src/share/vm/runtime/thread.cpp

Thu, 02 Oct 2014 10:55:36 +0200

author
stefank
date
Thu, 02 Oct 2014 10:55:36 +0200
changeset 7333
b12a2a9b05ca
parent 7180
46f9331baed5
child 7419
d3f3f7677537
permissions
-rw-r--r--

8056240: Investigate increased GC remark time after class unloading changes in CRM Fuse
Reviewed-by: mgerdin, coleenp, bdelsart

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/orderAccess.inline.hpp"
    62 #include "runtime/osThread.hpp"
    63 #include "runtime/safepoint.hpp"
    64 #include "runtime/sharedRuntime.hpp"
    65 #include "runtime/statSampler.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/task.hpp"
    68 #include "runtime/thread.inline.hpp"
    69 #include "runtime/threadCritical.hpp"
    70 #include "runtime/threadLocalStorage.hpp"
    71 #include "runtime/vframe.hpp"
    72 #include "runtime/vframeArray.hpp"
    73 #include "runtime/vframe_hp.hpp"
    74 #include "runtime/vmThread.hpp"
    75 #include "runtime/vm_operations.hpp"
    76 #include "services/attachListener.hpp"
    77 #include "services/management.hpp"
    78 #include "services/memTracker.hpp"
    79 #include "services/threadService.hpp"
    80 #include "trace/tracing.hpp"
    81 #include "trace/traceMacros.hpp"
    82 #include "utilities/defaultStream.hpp"
    83 #include "utilities/dtrace.hpp"
    84 #include "utilities/events.hpp"
    85 #include "utilities/preserveException.hpp"
    86 #include "utilities/macros.hpp"
    87 #ifdef TARGET_OS_FAMILY_linux
    88 # include "os_linux.inline.hpp"
    89 #endif
    90 #ifdef TARGET_OS_FAMILY_solaris
    91 # include "os_solaris.inline.hpp"
    92 #endif
    93 #ifdef TARGET_OS_FAMILY_windows
    94 # include "os_windows.inline.hpp"
    95 #endif
    96 #ifdef TARGET_OS_FAMILY_bsd
    97 # include "os_bsd.inline.hpp"
    98 #endif
    99 #if INCLUDE_ALL_GCS
   100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   103 #endif // INCLUDE_ALL_GCS
   104 #ifdef COMPILER1
   105 #include "c1/c1_Compiler.hpp"
   106 #endif
   107 #ifdef COMPILER2
   108 #include "opto/c2compiler.hpp"
   109 #include "opto/idealGraphPrinter.hpp"
   110 #endif
   111 #if INCLUDE_RTM_OPT
   112 #include "runtime/rtmLocking.hpp"
   113 #endif
   115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   117 #ifdef DTRACE_ENABLED
   119 // Only bother with this argument setup if dtrace is available
   121 #ifndef USDT2
   122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   125   intptr_t, intptr_t, bool);
   126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   127   intptr_t, intptr_t, bool);
   129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   130   {                                                                        \
   131     ResourceMark rm(this);                                                 \
   132     int len = 0;                                                           \
   133     const char* name = (javathread)->get_thread_name();                    \
   134     len = strlen(name);                                                    \
   135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   136       name, len,                                                           \
   137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   138       (javathread)->osthread()->thread_id(),                               \
   139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   140   }
   142 #else /* USDT2 */
   144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   148   {                                                                        \
   149     ResourceMark rm(this);                                                 \
   150     int len = 0;                                                           \
   151     const char* name = (javathread)->get_thread_name();                    \
   152     len = strlen(name);                                                    \
   153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   154       (char *) name, len,                                                           \
   155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   158   }
   160 #endif /* USDT2 */
   162 #else //  ndef DTRACE_ENABLED
   164 #define DTRACE_THREAD_PROBE(probe, javathread)
   166 #endif // ndef DTRACE_ENABLED
   169 // Class hierarchy
   170 // - Thread
   171 //   - VMThread
   172 //   - WatcherThread
   173 //   - ConcurrentMarkSweepThread
   174 //   - JavaThread
   175 //     - CompilerThread
   177 // ======= Thread ========
   178 // Support for forcing alignment of thread objects for biased locking
   179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   180   if (UseBiasedLocking) {
   181     const int alignment = markOopDesc::biased_lock_alignment;
   182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   185                                               AllocFailStrategy::RETURN_NULL);
   186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   189            "JavaThread alignment code overflowed allocated storage");
   190     if (TraceBiasedLocking) {
   191       if (aligned_addr != real_malloc_addr)
   192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   193                       real_malloc_addr, aligned_addr);
   194     }
   195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   196     return aligned_addr;
   197   } else {
   198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   200   }
   201 }
   203 void Thread::operator delete(void* p) {
   204   if (UseBiasedLocking) {
   205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   206     FreeHeap(real_malloc_addr, mtThread);
   207   } else {
   208     FreeHeap(p, mtThread);
   209   }
   210 }
   213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   214 // JavaThread
   217 Thread::Thread() {
   218   // stack and get_thread
   219   set_stack_base(NULL);
   220   set_stack_size(0);
   221   set_self_raw_id(0);
   222   set_lgrp_id(-1);
   224   // allocated data structures
   225   set_osthread(NULL);
   226   set_resource_area(new (mtThread)ResourceArea());
   227   DEBUG_ONLY(_current_resource_mark = NULL;)
   228   set_handle_area(new (mtThread) HandleArea(NULL));
   229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
   230   set_active_handles(NULL);
   231   set_free_handle_block(NULL);
   232   set_last_handle_mark(NULL);
   234   // This initial value ==> never claimed.
