_equal(phase->type(this)))
   933         return this;
   934     }
   935     // (This works even when value is a Con, but LoadNode::Value
   936     // usually runs first, producing the singleton type of the Con.)
   937     return value;
   938   }
   940   // Search for an existing data phi which was generated before for the same
   941   // instance's field to avoid infinite genertion of phis in a loop.
   942   Node *region = mem->in(0);
   943   if (is_instance_field_load_with_local_phi(region)) {
   944     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   945     int this_index  = phase->C->get_alias_index(addr_t);
   946     int this_offset = addr_t->offset();
   947     int this_id    = addr_t->is_oopptr()->instance_id();
   948     const Type* this_type = bottom_type();
   949     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   950       Node* phi = region->fast_out(i);
   951       if (phi->is_Phi() && phi != mem &&
   952           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   953         return phi;
   954       }
   955     }
   956   }
   958   return this;
   959 }
   962 // Returns true if the AliasType refers to the field that holds the
   963 // cached box array.  Currently only handles the IntegerCache case.
   964 static bool is_autobox_cache(Compile::AliasType* atp) {
   965   if (atp != NULL && atp->field() != NULL) {
   966     ciField* field = atp->field();
   967     ciSymbol* klass = field->holder()->name();
   968     if (field->name() == ciSymbol::cache_field_name() &&
   969         field->holder()->uses_default_loader() &&
   970         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   971       return true;
   972     }
   973   }
   974   return false;
   975 }
   977 // Fetch the base value in the autobox array
   978 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   979   if (atp != NULL && atp->field() != NULL) {
   980     ciField* field = atp->field();
   981     ciSymbol* klass = field->holder()->name();
   982     if (field->name() == ciSymbol::cache_field_name() &&
   983         field->holder()->uses_default_loader() &&
   984         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   985       assert(field->is_constant(), "what?");
   986       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   987       // Fetch the box object at the base of the array and get its value
   988       ciInstance* box = array->obj_at(0)->as_instance();
   989       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   990       if (ik->nof_nonstatic_fields() == 1) {
   991         // This should be true nonstatic_field_at requires calling
   992         // nof_nonstatic_fields so check it anyway
   993         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
   994         cache_offset = c.as_int();
   995       }
   996       return true;
   997     }
   998   }
   999   return false;
  1002 // Returns true if the AliasType refers to the value field of an
  1003 // autobox object.  Currently only handles Integer.
  1004 static bool is_autobox_object(Compile::AliasType* atp) {
  1005   if (atp != NULL && atp->field() != NULL) {
  1006     ciField* field = atp->field();
  1007     ciSymbol* klass = field->holder()->name();
  1008     if (field->name() == ciSymbol::value_name() &&
  1009         field->holder()->uses_default_loader() &&
  1010         klass == ciSymbol::java_lang_Integer()) {
  1011       return true;
  1014   return false;
  1018 // We're loading from an object which has autobox behaviour.
  1019 // If this object is result of a valueOf call we'll have a phi
  1020 // merging a newly allocated object and a load from the cache.
  1021 // We want to replace this load with the original incoming
  1022 // argument to the valueOf call.
  1023 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1024   Node* base = in(Address)->in(AddPNode::Base);
  1025   if (base->is_Phi() && base->req() == 3) {
  1026     AllocateNode* allocation = NULL;
  1027     int allocation_index = -1;
  1028     int load_index = -1;
  1029     for (uint i = 1; i < base->req(); i++) {
  1030       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1031       if (allocation != NULL) {
  1032         allocation_index = i;
  1033         load_index = 3 - allocation_index;
  1034         break;
  1037     LoadNode* load = NULL;
  1038     if (allocation != NULL && base->in(load_index)->is_Load()) {
  1039       load = base->in(load_index)->as_Load();
  1041     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1042       // Push the loads from the phi that comes from valueOf up
  1043       // through it to allow elimination of the loads and the recovery
  1044       // of the original value.
  1045       Node* mem_phi = in(Memory);
  1046       Node* offset = in(Address)->in(AddPNode::Offset);
  1048       Node* in1 = clone();
  1049       Node* in1_addr = in1->in(Address)->clone();
  1050       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1051       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1052       in1_addr->set_req(AddPNode::Offset, offset);
  1053       in1->set_req(0, base->in(allocation_index));
  1054       in1->set_req(Address, in1_addr);
  1055       in1->set_req(Memory, mem_phi->in(allocation_index));
  1057       Node* in2 = clone();
  1058       Node* in2_addr = in2->in(Address)->clone();
  1059       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1060       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1061       in2_addr->set_req(AddPNode::Offset, offset);
  1062       in2->set_req(0, base->in(load_index));
  1063       in2->set_req(Address, in2_addr);
  1064       in2->set_req(Memory, mem_phi->in(load_index));
  1066       in1_addr = phase->transform(in1_addr);
  1067       in1 =      phase->transform(in1);
  1068       in2_addr = phase->transform(in2_addr);
  1069       in2 =      phase->transform(in2);
  1071       PhiNode* result = PhiNode::make_blank(base->in(0), this);
  1072       result->set_req(allocation_index, in1);
  1073       result->set_req(load_index, in2);
  1074       return result;
  1076   } else if (base->is_Load()) {
  1077     // Eliminate the load of Integer.value for integers from the cache
  1078     // array by deriving the value from the index into the array.
  1079     // Capture the offset of the load and then reverse the computation.
  1080     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1081     if (load_base != NULL) {
  1082       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1083       intptr_t cache_offset;
  1084       int shift = -1;
  1085       Node* cache = NULL;
  1086       if (is_autobox_cache(atp)) {
  1087         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1088         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1090       if (cache != NULL && base->in(Address)->is_AddP()) {
  1091         Node* elements[4];
  1092         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1093         int cache_low;
  1094         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1095           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1096           // Add up all the offsets making of the address of the load
  1097           Node* result = elements[0];
  1098           for (int i = 1; i < count; i++) {
  1099             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1101           // Remove the constant offset from the address and then
  1102           // remove the scaling of the offset to recover the original index.
  1103           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1104           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1105             // Peel the shift off directly but wrap it in a dummy node
  1106             // since Ideal can't return existing nodes
  1107             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1108           } else {
  1109             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1111 #ifdef _LP64
  1112           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1113 #endif
  1114           return result;
  1119   return NULL;
  1123 //------------------------------Ideal------------------------------------------
  1124 // If the load is from Field memory and the pointer is non-null, we can
  1125 // zero out the control input.
  1126 // If the offset is constant and the base is an object allocation,
  1127 // try to hook me up to the exact initializing store.
  1128 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1129   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1130   if (p)  return (p == NodeSentinel) ? NULL : p;
  1132   Node* ctrl    = in(MemNode::Control);
  1133   Node* address = in(MemNode::Address);
  1135   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1136   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1137   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1138       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1139     ctrl = ctrl->in(0);
  1140     set_req(MemNode::Control,ctrl);
  1143   // Check for useless control edge in some common special cases
  1144   if (in(MemNode::Control) != NULL) {
  1145     intptr_t ignore = 0;
  1146     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1147     if (base != NULL
  1148         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1149         && all_controls_dominate(base, phase->C->start())) {
  1150       // A method-invariant, non-null address (constant or 'this' argument).
  1151       set_req(MemNode::Control, NULL);
  1155   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1156     Node* base = in(Address)->in(AddPNode::Base);
  1157     if (base != NULL) {
  1158       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1159       if (is_autobox_object(atp)) {
  1160         Node* result = eliminate_autobox(phase);
  1161         if (result != NULL) return result;
  1166   Node* mem = in(MemNode::Memory);
  1167   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1169   if (addr_t != NULL) {
  1170     // try to optimize our memory input
  1171     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1172     if (opt_mem != mem) {
  1173       set_req(MemNode::Memory, opt_mem);
  1174       return this;
  1176     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1177     if (can_reshape && opt_mem->is_Phi() &&
  1178         (t_oop != NULL) && t_oop->is_instance_field()) {
  1179       assert(t_oop->offset() != Type::OffsetBot && t_oop->offset() != Type::OffsetTop, "");
  1180       Node *region = opt_mem->in(0);
  1181       uint cnt = opt_mem->req();
  1182       for( uint i = 1; i < cnt; i++ ) {
  1183         Node *in = opt_mem->in(i);
  1184         if( in == NULL ) {
  1185           region = NULL; // Wait stable graph
  1186           break;
  1189       if (region != NULL) {
  1190         // Check for loop invariant.
  1191         if (cnt == 3) {
  1192           for( uint i = 1; i < cnt; i++ ) {
  1193             Node *in = opt_mem->in(i);
  1194             Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1195             if (m == opt_mem) {
  1196               set_req(MemNode::Memory, opt_mem->in(cnt - i)); // Skip this phi.
  1197               return this;
  1201         // Split through Phi (see original code in loopopts.cpp).
  1202         assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1204         // Do nothing here if Identity will find a value
  1205         // (to avoid infinite chain of value phis generation).
  1206         if ( !phase->eqv(this, this->Identity(phase)) )
  1207           return NULL;
  1209         const Type* this_type = this->bottom_type();
  1210         int this_index  = phase->C->get_alias_index(addr_t);
  1211         int this_offset = addr_t->offset();
  1212         int this_iid    = addr_t->is_oopptr()->instance_id();
  1213         int wins = 0;
  1214         PhaseIterGVN *igvn = phase->is_IterGVN();
  1215         Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1216         for( uint i = 1; i < region->req(); i++ ) {
  1217           Node *x;
  1218           Node* the_clone = NULL;
  1219           if( region->in(i) == phase->C->top() ) {
  1220             x = phase->C->top();      // Dead path?  Use a dead data op
  1221           } else {
  1222             x = this->clone();        // Else clone up the data op
  1223             the_clone = x;            // Remember for possible deletion.
  1224             // Alter data node to use pre-phi inputs
  1225             if( this->in(0) == region ) {
  1226               x->set_req( 0, region->in(i) );
  1227             } else {
  1228               x->set_req( 0, NULL );
  1230             for( uint j = 1; j < this->req(); j++ ) {
  1231               Node *in = this->in(j);
  1232               if( in->is_Phi() && in->in(0) == region )
  1233                 x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1236           // Check for a 'win' on some paths
  1237           const Type *t = x->Value(igvn);
  1239           bool singleton = t->singleton();
  1241           // See comments in PhaseIdealLoop::split_thru_phi().
  1242           if( singleton && t == Type::TOP ) {
  1243             singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1246           if( singleton ) {
  1247             wins++;
  1248             x = igvn->makecon(t);
  1249           } else {
  1250             // We now call Identity to try to simplify the cloned node.
  1251             // Note that some Identity methods call phase->type(this).
  1252             // Make sure that the type array is big enough for
  1253             // our new node, even though we may throw the node away.
  1254             // (This tweaking with igvn only works because x is a new node.)
  1255             igvn->set_type(x, t);
  1256             Node *y = x->Identity(igvn);
  1257             if( y != x ) {
  1258               wins++;
  1259               x = y;
  1260             } else {
  1261               y = igvn->hash_find(x);
  1262               if( y ) {
  1263                 wins++;
  1264                 x = y;
  1265               } else {
  1266                 // Else x is a new node we are keeping
  1267                 // We do not need register_new_node_with_optimizer
  1268                 // because set_type has already been called.
  1269                 igvn->_worklist.push(x);
  1273           if (x != the_clone && the_clone != NULL)
  1274             igvn->remove_dead_node(the_clone);
  1275           phi->set_req(i, x);
  1277         if( wins > 0 ) {
  1278           // Record Phi
  1279           igvn->register_new_node_with_optimizer(phi);
  1280           return phi;
  1281         } else {
  1282           igvn->remove_dead_node(phi);
  1288   // Check for prior store with a different base or offset; make Load
  1289   // independent.  Skip through any number of them.  Bail out if the stores
  1290   // are in an endless dead cycle and report no progress.  This is a key
  1291   // transform for Reflection.  However, if after skipping through the Stores
  1292   // we can't then fold up against a prior store do NOT do the transform as
  1293   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1294   // array memory alive twice: once for the hoisted Load and again after the
  1295   // bypassed Store.  This situation only works if EVERYBODY who does
  1296   // anti-dependence work knows how to bypass.  I.e. we need all
  1297   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1298   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1299   // fold up, do so.
