src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Wed, 23 Apr 2008 11:20:36 -0700

author
kvn
date
Wed, 23 Apr 2008 11:20:36 -0700
changeset 559
b130b98db9cf
parent 464
d5fc211aea19
child 631
d1605aabd0a1
child 777
37f87013dfd8
permissions
-rw-r--r--

6689060: Escape Analysis does not work with Compressed Oops
Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRGenerator_x86.cpp.incl"
    28 #ifdef ASSERT
    29 #define __ gen()->lir(__FILE__, __LINE__)->
    30 #else
    31 #define __ gen()->lir()->
    32 #endif
    34 // Item will be loaded into a byte register; Intel only
    35 void LIRItem::load_byte_item() {
    36   load_item();
    37   LIR_Opr res = result();
    39   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    40     // make sure that it is a byte register
    41     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    42            "can't load floats in byte register");
    43     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    44     __ move(res, reg);
    46     _result = reg;
    47   }
    48 }
    51 void LIRItem::load_nonconstant() {
    52   LIR_Opr r = value()->operand();
    53   if (r->is_constant()) {
    54     _result = r;
    55   } else {
    56     load_item();
    57   }
    58 }
    60 //--------------------------------------------------------------
    61 //               LIRGenerator
    62 //--------------------------------------------------------------
    65 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    66 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    67 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    68 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    69 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    70 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    71 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    72 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    76   LIR_Opr opr;
    77   switch (type->tag()) {
    78     case intTag:     opr = FrameMap::rax_opr;          break;
    79     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    80     case longTag:    opr = FrameMap::rax_rdx_long_opr; break;
    81     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    82     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    84     case addressTag:
    85     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    86   }
    88   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
    89   return opr;
    90 }
    93 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
    94   LIR_Opr reg = new_register(T_INT);
    95   set_vreg_flag(reg, LIRGenerator::byte_reg);
    96   return reg;
    97 }
   100 //--------- loading items into registers --------------------------------
   103 // i486 instructions can inline constants
   104 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   105   if (type == T_SHORT || type == T_CHAR) {
   106     // there is no immediate move of word values in asembler_i486.?pp
   107     return false;
   108   }
   109   Constant* c = v->as_Constant();
   110   if (c && c->state() == NULL) {
   111     // constants of any type can be stored directly, except for
   112     // unloaded object constants.
   113     return true;
   114   }
   115   return false;
   116 }
   119 bool LIRGenerator::can_inline_as_constant(Value v) const {
   120   return v->type()->tag() != objectTag ||
   121     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   122 }
   125 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   126   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   127 }
   130 LIR_Opr LIRGenerator::safepoint_poll_register() {
   131   return LIR_OprFact::illegalOpr;
   132 }
   135 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   136                                             int shift, int disp, BasicType type) {
   137   assert(base->is_register(), "must be");
   138   if (index->is_constant()) {
   139     return new LIR_Address(base,
   140                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   141                            type);
   142   } else {
   143     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   144   }
   145 }
   148 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   149                                               BasicType type, bool needs_card_mark) {
   150   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   152   LIR_Address* addr;
   153   if (index_opr->is_constant()) {
   154     int elem_size = type2aelembytes(type);
   155     addr = new LIR_Address(array_opr,
   156                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   157   } else {
   158     addr =  new LIR_Address(array_opr,
   159                             index_opr,
   160                             LIR_Address::scale(type),
   161                             offset_in_bytes, type);
   162   }
   163   if (needs_card_mark) {
   164     // This store will need a precise card mark, so go ahead and
   165     // compute the full adddres instead of computing once for the
   166     // store and again for the card mark.