   235   _oops_do_parity = 0;
   237   _metadata_on_stack_buffer = NULL;
   239   // the handle mark links itself to last_handle_mark
   240   new HandleMark(this);
   242   // plain initialization
   243   debug_only(_owned_locks = NULL;)
   244   debug_only(_allow_allocation_count = 0;)
   245   NOT_PRODUCT(_allow_safepoint_count = 0;)
   246   NOT_PRODUCT(_skip_gcalot = false;)
   247   _jvmti_env_iteration_count = 0;
   248   set_allocated_bytes(0);
   249   _vm_operation_started_count = 0;
   250   _vm_operation_completed_count = 0;
   251   _current_pending_monitor = NULL;
   252   _current_pending_monitor_is_from_java = true;
   253   _current_waiting_monitor = NULL;
   254   _num_nested_signal = 0;
   255   omFreeList = NULL ;
   256   omFreeCount = 0 ;
   257   omFreeProvision = 32 ;
   258   omInUseList = NULL ;
   259   omInUseCount = 0 ;
   261 #ifdef ASSERT
   262   _visited_for_critical_count = false;
   263 #endif
   265   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   266   _suspend_flags = 0;
   268   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   269   _hashStateX = os::random() ;
   270   _hashStateY = 842502087 ;
   271   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   272   _hashStateW = 273326509 ;
   274   _OnTrap   = 0 ;
   275   _schedctl = NULL ;
   276   _Stalled  = 0 ;
   277   _TypeTag  = 0x2BAD ;
   279   // Many of the following fields are effectively final - immutable
   280   // Note that nascent threads can't use the Native Monitor-Mutex
   281   // construct until the _MutexEvent is initialized ...
   282   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   283   // we might instead use a stack of ParkEvents that we could provision on-demand.
   284   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   285   // and ::Release()
   286   _ParkEvent   = ParkEvent::Allocate (this) ;
   287   _SleepEvent  = ParkEvent::Allocate (this) ;
   288   _MutexEvent  = ParkEvent::Allocate (this) ;
   289   _MuxEvent    = ParkEvent::Allocate (this) ;
   291 #ifdef CHECK_UNHANDLED_OOPS
   292   if (CheckUnhandledOops) {
   293     _unhandled_oops = new UnhandledOops(this);
   294   }
   295 #endif // CHECK_UNHANDLED_OOPS
   296 #ifdef ASSERT
   297   if (UseBiasedLocking) {
   298     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   299     assert(this == _real_malloc_address ||
   300            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   301            "bug in forced alignment of thread objects");
   302   }
   303 #endif /* ASSERT */
   304 }
   306 void Thread::initialize_thread_local_storage() {
   307   // Note: Make sure this method only calls
   308   // non-blocking operations. Otherwise, it might not work
   309   // with the thread-startup/safepoint interaction.
   311   // During Java thread startup, safepoint code should allow this
   312   // method to complete because it may need to allocate memory to
   313   // store information for the new thread.
   315   // initialize structure dependent on thread local storage
   316   ThreadLocalStorage::set_thread(this);
   317 }
   319 void Thread::record_stack_base_and_size() {
   320   set_stack_base(os::current_stack_base());
   321   set_stack_size(os::current_stack_size());
   322   if (is_Java_thread()) {
   323     ((JavaThread*) this)->set_stack_overflow_limit();
   324   }
   325   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   326   // in initialize_thread(). Without the adjustment, stack size is
   327   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   328   // So far, only Solaris has real implementation of initialize_thread().
   329   //
   330   // set up any platform-specific state.
   331   os::initialize_thread(this);
   333 #if INCLUDE_NMT
   334   // record thread's native stack, stack grows downward
   335   address stack_low_addr = stack_base() - stack_size();
   336   MemTracker::record_thread_stack(stack_low_addr, stack_size());
   337 #endif // INCLUDE_NMT
   338 }
   341 Thread::~Thread() {
   342   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   343   ObjectSynchronizer::omFlush (this) ;
   345   EVENT_THREAD_DESTRUCT(this);
   347   // stack_base can be NULL if the thread is never started or exited before
   348   // record_stack_base_and_size called. Although, we would like to ensure
   349   // that all started threads do call record_stack_base_and_size(), there is
   350   // not proper way to enforce that.
   351 #if INCLUDE_NMT
   352   if (_stack_base != NULL) {
   353     address low_stack_addr = stack_base() - stack_size();
   354     MemTracker::release_thread_stack(low_stack_addr, stack_size());
   355 #ifdef ASSERT
   356     set_stack_base(NULL);
   357 #endif
   358   }
   359 #endif // INCLUDE_NMT
   361   // deallocate data structures
   362   delete resource_area();
   363   // since the handle marks are using the handle area, we have to deallocated the root
   364   // handle mark before deallocating the thread's handle area,
   365   assert(last_handle_mark() != NULL, "check we have an element");
   366   delete last_handle_mark();
   367   assert(last_handle_mark() == NULL, "check we have reached the end");
   369   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   370   // We NULL out the fields for good hygiene.
   371   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   372   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   373   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   374   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   376   delete handle_area();
   377   delete metadata_handles();
   379   // osthread() can be NULL, if creation of thread failed.
   380   if (osthread() != NULL) os::free_thread(osthread());
   382   delete _SR_lock;
   384   // clear thread local storage if the Thread is deleting itself
   385   if (this == Thread::current()) {
   386     ThreadLocalStorage::set_thread(NULL);
   387   } else {
   388     // In the case where we're not the current thread, invalidate all the
   389     // caches in case some code tries to get the current thread or the
   390     // thread that was destroyed, and gets stale information.