  1300   Node* prev_mem = find_previous_store(phase);
  1301   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1302   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1303     // (c) See if we can fold up on the spot, but don't fold up here.
  1304     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1305     // just return a prior value, which is done by Identity calls.
  1306     if (can_see_stored_value(prev_mem, phase)) {
  1307       // Make ready for step (d):
  1308       set_req(MemNode::Memory, prev_mem);
  1309       return this;
  1313   return NULL;                  // No further progress
  1316 // Helper to recognize certain Klass fields which are invariant across
  1317 // some group of array types (e.g., int[] or all T[] where T < Object).
  1318 const Type*
  1319 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1320                                  ciKlass* klass) const {
  1321   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1322     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1323     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1324     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1325     return TypeInt::make(klass->modifier_flags());
  1327   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1328     // The field is Klass::_access_flags.  Return its (constant) value.
  1329     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1330     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1331     return TypeInt::make(klass->access_flags());
  1333   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1334     // The field is Klass::_layout_helper.  Return its constant value if known.
  1335     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1336     return TypeInt::make(klass->layout_helper());
  1339   // No match.
  1340   return NULL;
  1343 //------------------------------Value-----------------------------------------
  1344 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1345   // Either input is TOP ==> the result is TOP
  1346   Node* mem = in(MemNode::Memory);
  1347   const Type *t1 = phase->type(mem);
  1348   if (t1 == Type::TOP)  return Type::TOP;
  1349   Node* adr = in(MemNode::Address);
  1350   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1351   if (tp == NULL || tp->empty())  return Type::TOP;
  1352   int off = tp->offset();
  1353   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1355   // Try to guess loaded type from pointer type
  1356   if (tp->base() == Type::AryPtr) {
  1357     const Type *t = tp->is_aryptr()->elem();
  1358     // Don't do this for integer types. There is only potential profit if
  1359     // the element type t is lower than _type; that is, for int types, if _type is
  1360     // more restrictive than t.  This only happens here if one is short and the other
  1361     // char (both 16 bits), and in those cases we've made an intentional decision
  1362     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1363     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1364     //
  1365     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1366     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1367     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1368     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1369     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1370     // In fact, that could have been the original type of p1, and p1 could have
  1371     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1372     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1373     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1374         && Opcode() != Op_LoadKlass) {
  1375       // t might actually be lower than _type, if _type is a unique
  1376       // concrete subclass of abstract class t.
  1377       // Make sure the reference is not into the header, by comparing
  1378       // the offset against the offset of the start of the array's data.
  1379       // Different array types begin at slightly different offsets (12 vs. 16).
  1380       // We choose T_BYTE as an example base type that is least restrictive
  1381       // as to alignment, which will therefore produce the smallest
  1382       // possible base offset.
  1383       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1384       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1385         const Type* jt = t->join(_type);
  1386         // In any case, do not allow the join, per se, to empty out the type.
  1387         if (jt->empty() && !t->empty()) {
  1388           // This can happen if a interface-typed array narrows to a class type.
  1389           jt = _type;
  1392         if (EliminateAutoBox) {
  1393           // The pointers in the autobox arrays are always non-null
  1394           Node* base = in(Address)->in(AddPNode::Base);
  1395           if (base != NULL) {
  1396             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1397             if (is_autobox_cache(atp)) {
  1398               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1402         return jt;
  1405   } else if (tp->base() == Type::InstPtr) {
  1406     assert( off != Type::OffsetBot ||
  1407             // arrays can be cast to Objects
  1408             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1409             // unsafe field access may not have a constant offset
  1410             phase->C->has_unsafe_access(),
  1411             "Field accesses must be precise" );
  1412     // For oop loads, we expect the _type to be precise
  1413   } else if (tp->base() == Type::KlassPtr) {
  1414     assert( off != Type::OffsetBot ||
  1415             // arrays can be cast to Objects
  1416             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1417             // also allow array-loading from the primary supertype
  1418             // array during subtype checks
  1419             Opcode() == Op_LoadKlass,
  1420             "Field accesses must be precise" );
  1421     // For klass/static loads, we expect the _type to be precise
  1424   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1425   if (tkls != NULL && !StressReflectiveCode) {
  1426     ciKlass* klass = tkls->klass();
  1427     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1428       // We are loading a field from a Klass metaobject whose identity
  1429       // is known at compile time (the type is "exact" or "precise").
  1430       // Check for fields we know are maintained as constants by the VM.
  1431       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1432         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1433         // (Folds up type checking code.)
  1434         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1435         return TypeInt::make(klass->super_check_offset());
  1437       // Compute index into primary_supers array
  1438       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1439       // Check for overflowing; use unsigned compare to handle the negative case.
  1440       if( depth < ciKlass::primary_super_limit() ) {
  1441         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1442         // (Folds up type checking code.)
  1443         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1444         ciKlass *ss = klass->super_of_depth(depth);
  1445         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1447       const Type* aift = load_array_final_field(tkls, klass);
  1448       if (aift != NULL)  return aift;
  1449       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1450           && klass->is_array_klass()) {
  1451         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1452         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1453         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1454         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1456       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1457         // The field is Klass::_java_mirror.  Return its (constant) value.
  1458         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1459         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1460         return TypeInstPtr::make(klass->java_mirror());
  1464     // We can still check if we are loading from the primary_supers array at a
  1465     // shallow enough depth.  Even though the klass is not exact, entries less
  1466     // than or equal to its super depth are correct.
  1467     if (klass->is_loaded() ) {
  1468       ciType *inner = klass->klass();
  1469       while( inner->is_obj_array_klass() )
  1470         inner = inner->as_obj_array_klass()->base_element_type();
  1471       if( inner->is_instance_klass() &&
  1472           !inner->as_instance_klass()->flags().is_interface() ) {
  1473         // Compute index into primary_supers array
  1474         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1475         // Check for overflowing; use unsigned compare to handle the negative case.
  1476         if( depth < ciKlass::primary_super_limit() &&
  1477             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1478           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1479           // (Folds up type checking code.)
  1480           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1481           ciKlass *ss = klass->super_of_depth(depth);
  1482           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1487     // If the type is enough to determine that the thing is not an array,
  1488     // we can give the layout_helper a positive interval type.
  1489     // This will help short-circuit some reflective code.
  1490     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1491         && !klass->is_array_klass() // not directly typed as an array
  1492         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1493         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1494         ) {
  1495       // Note:  When interfaces are reliable, we can narrow the interface
  1496       // test to (klass != Serializable && klass != Cloneable).
  1497       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1498       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1499       // The key property of this type is that it folds up tests
  1500       // for array-ness, since it proves that the layout_helper is positive.
  1501       // Thus, a generic value like the basic object layout helper works fine.
  1502       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1506   // If we are loading from a freshly-allocated object, produce a zero,
  1507   // if the load is provably beyond the header of the object.
  1508   // (Also allow a variable load from a fresh array to produce zero.)
  1509   if (ReduceFieldZeroing) {
  1510     Node* value = can_see_stored_value(mem,phase);
  1511     if (value != NULL && value->is_Con())
  1512       return value->bottom_type();
  1515   const TypeOopPtr *tinst = tp->isa_oopptr();
  1516   if (tinst != NULL && tinst->is_instance_field()) {
  1517     // If we have an instance type and our memory input is the
  1518     // programs's initial memory state, there is no matching store,
  1519     // so just return a zero of the appropriate type
  1520     Node *mem = in(MemNode::Memory);
  1521     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1522       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1523       return Type::get_zero_type(_type->basic_type());
  1526   return _type;
  1529 //------------------------------match_edge-------------------------------------
  1530 // Do we Match on this edge index or not?  Match only the address.
  1531 uint LoadNode::match_edge(uint idx) const {
  1532   return idx == MemNode::Address;
  1535 //--------------------------LoadBNode::Ideal--------------------------------------
  1536 //
  1537 //  If the previous store is to the same address as this load,
  1538 //  and the value stored was larger than a byte, replace this load
  1539 //  with the value stored truncated to a byte.  If no truncation is
  1540 //  needed, the replacement is done in LoadNode::Identity().
  1541 //
  1542 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1543   Node* mem = in(MemNode::Memory);
  1544   Node* value = can_see_stored_value(mem,phase);
  1545   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1546     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1547     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1549   // Identity call will handle the case where truncation is not needed.
  1550   return LoadNode::Ideal(phase, can_reshape);
  1553 //--------------------------LoadCNode::Ideal--------------------------------------
  1554 //
  1555 //  If the previous store is to the same address as this load,
  1556 //  and the value stored was larger than a char, replace this load
  1557 //  with the value stored truncated to a char.  If no truncation is
  1558 //  needed, the replacement is done in LoadNode::Identity().
  1559 //
  1560 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1561   Node* mem = in(MemNode::Memory);
  1562   Node* value = can_see_stored_value(mem,phase);
  1563   if( value && !phase->type(value)->higher_equal( _type ) )
  1564     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1565   // Identity call will handle the case where truncation is not needed.
  1566   return LoadNode::Ideal(phase, can_reshape);
  1569 //--------------------------LoadSNode::Ideal--------------------------------------
  1570 //
  1571 //  If the previous store is to the same address as this load,
  1572 //  and the value stored was larger than a short, replace this load
  1573 //  with the value stored truncated to a short.  If no truncation is
  1574 //  needed, the replacement is done in LoadNode::Identity().
  1575 //
  1576 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1577   Node* mem = in(MemNode::Memory);
  1578   Node* value = can_see_stored_value(mem,phase);
  1579   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1580     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1581     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1583   // Identity call will handle the case where truncation is not needed.
  1584   return LoadNode::Ideal(phase, can_reshape);
  1587 //=============================================================================
  1588 //------------------------------Value------------------------------------------
  1589 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1590   // Either input is TOP ==> the result is TOP
  1591   const Type *t1 = phase->type( in(MemNode::Memory) );
  1592   if (t1 == Type::TOP)  return Type::TOP;
  1593   Node *adr = in(MemNode::Address);
  1594   const Type *t2 = phase->type( adr );
  1595   if (t2 == Type::TOP)  return Type::TOP;
  1596   const TypePtr *tp = t2->is_ptr();
  1597   if (TypePtr::above_centerline(tp->ptr()) ||
  1598       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1600   // Return a more precise klass, if possible
  1601   const TypeInstPtr *tinst = tp->isa_instptr();
  1602   if (tinst != NULL) {
  1603     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1604     int offset = tinst->offset();
  1605     if (ik == phase->C->env()->Class_klass()
  1606         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1607             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1608       // We are loading a special hidden field from a Class mirror object,
  1609       // the field which points to the VM's Klass metaobject.
  1610       ciType* t = tinst->java_mirror_type();
  1611       // java_mirror_type returns non-null for compile-time Class constants.
  1612       if (t != NULL) {
  1613         // constant oop => constant klass
  1614         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1615           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1617         if (!t->is_klass()) {
  1618           // a primitive Class (e.g., int.class) has NULL for a klass field
  1619           return TypePtr::NULL_PTR;
  1621         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1622         return TypeKlassPtr::make(t->as_klass());
  1624       // non-constant mirror, so we can't tell what's going on
  1626     if( !ik->is_loaded() )
  1627       return _type;             // Bail out if not loaded
  1628     if (offset == oopDesc::klass_offset_in_bytes()) {
  1629       if (tinst->klass_is_exact()) {
  1630         return TypeKlassPtr::make(ik);
  1632       // See if we can become precise: no subklasses and no interface
  1633       // (Note:  We need to support verified interfaces.)