   167     LIR_Opr tmp = new_register(T_INT);
   168     __ leal(LIR_OprFact::address(addr), tmp);
   169     return new LIR_Address(tmp, 0, type);
   170   } else {
   171     return addr;
   172   }
   173 }
   176 void LIRGenerator::increment_counter(address counter, int step) {
   177   LIR_Opr temp = new_register(T_INT);
   178   LIR_Opr pointer = new_register(T_INT);
   179   __ move(LIR_OprFact::intConst((int)counter), pointer);
   180   LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
   181   increment_counter(addr, step);
   182 }
   185 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   186   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   187 }
   190 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   191   __ cmp_mem_int(condition, base, disp, c, info);
   192 }
   195 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   196   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   197 }
   200 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   201   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   202 }
   205 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   206   if (tmp->is_valid()) {
   207     if (is_power_of_2(c + 1)) {
   208       __ move(left, tmp);
   209       __ shift_left(left, log2_intptr(c + 1), left);
   210       __ sub(left, tmp, result);
   211       return true;
   212     } else if (is_power_of_2(c - 1)) {
   213       __ move(left, tmp);
   214       __ shift_left(left, log2_intptr(c - 1), left);
   215       __ add(left, tmp, result);
   216       return true;
   217     }
   218   }
   219   return false;
   220 }
   223 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   224   BasicType type = item->type();
   225   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   226 }
   228 //----------------------------------------------------------------------
   229 //             visitor functions
   230 //----------------------------------------------------------------------
   233 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   234   assert(x->is_root(),"");
   235   bool needs_range_check = true;
   236   bool use_length = x->length() != NULL;
   237   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   238   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   239                                          !get_jobject_constant(x->value())->is_null_object());
   241   LIRItem array(x->array(), this);
   242   LIRItem index(x->index(), this);
   243   LIRItem value(x->value(), this);
   244   LIRItem length(this);
   246   array.load_item();
   247   index.load_nonconstant();
   249   if (use_length) {
   250     needs_range_check = x->compute_needs_range_check();
   251     if (needs_range_check) {
   252       length.set_instruction(x->length());
   253       length.load_item();
   254     }
   255   }
   256   if (needs_store_check) {
   257     value.load_item();
   258   } else {
   259     value.load_for_store(x->elt_type());
   260   }
   262   set_no_result(x);
   264   // the CodeEmitInfo must be duplicated for each different
   265   // LIR-instruction because spilling can occur anywhere between two
   266   // instructions and so the debug information must be different
   267   CodeEmitInfo* range_check_info = state_for(x);
   268   CodeEmitInfo* null_check_info = NULL;
   269   if (x->needs_null_check()) {
   270     null_check_info = new CodeEmitInfo(range_check_info);
   271   }
   273   // emit array address setup early so it schedules better
   274   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   276   if (GenerateRangeChecks && needs_range_check) {
   277     if (use_length) {
   278       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   279       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   280     } else {
   281       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   282       // range_check also does the null check
   283       null_check_info = NULL;
   284     }
   285   }
   287   if (GenerateArrayStoreCheck && needs_store_check) {
   288     LIR_Opr tmp1 = new_register(objectType);
   289     LIR_Opr tmp2 = new_register(objectType);
   290     LIR_Opr tmp3 = new_register(objectType);
   292     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   293     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
   294   }
   296   if (obj_store) {
   297     __ move(value.result(), array_addr, null_check_info);
   298     // Seems to be a precise
   299     post_barrier(LIR_OprFact::address(array_addr), value.result());
   300   } else {
   301     __ move(value.result(), array_addr, null_check_info);
   302   }
   303 }
   306 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   307   assert(x->is_root(),"");
   308   LIRItem obj(x->obj(), this);
   309   obj.load_item();
   311   set_no_result(x);
   313   // "lock" stores the address of the monitor stack slot, so this is not an oop
   314   LIR_Opr lock = new_register(T_INT);
   315   // Need a scratch register for biased locking on x86
   316   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   317   if (UseBiasedLocking) {
   318     scratch = new_register(T_INT);
   319   }
   321   CodeEmitInfo* info_for_exception = NULL;
   322   if (x->needs_null_check()) {
   323     info_for_exception = state_for(x, x->lock_stack_before());
   324   }
   325   // this CodeEmitInfo must not have the xhandlers because here the
   326   // object is already locked (xhandlers expect object to be unlocked)
   327   CodeEmitInfo* info = state_for(x, x->state(), true);
   328   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   329                         x->monitor_no(), info_for_exception, info);
   330 }
   333 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   334   assert(x->is_root(),"");
   336   LIRItem obj(x->obj(), this);
   337   obj.dont_load_item();
   339   LIR_Opr lock = new_register(T_INT);
   340   LIR_Opr obj_temp = new_register(T_INT);
   341   set_no_result(x);
   342   monitor_exit(obj_temp, lock, syncTempOpr(), x->monitor_no());
   343 }
   346 // _ineg, _lneg, _fneg, _dneg
   347 void LIRGenerator::do_NegateOp(NegateOp* x) {
   348   LIRItem value(x->x(), this);