   391     ThreadLocalStorage::invalidate_all();
   392   }
   393   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   394 }
   396 // NOTE: dummy function for assertion purpose.
   397 void Thread::run() {
   398   ShouldNotReachHere();
   399 }
   401 #ifdef ASSERT
   402 // Private method to check for dangling thread pointer
   403 void check_for_dangling_thread_pointer(Thread *thread) {
   404  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   405          "possibility of dangling Thread pointer");
   406 }
   407 #endif
   410 #ifndef PRODUCT
   411 // Tracing method for basic thread operations
   412 void Thread::trace(const char* msg, const Thread* const thread) {
   413   if (!TraceThreadEvents) return;
   414   ResourceMark rm;
   415   ThreadCritical tc;
   416   const char *name = "non-Java thread";
   417   int prio = -1;
   418   if (thread->is_Java_thread()
   419       && !thread->is_Compiler_thread()) {
   420     // The Threads_lock must be held to get information about
   421     // this thread but may not be in some situations when
   422     // tracing  thread events.
   423     bool release_Threads_lock = false;
   424     if (!Threads_lock->owned_by_self()) {
   425       Threads_lock->lock();
   426       release_Threads_lock = true;
   427     }
   428     JavaThread* jt = (JavaThread *)thread;
   429     name = (char *)jt->get_thread_name();
   430     oop thread_oop = jt->threadObj();
   431     if (thread_oop != NULL) {
   432       prio = java_lang_Thread::priority(thread_oop);
   433     }
   434     if (release_Threads_lock) {
   435       Threads_lock->unlock();
   436     }
   437   }
   438   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   439 }
   440 #endif
   443 ThreadPriority Thread::get_priority(const Thread* const thread) {
   444   trace("get priority", thread);
   445   ThreadPriority priority;
   446   // Can return an error!
   447   (void)os::get_priority(thread, priority);
   448   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   449   return priority;
   450 }
   452 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   453   trace("set priority", thread);
   454   debug_only(check_for_dangling_thread_pointer(thread);)
   455   // Can return an error!
   456   (void)os::set_priority(thread, priority);
   457 }
   460 void Thread::start(Thread* thread) {
   461   trace("start", thread);
   462   // Start is different from resume in that its safety is guaranteed by context or
   463   // being called from a Java method synchronized on the Thread object.
   464   if (!DisableStartThread) {
   465     if (thread->is_Java_thread()) {
   466       // Initialize the thread state to RUNNABLE before starting this thread.
   467       // Can not set it after the thread started because we do not know the
   468       // exact thread state at that time. It could be in MONITOR_WAIT or
   469       // in SLEEPING or some other state.
   470       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   471                                           java_lang_Thread::RUNNABLE);
   472     }
   473     os::start_thread(thread);
   474   }
   475 }
   477 // Enqueue a VM_Operation to do the job for us - sometime later
   478 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   479   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   480   VMThread::execute(vm_stop);
   481 }
   484 //
   485 // Check if an external suspend request has completed (or has been
   486 // cancelled). Returns true if the thread is externally suspended and
   487 // false otherwise.
   488 //
   489 // The bits parameter returns information about the code path through
   490 // the routine. Useful for debugging:
   491 //
   492 // set in is_ext_suspend_completed():
   493 // 0x00000001 - routine was entered
   494 // 0x00000010 - routine return false at end
   495 // 0x00000100 - thread exited (return false)
   496 // 0x00000200 - suspend request cancelled (return false)
   497 // 0x00000400 - thread suspended (return true)
   498 // 0x00001000 - thread is in a suspend equivalent state (return true)
   499 // 0x00002000 - thread is native and walkable (return true)
   500 // 0x00004000 - thread is native_trans and walkable (needed retry)
   501 //
   502 // set in wait_for_ext_suspend_completion():
   503 // 0x00010000 - routine was entered
   504 // 0x00020000 - suspend request cancelled before loop (return false)
   505 // 0x00040000 - thread suspended before loop (return true)
   506 // 0x00080000 - suspend request cancelled in loop (return false)
   507 // 0x00100000 - thread suspended in loop (return true)
   508 // 0x00200000 - suspend not completed during retry loop (return false)
   509 //
   511 // Helper class for tracing suspend wait debug bits.
   512 //
   513 // 0x00000100 indicates that the target thread exited before it could
   514 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   515 // 0x00080000 each indicate a cancelled suspend request so they don't
   516 // count as wait failures either.
   517 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   519 class TraceSuspendDebugBits : public StackObj {
   520  private:
   521   JavaThread * jt;
   522   bool         is_wait;
   523   bool         called_by_wait;  // meaningful when !is_wait
   524   uint32_t *   bits;
   526  public:
   527   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   528                         uint32_t *_bits) {
   529     jt             = _jt;
   530     is_wait        = _is_wait;
   531     called_by_wait = _called_by_wait;
   532     bits           = _bits;
   533   }
   535   ~TraceSuspendDebugBits() {
   536     if (!is_wait) {
   537 #if 1
   538       // By default, don't trace bits for is_ext_suspend_completed() calls.
   539       // That trace is very chatty.
   540       return;
   541 #else
   542       if (!called_by_wait) {
   543         // If tracing for is_ext_suspend_completed() is enabled, then only
   544         // trace calls to it from wait_for_ext_suspend_completion()
   545         return;
   546       }
   547 #endif
   548     }
   550     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   551       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   552         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   553         ResourceMark rm;
   555         tty->print_cr(
   556             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   557             jt->get_thread_name(), *bits);
   559         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   560       }
   561     }
   562   }
   563 };
   564 #undef DEBUG_FALSE_BITS
   567 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   568   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   570   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   571   bool do_trans_retry;           // flag to force the retry
   573   *bits |= 0x00000001;
   575   do {
   576     do_trans_retry = false;
   578     if (is_exiting()) {
   579       // Thread is in the process of exiting. This is always checked
   580       // first to reduce the risk of dereferencing a freed JavaThread.