  1634       if (!ik->is_interface() && !ik->has_subklass()) {
  1635         //assert(!UseExactTypes, "this code should be useless with exact types");
  1636         // Add a dependence; if any subclass added we need to recompile
  1637         if (!ik->is_final()) {
  1638           // %%% should use stronger assert_unique_concrete_subtype instead
  1639           phase->C->dependencies()->assert_leaf_type(ik);
  1641         // Return precise klass
  1642         return TypeKlassPtr::make(ik);
  1645       // Return root of possible klass
  1646       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1650   // Check for loading klass from an array
  1651   const TypeAryPtr *tary = tp->isa_aryptr();
  1652   if( tary != NULL ) {
  1653     ciKlass *tary_klass = tary->klass();
  1654     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1655         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1656       if (tary->klass_is_exact()) {
  1657         return TypeKlassPtr::make(tary_klass);
  1659       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1660       // If the klass is an object array, we defer the question to the
  1661       // array component klass.
  1662       if( ak->is_obj_array_klass() ) {
  1663         assert( ak->is_loaded(), "" );
  1664         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1665         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1666           ciInstanceKlass* ik = base_k->as_instance_klass();
  1667           // See if we can become precise: no subklasses and no interface
  1668           if (!ik->is_interface() && !ik->has_subklass()) {
  1669             //assert(!UseExactTypes, "this code should be useless with exact types");
  1670             // Add a dependence; if any subclass added we need to recompile
  1671             if (!ik->is_final()) {
  1672               phase->C->dependencies()->assert_leaf_type(ik);
  1674             // Return precise array klass
  1675             return TypeKlassPtr::make(ak);
  1678         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1679       } else {                  // Found a type-array?
  1680         //assert(!UseExactTypes, "this code should be useless with exact types");
  1681         assert( ak->is_type_array_klass(), "" );
  1682         return TypeKlassPtr::make(ak); // These are always precise
  1687   // Check for loading klass from an array klass
  1688   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1689   if (tkls != NULL && !StressReflectiveCode) {
  1690     ciKlass* klass = tkls->klass();
  1691     if( !klass->is_loaded() )
  1692       return _type;             // Bail out if not loaded
  1693     if( klass->is_obj_array_klass() &&
  1694         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1695       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1696       // // Always returning precise element type is incorrect,
  1697       // // e.g., element type could be object and array may contain strings
  1698       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1700       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1701       // according to the element type's subclassing.
  1702       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1704     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1705         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1706       ciKlass* sup = klass->as_instance_klass()->super();
  1707       // The field is Klass::_super.  Return its (constant) value.
  1708       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1709       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1713   // Bailout case
  1714   return LoadNode::Value(phase);
  1717 //------------------------------Identity---------------------------------------
  1718 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1719 // Also feed through the klass in Allocate(...klass...)._klass.
  1720 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1721   Node* x = LoadNode::Identity(phase);
  1722   if (x != this)  return x;
  1724   // Take apart the address into an oop and and offset.
  1725   // Return 'this' if we cannot.
  1726   Node*    adr    = in(MemNode::Address);
  1727   intptr_t offset = 0;
  1728   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1729   if (base == NULL)     return this;
  1730   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1731   if (toop == NULL)     return this;
  1733   // We can fetch the klass directly through an AllocateNode.
  1734   // This works even if the klass is not constant (clone or newArray).
  1735   if (offset == oopDesc::klass_offset_in_bytes()) {
  1736     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1737     if (allocated_klass != NULL) {
  1738       return allocated_klass;
  1742   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1743   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1744   // See inline_native_Class_query for occurrences of these patterns.
  1745   // Java Example:  x.getClass().isAssignableFrom(y)
  1746   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1747   //
  1748   // This improves reflective code, often making the Class
  1749   // mirror go completely dead.  (Current exception:  Class
  1750   // mirrors may appear in debug info, but we could clean them out by
  1751   // introducing a new debug info operator for klassOop.java_mirror).
  1752   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1753       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1754           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1755     // We are loading a special hidden field from a Class mirror,
  1756     // the field which points to its Klass or arrayKlass metaobject.
  1757     if (base->is_Load()) {
  1758       Node* adr2 = base->in(MemNode::Address);
  1759       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1760       if (tkls != NULL && !tkls->empty()
  1761           && (tkls->klass()->is_instance_klass() ||
  1762               tkls->klass()->is_array_klass())
  1763           && adr2->is_AddP()
  1764           ) {
  1765         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1766         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1767           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1769         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1770           return adr2->in(AddPNode::Base);
  1776   return this;
  1779 //------------------------------Value-----------------------------------------
  1780 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1781   // Either input is TOP ==> the result is TOP
  1782   const Type *t1 = phase->type( in(MemNode::Memory) );
  1783   if( t1 == Type::TOP ) return Type::TOP;
  1784   Node *adr = in(MemNode::Address);
  1785   const Type *t2 = phase->type( adr );
  1786   if( t2 == Type::TOP ) return Type::TOP;
  1787   const TypePtr *tp = t2->is_ptr();
  1788   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1789   const TypeAryPtr *tap = tp->isa_aryptr();
  1790   if( !tap ) return _type;
  1791   return tap->size();
  1794 //------------------------------Identity---------------------------------------
  1795 // Feed through the length in AllocateArray(...length...)._length.
  1796 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1797   Node* x = LoadINode::Identity(phase);
  1798   if (x != this)  return x;
  1800   // Take apart the address into an oop and and offset.
  1801   // Return 'this' if we cannot.
  1802   Node*    adr    = in(MemNode::Address);
  1803   intptr_t offset = 0;
  1804   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1805   if (base == NULL)     return this;
  1806   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1807   if (tary == NULL)     return this;
  1809   // We can fetch the length directly through an AllocateArrayNode.
  1810   // This works even if the length is not constant (clone or newArray).
  1811   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1812     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1813     if (allocated_length != NULL) {
  1814       return allocated_length;
  1818   return this;
  1821 //=============================================================================
  1822 //---------------------------StoreNode::make-----------------------------------
  1823 // Polymorphic factory method:
  1824 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1825   Compile* C = gvn.C;
  1827   switch (bt) {
  1828   case T_BOOLEAN:
  1829   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1830   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1831   case T_CHAR:
  1832   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1833   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1834   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1835   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1836   case T_ADDRESS:
  1837   case T_OBJECT:
  1838 #ifdef _LP64
  1839     if (adr->bottom_type()->is_narrow() ||
  1840         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  1841          adr->bottom_type()->isa_rawptr())) {
  1842       const TypePtr* type = val->bottom_type()->is_ptr();
  1843       Node* cp = EncodePNode::encode(&gvn, val);
  1844       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, cp);
  1845     } else
  1846 #endif
  1848         return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1851   ShouldNotReachHere();
  1852   return (StoreNode*)NULL;
  1855 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1856   bool require_atomic = true;
  1857   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1861 //--------------------------bottom_type----------------------------------------
  1862 const Type *StoreNode::bottom_type() const {
  1863   return Type::MEMORY;
  1866 //------------------------------hash-------------------------------------------
  1867 uint StoreNode::hash() const {
  1868   // unroll addition of interesting fields
  1869   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1871   // Since they are not commoned, do not hash them:
  1872   return NO_HASH;
  1875 //------------------------------Ideal------------------------------------------
  1876 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1877 // When a store immediately follows a relevant allocation/initialization,
  1878 // try to capture it into the initialization, or hoist it above.
  1879 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1880   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1881   if (p)  return (p == NodeSentinel) ? NULL : p;
  1883   Node* mem     = in(MemNode::Memory);
  1884   Node* address = in(MemNode::Address);
  1886   // Back-to-back stores to same address?  Fold em up.
  1887   // Generally unsafe if I have intervening uses...
  1888   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1889     // Looking at a dead closed cycle of memory?
  1890     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1892     assert(Opcode() == mem->Opcode() ||
  1893            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1894            "no mismatched stores, except on raw memory");
  1896     if (mem->outcnt() == 1 &&           // check for intervening uses
  1897         mem->as_Store()->memory_size() <= this->memory_size()) {
  1898       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1899       // For example, 'mem' might be the final state at a conditional return.
  1900       // Or, 'mem' might be used by some node which is live at the same time
  1901       // 'this' is live, which might be unschedulable.  So, require exactly
  1902       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1903       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1904       if (can_reshape) {  // (%%% is this an anachronism?)
  1905         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1906                   phase->is_IterGVN());
  1907       } else {
  1908         // It's OK to do this in the parser, since DU info is always accurate,
  1909         // and the parser always refers to nodes via SafePointNode maps.
  1910         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1912       return this;
  1916   // Capture an unaliased, unconditional, simple store into an initializer.
  1917   // Or, if it is independent of the allocation, hoist it above the allocation.
  1918   if (ReduceFieldZeroing && /*can_reshape &&*/
  1919       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1920     InitializeNode* init = mem->in(0)->as_Initialize();
  1921     intptr_t offset = init->can_capture_store(this, phase);
  1922     if (offset > 0) {
  1923       Node* moved = init->capture_store(this, offset, phase);
  1924       // If the InitializeNode captured me, it made a raw copy of me,
  1925       // and I need to disappear.
  1926       if (moved != NULL) {
  1927         // %%% hack to ensure that Ideal returns a new node:
  1928         mem = MergeMemNode::make(phase->C, mem);
  1929         return mem;             // fold me away
  1934   return NULL;                  // No further progress
  1937 //------------------------------Value-----------------------------------------
  1938 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1939   // Either input is TOP ==> the result is TOP
  1940   const Type *t1 = phase->type( in(MemNode::Memory) );
  1941   if( t1 == Type::TOP ) return Type::TOP;
  1942   const Type *t2 = phase->type( in(MemNode::Address) );
  1943   if( t2 == Type::TOP ) return Type::TOP;
  1944   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1945   if( t3 == Type::TOP ) return Type::TOP;
  1946   return Type::MEMORY;
  1949 //------------------------------Identity---------------------------------------
  1950 // Remove redundant stores:
  1951 //   Store(m, p, Load(m, p)) changes to m.
  1952 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1953 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1954   Node* mem = in(MemNode::Memory);
  1955   Node* adr = in(MemNode::Address);
  1956   Node* val = in(MemNode::ValueIn);
  1958   // Load then Store?  Then the Store is useless
  1959   if (val->is_Load() &&
  1960       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1961       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1962       val->as_Load()->store_Opcode() == Opcode()) {
  1963     return mem;
  1966   // Two stores in a row of the same value?
  1967   if (mem->is_Store() &&
  1968       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1969       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1970       mem->Opcode() == Opcode()) {
  1971     return mem;
  1974   // Store of zero anywhere into a freshly-allocated object?
  1975   // Then the store is useless.
  1976   // (It must already have been captured by the InitializeNode.)
  1977   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1978     // a newly allocated object is already all-zeroes everywhere
  1979     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1980       return mem;
  1983     // the store may also apply to zero-bits in an earlier object
  1984     Node* prev_mem = find_previous_store(phase);
  1985     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1986     if (prev_mem != NULL) {
  1987       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1988       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1989         // prev_val and val might differ by a cast; it would be good
  1990         // to keep the more informative of the two.
  1991         return mem;
  1996   return this;
  1999 //------------------------------match_edge-------------------------------------
  2000 // Do we Match on this edge index or not?  Match only memory & value
  2001 uint StoreNode::match_edge(uint idx) const {
  2002   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2005 //------------------------------cmp--------------------------------------------
  2006 // Do not common stores up together.  They generally have to be split
  2007 // back up anyways, so do not bother.