   349   value.set_destroys_register();
   350   value.load_item();
   351   LIR_Opr reg = rlock(x);
   352   __ negate(value.result(), reg);
   354   set_result(x, round_item(reg));
   355 }
   358 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   359 //      _dadd, _dmul, _dsub, _ddiv, _drem
   360 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   361   LIRItem left(x->x(),  this);
   362   LIRItem right(x->y(), this);
   363   LIRItem* left_arg  = &left;
   364   LIRItem* right_arg = &right;
   365   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   366   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   367   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   368     left.load_item();
   369   } else {
   370     left.dont_load_item();
   371   }
   373   // do not load right operand if it is a constant.  only 0 and 1 are
   374   // loaded because there are special instructions for loading them
   375   // without memory access (not needed for SSE2 instructions)
   376   bool must_load_right = false;
   377   if (right.is_constant()) {
   378     LIR_Const* c = right.result()->as_constant_ptr();
   379     assert(c != NULL, "invalid constant");
   380     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   382     if (c->type() == T_FLOAT) {
   383       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   384     } else {
   385       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   386     }
   387   }
   389   if (must_load_both) {
   390     // frem and drem destroy also right operand, so move it to a new register
   391     right.set_destroys_register();
   392     right.load_item();
   393   } else if (right.is_register() || must_load_right) {
   394     right.load_item();
   395   } else {
   396     right.dont_load_item();
   397   }
   398   LIR_Opr reg = rlock(x);
   399   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   400   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   401     tmp = new_register(T_DOUBLE);
   402   }
   404   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   405     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   406     LIR_Opr fpu0, fpu1;
   407     if (x->op() == Bytecodes::_frem) {
   408       fpu0 = LIR_OprFact::single_fpu(0);
   409       fpu1 = LIR_OprFact::single_fpu(1);
   410     } else {
   411       fpu0 = LIR_OprFact::double_fpu(0);
   412       fpu1 = LIR_OprFact::double_fpu(1);
   413     }
   414     __ move(right.result(), fpu1); // order of left and right operand is important!
   415     __ move(left.result(), fpu0);
   416     __ rem (fpu0, fpu1, fpu0);
   417     __ move(fpu0, reg);
   419   } else {
   420     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   421   }
   423   set_result(x, round_item(reg));
   424 }
   427 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   428 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   429   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   430     // long division is implemented as a direct call into the runtime
   431     LIRItem left(x->x(), this);
   432     LIRItem right(x->y(), this);
   434     // the check for division by zero destroys the right operand
   435     right.set_destroys_register();
   437     BasicTypeList signature(2);
   438     signature.append(T_LONG);
   439     signature.append(T_LONG);
   440     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   442     // check for division by zero (destroys registers of right operand!)
   443     CodeEmitInfo* info = state_for(x);
   445     const LIR_Opr result_reg = result_register_for(x->type());
   446     left.load_item_force(cc->at(1));
   447     right.load_item();
   449     __ move(right.result(), cc->at(0));
   451     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   452     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   454     address entry;
   455     switch (x->op()) {
   456     case Bytecodes::_lrem:
   457       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   458       break; // check if dividend is 0 is done elsewhere
   459     case Bytecodes::_ldiv:
   460       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   461       break; // check if dividend is 0 is done elsewhere
   462     case Bytecodes::_lmul:
   463       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   464       break;
   465     default:
   466       ShouldNotReachHere();
   467     }
   469     LIR_Opr result = rlock_result(x);
   470     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   471     __ move(result_reg, result);
   472   } else if (x->op() == Bytecodes::_lmul) {
   473     // missing test if instr is commutative and if we should swap
   474     LIRItem left(x->x(), this);
   475     LIRItem right(x->y(), this);
   477     // right register is destroyed by the long mul, so it must be
   478     // copied to a new register.
   479     right.set_destroys_register();
   481     left.load_item();
   482     right.load_item();
   484     LIR_Opr reg = FrameMap::rax_rdx_long_opr;
   485     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   486     LIR_Opr result = rlock_result(x);
   487     __ move(reg, result);
   488   } else {
   489     // missing test if instr is commutative and if we should swap
   490     LIRItem left(x->x(), this);
   491     LIRItem right(x->y(), this);
   493     left.load_item();
   494     // dont load constants to save register
   495     right.load_nonconstant();
   496     rlock_result(x);
   497     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   498   }
   499 }
   503 // for: _iadd, _imul, _isub, _idiv, _irem
   504 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   505   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   506     // The requirements for division and modulo
   507     // input : rax,: dividend                         min_int
   508     //         reg: divisor   (may not be rax,/rdx)   -1
   509     //
   510     // output: rax,: quotient  (= rax, idiv reg)       min_int
   511     //         rdx: remainder (= rax, irem reg)       0
   513     // rax, and rdx will be destroyed
   515     // Note: does this invalidate the spec ???