   581       *bits |= 0x00000100;
   582       return false;
   583     }
   585     if (!is_external_suspend()) {
   586       // Suspend request is cancelled. This is always checked before
   587       // is_ext_suspended() to reduce the risk of a rogue resume
   588       // confusing the thread that made the suspend request.
   589       *bits |= 0x00000200;
   590       return false;
   591     }
   593     if (is_ext_suspended()) {
   594       // thread is suspended
   595       *bits |= 0x00000400;
   596       return true;
   597     }
   599     // Now that we no longer do hard suspends of threads running
   600     // native code, the target thread can be changing thread state
   601     // while we are in this routine:
   602     //
   603     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   604     //
   605     // We save a copy of the thread state as observed at this moment
   606     // and make our decision about suspend completeness based on the
   607     // copy. This closes the race where the thread state is seen as
   608     // _thread_in_native_trans in the if-thread_blocked check, but is
   609     // seen as _thread_blocked in if-thread_in_native_trans check.
   610     JavaThreadState save_state = thread_state();
   612     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   613       // If the thread's state is _thread_blocked and this blocking
   614       // condition is known to be equivalent to a suspend, then we can
   615       // consider the thread to be externally suspended. This means that
   616       // the code that sets _thread_blocked has been modified to do
   617       // self-suspension if the blocking condition releases. We also
   618       // used to check for CONDVAR_WAIT here, but that is now covered by
   619       // the _thread_blocked with self-suspension check.
   620       //
   621       // Return true since we wouldn't be here unless there was still an
   622       // external suspend request.
   623       *bits |= 0x00001000;
   624       return true;
   625     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   626       // Threads running native code will self-suspend on native==>VM/Java
   627       // transitions. If its stack is walkable (should always be the case
   628       // unless this function is called before the actual java_suspend()
   629       // call), then the wait is done.
   630       *bits |= 0x00002000;
   631       return true;
   632     } else if (!called_by_wait && !did_trans_retry &&
   633                save_state == _thread_in_native_trans &&
   634                frame_anchor()->walkable()) {
   635       // The thread is transitioning from thread_in_native to another
   636       // thread state. check_safepoint_and_suspend_for_native_trans()
   637       // will force the thread to self-suspend. If it hasn't gotten
   638       // there yet we may have caught the thread in-between the native
   639       // code check above and the self-suspend. Lucky us. If we were
   640       // called by wait_for_ext_suspend_completion(), then it
   641       // will be doing the retries so we don't have to.
   642       //
   643       // Since we use the saved thread state in the if-statement above,
   644       // there is a chance that the thread has already transitioned to
   645       // _thread_blocked by the time we get here. In that case, we will
   646       // make a single unnecessary pass through the logic below. This
   647       // doesn't hurt anything since we still do the trans retry.
   649       *bits |= 0x00004000;
   651       // Once the thread leaves thread_in_native_trans for another
   652       // thread state, we break out of this retry loop. We shouldn't
   653       // need this flag to prevent us from getting back here, but
   654       // sometimes paranoia is good.
   655       did_trans_retry = true;
   657       // We wait for the thread to transition to a more usable state.
   658       for (int i = 1; i <= SuspendRetryCount; i++) {
   659         // We used to do an "os::yield_all(i)" call here with the intention
   660         // that yielding would increase on each retry. However, the parameter
   661         // is ignored on Linux which means the yield didn't scale up. Waiting
   662         // on the SR_lock below provides a much more predictable scale up for
   663         // the delay. It also provides a simple/direct point to check for any
   664         // safepoint requests from the VMThread
   666         // temporarily drops SR_lock while doing wait with safepoint check
   667         // (if we're a JavaThread - the WatcherThread can also call this)
   668         // and increase delay with each retry
   669         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   671         // check the actual thread state instead of what we saved above
   672         if (thread_state() != _thread_in_native_trans) {
   673           // the thread has transitioned to another thread state so
   674           // try all the checks (except this one) one more time.
   675           do_trans_retry = true;
   676           break;
   677         }
   678       } // end retry loop
   681     }
   682   } while (do_trans_retry);
   684   *bits |= 0x00000010;
   685   return false;
   686 }
   688 //
   689 // Wait for an external suspend request to complete (or be cancelled).
   690 // Returns true if the thread is externally suspended and false otherwise.
   691 //
   692 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   693        uint32_t *bits) {
   694   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   695                              false /* !called_by_wait */, bits);
   697   // local flag copies to minimize SR_lock hold time
   698   bool is_suspended;
   699   bool pending;
   700   uint32_t reset_bits;
   702   // set a marker so is_ext_suspend_completed() knows we are the caller
   703   *bits |= 0x00010000;
   705   // We use reset_bits to reinitialize the bits value at the top of
   706   // each retry loop. This allows the caller to make use of any
   707   // unused bits for their own marking purposes.
   708   reset_bits = *bits;
   710   {
   711     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   712     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   713                                             delay, bits);
   714     pending = is_external_suspend();
   715   }
   716   // must release SR_lock to allow suspension to complete
   718   if (!pending) {
   719     // A cancelled suspend request is the only false return from
   720     // is_ext_suspend_completed() that keeps us from entering the
   721     // retry loop.