  2008 uint StoreNode::cmp( const Node &n ) const {
  2009   return (&n == this);          // Always fail except on self
  2012 //------------------------------Ideal_masked_input-----------------------------
  2013 // Check for a useless mask before a partial-word store
  2014 // (StoreB ... (AndI valIn conIa) )
  2015 // If (conIa & mask == mask) this simplifies to
  2016 // (StoreB ... (valIn) )
  2017 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2018   Node *val = in(MemNode::ValueIn);
  2019   if( val->Opcode() == Op_AndI ) {
  2020     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2021     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2022       set_req(MemNode::ValueIn, val->in(1));
  2023       return this;
  2026   return NULL;
  2030 //------------------------------Ideal_sign_extended_input----------------------
  2031 // Check for useless sign-extension before a partial-word store
  2032 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2033 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2034 // (StoreB ... (valIn) )
  2035 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2036   Node *val = in(MemNode::ValueIn);
  2037   if( val->Opcode() == Op_RShiftI ) {
  2038     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2039     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2040       Node *shl = val->in(1);
  2041       if( shl->Opcode() == Op_LShiftI ) {
  2042         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2043         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2044           set_req(MemNode::ValueIn, shl->in(1));
  2045           return this;
  2050   return NULL;
  2053 //------------------------------value_never_loaded-----------------------------------
  2054 // Determine whether there are any possible loads of the value stored.
  2055 // For simplicity, we actually check if there are any loads from the
  2056 // address stored to, not just for loads of the value stored by this node.
  2057 //
  2058 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2059   Node *adr = in(Address);
  2060   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2061   if (adr_oop == NULL)
  2062     return false;
  2063   if (!adr_oop->is_instance_field())
  2064     return false; // if not a distinct instance, there may be aliases of the address
  2065   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2066     Node *use = adr->fast_out(i);
  2067     int opc = use->Opcode();
  2068     if (use->is_Load() || use->is_LoadStore()) {
  2069       return false;
  2072   return true;
  2075 //=============================================================================
  2076 //------------------------------Ideal------------------------------------------
  2077 // If the store is from an AND mask that leaves the low bits untouched, then
  2078 // we can skip the AND operation.  If the store is from a sign-extension
  2079 // (a left shift, then right shift) we can skip both.
  2080 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2081   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2082   if( progress != NULL ) return progress;
  2084   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2085   if( progress != NULL ) return progress;
  2087   // Finally check the default case
  2088   return StoreNode::Ideal(phase, can_reshape);
  2091 //=============================================================================
  2092 //------------------------------Ideal------------------------------------------
  2093 // If the store is from an AND mask that leaves the low bits untouched, then
  2094 // we can skip the AND operation
  2095 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2096   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2097   if( progress != NULL ) return progress;
  2099   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2100   if( progress != NULL ) return progress;
  2102   // Finally check the default case
  2103   return StoreNode::Ideal(phase, can_reshape);
  2106 //=============================================================================
  2107 //------------------------------Identity---------------------------------------
  2108 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2109   // No need to card mark when storing a null ptr
  2110   Node* my_store = in(MemNode::OopStore);
  2111   if (my_store->is_Store()) {
  2112     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2113     if( t1 == TypePtr::NULL_PTR ) {
  2114       return in(MemNode::Memory);
  2117   return this;
  2120 //------------------------------Value-----------------------------------------
  2121 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2122   // Either input is TOP ==> the result is TOP
  2123   const Type *t = phase->type( in(MemNode::Memory) );
  2124   if( t == Type::TOP ) return Type::TOP;
  2125   t = phase->type( in(MemNode::Address) );
  2126   if( t == Type::TOP ) return Type::TOP;
  2127   t = phase->type( in(MemNode::ValueIn) );
  2128   if( t == Type::TOP ) return Type::TOP;
  2129   // If extra input is TOP ==> the result is TOP
  2130   t = phase->type( in(MemNode::OopStore) );
  2131   if( t == Type::TOP ) return Type::TOP;
  2133   return StoreNode::Value( phase );
  2137 //=============================================================================
  2138 //----------------------------------SCMemProjNode------------------------------
  2139 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2141   return bottom_type();
  2144 //=============================================================================
  2145 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2146   init_req(MemNode::Control, c  );
  2147   init_req(MemNode::Memory , mem);
  2148   init_req(MemNode::Address, adr);
  2149   init_req(MemNode::ValueIn, val);
  2150   init_req(         ExpectedIn, ex );
  2151   init_class_id(Class_LoadStore);
  2155 //=============================================================================
  2156 //-------------------------------adr_type--------------------------------------
  2157 // Do we Match on this edge index or not?  Do not match memory
  2158 const TypePtr* ClearArrayNode::adr_type() const {
  2159   Node *adr = in(3);
  2160   return MemNode::calculate_adr_type(adr->bottom_type());
  2163 //------------------------------match_edge-------------------------------------
  2164 // Do we Match on this edge index or not?  Do not match memory
  2165 uint ClearArrayNode::match_edge(uint idx) const {
  2166   return idx > 1;
  2169 //------------------------------Identity---------------------------------------
  2170 // Clearing a zero length array does nothing
  2171 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2172   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2175 //------------------------------Idealize---------------------------------------
  2176 // Clearing a short array is faster with stores
  2177 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2178   const int unit = BytesPerLong;
  2179   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2180   if (!t)  return NULL;
  2181   if (!t->is_con())  return NULL;
  2182   intptr_t raw_count = t->get_con();
  2183   intptr_t size = raw_count;
  2184   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2185   // Clearing nothing uses the Identity call.
  2186   // Negative clears are possible on dead ClearArrays
  2187   // (see jck test stmt114.stmt11402.val).
  2188   if (size <= 0 || size % unit != 0)  return NULL;
  2189   intptr_t count = size / unit;
  2190   // Length too long; use fast hardware clear
  2191   if (size > Matcher::init_array_short_size)  return NULL;
  2192   Node *mem = in(1);
  2193   if( phase->type(mem)==Type::TOP ) return NULL;
  2194   Node *adr = in(3);
  2195   const Type* at = phase->type(adr);
  2196   if( at==Type::TOP ) return NULL;
  2197   const TypePtr* atp = at->isa_ptr();
  2198   // adjust atp to be the correct array element address type
  2199   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2200   else              atp = atp->add_offset(Type::OffsetBot);
  2201   // Get base for derived pointer purposes
  2202   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2203   Node *base = adr->in(1);
  2205   Node *zero = phase->makecon(TypeLong::ZERO);
  2206   Node *off  = phase->MakeConX(BytesPerLong);
  2207   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2208   count--;
  2209   while( count-- ) {
  2210     mem = phase->transform(mem);
  2211     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2212     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2214   return mem;
  2217 //----------------------------clear_memory-------------------------------------
  2218 // Generate code to initialize object storage to zero.
  2219 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2220                                    intptr_t start_offset,
  2221                                    Node* end_offset,
  2222                                    PhaseGVN* phase) {
  2223   Compile* C = phase->C;
  2224   intptr_t offset = start_offset;
  2226   int unit = BytesPerLong;
  2227   if ((offset % unit) != 0) {
  2228     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2229     adr = phase->transform(adr);
  2230     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2231     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2232     mem = phase->transform(mem);
  2233     offset += BytesPerInt;
  2235   assert((offset % unit) == 0, "");
  2237   // Initialize the remaining stuff, if any, with a ClearArray.
  2238   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2241 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2242                                    Node* start_offset,
  2243                                    Node* end_offset,
  2244                                    PhaseGVN* phase) {
  2245   if (start_offset == end_offset) {
  2246     // nothing to do
  2247     return mem;
  2250   Compile* C = phase->C;
  2251   int unit = BytesPerLong;
  2252   Node* zbase = start_offset;
  2253   Node* zend  = end_offset;
  2255   // Scale to the unit required by the CPU:
  2256   if (!Matcher::init_array_count_is_in_bytes) {
  2257     Node* shift = phase->intcon(exact_log2(unit));
  2258     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2259     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2262   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2263   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2265   // Bulk clear double-words
  2266   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2267   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2268   return phase->transform(mem);
  2271 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2272                                    intptr_t start_offset,
  2273                                    intptr_t end_offset,
  2274                                    PhaseGVN* phase) {
  2275   if (start_offset == end_offset) {
  2276     // nothing to do
  2277     return mem;
  2280   Compile* C = phase->C;
  2281   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2282   intptr_t done_offset = end_offset;
  2283   if ((done_offset % BytesPerLong) != 0) {
  2284     done_offset -= BytesPerInt;
  2286   if (done_offset > start_offset) {
  2287     mem = clear_memory(ctl, mem, dest,
  2288                        start_offset, phase->MakeConX(done_offset), phase);
  2290   if (done_offset < end_offset) { // emit the final 32-bit store
  2291     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2292     adr = phase->transform(adr);
  2293     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2294     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2295     mem = phase->transform(mem);
  2296     done_offset += BytesPerInt;
  2298   assert(done_offset == end_offset, "");
  2299   return mem;
  2302 //=============================================================================
  2303 // Do we match on this edge? No memory edges
  2304 uint StrCompNode::match_edge(uint idx) const {
  2305   return idx == 5 || idx == 6;
  2308 //------------------------------Ideal------------------------------------------
  2309 // Return a node which is more "ideal" than the current node.  Strip out
  2310 // control copies
  2311 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2312   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2316 //=============================================================================
  2317 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2318   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2319     _adr_type(C->get_adr_type(alias_idx))
  2321   init_class_id(Class_MemBar);
  2322   Node* top = C->top();
  2323   init_req(TypeFunc::I_O,top);
  2324   init_req(TypeFunc::FramePtr,top);
  2325   init_req(TypeFunc::ReturnAdr,top);
  2326   if (precedent != NULL)
  2327     init_req(TypeFunc::Parms, precedent);
  2330 //------------------------------cmp--------------------------------------------
  2331 uint MemBarNode::hash() const { return NO_HASH; }
  2332 uint MemBarNode::cmp( const Node &n ) const {
  2333   return (&n == this);          // Always fail except on self
  2336 //------------------------------make-------------------------------------------
  2337 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2338   int len = Precedent + (pn == NULL? 0: 1);
  2339   switch (opcode) {
  2340   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2341   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2342   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2343   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2344   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2345   default:                 ShouldNotReachHere(); return NULL;
  2349 //------------------------------Ideal------------------------------------------
  2350 // Return a node which is more "ideal" than the current node.  Strip out
  2351 // control copies
  2352 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2353   if (remove_dead_region(phase, can_reshape))  return this;
  2354   return NULL;
  2357 //------------------------------Value------------------------------------------
  2358 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2359   if( !in(0) ) return Type::TOP;
  2360   if( phase->type(in(0)) == Type::TOP )
  2361     return Type::TOP;
  2362   return TypeTuple::MEMBAR;
  2365 //------------------------------match------------------------------------------
  2366 // Construct projections for memory.
  2367 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2368   switch (proj->_con) {
  2369   case TypeFunc::Control:
  2370   case TypeFunc::Memory:
  2371     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2373   ShouldNotReachHere();
  2374   return NULL;
  2377 //===========================InitializeNode====================================
  2378 // SUMMARY:
  2379 // This node acts as a memory barrier on raw memory, after some raw stores.
  2380 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2381 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2382 // It can coalesce related raw stores into larger units (called 'tiles').
  2383 // It can avoid zeroing new storage for memory units which have raw inits.
  2384 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2385 //
  2386 // EXAMPLE:
  2387 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2388 //   ctl = incoming control; mem* = incoming memory
  2389 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2390 // First allocate uninitialized memory and fill in the header:
  2391 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2392 //   ctl := alloc.Control; mem* := alloc.Memory*
  2393 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2394 // Then initialize to zero the non-header parts of the raw memory block:
  2395 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2396 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2397 // After the initialize node executes, the object is ready for service:
  2398 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2399 // Suppose its body is immediately initialized as {1,2}:
  2400 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2401 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2402 //   mem.SLICE(#short[*]) := store2
  2403 //
  2404 // DETAILS:
  2405 // An InitializeNode collects and isolates object initialization after
  2406 // an AllocateNode and before the next possible safepoint.  As a
  2407 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2408 // down past any safepoint or any publication of the allocation.