   516     LIRItem right(x->y(), this);
   517     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   519     // call state_for before load_item_force because state_for may
   520     // force the evaluation of other instructions that are needed for
   521     // correct debug info.  Otherwise the live range of the fix
   522     // register might be too long.
   523     CodeEmitInfo* info = state_for(x);
   525     left.load_item_force(divInOpr());
   527     right.load_item();
   529     LIR_Opr result = rlock_result(x);
   530     LIR_Opr result_reg;
   531     if (x->op() == Bytecodes::_idiv) {
   532       result_reg = divOutOpr();
   533     } else {
   534       result_reg = remOutOpr();
   535     }
   537     if (!ImplicitDiv0Checks) {
   538       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   539       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   540     }
   541     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   542     if (x->op() == Bytecodes::_irem) {
   543       __ irem(left.result(), right.result(), result_reg, tmp, info);
   544     } else if (x->op() == Bytecodes::_idiv) {
   545       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   546     } else {
   547       ShouldNotReachHere();
   548     }
   550     __ move(result_reg, result);
   551   } else {
   552     // missing test if instr is commutative and if we should swap
   553     LIRItem left(x->x(),  this);
   554     LIRItem right(x->y(), this);
   555     LIRItem* left_arg = &left;
   556     LIRItem* right_arg = &right;
   557     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   558       // swap them if left is real stack (or cached) and right is real register(not cached)
   559       left_arg = &right;
   560       right_arg = &left;
   561     }
   563     left_arg->load_item();
   565     // do not need to load right, as we can handle stack and constants
   566     if (x->op() == Bytecodes::_imul ) {
   567       // check if we can use shift instead
   568       bool use_constant = false;
   569       bool use_tmp = false;
   570       if (right_arg->is_constant()) {
   571         int iconst = right_arg->get_jint_constant();
   572         if (iconst > 0) {
   573           if (is_power_of_2(iconst)) {
   574             use_constant = true;
   575           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   576             use_constant = true;
   577             use_tmp = true;
   578           }
   579         }
   580       }
   581       if (use_constant) {
   582         right_arg->dont_load_item();
   583       } else {
   584         right_arg->load_item();
   585       }
   586       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   587       if (use_tmp) {
   588         tmp = new_register(T_INT);
   589       }
   590       rlock_result(x);
   592       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   593     } else {
   594       right_arg->dont_load_item();
   595       rlock_result(x);
   596       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   597       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   598     }
   599   }
   600 }
   603 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   604   // when an operand with use count 1 is the left operand, then it is
   605   // likely that no move for 2-operand-LIR-form is necessary
   606   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   607     x->swap_operands();
   608   }
   610   ValueTag tag = x->type()->tag();
   611   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   612   switch (tag) {
   613     case floatTag:
   614     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   615     case longTag:    do_ArithmeticOp_Long(x); return;
   616     case intTag:     do_ArithmeticOp_Int(x);  return;
   617   }
   618   ShouldNotReachHere();
   619 }
   622 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   623 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   624   // count must always be in rcx
   625   LIRItem value(x->x(), this);
   626   LIRItem count(x->y(), this);
   628   ValueTag elemType = x->type()->tag();
   629   bool must_load_count = !count.is_constant() || elemType == longTag;
   630   if (must_load_count) {
   631     // count for long must be in register
   632     count.load_item_force(shiftCountOpr());
   633   } else {
   634     count.dont_load_item();
   635   }
   636   value.load_item();
   637   LIR_Opr reg = rlock_result(x);
   639   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   640 }
   643 // _iand, _land, _ior, _lor, _ixor, _lxor
   644 void LIRGenerator::do_LogicOp(LogicOp* x) {
   645   // when an operand with use count 1 is the left operand, then it is
   646   // likely that no move for 2-operand-LIR-form is necessary
   647   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   648     x->swap_operands();
   649   }
   651   LIRItem left(x->x(), this);
   652   LIRItem right(x->y(), this);
   654   left.load_item();
   655   right.load_nonconstant();
   656   LIR_Opr reg = rlock_result(x);
   658   logic_op(x->op(), reg, left.result(), right.result());
   659 }
   663 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   664 void LIRGenerator::do_CompareOp(CompareOp* x) {
   665   LIRItem left(x->x(), this);
   666   LIRItem right(x->y(), this);
   667   ValueTag tag = x->x()->type()->tag();
   668   if (tag == longTag) {
   669     left.set_destroys_register();
   670   }
   671   left.load_item();
   672   right.load_item();
