src/cpu/x86/vm/vm_version_x86_32.hpp

Wed, 23 Apr 2008 11:20:36 -0700

author
kvn
date
Wed, 23 Apr 2008 11:20:36 -0700
changeset 559
b130b98db9cf
parent 435
a61af66fc99e
child 840
2649e5276dd7
permissions
-rw-r--r--

6689060: Escape Analysis does not work with Compressed Oops
Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class VM_Version: public Abstract_VM_Version {
    26 public:
    27   // cpuid result register layouts.  These are all unions of a uint32_t
    28   // (in case anyone wants access to the register as a whole) and a bitfield.
    30   union StdCpuid1Eax {
    31     uint32_t value;
    32     struct {
    33       uint32_t stepping   : 4,
    34                model      : 4,
    35                family     : 4,
    36                proc_type  : 2,
    37                           : 2,
    38                ext_model  : 4,
    39                ext_family : 8,
    40                           : 4;
    41     } bits;
    42   };
    44   union StdCpuid1Ebx { // example, unused
    45     uint32_t value;
    46     struct {
    47       uint32_t brand_id         : 8,
    48                clflush_size     : 8,
    49                threads_per_cpu  : 8,
    50                apic_id          : 8;
    51     } bits;
    52   };
    54   union StdCpuid1Ecx {
    55     uint32_t value;
    56     struct {
    57       uint32_t sse3     : 1,
    58                         : 2,
    59                monitor  : 1,
    60                         : 1,
    61                vmx      : 1,
    62                         : 1,
    63                est      : 1,
    64                         : 1,
    65                ssse3    : 1,
    66                cid      : 1,
    67                         : 2,
    68                cmpxchg16: 1,
    69                         : 4,
    70                dca      : 1,
    71                         : 4,
    72                popcnt   : 1,
    73                         : 8;
    74     } bits;
    75   };
    77   union StdCpuid1Edx {
    78     uint32_t value;
    79     struct {
    80       uint32_t          : 4,
    81                tsc      : 1,
    82                         : 3,
    83                cmpxchg8 : 1,
    84                         : 6,
    85                cmov     : 1,
    86                         : 7,
    87                mmx      : 1,
    88                fxsr     : 1,
    89                sse      : 1,
    90                sse2     : 1,
    91                         : 1,
    92                ht       : 1,
    93                         : 3;
    94     } bits;
    95   };
    97   union DcpCpuid4Eax {
    98     uint32_t value;
    99     struct {
   100       uint32_t cache_type    : 5,
   101                              : 21,
   102                cores_per_cpu : 6;
   103     } bits;
   104   };
   106   union DcpCpuid4Ebx {
   107     uint32_t value;
   108     struct {
   109       uint32_t L1_line_size  : 12,
   110                partitions    : 10,
   111                associativity : 10;
   112     } bits;
   113   };
   115   union ExtCpuid1Ecx {
   116     uint32_t value;
   117     struct {
   118       uint32_t LahfSahf     : 1,
   119                CmpLegacy    : 1,
   120                             : 4,
   121                abm          : 1,
   122                sse4a        : 1,
   123                misalignsse  : 1,
   124                prefetchw    : 1,
   125                             : 22;
   126     } bits;
   127   };
   129   union ExtCpuid1Edx {
   130     uint32_t value;
   131     struct {
   132       uint32_t           : 22,
   133                mmx_amd   : 1,
   134                mmx       : 1,
   135                fxsr      : 1,
   136                          : 4,
   137                long_mode : 1,
   138                tdnow2    : 1,
   139                tdnow     : 1;
   140     } bits;
   141   };
   143   union ExtCpuid5Ex {
   144     uint32_t value;
   145     struct {
   146       uint32_t L1_line_size : 8,
   147                L1_tag_lines : 8,
   148                L1_assoc     : 8,
   149                L1_size      : 8;
   150     } bits;
   151   };
   153   union ExtCpuid8Ecx {
   154     uint32_t value;
   155     struct {
   156       uint32_t cores_per_cpu : 8,
   157                              : 24;
   158     } bits;
   159   };
   161 protected:
   162    static int _cpu;
   163    static int _model;
   164    static int _stepping;
   165    static int _cpuFeatures;     // features returned by the "cpuid" instruction
   166                                 // 0 if this instruction is not available
   167    static const char* _features_str;
   169    enum {
   170      CPU_CX8  = (1 << 0), // next bits are from cpuid 1 (EDX)
   171      CPU_CMOV = (1 << 1),
   172      CPU_FXSR = (1 << 2),
   173      CPU_HT   = (1 << 3),
   174      CPU_MMX  = (1 << 4),
   175      CPU_3DNOW= (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
   176      CPU_SSE  = (1 << 6),
   177      CPU_SSE2 = (1 << 7),
   178      CPU_SSE3 = (1 << 8), // sse3  comes from cpuid 1 (ECX)
   179      CPU_SSSE3= (1 << 9),
   180      CPU_SSE4 = (1 <<10),
   181      CPU_SSE4A= (1 <<11)
   182    } cpuFeatureFlags;
   184   // cpuid information block.  All info derived from executing cpuid with
   185   // various function numbers is stored here.  Intel and AMD info is
   186   // merged in this block: accessor methods disentangle it.