  2409 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2410 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2411 //
  2412 // The semantics of the InitializeNode include an implicit zeroing of
  2413 // the new object from object header to the end of the object.
  2414 // (The object header and end are determined by the AllocateNode.)
  2415 //
  2416 // Certain stores may be added as direct inputs to the InitializeNode.
  2417 // These stores must update raw memory, and they must be to addresses
  2418 // derived from the raw address produced by AllocateNode, and with
  2419 // a constant offset.  They must be ordered by increasing offset.
  2420 // The first one is at in(RawStores), the last at in(req()-1).
  2421 // Unlike most memory operations, they are not linked in a chain,
  2422 // but are displayed in parallel as users of the rawmem output of
  2423 // the allocation.
  2424 //
  2425 // (See comments in InitializeNode::capture_store, which continue
  2426 // the example given above.)
  2427 //
  2428 // When the associated Allocate is macro-expanded, the InitializeNode
  2429 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2430 // may also be created at that point to represent any required zeroing.
  2431 // The InitializeNode is then marked 'complete', prohibiting further
  2432 // capturing of nearby memory operations.
  2433 //
  2434 // During macro-expansion, all captured initializations which store
  2435 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2436 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2437 // initialized in fewer memory operations.  Memory words which are
  2438 // covered by neither tiles nor non-constant stores are pre-zeroed
  2439 // by explicit stores of zero.  (The code shape happens to do all
  2440 // zeroing first, then all other stores, with both sequences occurring
  2441 // in order of ascending offsets.)
  2442 //
  2443 // Alternatively, code may be inserted between an AllocateNode and its
  2444 // InitializeNode, to perform arbitrary initialization of the new object.
  2445 // E.g., the object copying intrinsics insert complex data transfers here.
  2446 // The initialization must then be marked as 'complete' disable the
  2447 // built-in zeroing semantics and the collection of initializing stores.
  2448 //
  2449 // While an InitializeNode is incomplete, reads from the memory state
  2450 // produced by it are optimizable if they match the control edge and
  2451 // new oop address associated with the allocation/initialization.
  2452 // They return a stored value (if the offset matches) or else zero.
  2453 // A write to the memory state, if it matches control and address,
  2454 // and if it is to a constant offset, may be 'captured' by the
  2455 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2456 // inside the initialization, to the raw oop produced by the allocation.
  2457 // Operations on addresses which are provably distinct (e.g., to
  2458 // other AllocateNodes) are allowed to bypass the initialization.
  2459 //
  2460 // The effect of all this is to consolidate object initialization
  2461 // (both arrays and non-arrays, both piecewise and bulk) into a
  2462 // single location, where it can be optimized as a unit.
  2463 //
  2464 // Only stores with an offset less than TrackedInitializationLimit words
  2465 // will be considered for capture by an InitializeNode.  This puts a
  2466 // reasonable limit on the complexity of optimized initializations.
  2468 //---------------------------InitializeNode------------------------------------
  2469 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2470   : _is_complete(false),
  2471     MemBarNode(C, adr_type, rawoop)
  2473   init_class_id(Class_Initialize);
  2475   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2476   assert(in(RawAddress) == rawoop, "proper init");
  2477   // Note:  allocation() can be NULL, for secondary initialization barriers
  2480 // Since this node is not matched, it will be processed by the
  2481 // register allocator.  Declare that there are no constraints
  2482 // on the allocation of the RawAddress edge.
  2483 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2484   // This edge should be set to top, by the set_complete.  But be conservative.
  2485   if (idx == InitializeNode::RawAddress)
  2486     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2487   return RegMask::Empty;
  2490 Node* InitializeNode::memory(uint alias_idx) {
  2491   Node* mem = in(Memory);
  2492   if (mem->is_MergeMem()) {
  2493     return mem->as_MergeMem()->memory_at(alias_idx);
  2494   } else {
  2495     // incoming raw memory is not split
  2496     return mem;
  2500 bool InitializeNode::is_non_zero() {
  2501   if (is_complete())  return false;
  2502   remove_extra_zeroes();
  2503   return (req() > RawStores);
  2506 void InitializeNode::set_complete(PhaseGVN* phase) {
  2507   assert(!is_complete(), "caller responsibility");
  2508   _is_complete = true;
  2510   // After this node is complete, it contains a bunch of
  2511   // raw-memory initializations.  There is no need for
  2512   // it to have anything to do with non-raw memory effects.
  2513   // Therefore, tell all non-raw users to re-optimize themselves,
  2514   // after skipping the memory effects of this initialization.
  2515   PhaseIterGVN* igvn = phase->is_IterGVN();
  2516   if (igvn)  igvn->add_users_to_worklist(this);
  2519 // convenience function
  2520 // return false if the init contains any stores already
  2521 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2522   InitializeNode* init = initialization();
  2523   if (init == NULL || init->is_complete())  return false;
  2524   init->remove_extra_zeroes();
  2525   // for now, if this allocation has already collected any inits, bail:
  2526   if (init->is_non_zero())  return false;
  2527   init->set_complete(phase);
  2528   return true;
  2531 void InitializeNode::remove_extra_zeroes() {
  2532   if (req() == RawStores)  return;
  2533   Node* zmem = zero_memory();
  2534   uint fill = RawStores;
  2535   for (uint i = fill; i < req(); i++) {
  2536     Node* n = in(i);
  2537     if (n->is_top() || n == zmem)  continue;  // skip
  2538     if (fill < i)  set_req(fill, n);          // compact
  2539     ++fill;
  2541   // delete any empty spaces created:
  2542   while (fill < req()) {
  2543     del_req(fill);
  2547 // Helper for remembering which stores go with which offsets.
  2548 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2549   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2550   intptr_t offset = -1;
  2551   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2552                                                phase, offset);
  2553   if (base == NULL)     return -1;  // something is dead,
  2554   if (offset < 0)       return -1;  //        dead, dead
  2555   return offset;
  2558 // Helper for proving that an initialization expression is
  2559 // "simple enough" to be folded into an object initialization.
  2560 // Attempts to prove that a store's initial value 'n' can be captured
  2561 // within the initialization without creating a vicious cycle, such as:
  2562 //     { Foo p = new Foo(); p.next = p; }
  2563 // True for constants and parameters and small combinations thereof.
  2564 bool InitializeNode::detect_init_independence(Node* n,
  2565                                               bool st_is_pinned,
  2566                                               int& count) {
  2567   if (n == NULL)      return true;   // (can this really happen?)
  2568   if (n->is_Proj())   n = n->in(0);
  2569   if (n == this)      return false;  // found a cycle
  2570   if (n->is_Con())    return true;
  2571   if (n->is_Start())  return true;   // params, etc., are OK
  2572   if (n->is_Root())   return true;   // even better
  2574   Node* ctl = n->in(0);
  2575   if (ctl != NULL && !ctl->is_top()) {
  2576     if (ctl->is_Proj())  ctl = ctl->in(0);
  2577     if (ctl == this)  return false;
  2579     // If we already know that the enclosing memory op is pinned right after
  2580     // the init, then any control flow that the store has picked up
  2581     // must have preceded the init, or else be equal to the init.
  2582     // Even after loop optimizations (which might change control edges)
  2583     // a store is never pinned *before* the availability of its inputs.
  2584     if (!MemNode::all_controls_dominate(n, this))
  2585       return false;                  // failed to prove a good control
  2589   // Check data edges for possible dependencies on 'this'.
  2590   if ((count += 1) > 20)  return false;  // complexity limit
  2591   for (uint i = 1; i < n->req(); i++) {
  2592     Node* m = n->in(i);
  2593     if (m == NULL || m == n || m->is_top())  continue;
  2594     uint first_i = n->find_edge(m);
  2595     if (i != first_i)  continue;  // process duplicate edge just once
  2596     if (!detect_init_independence(m, st_is_pinned, count)) {
  2597       return false;
  2601   return true;
  2604 // Here are all the checks a Store must pass before it can be moved into
  2605 // an initialization.  Returns zero if a check fails.
  2606 // On success, returns the (constant) offset to which the store applies,
  2607 // within the initialized memory.
  2608 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2609   const int FAIL = 0;
  2610   if (st->req() != MemNode::ValueIn + 1)
  2611     return FAIL;                // an inscrutable StoreNode (card mark?)
  2612   Node* ctl = st->in(MemNode::Control);
  2613   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2614     return FAIL;                // must be unconditional after the initialization
  2615   Node* mem = st->in(MemNode::Memory);
  2616   if (!(mem->is_Proj() && mem->in(0) == this))
  2617     return FAIL;                // must not be preceded by other stores
  2618   Node* adr = st->in(MemNode::Address);
  2619   intptr_t offset;
  2620   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2621   if (alloc == NULL)
  2622     return FAIL;                // inscrutable address
  2623   if (alloc != allocation())
  2624     return FAIL;                // wrong allocation!  (store needs to float up)
  2625   Node* val = st->in(MemNode::ValueIn);
  2626   int complexity_count = 0;
  2627   if (!detect_init_independence(val, true, complexity_count))
  2628     return FAIL;                // stored value must be 'simple enough'
  2630   return offset;                // success
  2633 // Find the captured store in(i) which corresponds to the range
  2634 // [start..start+size) in the initialized object.
  2635 // If there is one, return its index i.  If there isn't, return the
  2636 // negative of the index where it should be inserted.
  2637 // Return 0 if the queried range overlaps an initialization boundary
  2638 // or if dead code is encountered.
  2639 // If size_in_bytes is zero, do not bother with overlap checks.
  2640 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2641                                                    int size_in_bytes,
  2642                                                    PhaseTransform* phase) {
  2643   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2645   if (is_complete())
  2646     return FAIL;                // arraycopy got here first; punt
  2648   assert(allocation() != NULL, "must be present");
  2650   // no negatives, no header fields:
  2651   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2653   // after a certain size, we bail out on tracking all the stores:
  2654   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2655   if (start >= ti_limit)  return FAIL;
  2657   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2658     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2660     Node*    st     = in(i);
  2661     intptr_t st_off = get_store_offset(st, phase);
  2662     if (st_off < 0) {
  2663       if (st != zero_memory()) {
  2664         return FAIL;            // bail out if there is dead garbage
  2666     } else if (st_off > start) {
  2667       // ...we are done, since stores are ordered
  2668       if (st_off < start + size_in_bytes) {
  2669         return FAIL;            // the next store overlaps
  2671       return -(int)i;           // not found; here is where to put it
  2672     } else if (st_off < start) {
  2673       if (size_in_bytes != 0 &&
  2674           start < st_off + MAX_STORE &&
  2675           start < st_off + st->as_Store()->memory_size()) {
  2676         return FAIL;            // the previous store overlaps
  2678     } else {
  2679       if (size_in_bytes != 0 &&
  2680           st->as_Store()->memory_size() != size_in_bytes) {
  2681         return FAIL;            // mismatched store size
  2683       return i;
  2686     ++i;
  2690 // Look for a captured store which initializes at the offset 'start'
  2691 // with the given size.  If there is no such store, and no other
  2692 // initialization interferes, then return zero_memory (the memory
  2693 // projection of the AllocateNode).
  2694 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2695                                           PhaseTransform* phase) {
  2696   assert(stores_are_sane(phase), "");
  2697   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2698   if (i == 0) {
  2699     return NULL;                // something is dead
  2700   } else if (i < 0) {
  2701     return zero_memory();       // just primordial zero bits here
  2702   } else {
  2703     Node* st = in(i);           // here is the store at this position
  2704     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2705     return st;
  2709 // Create, as a raw pointer, an address within my new object at 'offset'.
  2710 Node* InitializeNode::make_raw_address(intptr_t offset,
  2711                                        PhaseTransform* phase) {
  2712   Node* addr = in(RawAddress);
  2713   if (offset != 0) {
  2714     Compile* C = phase->C;
  2715     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2716                                                  phase->MakeConX(offset)) );
  2718   return addr;
  2721 // Clone the given store, converting it into a raw store
  2722 // initializing a field or element of my new object.