   673   LIR_Opr reg = rlock_result(x);
   675   if (x->x()->type()->is_float_kind()) {
   676     Bytecodes::Code code = x->op();
   677     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   678   } else if (x->x()->type()->tag() == longTag) {
   679     __ lcmp2int(left.result(), right.result(), reg);
   680   } else {
   681     Unimplemented();
   682   }
   683 }
   686 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
   687   assert(x->number_of_arguments() == 3, "wrong type");
   688   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
   689   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
   690   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
   692   // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
   693   cmp_value.load_item_force(FrameMap::rax_rdx_long_opr);
   695   // new value must be in rcx,ebx (hi,lo)
   696   new_value.load_item_force(FrameMap::rbx_rcx_long_opr);
   698   // object pointer register is overwritten with field address
   699   obj.load_item();
   701   // generate compare-and-swap; produces zero condition if swap occurs
   702   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
   703   LIR_Opr addr = obj.result();
   704   __ add(addr, LIR_OprFact::intConst(value_offset), addr);
   705   LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
   706   LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
   707   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
   709   // generate conditional move of boolean result
   710   LIR_Opr result = rlock_result(x);
   711   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   712 }
   715 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   716   assert(x->number_of_arguments() == 4, "wrong type");
   717   LIRItem obj   (x->argument_at(0), this);  // object
   718   LIRItem offset(x->argument_at(1), this);  // offset of field
   719   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   720   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   722   assert(obj.type()->tag() == objectTag, "invalid type");
   723   assert(offset.type()->tag() == intTag, "invalid type");
   724   assert(cmp.type()->tag() == type->tag(), "invalid type");
   725   assert(val.type()->tag() == type->tag(), "invalid type");
   727   // get address of field
   728   obj.load_item();
   729   offset.load_nonconstant();
   731   if (type == objectType) {
   732     cmp.load_item_force(FrameMap::rax_oop_opr);
   733     val.load_item();
   734   } else if (type == intType) {
   735     cmp.load_item_force(FrameMap::rax_opr);
   736     val.load_item();
   737   } else if (type == longType) {
   738     cmp.load_item_force(FrameMap::rax_rdx_long_opr);
   739     val.load_item_force(FrameMap::rbx_rcx_long_opr);
   740   } else {
   741     ShouldNotReachHere();
   742   }
   744   LIR_Opr addr = new_pointer_register();
   745   __ move(obj.result(), addr);
   746   __ add(addr, offset.result(), addr);
   750   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   751   if (type == objectType)
   752     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   753   else if (type == intType)
   754     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   755   else if (type == longType)
   756     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   757   else {
   758     ShouldNotReachHere();
   759   }
   761   // generate conditional move of boolean result
   762   LIR_Opr result = rlock_result(x);
   763   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   764   if (type == objectType) {   // Write-barrier needed for Object fields.
   765     // Seems to be precise
   766     post_barrier(addr, val.result());
   767   }
   768 }
   771 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   772   assert(x->number_of_arguments() == 1, "wrong type");
   773   LIRItem value(x->argument_at(0), this);
   775   bool use_fpu = false;
   776   if (UseSSE >= 2) {
   777     switch(x->id()) {
   778       case vmIntrinsics::_dsin:
   779       case vmIntrinsics::_dcos:
   780       case vmIntrinsics::_dtan:
   781       case vmIntrinsics::_dlog:
   782       case vmIntrinsics::_dlog10:
   783         use_fpu = true;
   784     }
   785   } else {
   786     value.set_destroys_register();
   787   }
   789   value.load_item();
   791   LIR_Opr calc_input = value.result();
   792   LIR_Opr calc_result = rlock_result(x);
   794   // sin and cos need two free fpu stack slots, so register two temporary operands
   795   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   796   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   798   if (use_fpu) {
   799     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   800     __ move(calc_input, tmp);
   802     calc_input = tmp;
   803     calc_result = tmp;
   804     tmp1 = FrameMap::caller_save_fpu_reg_at(1);
   805     tmp2 = FrameMap::caller_save_fpu_reg_at(2);
   806   }
   808   switch(x->id()) {
   809     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   810     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   811     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   812     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   813     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   814     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   815     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   816     default:                    ShouldNotReachHere();
   817   }
   819   if (use_fpu) {
   820     __ move(calc_result, x->operand());