   187   //
   188   // The info block is laid out in subblocks of 4 dwords corresponding to
   189   // rax, rbx, rcx and rdx, whether or not they contain anything useful.
   190   struct CpuidInfo {
   191     // cpuid function 0
   192     uint32_t std_max_function;
   193     uint32_t std_vendor_name_0;
   194     uint32_t std_vendor_name_1;
   195     uint32_t std_vendor_name_2;
   197     // cpuid function 1
   198     StdCpuid1Eax std_cpuid1_rax;
   199     StdCpuid1Ebx std_cpuid1_rbx;
   200     StdCpuid1Ecx std_cpuid1_rcx;
   201     StdCpuid1Edx std_cpuid1_rdx;
   203     // cpuid function 4 (deterministic cache parameters)
   204     DcpCpuid4Eax dcp_cpuid4_rax;
   205     DcpCpuid4Ebx dcp_cpuid4_rbx;
   206     uint32_t     dcp_cpuid4_rcx; // unused currently
   207     uint32_t     dcp_cpuid4_rdx; // unused currently
   209     // cpuid function 0x80000000 // example, unused
   210     uint32_t ext_max_function;
   211     uint32_t ext_vendor_name_0;
   212     uint32_t ext_vendor_name_1;
   213     uint32_t ext_vendor_name_2;
   215     // cpuid function 0x80000001
   216     uint32_t     ext_cpuid1_rax; // reserved
   217     uint32_t     ext_cpuid1_rbx; // reserved
   218     ExtCpuid1Ecx ext_cpuid1_rcx;
   219     ExtCpuid1Edx ext_cpuid1_rdx;
   221     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   222     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   223     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   224     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   226     // cpuid function 0x80000005 //AMD L1, Intel reserved
   227     uint32_t     ext_cpuid5_rax; // unused currently
   228     uint32_t     ext_cpuid5_rbx; // reserved
   229     ExtCpuid5Ex  ext_cpuid5_rcx; // L1 data cache info (AMD)
   230     ExtCpuid5Ex  ext_cpuid5_rdx; // L1 instruction cache info (AMD)
   232     // cpuid function 0x80000008
   233     uint32_t     ext_cpuid8_rax; // unused currently
   234     uint32_t     ext_cpuid8_rbx; // reserved
   235     ExtCpuid8Ecx ext_cpuid8_rcx;
   236     uint32_t     ext_cpuid8_rdx; // reserved
   237   };
   239   // The actual cpuid info block
   240   static CpuidInfo _cpuid_info;
   242   // Extractors and predicates
   243   static bool is_extended_cpu_family() {
   244     const uint32_t Extended_Cpu_Family = 0xf;
   245     return _cpuid_info.std_cpuid1_rax.bits.family == Extended_Cpu_Family;
   246   }
   247   static uint32_t extended_cpu_family() {
   248     uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
   249     if (is_extended_cpu_family()) {
   250       result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
   251     }
   252     return result;
   253   }
   254   static uint32_t extended_cpu_model() {
   255     uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
   256     if (is_extended_cpu_family()) {
   257       result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
   258     }
   259     return result;
   260   }
   261   static uint32_t cpu_stepping() {
   262     uint32_t result = _cpuid_info.std_cpuid1_rax.bits.stepping;
   263     return result;
   264   }
   265   static uint logical_processor_count() {
   266     uint result = threads_per_core();
   267     return result;
   268   }
   269   static uint32_t feature_flags() {
   270     uint32_t result = 0;
   271     if (_cpuid_info.std_cpuid1_rdx.bits.cmpxchg8 != 0)
   272       result |= CPU_CX8;
   273     if (_cpuid_info.std_cpuid1_rdx.bits.cmov != 0)
   274       result |= CPU_CMOV;
   275     if (_cpuid_info.std_cpuid1_rdx.bits.fxsr != 0 || is_amd() &&
   276         _cpuid_info.ext_cpuid1_rdx.bits.fxsr != 0)
   277       result |= CPU_FXSR;
   278     // HT flag is set for multi-core processors also.