  2723 // Caller is responsible for retiring the original store,
  2724 // with subsume_node or the like.
  2725 //
  2726 // From the example above InitializeNode::InitializeNode,
  2727 // here are the old stores to be captured:
  2728 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2729 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2730 //
  2731 // Here is the changed code; note the extra edges on init:
  2732 //   alloc = (Allocate ...)
  2733 //   rawoop = alloc.RawAddress
  2734 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2735 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2736 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2737 //                      rawstore1 rawstore2)
  2738 //
  2739 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2740                                     PhaseTransform* phase) {
  2741   assert(stores_are_sane(phase), "");
  2743   if (start < 0)  return NULL;
  2744   assert(can_capture_store(st, phase) == start, "sanity");
  2746   Compile* C = phase->C;
  2747   int size_in_bytes = st->memory_size();
  2748   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2749   if (i == 0)  return NULL;     // bail out
  2750   Node* prev_mem = NULL;        // raw memory for the captured store
  2751   if (i > 0) {
  2752     prev_mem = in(i);           // there is a pre-existing store under this one
  2753     set_req(i, C->top());       // temporarily disconnect it
  2754     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2755   } else {
  2756     i = -i;                     // no pre-existing store
  2757     prev_mem = zero_memory();   // a slice of the newly allocated object
  2758     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2759       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2760     else
  2761       ins_req(i, C->top());     // build a new edge
  2763   Node* new_st = st->clone();
  2764   new_st->set_req(MemNode::Control, in(Control));
  2765   new_st->set_req(MemNode::Memory,  prev_mem);
  2766   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2767   new_st = phase->transform(new_st);
  2769   // At this point, new_st might have swallowed a pre-existing store
  2770   // at the same offset, or perhaps new_st might have disappeared,
  2771   // if it redundantly stored the same value (or zero to fresh memory).
  2773   // In any case, wire it in:
  2774   set_req(i, new_st);
  2776   // The caller may now kill the old guy.
  2777   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2778   assert(check_st == new_st || check_st == NULL, "must be findable");
  2779   assert(!is_complete(), "");
  2780   return new_st;
  2783 static bool store_constant(jlong* tiles, int num_tiles,
  2784                            intptr_t st_off, int st_size,
  2785                            jlong con) {
  2786   if ((st_off & (st_size-1)) != 0)
  2787     return false;               // strange store offset (assume size==2**N)
  2788   address addr = (address)tiles + st_off;
  2789   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2790   switch (st_size) {
  2791   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2792   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2793   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2794   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2795   default: return false;        // strange store size (detect size!=2**N here)
  2797   return true;                  // return success to caller
  2800 // Coalesce subword constants into int constants and possibly
  2801 // into long constants.  The goal, if the CPU permits,
  2802 // is to initialize the object with a small number of 64-bit tiles.
  2803 // Also, convert floating-point constants to bit patterns.
  2804 // Non-constants are not relevant to this pass.
  2805 //
  2806 // In terms of the running example on InitializeNode::InitializeNode
  2807 // and InitializeNode::capture_store, here is the transformation
  2808 // of rawstore1 and rawstore2 into rawstore12:
  2809 //   alloc = (Allocate ...)
  2810 //   rawoop = alloc.RawAddress
  2811 //   tile12 = 0x00010002
  2812 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2813 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2814 //
  2815 void
  2816 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2817                                         Node* size_in_bytes,
  2818                                         PhaseGVN* phase) {
  2819   Compile* C = phase->C;
  2821   assert(stores_are_sane(phase), "");
  2822   // Note:  After this pass, they are not completely sane,
  2823   // since there may be some overlaps.
  2825   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2827   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2828   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2829   size_limit = MIN2(size_limit, ti_limit);
  2830   size_limit = align_size_up(size_limit, BytesPerLong);
  2831   int num_tiles = size_limit / BytesPerLong;
  2833   // allocate space for the tile map:
  2834   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2835   jlong  tiles_buf[small_len];
  2836   Node*  nodes_buf[small_len];
  2837   jlong  inits_buf[small_len];
  2838   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2839                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2840   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2841                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2842   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2843                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2844   // tiles: exact bitwise model of all primitive constants
  2845   // nodes: last constant-storing node subsumed into the tiles model
  2846   // inits: which bytes (in each tile) are touched by any initializations
  2848   //// Pass A: Fill in the tile model with any relevant stores.
  2850   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2851   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2852   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2853   Node* zmem = zero_memory(); // initially zero memory state
  2854   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2855     Node* st = in(i);
  2856     intptr_t st_off = get_store_offset(st, phase);
  2858     // Figure out the store's offset and constant value:
  2859     if (st_off < header_size)             continue; //skip (ignore header)
  2860     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2861     int st_size = st->as_Store()->memory_size();
  2862     if (st_off + st_size > size_limit)    break;
  2864     // Record which bytes are touched, whether by constant or not.
  2865     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2866       continue;                 // skip (strange store size)
  2868     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2869     if (!val->singleton())                continue; //skip (non-con store)
  2870     BasicType type = val->basic_type();
  2872     jlong con = 0;
  2873     switch (type) {
  2874     case T_INT:    con = val->is_int()->get_con();  break;
  2875     case T_LONG:   con = val->is_long()->get_con(); break;
  2876     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2877     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2878     default:                              continue; //skip (odd store type)
  2881     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2882         st->Opcode() == Op_StoreL) {
  2883       continue;                 // This StoreL is already optimal.
  2886     // Store down the constant.
  2887     store_constant(tiles, num_tiles, st_off, st_size, con);
  2889     intptr_t j = st_off >> LogBytesPerLong;
  2891     if (type == T_INT && st_size == BytesPerInt
  2892         && (st_off & BytesPerInt) == BytesPerInt) {
  2893       jlong lcon = tiles[j];
  2894       if (!Matcher::isSimpleConstant64(lcon) &&
  2895           st->Opcode() == Op_StoreI) {
  2896         // This StoreI is already optimal by itself.
  2897         jint* intcon = (jint*) &tiles[j];
  2898         intcon[1] = 0;  // undo the store_constant()
  2900         // If the previous store is also optimal by itself, back up and
  2901         // undo the action of the previous loop iteration... if we can.
  2902         // But if we can't, just let the previous half take care of itself.
  2903         st = nodes[j];
  2904         st_off -= BytesPerInt;
  2905         con = intcon[0];
  2906         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2907           assert(st_off >= header_size, "still ignoring header");
  2908           assert(get_store_offset(st, phase) == st_off, "must be");
  2909           assert(in(i-1) == zmem, "must be");
  2910           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2911           assert(con == tcon->is_int()->get_con(), "must be");
  2912           // Undo the effects of the previous loop trip, which swallowed st:
  2913           intcon[0] = 0;        // undo store_constant()
  2914           set_req(i-1, st);     // undo set_req(i, zmem)
  2915           nodes[j] = NULL;      // undo nodes[j] = st
  2916           --old_subword;        // undo ++old_subword
  2918         continue;               // This StoreI is already optimal.
  2922     // This store is not needed.
  2923     set_req(i, zmem);
  2924     nodes[j] = st;              // record for the moment
  2925     if (st_size < BytesPerLong) // something has changed
  2926           ++old_subword;        // includes int/float, but who's counting...
  2927     else  ++old_long;
  2930   if ((old_subword + old_long) == 0)
  2931     return;                     // nothing more to do
  2933   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2934   // Be sure to insert them before overlapping non-constant stores.
  2935   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2936   for (int j = 0; j < num_tiles; j++) {
  2937     jlong con  = tiles[j];
  2938     jlong init = inits[j];
  2939     if (con == 0)  continue;
  2940     jint con0,  con1;           // split the constant, address-wise
  2941     jint init0, init1;          // split the init map, address-wise
  2942     { union { jlong con; jint intcon[2]; } u;
  2943       u.con = con;
  2944       con0  = u.intcon[0];
  2945       con1  = u.intcon[1];
  2946       u.con = init;
  2947       init0 = u.intcon[0];
  2948       init1 = u.intcon[1];
  2951     Node* old = nodes[j];
  2952     assert(old != NULL, "need the prior store");
  2953     intptr_t offset = (j * BytesPerLong);
  2955     bool split = !Matcher::isSimpleConstant64(con);
  2957     if (offset < header_size) {
  2958       assert(offset + BytesPerInt >= header_size, "second int counts");
  2959       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2960       split = true;             // only the second word counts
  2961       // Example:  int a[] = { 42 ... }
  2962     } else if (con0 == 0 && init0 == -1) {
  2963       split = true;             // first word is covered by full inits
  2964       // Example:  int a[] = { ... foo(), 42 ... }
  2965     } else if (con1 == 0 && init1 == -1) {
  2966       split = true;             // second word is covered by full inits
  2967       // Example:  int a[] = { ... 42, foo() ... }
  2970     // Here's a case where init0 is neither 0 nor -1:
  2971     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2972     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2973     // In this case the tile is not split; it is (jlong)42.
  2974     // The big tile is stored down, and then the foo() value is inserted.
  2975     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2977     Node* ctl = old->in(MemNode::Control);
  2978     Node* adr = make_raw_address(offset, phase);
  2979     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2981     // One or two coalesced stores to plop down.
  2982     Node*    st[2];
  2983     intptr_t off[2];
  2984     int  nst = 0;
  2985     if (!split) {
  2986       ++new_long;
  2987       off[nst] = offset;
  2988       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  2989                                   phase->longcon(con), T_LONG);
  2990     } else {
  2991       // Omit either if it is a zero.
  2992       if (con0 != 0) {
  2993         ++new_int;
  2994         off[nst]  = offset;
  2995         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  2996                                     phase->intcon(con0), T_INT);
  2998       if (con1 != 0) {
  2999         ++new_int;
  3000         offset += BytesPerInt;
  3001         adr = make_raw_address(offset, phase);
  3002         off[nst]  = offset;
  3003         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3004                                     phase->intcon(con1), T_INT);
  3008     // Insert second store first, then the first before the second.
  3009     // Insert each one just before any overlapping non-constant stores.
  3010     while (nst > 0) {
  3011       Node* st1 = st[--nst];
  3012       C->copy_node_notes_to(st1, old);
  3013       st1 = phase->transform(st1);
  3014       offset = off[nst];
  3015       assert(offset >= header_size, "do not smash header");
  3016       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3017       guarantee(ins_idx != 0, "must re-insert constant store");
  3018       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3019       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3020         set_req(--ins_idx, st1);
  3021       else
  3022         ins_req(ins_idx, st1);
  3026   if (PrintCompilation && WizardMode)
  3027     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3028                   old_subword, old_long, new_int, new_long);
  3029   if (C->log() != NULL)
  3030     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3031                    old_subword, old_long, new_int, new_long);
  3033   // Clean up any remaining occurrences of zmem:
  3034   remove_extra_zeroes();
  3037 // Explore forward from in(start) to find the first fully initialized
  3038 // word, and return its offset.  Skip groups of subword stores which
  3039 // together initialize full words.  If in(start) is itself part of a
  3040 // fully initialized word, return the offset of in(start).  If there
  3041 // are no following full-word stores, or if something is fishy, return
  3042 // a negative value.
  3043 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3044   int       int_map = 0;
  3045   intptr_t  int_map_off = 0;
  3046   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3048   for (uint i = start, limit = req(); i < limit; i++) {
  3049     Node* st = in(i);
  3051     intptr_t st_off = get_store_offset(st, phase);
  3052     if (st_off < 0)  break;  // return conservative answer
  3054     int st_size = st->as_Store()->memory_size();
  3055     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3056       return st_off;            // we found a complete word init
  3059     // update the map:
  3061     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3062     if (this_int_off != int_map_off) {
  3063       // reset the map:
  3064       int_map = 0;
  3065       int_map_off = this_int_off;
  3068     int subword_off = st_off - this_int_off;
  3069     int_map |= right_n_bits(st_size) << subword_off;
  3070     if ((int_map & FULL_MAP) == FULL_MAP) {
  3071       return this_int_off;      // we found a complete word init
  3074     // Did this store hit or cross the word boundary?