   821   }
   822 }
   825 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   826   assert(x->number_of_arguments() == 5, "wrong type");
   827   LIRItem src(x->argument_at(0), this);
   828   LIRItem src_pos(x->argument_at(1), this);
   829   LIRItem dst(x->argument_at(2), this);
   830   LIRItem dst_pos(x->argument_at(3), this);
   831   LIRItem length(x->argument_at(4), this);
   833   // operands for arraycopy must use fixed registers, otherwise
   834   // LinearScan will fail allocation (because arraycopy always needs a
   835   // call)
   836   src.load_item_force     (FrameMap::rcx_oop_opr);
   837   src_pos.load_item_force (FrameMap::rdx_opr);
   838   dst.load_item_force     (FrameMap::rax_oop_opr);
   839   dst_pos.load_item_force (FrameMap::rbx_opr);
   840   length.load_item_force  (FrameMap::rdi_opr);
   841   LIR_Opr tmp =           (FrameMap::rsi_opr);
   842   set_no_result(x);
   844   int flags;
   845   ciArrayKlass* expected_type;
   846   arraycopy_helper(x, &flags, &expected_type);
   848   CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
   849   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   850 }
   853 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   854 // _i2b, _i2c, _i2s
   855 LIR_Opr fixed_register_for(BasicType type) {
   856   switch (type) {
   857     case T_FLOAT:  return FrameMap::fpu0_float_opr;
   858     case T_DOUBLE: return FrameMap::fpu0_double_opr;
   859     case T_INT:    return FrameMap::rax_opr;
   860     case T_LONG:   return FrameMap::rax_rdx_long_opr;
   861     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
   862   }
   863 }
   865 void LIRGenerator::do_Convert(Convert* x) {
   866   // flags that vary for the different operations and different SSE-settings
   867   bool fixed_input, fixed_result, round_result, needs_stub;
   869   switch (x->op()) {
   870     case Bytecodes::_i2l: // fall through
   871     case Bytecodes::_l2i: // fall through
   872     case Bytecodes::_i2b: // fall through
   873     case Bytecodes::_i2c: // fall through
   874     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   876     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
   877     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
   878     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
   879     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   880     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   881     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   882     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
   883     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
   884     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   885     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   886     default: ShouldNotReachHere();
   887   }
   889   LIRItem value(x->value(), this);
   890   value.load_item();
   891   LIR_Opr input = value.result();
   892   LIR_Opr result = rlock(x);
   894   // arguments of lir_convert
   895   LIR_Opr conv_input = input;
   896   LIR_Opr conv_result = result;
   897   ConversionStub* stub = NULL;
   899   if (fixed_input) {
   900     conv_input = fixed_register_for(input->type());
   901     __ move(input, conv_input);
   902   }
   904   assert(fixed_result == false || round_result == false, "cannot set both");
   905   if (fixed_result) {
   906     conv_result = fixed_register_for(result->type());
   907   } else if (round_result) {
   908     result = new_register(result->type());
   909     set_vreg_flag(result, must_start_in_memory);
   910   }
   912   if (needs_stub) {
   913     stub = new ConversionStub(x->op(), conv_input, conv_result);
   914   }
   916   __ convert(x->op(), conv_input, conv_result, stub);
   918   if (result != conv_result) {
   919     __ move(conv_result, result);
   920   }
   922   assert(result->is_virtual(), "result must be virtual register");
   923   set_result(x, result);
   924 }
   927 void LIRGenerator::do_NewInstance(NewInstance* x) {
   928   if (PrintNotLoaded && !x->klass()->is_loaded()) {
   929     tty->print_cr("   ###class not loaded at new bci %d", x->bci());
   930   }
   931   CodeEmitInfo* info = state_for(x, x->state());
   932   LIR_Opr reg = result_register_for(x->type());
   933   LIR_Opr klass_reg = new_register(objectType);
   934   new_instance(reg, x->klass(),
   935                        FrameMap::rcx_oop_opr,
   936                        FrameMap::rdi_oop_opr,
   937                        FrameMap::rsi_oop_opr,
   938                        LIR_OprFact::illegalOpr,
   939                        FrameMap::rdx_oop_opr, info);
   940   LIR_Opr result = rlock_result(x);
   941   __ move(reg, result);
   942 }
   945 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
   946   CodeEmitInfo* info = state_for(x, x->state());
   948   LIRItem length(x->length(), this);
   949   length.load_item_force(FrameMap::rbx_opr);
   951   LIR_Opr reg = result_register_for(x->type());
   952   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
   953   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
   954   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
   955   LIR_Opr tmp4 = reg;
   956   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
   957   LIR_Opr len = length.result();
   958   BasicType elem_type = x->elt_type();
   960   __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
   962   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