   722     *bits |= 0x00020000;
   723     return false;
   724   }
   726   if (is_suspended) {
   727     *bits |= 0x00040000;
   728     return true;
   729   }
   731   for (int i = 1; i <= retries; i++) {
   732     *bits = reset_bits;  // reinit to only track last retry
   734     // We used to do an "os::yield_all(i)" call here with the intention
   735     // that yielding would increase on each retry. However, the parameter
   736     // is ignored on Linux which means the yield didn't scale up. Waiting
   737     // on the SR_lock below provides a much more predictable scale up for
   738     // the delay. It also provides a simple/direct point to check for any
   739     // safepoint requests from the VMThread
   741     {
   742       MutexLocker ml(SR_lock());
   743       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   744       // can also call this)  and increase delay with each retry
   745       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   747       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   748                                               delay, bits);
   750       // It is possible for the external suspend request to be cancelled
   751       // (by a resume) before the actual suspend operation is completed.
   752       // Refresh our local copy to see if we still need to wait.
   753       pending = is_external_suspend();
   754     }
   756     if (!pending) {
   757       // A cancelled suspend request is the only false return from
   758       // is_ext_suspend_completed() that keeps us from staying in the
   759       // retry loop.
   760       *bits |= 0x00080000;
   761       return false;
   762     }
   764     if (is_suspended) {
   765       *bits |= 0x00100000;
   766       return true;
   767     }
   768   } // end retry loop
   770   // thread did not suspend after all our retries
   771   *bits |= 0x00200000;
   772   return false;
   773 }
   775 #ifndef PRODUCT
   776 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   778   // This should not need to be atomic as the only way for simultaneous
   779   // updates is via interrupts. Even then this should be rare or non-existant
   780   // and we don't care that much anyway.
   782   int index = _jmp_ring_index;
   783   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   784   _jmp_ring[index]._target = (intptr_t) target;
   785   _jmp_ring[index]._instruction = (intptr_t) instr;
   786   _jmp_ring[index]._file = file;
   787   _jmp_ring[index]._line = line;
   788 }
   789 #endif /* PRODUCT */
   791 // Called by flat profiler
   792 // Callers have already called wait_for_ext_suspend_completion
   793 // The assertion for that is currently too complex to put here:
   794 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   795   bool gotframe = false;
   796   // self suspension saves needed state.
   797   if (has_last_Java_frame() && _anchor.walkable()) {
   798      *_fr = pd_last_frame();
   799      gotframe = true;
   800   }
   801   return gotframe;
   802 }
   804 void Thread::interrupt(Thread* thread) {
   805   trace("interrupt", thread);
   806   debug_only(check_for_dangling_thread_pointer(thread);)
   807   os::interrupt(thread);
   808 }
   810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   811   trace("is_interrupted", thread);
   812   debug_only(check_for_dangling_thread_pointer(thread);)
   813   // Note:  If clear_interrupted==false, this simply fetches and
   814   // returns the value of the field osthread()->interrupted().
   815   return os::is_interrupted(thread, clear_interrupted);
   816 }
   819 // GC Support
   820 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   821   jint thread_parity = _oops_do_parity;
   822   if (thread_parity != strong_roots_parity) {
   823     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   824     if (res == thread_parity) {
   825       return true;
   826     } else {
   827       guarantee(res == strong_roots_parity, "Or else what?");
   828       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   829          "Should only fail when parallel.");
   830       return false;
   831     }
   832   }
   833   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   834          "Should only fail when parallel.");
   835   return false;
   836 }
   838 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
   839   active_handles()->oops_do(f);
   840   // Do oop for ThreadShadow
   841   f->do_oop((oop*)&_pending_exception);
   842   handle_area()->oops_do(f);
   843 }
   845 void Thread::nmethods_do(CodeBlobClosure* cf) {
   846   // no nmethods in a generic thread...
   847 }
   849 void Thread::metadata_do(void f(Metadata*)) {
   850   if (metadata_handles() != NULL) {
   851     for (int i = 0; i< metadata_handles()->length(); i++) {
   852       f(metadata_handles()->at(i));
   853     }
   854   }
   855 }
   857 void Thread::print_on(outputStream* st) const {
   858   // get_priority assumes osthread initialized
   859   if (osthread() != NULL) {
   860     int os_prio;
   861     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   862       st->print("os_prio=%d ", os_prio);
   863     }
   864     st->print("tid=" INTPTR_FORMAT " ", this);
   865     ext().print_on(st);
   866     osthread()->print_on(st);
   867   }
   868   debug_only(if (WizardMode) print_owned_locks_on(st);)
   869 }
   871 // Thread::print_on_error() is called by fatal error handler. Don't use
   872 // any lock or allocate memory.
   873 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   874   if      (is_VM_thread())                  st->print("VMThread");
   875   else if (is_Compiler_thread())            st->print("CompilerThread");
   876   else if (is_Java_thread())                st->print("JavaThread");
   877   else if (is_GC_task_thread())             st->print("GCTaskThread");
   878   else if (is_Watcher_thread())             st->print("WatcherThread");
   879   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   880   else st->print("Thread");
   882   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   883             _stack_base - _stack_size, _stack_base);
   885   if (osthread()) {
   886     st->print(" [id=%d]", osthread()->thread_id());
   887   }
   888 }
   890 #ifdef ASSERT
   891 void Thread::print_owned_locks_on(outputStream* st) const {
   892   Monitor *cur = _owned_locks;
   893   if (cur == NULL) {
   894     st->print(" (no locks) ");
   895   } else {
   896     st->print_cr(" Locks owned:");
   897     while(cur) {
   898       cur->print_on(st);
   899       cur = cur->next();
   900     }
   901   }
   902 }
   904 static int ref_use_count  = 0;
   906 bool Thread::owns_locks_but_compiled_lock() const {
   907   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   908     if (cur != Compile_lock) return true;
   909   }
   910   return false;
   911 }
   914 #endif
   916 #ifndef PRODUCT
   918 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   919 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   920 // no threads which allow_vm_block's are held
   921 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   922     // Check if current thread is allowed to block at a safepoint
   923     if (!(_allow_safepoint_count == 0))
   924       fatal("Possible safepoint reached by thread that does not allow it");
   925     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   926       fatal("LEAF method calling lock?");
   927     }
   929 #ifdef ASSERT
   930     if (potential_vm_operation && is_Java_thread()
   931         && !Universe::is_bootstrapping()) {
   932       // Make sure we do not hold any locks that the VM thread also uses.