  3075     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3076     if (next_int_off == this_int_off + BytesPerInt) {
  3077       // We passed the current int, without fully initializing it.
  3078       int_map_off = next_int_off;
  3079       int_map >>= BytesPerInt;
  3080     } else if (next_int_off > this_int_off + BytesPerInt) {
  3081       // We passed the current and next int.
  3082       return this_int_off + BytesPerInt;
  3086   return -1;
  3090 // Called when the associated AllocateNode is expanded into CFG.
  3091 // At this point, we may perform additional optimizations.
  3092 // Linearize the stores by ascending offset, to make memory
  3093 // activity as coherent as possible.
  3094 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3095                                       intptr_t header_size,
  3096                                       Node* size_in_bytes,
  3097                                       PhaseGVN* phase) {
  3098   assert(!is_complete(), "not already complete");
  3099   assert(stores_are_sane(phase), "");
  3100   assert(allocation() != NULL, "must be present");
  3102   remove_extra_zeroes();
  3104   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3105     // reduce instruction count for common initialization patterns
  3106     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3108   Node* zmem = zero_memory();   // initially zero memory state
  3109   Node* inits = zmem;           // accumulating a linearized chain of inits
  3110   #ifdef ASSERT
  3111   intptr_t first_offset = allocation()->minimum_header_size();
  3112   intptr_t last_init_off = first_offset;  // previous init offset
  3113   intptr_t last_init_end = first_offset;  // previous init offset+size
  3114   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3115   #endif
  3116   intptr_t zeroes_done = header_size;
  3118   bool do_zeroing = true;       // we might give up if inits are very sparse
  3119   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3121   if (ZeroTLAB)  do_zeroing = false;
  3122   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3124   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3125     Node* st = in(i);
  3126     intptr_t st_off = get_store_offset(st, phase);
  3127     if (st_off < 0)
  3128       break;                    // unknown junk in the inits
  3129     if (st->in(MemNode::Memory) != zmem)
  3130       break;                    // complicated store chains somehow in list
  3132     int st_size = st->as_Store()->memory_size();
  3133     intptr_t next_init_off = st_off + st_size;
  3135     if (do_zeroing && zeroes_done < next_init_off) {
  3136       // See if this store needs a zero before it or under it.
  3137       intptr_t zeroes_needed = st_off;
  3139       if (st_size < BytesPerInt) {
  3140         // Look for subword stores which only partially initialize words.
  3141         // If we find some, we must lay down some word-level zeroes first,
  3142         // underneath the subword stores.
  3143         //
  3144         // Examples:
  3145         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3146         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3147         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3148         //
  3149         // Note:  coalesce_subword_stores may have already done this,
  3150         // if it was prompted by constant non-zero subword initializers.
  3151         // But this case can still arise with non-constant stores.
  3153         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3155         // In the examples above:
  3156         //   in(i)          p   q   r   s     x   y     z
  3157         //   st_off        12  13  14  15    12  13    14
  3158         //   st_size        1   1   1   1     1   1     1
  3159         //   next_full_s.  12  16  16  16    16  16    16
  3160         //   z's_done      12  16  16  16    12  16    12
  3161         //   z's_needed    12  16  16  16    16  16    16
  3162         //   zsize          0   0   0   0     4   0     4
  3163         if (next_full_store < 0) {
  3164           // Conservative tack:  Zero to end of current word.
  3165           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3166         } else {
  3167           // Zero to beginning of next fully initialized word.
  3168           // Or, don't zero at all, if we are already in that word.
  3169           assert(next_full_store >= zeroes_needed, "must go forward");
  3170           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3171           zeroes_needed = next_full_store;
  3175       if (zeroes_needed > zeroes_done) {
  3176         intptr_t zsize = zeroes_needed - zeroes_done;
  3177         // Do some incremental zeroing on rawmem, in parallel with inits.
  3178         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3179         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3180                                               zeroes_done, zeroes_needed,
  3181                                               phase);
  3182         zeroes_done = zeroes_needed;
  3183         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3184           do_zeroing = false;   // leave the hole, next time
  3188     // Collect the store and move on:
  3189     st->set_req(MemNode::Memory, inits);
  3190     inits = st;                 // put it on the linearized chain
  3191     set_req(i, zmem);           // unhook from previous position
  3193     if (zeroes_done == st_off)
  3194       zeroes_done = next_init_off;
  3196     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3198     #ifdef ASSERT
  3199     // Various order invariants.  Weaker than stores_are_sane because
  3200     // a large constant tile can be filled in by smaller non-constant stores.
  3201     assert(st_off >= last_init_off, "inits do not reverse");
  3202     last_init_off = st_off;
  3203     const Type* val = NULL;
  3204     if (st_size >= BytesPerInt &&
  3205         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3206         (int)val->basic_type() < (int)T_OBJECT) {
  3207       assert(st_off >= last_tile_end, "tiles do not overlap");
  3208       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3209       last_tile_end = MAX2(last_tile_end, next_init_off);
  3210     } else {
  3211       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3212       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3213       assert(st_off      >= last_init_end, "inits do not overlap");
  3214       last_init_end = next_init_off;  // it's a non-tile
  3216     #endif //ASSERT
  3219   remove_extra_zeroes();        // clear out all the zmems left over
  3220   add_req(inits);
  3222   if (!ZeroTLAB) {
  3223     // If anything remains to be zeroed, zero it all now.
  3224     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3225     // if it is the last unused 4 bytes of an instance, forget about it
  3226     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3227     if (zeroes_done + BytesPerLong >= size_limit) {
  3228       assert(allocation() != NULL, "");
  3229       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3230       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3231       if (zeroes_done == k->layout_helper())
  3232         zeroes_done = size_limit;
  3234     if (zeroes_done < size_limit) {
  3235       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3236                                             zeroes_done, size_in_bytes, phase);
  3240   set_complete(phase);
  3241   return rawmem;
  3245 #ifdef ASSERT
  3246 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3247   if (is_complete())
  3248     return true;                // stores could be anything at this point
  3249   assert(allocation() != NULL, "must be present");
  3250   intptr_t last_off = allocation()->minimum_header_size();
  3251   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3252     Node* st = in(i);
  3253     intptr_t st_off = get_store_offset(st, phase);
  3254     if (st_off < 0)  continue;  // ignore dead garbage
  3255     if (last_off > st_off) {
  3256       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3257       this->dump(2);
  3258       assert(false, "ascending store offsets");
  3259       return false;
  3261     last_off = st_off + st->as_Store()->memory_size();
  3263   return true;
  3265 #endif //ASSERT
  3270 //============================MergeMemNode=====================================
  3271 //
  3272 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3273 // contributing store or call operations.  Each contributor provides the memory
  3274 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3275 // if a MergeMem has an input X for alias category #6, then any memory reference
  3276 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3277 // to using the MergeMem as a whole.
  3278 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3279 //
  3280 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3281 //
  3282 // In one special case (and more cases in the future), alias categories overlap.
  3283 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3284 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3285 // it is exactly equivalent to that state W:
  3286 //   MergeMem(<Bot>: W) <==> W
  3287 //
  3288 // Usually, the merge has more than one input.  In that case, where inputs
  3289 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3290 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3291 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3292 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3293 //
  3294 // A merge can take a "wide" memory state as one of its narrow inputs.
  3295 // This simply means that the merge observes out only the relevant parts of
  3296 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3297 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3298 //
  3299 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3300 // and that memory slices "leak through":
  3301 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3302 //
  3303 // But, in such a cascade, repeated memory slices can "block the leak":
  3304 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3305 //
  3306 // In the last example, Y is not part of the combined memory state of the
  3307 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3308 // memory states from arising, so you can be sure that the state Y is somehow
  3309 // a precursor to state Y'.
  3310 //
  3311 //
  3312 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3313 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3314 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3315 // Compile::alias_type (and kin) produce and manage these indexes.
  3316 //
  3317 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3318 // (Note that this provides quick access to the top node inside MergeMem methods,
  3319 // without the need to reach out via TLS to Compile::current.)
  3320 //
  3321 // As a consequence of what was just described, a MergeMem that represents a full
  3322 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3323 // containing all alias categories.
  3324 //
  3325 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3326 //
  3327 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3328 // a memory state for the alias type <N>, or else the top node, meaning that
  3329 // there is no particular input for that alias type.  Note that the length of
  3330 // a MergeMem is variable, and may be extended at any time to accommodate new
  3331 // memory states at larger alias indexes.  When merges grow, they are of course
  3332 // filled with "top" in the unused in() positions.
  3333 //
  3334 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3335 // (Top was chosen because it works smoothly with passes like GCM.)
  3336 //
  3337 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3338 // the type of random VM bits like TLS references.)  Since it is always the
  3339 // first non-Bot memory slice, some low-level loops use it to initialize an
  3340 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3341 //
  3342 //
  3343 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3344 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3345 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3346 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3347 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3348 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3349 //
  3350 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3351 // really that different from the other memory inputs.  An abbreviation called
  3352 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3353 //
  3354 //
  3355 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3356 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3357 // that "emerges though" the base memory will be marked as excluding the alias types
  3358 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3359 //
  3360 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3361 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3362 //
  3363 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3364 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3365 // actually a disjoint union of memory states, rather than an overlay.
  3366 //
  3368 //------------------------------MergeMemNode-----------------------------------
  3369 Node* MergeMemNode::make_empty_memory() {
  3370   Node* empty_memory = (Node*) Compile::current()->top();
  3371   assert(empty_memory->is_top(), "correct sentinel identity");
  3372   return empty_memory;
  3375 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3376   init_class_id(Class_MergeMem);
  3377   // all inputs are nullified in Node::Node(int)
  3378   // set_input(0, NULL);  // no control input
  3380   // Initialize the edges uniformly to top, for starters.
  3381   Node* empty_mem = make_empty_memory();
  3382   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3383     init_req(i,empty_mem);
  3385   assert(empty_memory() == empty_mem, "");
  3387   if( new_base != NULL && new_base->is_MergeMem() ) {
  3388     MergeMemNode* mdef = new_base->as_MergeMem();
  3389     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3390     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3391       mms.set_memory(mms.memory2());
  3393     assert(base_memory() == mdef->base_memory(), "");
  3394   } else {
  3395     set_base_memory(new_base);
  3399 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3400 // If mem is itself a MergeMem, populate the result with the same edges.
  3401 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3402   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3405 //------------------------------cmp--------------------------------------------
  3406 uint MergeMemNode::hash() const { return NO_HASH; }
  3407 uint MergeMemNode::cmp( const Node &n ) const {
  3408   return (&n == this);          // Always fail except on self
  3411 //------------------------------Identity---------------------------------------
  3412 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3413   // Identity if this merge point does not record any interesting memory
  3414   // disambiguations.
  3415   Node* base_mem = base_memory();
  3416   Node* empty_mem = empty_memory();
  3417   if (base_mem != empty_mem) {  // Memory path is not dead?
  3418     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3419       Node* mem = in(i);
  3420       if (mem != empty_mem && mem != base_mem) {
  3421         return this;            // Many memory splits; no change
  3425   return base_mem;              // No memory splits; ID on the one true input
  3428 //------------------------------Ideal------------------------------------------
  3429 // This method is invoked recursively on chains of MergeMem nodes
  3430 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3431   // Remove chain'd MergeMems
  3432   //
  3433   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3434   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3435   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3436   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3437   Node *progress = NULL;
  3440   Node* old_base = base_memory();
  3441   Node* empty_mem = empty_memory();
  3442   if (old_base == empty_mem)
  3443     return NULL; // Dead memory path.