   963   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
   965   LIR_Opr result = rlock_result(x);
   966   __ move(reg, result);
   967 }
   970 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
   971   LIRItem length(x->length(), this);
   972   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
   973   // and therefore provide the state before the parameters have been consumed
   974   CodeEmitInfo* patching_info = NULL;
   975   if (!x->klass()->is_loaded() || PatchALot) {
   976     patching_info =  state_for(x, x->state_before());
   977   }
   979   CodeEmitInfo* info = state_for(x, x->state());
   981   const LIR_Opr reg = result_register_for(x->type());
   982   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
   983   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
   984   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
   985   LIR_Opr tmp4 = reg;
   986   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
   988   length.load_item_force(FrameMap::rbx_opr);
   989   LIR_Opr len = length.result();
   991   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
   992   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
   993   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
   994     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
   995   }
   996   jobject2reg_with_patching(klass_reg, obj, patching_info);
   997   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
   999   LIR_Opr result = rlock_result(x);
  1000   __ move(reg, result);
  1004 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1005   Values* dims = x->dims();
  1006   int i = dims->length();
  1007   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1008   while (i-- > 0) {
  1009     LIRItem* size = new LIRItem(dims->at(i), this);
  1010     items->at_put(i, size);
  1013   // need to get the info before, as the items may become invalid through item_free
  1014   CodeEmitInfo* patching_info = NULL;
  1015   if (!x->klass()->is_loaded() || PatchALot) {
  1016     patching_info = state_for(x, x->state_before());
  1018     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1019     // clone all handlers.
  1020     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1023   CodeEmitInfo* info = state_for(x, x->state());
  1025   i = dims->length();
  1026   while (i-- > 0) {
  1027     LIRItem* size = items->at(i);
  1028     size->load_nonconstant();
  1030     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1033   LIR_Opr reg = result_register_for(x->type());
  1034   jobject2reg_with_patching(reg, x->klass(), patching_info);
  1036   LIR_Opr rank = FrameMap::rbx_opr;
  1037   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1038   LIR_Opr varargs = FrameMap::rcx_opr;
  1039   __ move(FrameMap::rsp_opr, varargs);
  1040   LIR_OprList* args = new LIR_OprList(3);
  1041   args->append(reg);
  1042   args->append(rank);
  1043   args->append(varargs);
  1044   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1045                   LIR_OprFact::illegalOpr,
  1046                   reg, args, info);
  1048   LIR_Opr result = rlock_result(x);
  1049   __ move(reg, result);
  1053 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1054   // nothing to do for now
  1058 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1059   LIRItem obj(x->obj(), this);
  1061   CodeEmitInfo* patching_info = NULL;
  1062   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1063     // must do this before locking the destination register as an oop register,
  1064     // and before the obj is loaded (the latter is for deoptimization)
  1065     patching_info = state_for(x, x->state_before());
  1067   obj.load_item();
  1069   // info for exceptions
  1070   CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
  1072   CodeStub* stub;
  1073   if (x->is_incompatible_class_change_check()) {
  1074     assert(patching_info == NULL, "can't patch this");
  1075     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1076   } else {
  1077     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1079   LIR_Opr reg = rlock_result(x);
  1080   __ checkcast(reg, obj.result(), x->klass(),
  1081                new_register(objectType), new_register(objectType),
  1082                !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
  1083                x->direct_compare(), info_for_exception, patching_info, stub,
  1084                x->profiled_method(), x->profiled_bci());
  1088 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1089   LIRItem obj(x->obj(), this);
  1091   // result and test object may not be in same register
  1092   LIR_Opr reg = rlock_result(x);
  1093   CodeEmitInfo* patching_info = NULL;
  1094   if ((!x->klass()->is_loaded() || PatchALot)) {
  1095     // must do this before locking the destination register as an oop register
  1096     patching_info = state_for(x, x->state_before());
  1098   obj.load_item();
  1099   LIR_Opr tmp = new_register(objectType);
  1100   __ instanceof(reg, obj.result(), x->klass(),
  1101                 tmp, new_register(objectType), LIR_OprFact::illegalOpr,
  1102                 x->direct_compare(), patching_info);
  1106 void LIRGenerator::do_If(If* x) {
  1107   assert(x->number_of_sux() == 2, "inconsistency");
  1108   ValueTag tag = x->x()->type()->tag();
  1109   bool is_safepoint = x->is_safepoint();
  1111   If::Condition cond = x->cond();
  1113   LIRItem xitem(x->x(), this);
  1114   LIRItem yitem(x->y(), this);
  1115   LIRItem* xin = &xitem;