   933       // This could potentially lead to deadlocks
   934       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   935         // Threads_lock is special, since the safepoint synchronization will not start before this is
   936         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   937         // since it is used to transfer control between JavaThreads and the VMThread
   938         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   939         if ( (cur->allow_vm_block() &&
   940               cur != Threads_lock &&
   941               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   942               cur != VMOperationRequest_lock &&
   943               cur != VMOperationQueue_lock) ||
   944               cur->rank() == Mutex::special) {
   945           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
   946         }
   947       }
   948     }
   950     if (GCALotAtAllSafepoints) {
   951       // We could enter a safepoint here and thus have a gc
   952       InterfaceSupport::check_gc_alot();
   953     }
   954 #endif
   955 }
   956 #endif
   958 bool Thread::is_in_stack(address adr) const {
   959   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   960   address end = os::current_stack_pointer();
   961   // Allow non Java threads to call this without stack_base
   962   if (_stack_base == NULL) return true;
   963   if (stack_base() >= adr && adr >= end) return true;
   965   return false;
   966 }
   969 bool Thread::is_in_usable_stack(address adr) const {
   970   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
   971   size_t usable_stack_size = _stack_size - stack_guard_size;
   973   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
   974 }
   977 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   978 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   979 // used for compilation in the future. If that change is made, the need for these methods
   980 // should be revisited, and they should be removed if possible.
   982 bool Thread::is_lock_owned(address adr) const {
   983   return on_local_stack(adr);
   984 }
   986 bool Thread::set_as_starting_thread() {
   987  // NOTE: this must be called inside the main thread.
   988   return os::create_main_thread((JavaThread*)this);
   989 }
   991 static void initialize_class(Symbol* class_name, TRAPS) {
   992   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   993   InstanceKlass::cast(klass)->initialize(CHECK);
   994 }
   997 // Creates the initial ThreadGroup
   998 static Handle create_initial_thread_group(TRAPS) {
   999   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
  1000   instanceKlassHandle klass (THREAD, k);
  1002   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
  1004     JavaValue result(T_VOID);
  1005     JavaCalls::call_special(&result,
  1006                             system_instance,
  1007                             klass,
  1008                             vmSymbols::object_initializer_name(),
  1009                             vmSymbols::void_method_signature(),
  1010                             CHECK_NH);
  1012   Universe::set_system_thread_group(system_instance());
  1014   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  1016     JavaValue result(T_VOID);
  1017     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1018     JavaCalls::call_special(&result,
  1019                             main_instance,
  1020                             klass,
  1021                             vmSymbols::object_initializer_name(),
  1022                             vmSymbols::threadgroup_string_void_signature(),
  1023                             system_instance,
  1024                             string,
  1025                             CHECK_NH);
  1027   return main_instance;
  1030 // Creates the initial Thread
  1031 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1032   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1033   instanceKlassHandle klass (THREAD, k);
  1034   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1036   java_lang_Thread::set_thread(thread_oop(), thread);
  1037   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1038   thread->set_threadObj(thread_oop());
  1040   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1042   JavaValue result(T_VOID);
  1043   JavaCalls::call_special(&result, thread_oop,
  1044                                    klass,
  1045                                    vmSymbols::object_initializer_name(),
  1046                                    vmSymbols::threadgroup_string_void_signature(),
  1047                                    thread_group,
  1048                                    string,
  1049                                    CHECK_NULL);
  1050   return thread_oop();
  1053 static void call_initializeSystemClass(TRAPS) {
  1054   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1055   instanceKlassHandle klass (THREAD, k);
  1057   JavaValue result(T_VOID);
  1058   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1059                                          vmSymbols::void_method_signature(), CHECK);
  1062 char java_runtime_name[128] = "";
  1063 char java_runtime_version[128] = "";
  1065 // extract the JRE name from sun.misc.Version.java_runtime_name
  1066 static const char* get_java_runtime_name(TRAPS) {
  1067   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1068                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1069   fieldDescriptor fd;
  1070   bool found = k != NULL &&
  1071                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1072                                                         vmSymbols::string_signature(), &fd);
  1073   if (found) {
  1074     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1075     if (name_oop == NULL)
  1076       return NULL;
  1077     const char* name = java_lang_String::as_utf8_string(name_oop,
  1078                                                         java_runtime_name,
  1079                                                         sizeof(java_runtime_name));
  1080     return name;
  1081   } else {
  1082     return NULL;
  1086 // extract the JRE version from sun.misc.Version.java_runtime_version
  1087 static const char* get_java_runtime_version(TRAPS) {
  1088   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1089                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1090   fieldDescriptor fd;
  1091   bool found = k != NULL &&
  1092                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1093                                                         vmSymbols::string_signature(), &fd);
  1094   if (found) {
  1095     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1096     if (name_oop == NULL)
  1097       return NULL;
  1098     const char* name = java_lang_String::as_utf8_string(name_oop,
  1099                                                         java_runtime_version,
  1100                                                         sizeof(java_runtime_version));
  1101     return name;
  1102   } else {
  1103     return NULL;
  1107 // General purpose hook into Java code, run once when the VM is initialized.