  3445   MergeMemNode* old_mbase;
  3446   if (old_base != NULL && old_base->is_MergeMem())
  3447     old_mbase = old_base->as_MergeMem();
  3448   else
  3449     old_mbase = NULL;
  3450   Node* new_base = old_base;
  3452   // simplify stacked MergeMems in base memory
  3453   if (old_mbase)  new_base = old_mbase->base_memory();
  3455   // the base memory might contribute new slices beyond my req()
  3456   if (old_mbase)  grow_to_match(old_mbase);
  3458   // Look carefully at the base node if it is a phi.
  3459   PhiNode* phi_base;
  3460   if (new_base != NULL && new_base->is_Phi())
  3461     phi_base = new_base->as_Phi();
  3462   else
  3463     phi_base = NULL;
  3465   Node*    phi_reg = NULL;
  3466   uint     phi_len = (uint)-1;
  3467   if (phi_base != NULL && !phi_base->is_copy()) {
  3468     // do not examine phi if degraded to a copy
  3469     phi_reg = phi_base->region();
  3470     phi_len = phi_base->req();
  3471     // see if the phi is unfinished
  3472     for (uint i = 1; i < phi_len; i++) {
  3473       if (phi_base->in(i) == NULL) {
  3474         // incomplete phi; do not look at it yet!
  3475         phi_reg = NULL;
  3476         phi_len = (uint)-1;
  3477         break;
  3482   // Note:  We do not call verify_sparse on entry, because inputs
  3483   // can normalize to the base_memory via subsume_node or similar
  3484   // mechanisms.  This method repairs that damage.
  3486   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3488   // Look at each slice.
  3489   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3490     Node* old_in = in(i);
  3491     // calculate the old memory value
  3492     Node* old_mem = old_in;
  3493     if (old_mem == empty_mem)  old_mem = old_base;
  3494     assert(old_mem == memory_at(i), "");
  3496     // maybe update (reslice) the old memory value
  3498     // simplify stacked MergeMems
  3499     Node* new_mem = old_mem;
  3500     MergeMemNode* old_mmem;
  3501     if (old_mem != NULL && old_mem->is_MergeMem())
  3502       old_mmem = old_mem->as_MergeMem();
  3503     else
  3504       old_mmem = NULL;
  3505     if (old_mmem == this) {
  3506       // This can happen if loops break up and safepoints disappear.
  3507       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3508       // safepoint can be rewritten to a merge of the same BotPtr with
  3509       // the BotPtr phi coming into the loop.  If that phi disappears
  3510       // also, we can end up with a self-loop of the mergemem.
  3511       // In general, if loops degenerate and memory effects disappear,
  3512       // a mergemem can be left looking at itself.  This simply means
  3513       // that the mergemem's default should be used, since there is
  3514       // no longer any apparent effect on this slice.
  3515       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3516       //       from start.  Update the input to TOP.
  3517       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3519     else if (old_mmem != NULL) {
  3520       new_mem = old_mmem->memory_at(i);
  3522     // else preceeding memory was not a MergeMem
  3524     // replace equivalent phis (unfortunately, they do not GVN together)
  3525     if (new_mem != NULL && new_mem != new_base &&
  3526         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3527       if (new_mem->is_Phi()) {
  3528         PhiNode* phi_mem = new_mem->as_Phi();
  3529         for (uint i = 1; i < phi_len; i++) {
  3530           if (phi_base->in(i) != phi_mem->in(i)) {
  3531             phi_mem = NULL;
  3532             break;
  3535         if (phi_mem != NULL) {
  3536           // equivalent phi nodes; revert to the def
  3537           new_mem = new_base;
  3542     // maybe store down a new value
  3543     Node* new_in = new_mem;
  3544     if (new_in == new_base)  new_in = empty_mem;
  3546     if (new_in != old_in) {
  3547       // Warning:  Do not combine this "if" with the previous "if"
  3548       // A memory slice might have be be rewritten even if it is semantically
  3549       // unchanged, if the base_memory value has changed.
  3550       set_req(i, new_in);
  3551       progress = this;          // Report progress
  3555   if (new_base != old_base) {
  3556     set_req(Compile::AliasIdxBot, new_base);
  3557     // Don't use set_base_memory(new_base), because we need to update du.
  3558     assert(base_memory() == new_base, "");
  3559     progress = this;
  3562   if( base_memory() == this ) {
  3563     // a self cycle indicates this memory path is dead
  3564     set_req(Compile::AliasIdxBot, empty_mem);
  3567   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3568   // Recursion must occur after the self cycle check above
  3569   if( base_memory()->is_MergeMem() ) {
  3570     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3571     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3572     if( m != NULL && (m->is_top() ||
  3573         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3574       // propagate rollup of dead cycle to self
  3575       set_req(Compile::AliasIdxBot, empty_mem);
  3579   if( base_memory() == empty_mem ) {
  3580     progress = this;
  3581     // Cut inputs during Parse phase only.
  3582     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3583     if( !can_reshape ) {
  3584       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3585         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3590   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3591     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3592     // transform should be attempted. Look for this->phi->this cycle.
  3593     uint merge_width = req();
  3594     if (merge_width > Compile::AliasIdxRaw) {
  3595       PhiNode* phi = base_memory()->as_Phi();
  3596       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3597         if (phi->in(i) == this) {
  3598           phase->is_IterGVN()->_worklist.push(phi);
  3599           break;
  3605   assert(progress || verify_sparse(), "please, no dups of base");
  3606   return progress;
  3609 //-------------------------set_base_memory-------------------------------------
  3610 void MergeMemNode::set_base_memory(Node *new_base) {
  3611   Node* empty_mem = empty_memory();
  3612   set_req(Compile::AliasIdxBot, new_base);
  3613   assert(memory_at(req()) == new_base, "must set default memory");
  3614   // Clear out other occurrences of new_base:
  3615   if (new_base != empty_mem) {
  3616     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3617       if (in(i) == new_base)  set_req(i, empty_mem);
  3622 //------------------------------out_RegMask------------------------------------
  3623 const RegMask &MergeMemNode::out_RegMask() const {
  3624   return RegMask::Empty;
  3627 //------------------------------dump_spec--------------------------------------
  3628 #ifndef PRODUCT
  3629 void MergeMemNode::dump_spec(outputStream *st) const {
  3630   st->print(" {");
  3631   Node* base_mem = base_memory();
  3632   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3633     Node* mem = memory_at(i);
  3634     if (mem == base_mem) { st->print(" -"); continue; }
  3635     st->print( " N%d:", mem->_idx );
  3636     Compile::current()->get_adr_type(i)->dump_on(st);
  3638   st->print(" }");
  3640 #endif // !PRODUCT
  3643 #ifdef ASSERT
  3644 static bool might_be_same(Node* a, Node* b) {
  3645   if (a == b)  return true;
  3646   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3647   // phis shift around during optimization
  3648   return true;  // pretty stupid...
  3651 // verify a narrow slice (either incoming or outgoing)
  3652 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3653   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3654   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3655   if (Node::in_dump())      return;  // muzzle asserts when printing
  3656   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3657   assert(n != NULL, "");
  3658   // Elide intervening MergeMem's
  3659   while (n->is_MergeMem()) {
  3660     n = n->as_MergeMem()->memory_at(alias_idx);
  3662   Compile* C = Compile::current();
  3663   const TypePtr* n_adr_type = n->adr_type();
  3664   if (n == m->empty_memory()) {
  3665     // Implicit copy of base_memory()
  3666   } else if (n_adr_type != TypePtr::BOTTOM) {
  3667     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3668     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3669   } else {
  3670     // A few places like make_runtime_call "know" that VM calls are narrow,
  3671     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3672     bool expected_wide_mem = false;
  3673     if (n == m->base_memory()) {
  3674       expected_wide_mem = true;
  3675     } else if (alias_idx == Compile::AliasIdxRaw ||
  3676                n == m->memory_at(Compile::AliasIdxRaw)) {
  3677       expected_wide_mem = true;
  3678     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3679       // memory can "leak through" calls on channels that
  3680       // are write-once.  Allow this also.
  3681       expected_wide_mem = true;
  3683     assert(expected_wide_mem, "expected narrow slice replacement");
  3686 #else // !ASSERT
  3687 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3688 #endif
  3691 //-----------------------------memory_at---------------------------------------
  3692 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3693   assert(alias_idx >= Compile::AliasIdxRaw ||
  3694          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3695          "must avoid base_memory and AliasIdxTop");
  3697   // Otherwise, it is a narrow slice.
  3698   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3699   Compile *C = Compile::current();
  3700   if (is_empty_memory(n)) {
  3701     // the array is sparse; empty slots are the "top" node
  3702     n = base_memory();
  3703     assert(Node::in_dump()
  3704            || n == NULL || n->bottom_type() == Type::TOP
  3705            || n->adr_type() == TypePtr::BOTTOM
  3706            || n->adr_type() == TypeRawPtr::BOTTOM
  3707            || Compile::current()->AliasLevel() == 0,
  3708            "must be a wide memory");
  3709     // AliasLevel == 0 if we are organizing the memory states manually.
  3710     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3711   } else {
  3712     // make sure the stored slice is sane
  3713     #ifdef ASSERT
  3714     if (is_error_reported() || Node::in_dump()) {
  3715     } else if (might_be_same(n, base_memory())) {
  3716       // Give it a pass:  It is a mostly harmless repetition of the base.
  3717       // This can arise normally from node subsumption during optimization.
  3718     } else {
  3719       verify_memory_slice(this, alias_idx, n);
  3721     #endif
  3723   return n;
  3726 //---------------------------set_memory_at-------------------------------------
  3727 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3728   verify_memory_slice(this, alias_idx, n);
  3729   Node* empty_mem = empty_memory();
  3730   if (n == base_memory())  n = empty_mem;  // collapse default
  3731   uint need_req = alias_idx+1;
  3732   if (req() < need_req) {
  3733     if (n == empty_mem)  return;  // already the default, so do not grow me
  3734     // grow the sparse array
  3735     do {
  3736       add_req(empty_mem);
  3737     } while (req() < need_req);
  3739   set_req( alias_idx, n );
  3744 //--------------------------iteration_setup------------------------------------
  3745 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3746   if (other != NULL) {
  3747     grow_to_match(other);
  3748     // invariant:  the finite support of mm2 is within mm->req()
  3749     #ifdef ASSERT
  3750     for (uint i = req(); i < other->req(); i++) {
  3751       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3753     #endif
  3755   // Replace spurious copies of base_memory by top.
  3756   Node* base_mem = base_memory();
  3757   if (base_mem != NULL && !base_mem->is_top()) {
  3758     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3759       if (in(i) == base_mem)
  3760         set_req(i, empty_memory());
  3765 //---------------------------grow_to_match-------------------------------------
  3766 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3767   Node* empty_mem = empty_memory();
  3768   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3769   // look for the finite support of the other memory
  3770   for (uint i = other->req(); --i >= req(); ) {
  3771     if (other->in(i) != empty_mem) {
  3772       uint new_len = i+1;
  3773       while (req() < new_len)  add_req(empty_mem);
  3774       break;
  3779 //---------------------------verify_sparse-------------------------------------
  3780 #ifndef PRODUCT
  3781 bool MergeMemNode::verify_sparse() const {
  3782   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3783   Node* base_mem = base_memory();
  3784   // The following can happen in degenerate cases, since empty==top.
  3785   if (is_empty_memory(base_mem))  return true;
  3786   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3787     assert(in(i) != NULL, "sane slice");
  3788     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3790   return true;
  3793 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3794   Node* n;
  3795   n = mm->in(idx);
  3796   if (mem == n)  return true;  // might be empty_memory()
  3797   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3798   if (mem == n)  return true;
  3799   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3800     if (mem == n)  return true;
  3801     if (n == NULL)  break;
  3803   return false;
  3805 #endif // !PRODUCT

mercurial