  1116   LIRItem* yin = &yitem;
  1118   if (tag == longTag) {
  1119     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1120     // mirror for other conditions
  1121     if (cond == If::gtr || cond == If::leq) {
  1122       cond = Instruction::mirror(cond);
  1123       xin = &yitem;
  1124       yin = &xitem;
  1126     xin->set_destroys_register();
  1128   xin->load_item();
  1129   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1130     // inline long zero
  1131     yin->dont_load_item();
  1132   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1133     // longs cannot handle constants at right side
  1134     yin->load_item();
  1135   } else {
  1136     yin->dont_load_item();
  1139   // add safepoint before generating condition code so it can be recomputed
  1140   if (x->is_safepoint()) {
  1141     // increment backedge counter if needed
  1142     increment_backedge_counter(state_for(x, x->state_before()));
  1144     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1146   set_no_result(x);
  1148   LIR_Opr left = xin->result();
  1149   LIR_Opr right = yin->result();
  1150   __ cmp(lir_cond(cond), left, right);
  1151   profile_branch(x, cond);
  1152   move_to_phi(x->state());
  1153   if (x->x()->type()->is_float_kind()) {
  1154     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1155   } else {
  1156     __ branch(lir_cond(cond), right->type(), x->tsux());
  1158   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1159   __ jump(x->default_sux());
  1163 LIR_Opr LIRGenerator::getThreadPointer() {
  1164   LIR_Opr result = new_register(T_INT);
  1165   __ get_thread(result);
  1166   return result;
  1169 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1170   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1171   LIR_OprList* args = new LIR_OprList();
  1172   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1173   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1177 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1178                                         CodeEmitInfo* info) {
  1179   if (address->type() == T_LONG) {
  1180     address = new LIR_Address(address->base(),
  1181                               address->index(), address->scale(),
  1182                               address->disp(), T_DOUBLE);
  1183     // Transfer the value atomically by using FP moves.  This means
  1184     // the value has to be moved between CPU and FPU registers.  It
  1185     // always has to be moved through spill slot since there's no
  1186     // quick way to pack the value into an SSE register.
  1187     LIR_Opr temp_double = new_register(T_DOUBLE);
  1188     LIR_Opr spill = new_register(T_LONG);
  1189     set_vreg_flag(spill, must_start_in_memory);
  1190     __ move(value, spill);
  1191     __ volatile_move(spill, temp_double, T_LONG);
  1192     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1193   } else {
  1194     __ store(value, address, info);
  1200 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1201                                        CodeEmitInfo* info) {
  1202   if (address->type() == T_LONG) {
  1203     address = new LIR_Address(address->base(),
  1204                               address->index(), address->scale(),
  1205                               address->disp(), T_DOUBLE);
  1206     // Transfer the value atomically by using FP moves.  This means
  1207     // the value has to be moved between CPU and FPU registers.  In
  1208     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1209     // SSE2+ mode it can be moved directly.
  1210     LIR_Opr temp_double = new_register(T_DOUBLE);
  1211     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1212     __ volatile_move(temp_double, result, T_LONG);
  1213     if (UseSSE < 2) {
  1214       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1215       set_vreg_flag(result, must_start_in_memory);
  1217   } else {
  1218     __ load(address, result, info);
  1222 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1223                                      BasicType type, bool is_volatile) {
  1224   if (is_volatile && type == T_LONG) {
  1225     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1226     LIR_Opr tmp = new_register(T_DOUBLE);
  1227     __ load(addr, tmp);
  1228     LIR_Opr spill = new_register(T_LONG);
  1229     set_vreg_flag(spill, must_start_in_memory);
  1230     __ move(tmp, spill);
  1231     __ move(spill, dst);
  1232   } else {
  1233     LIR_Address* addr = new LIR_Address(src, offset, type);
  1234     __ load(addr, dst);
  1239 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1240                                      BasicType type, bool is_volatile) {
  1241   if (is_volatile && type == T_LONG) {
  1242     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1243     LIR_Opr tmp = new_register(T_DOUBLE);
  1244     LIR_Opr spill = new_register(T_DOUBLE);
  1245     set_vreg_flag(spill, must_start_in_memory);
  1246     __ move(data, spill);
  1247     __ move(spill, tmp);
  1248     __ move(tmp, addr);
  1249   } else {
  1250     LIR_Address* addr = new LIR_Address(src, offset, type);
  1251     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1252     if (is_obj) {
  1253       __ move(data, addr);
  1254       assert(src->is_register(), "must be register");
  1255       // Seems to be a precise address
  1256       post_barrier(LIR_OprFact::address(addr), data);
  1257     } else {
  1258       __ move(data, addr);

mercurial