  1108 // The Java library method itself may be changed independently from the VM.
  1109 static void call_postVMInitHook(TRAPS) {
  1110   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  1111   instanceKlassHandle klass (THREAD, k);
  1112   if (klass.not_null()) {
  1113     JavaValue result(T_VOID);
  1114     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1115                                            vmSymbols::void_method_signature(),
  1116                                            CHECK);
  1120 static void reset_vm_info_property(TRAPS) {
  1121   // the vm info string
  1122   ResourceMark rm(THREAD);
  1123   const char *vm_info = VM_Version::vm_info_string();
  1125   // java.lang.System class
  1126   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1127   instanceKlassHandle klass (THREAD, k);
  1129   // setProperty arguments
  1130   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1131   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1133   // return value
  1134   JavaValue r(T_OBJECT);
  1136   // public static String setProperty(String key, String value);
  1137   JavaCalls::call_static(&r,
  1138                          klass,
  1139                          vmSymbols::setProperty_name(),
  1140                          vmSymbols::string_string_string_signature(),
  1141                          key_str,
  1142                          value_str,
  1143                          CHECK);
  1147 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1148   assert(thread_group.not_null(), "thread group should be specified");
  1149   assert(threadObj() == NULL, "should only create Java thread object once");
  1151   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1152   instanceKlassHandle klass (THREAD, k);
  1153   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1155   java_lang_Thread::set_thread(thread_oop(), this);
  1156   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1157   set_threadObj(thread_oop());
  1159   JavaValue result(T_VOID);
  1160   if (thread_name != NULL) {
  1161     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1162     // Thread gets assigned specified name and null target
  1163     JavaCalls::call_special(&result,
  1164                             thread_oop,
  1165                             klass,
  1166                             vmSymbols::object_initializer_name(),
  1167                             vmSymbols::threadgroup_string_void_signature(),
  1168                             thread_group, // Argument 1
  1169                             name,         // Argument 2
  1170                             THREAD);
  1171   } else {
  1172     // Thread gets assigned name "Thread-nnn" and null target
  1173     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1174     JavaCalls::call_special(&result,
  1175                             thread_oop,
  1176                             klass,
  1177                             vmSymbols::object_initializer_name(),
  1178                             vmSymbols::threadgroup_runnable_void_signature(),
  1179                             thread_group, // Argument 1
  1180                             Handle(),     // Argument 2
  1181                             THREAD);
  1185   if (daemon) {
  1186       java_lang_Thread::set_daemon(thread_oop());
  1189   if (HAS_PENDING_EXCEPTION) {
  1190     return;
  1193   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1194   Handle threadObj(this, this->threadObj());
  1196   JavaCalls::call_special(&result,
  1197                          thread_group,
  1198                          group,
  1199                          vmSymbols::add_method_name(),
  1200                          vmSymbols::thread_void_signature(),
  1201                          threadObj,          // Arg 1
  1202                          THREAD);
  1207 // NamedThread --  non-JavaThread subclasses with multiple
  1208 // uniquely named instances should derive from this.
  1209 NamedThread::NamedThread() : Thread() {
  1210   _name = NULL;
  1211   _processed_thread = NULL;
  1214 NamedThread::~NamedThread() {
  1215   if (_name != NULL) {
  1216     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1217     _name = NULL;
  1221 void NamedThread::set_name(const char* format, ...) {
  1222   guarantee(_name == NULL, "Only get to set name once.");
  1223   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1224   guarantee(_name != NULL, "alloc failure");
  1225   va_list ap;
  1226   va_start(ap, format);
  1227   jio_vsnprintf(_name, max_name_len, format, ap);
  1228   va_end(ap);
  1231 // ======= WatcherThread ========
  1233 // The watcher thread exists to simulate timer interrupts.  It should
  1234 // be replaced by an abstraction over whatever native support for
  1235 // timer interrupts exists on the platform.
  1237 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1238 bool WatcherThread::_startable = false;
  1239 volatile bool  WatcherThread::_should_terminate = false;
  1241 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  1242   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1243   if (os::create_thread(this, os::watcher_thread)) {
  1244     _watcher_thread = this;
  1246     // Set the watcher thread to the highest OS priority which should not be
  1247     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1248     // is created. The only normal thread using this priority is the reference
  1249     // handler thread, which runs for very short intervals only.
  1250     // If the VMThread's priority is not lower than the WatcherThread profiling
  1251     // will be inaccurate.