   279     if (threads_per_core() > 1)
   280       result |= CPU_HT;
   281     if (_cpuid_info.std_cpuid1_rdx.bits.mmx != 0 || is_amd() &&
   282         _cpuid_info.ext_cpuid1_rdx.bits.mmx != 0)
   283       result |= CPU_MMX;
   284     if (is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow != 0)
   285       result |= CPU_3DNOW;
   286     if (_cpuid_info.std_cpuid1_rdx.bits.sse != 0)
   287       result |= CPU_SSE;
   288     if (_cpuid_info.std_cpuid1_rdx.bits.sse2 != 0)
   289       result |= CPU_SSE2;
   290     if (_cpuid_info.std_cpuid1_rcx.bits.sse3 != 0)
   291       result |= CPU_SSE3;
   292     if (_cpuid_info.std_cpuid1_rcx.bits.ssse3 != 0)
   293       result |= CPU_SSSE3;
   294     if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
   295       result |= CPU_SSE4A;
   296     return result;
   297   }
   299   static void get_processor_features();
   301 public:
   302   // Offsets for cpuid asm stub
   303   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   304   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_rax); }
   305   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_rax); }
   306   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_rax); }
   307   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_rax); }
   308   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_rax); }
   310   // Initialization
   311   static void initialize();
   313   // Asserts
   314   static void assert_is_initialized() {
   315     assert(_cpuid_info.std_cpuid1_rax.bits.family != 0, "VM_Version not initialized");
   316   }
   318   //
   319   // Processor family:
   320   //       3   -  386
   321   //       4   -  486
   322   //       5   -  Pentium
   323   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   324   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   325   //    family 6 model:   9,        13,       14,        15
   326   //    0x0f   -  Pentium 4, Opteron
   327   //
   328   // Note: The cpu family should be used to select between
   329   //       instruction sequences which are valid on all Intel
   330   //       processors.  Use the feature test functions below to
   331   //       determine whether a particular instruction is supported.
   332   //
   333   static int  cpu_family()        { return _cpu;}
   334   static bool is_P6()             { return cpu_family() >= 6; }
   336   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   337   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   339   static uint cores_per_cpu()  {
   340     uint result = 1;
   341     if (is_intel()) {
   342       result = (_cpuid_info.dcp_cpuid4_rax.bits.cores_per_cpu + 1);
   343     } else if (is_amd()) {
   344       result = (_cpuid_info.ext_cpuid8_rcx.bits.cores_per_cpu + 1);
   345     }
   346     return result;
   347   }
   349   static uint threads_per_core()  {
   350     uint result = 1;
   351     if (_cpuid_info.std_cpuid1_rdx.bits.ht != 0) {
   352       result = _cpuid_info.std_cpuid1_rbx.bits.threads_per_cpu /
   353                cores_per_cpu();
   354     }
   355     return result;
   356   }
   358   static intx L1_data_cache_line_size()  {
   359     intx result = 0;
   360     if (is_intel()) {
   361       result = (_cpuid_info.dcp_cpuid4_rbx.bits.L1_line_size + 1);
   362     } else if (is_amd()) {
   363       result = _cpuid_info.ext_cpuid5_rcx.bits.L1_line_size;
   364     }
   365     if (result < 32) // not defined ?
   366       result = 32;   // 32 bytes by default on x86
   367     return result;
   368   }
   370   //
   371   // Feature identification
   372   //
   373   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   374   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   375   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   376   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   377   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   378   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   379   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   380   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   381   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   382   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   383   static bool supports_sse4()     { return (_cpuFeatures & CPU_SSE4) != 0; }
   384   //
   385   // AMD features
   386   //
   387   static bool supports_3dnow()    { return (_cpuFeatures & CPU_3DNOW) != 0; }
   388   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.mmx_amd != 0; }
   389   static bool supports_3dnow2()   { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow2 != 0; }
   390   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   392   static bool supports_compare_and_exchange() { return true; }
   394   static const char* cpu_features()           { return _features_str; }
   396   static intx allocate_prefetch_distance() {
   397     // This method should be called before allocate_prefetch_style().
   398     //
   399     // Hardware prefetching (distance/size in bytes):
   400     // Pentium 3 -  64 /  32
   401     // Pentium 4 - 256 / 128
   402     // Athlon    -  64 /  32 ????
   403     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   404     // Core      - 128 /  64
   405     //
   406     // Software prefetching (distance in bytes / instruction with best score):
   407     // Pentium 3 - 128 / prefetchnta
   408     // Pentium 4 - 512 / prefetchnta
   409     // Athlon    - 128 / prefetchnta
   410     // Opteron   - 256 / prefetchnta
   411     // Core      - 256 / prefetchnta
   412     // It will be used only when AllocatePrefetchStyle > 0
   414     intx count = AllocatePrefetchDistance;
   415     if (count < 0) {   // default ?
   416       if (is_amd()) {  // AMD
   417         if (supports_sse2())
   418           count = 256; // Opteron
   419         else
   420           count = 128; // Athlon
   421       } else {         // Intel
   422         if (supports_sse2())
   423           if (cpu_family() == 6) {
   424             count = 256; // Pentium M, Core, Core2
   425           } else {
   426             count = 512; // Pentium 4
   427           }
   428         else
   429           count = 128; // Pentium 3 (and all other old CPUs)
   430       }
   431     }
   432     return count;
   433   }
   434   static intx allocate_prefetch_style() {
   435     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   436     // Return 0 if AllocatePrefetchDistance was not defined or
   437     // prefetch instruction is not supported.
   438     return (AllocatePrefetchDistance > 0 &&
   439             (supports_3dnow() || supports_sse())) ? AllocatePrefetchStyle : 0;
   440   }
   441 };

mercurial