  1252     os::set_priority(this, MaxPriority);
  1253     if (!DisableStartThread) {
  1254       os::start_thread(this);
  1259 int WatcherThread::sleep() const {
  1260   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1262   // remaining will be zero if there are no tasks,
  1263   // causing the WatcherThread to sleep until a task is
  1264   // enrolled
  1265   int remaining = PeriodicTask::time_to_wait();
  1266   int time_slept = 0;
  1268   // we expect this to timeout - we only ever get unparked when
  1269   // we should terminate or when a new task has been enrolled
  1270   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1272   jlong time_before_loop = os::javaTimeNanos();
  1274   for (;;) {
  1275     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1276     jlong now = os::javaTimeNanos();
  1278     if (remaining == 0) {
  1279         // if we didn't have any tasks we could have waited for a long time
  1280         // consider the time_slept zero and reset time_before_loop
  1281         time_slept = 0;
  1282         time_before_loop = now;
  1283     } else {
  1284         // need to recalulate since we might have new tasks in _tasks
  1285         time_slept = (int) ((now - time_before_loop) / 1000000);
  1288     // Change to task list or spurious wakeup of some kind
  1289     if (timedout || _should_terminate) {
  1290         break;
  1293     remaining = PeriodicTask::time_to_wait();
  1294     if (remaining == 0) {
  1295         // Last task was just disenrolled so loop around and wait until
  1296         // another task gets enrolled
  1297         continue;
  1300     remaining -= time_slept;
  1301     if (remaining <= 0)
  1302       break;
  1305   return time_slept;
  1308 void WatcherThread::run() {
  1309   assert(this == watcher_thread(), "just checking");
  1311   this->record_stack_base_and_size();
  1312   this->initialize_thread_local_storage();
  1313   this->set_active_handles(JNIHandleBlock::allocate_block());
  1314   while(!_should_terminate) {
  1315     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1316     assert(watcher_thread() == this,  "thread consistency check");
  1318     // Calculate how long it'll be until the next PeriodicTask work
  1319     // should be done, and sleep that amount of time.
  1320     int time_waited = sleep();
  1322     if (is_error_reported()) {
  1323       // A fatal error has happened, the error handler(VMError::report_and_die)
  1324       // should abort JVM after creating an error log file. However in some
  1325       // rare cases, the error handler itself might deadlock. Here we try to
  1326       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1327       //
  1328       // This code is in WatcherThread because WatcherThread wakes up
  1329       // periodically so the fatal error handler doesn't need to do anything;
  1330       // also because the WatcherThread is less likely to crash than other
  1331       // threads.
  1333       for (;;) {
  1334         if (!ShowMessageBoxOnError
  1335          && (OnError == NULL || OnError[0] == '\0')
  1336          && Arguments::abort_hook() == NULL) {
  1337              os::sleep(this, 2 * 60 * 1000, false);
  1338              fdStream err(defaultStream::output_fd());
  1339              err.print_raw_cr("# [ timer expired, abort... ]");
  1340              // skip atexit/vm_exit/vm_abort hooks
  1341              os::die();
  1344         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1345         // ShowMessageBoxOnError when it is ready to abort.
  1346         os::sleep(this, 5 * 1000, false);
  1350     PeriodicTask::real_time_tick(time_waited);
  1353   // Signal that it is terminated
  1355     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1356     _watcher_thread = NULL;
  1357     Terminator_lock->notify();
  1360   // Thread destructor usually does this..
  1361   ThreadLocalStorage::set_thread(NULL);
  1364 void WatcherThread::start() {
  1365   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1367   if (watcher_thread() == NULL && _startable) {
  1368     _should_terminate = false;
  1369     // Create the single instance of WatcherThread
  1370     new WatcherThread();
  1374 void WatcherThread::make_startable() {
  1375   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1376   _startable = true;
  1379 void WatcherThread::stop() {
  1381     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1382     _should_terminate = true;
  1383     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1385     WatcherThread* watcher = watcher_thread();
  1386     if (watcher != NULL)
  1387       watcher->unpark();
  1390   // it is ok to take late safepoints here, if needed
  1391   MutexLocker mu(Terminator_lock);
  1393   while(watcher_thread() != NULL) {
  1394     // This wait should make safepoint checks, wait without a timeout,
  1395     // and wait as a suspend-equivalent condition.
  1396     //
  1397     // Note: If the FlatProfiler is running, then this thread is waiting
  1398     // for the WatcherThread to terminate and the WatcherThread, via the
  1399     // FlatProfiler task, is waiting for the external suspend request on
  1400     // this thread to complete. wait_for_ext_suspend_completion() will
  1401     // eventually timeout, but that takes time. Making this wait a
  1402     // suspend-equivalent condition solves that timeout problem.
  1403     //
  1404     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1405                           Mutex::_as_suspend_equivalent_flag);
  1409 void WatcherThread::unpark() {
  1410   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1411   PeriodicTask_lock->notify();
  1414 void WatcherThread::print_on(outputStream* st) const {
  1415   st->print("\"%s\" ", name());
  1416   Thread::print_on(st);
  1417   st->cr();
  1420 // ======= JavaThread ========
  1422 // A JavaThread is a normal Java thread
  1424 void JavaThread::initialize() {
  1425   // Initialize fields
  1427   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
  1428   set_claimed_par_id(UINT_MAX);
  1430   set_saved_exception_pc(NULL);
  1431   set_threadObj(NULL);
  1432   _anchor.clear();
  1433   set_entry_point(NULL);
  1434   set_jni_functions(jni_functions());
  1435   set_callee_target(NULL);
  1436   set_vm_result(NULL);
  1437   set_vm_result_2(NULL);
  1438   set_vframe_array_head(NULL);
  1439   set_vframe_array_last(NULL);
  1440   set_deferred_locals(NULL);
  1441   set_deopt_mark(NULL);
  1442   set_deopt_nmethod(NULL);
  1443   clear_must_deopt_id();
  1444   set_monitor_chunks(NULL);
  1445   set_next(NULL);
  1446   set_thread_state(_thread_new);
  1447   _terminated = _not_terminated;
  1448   _privileged_stack_top = NULL;
  1449   _array_for_gc = NULL;
  1450   _suspend_equivalent = false;
  1451   _in_deopt_handler = 0;
  1452   _doing_unsafe_access = false;
  1453   _stack_guard_state = stack_guard_unused;
  1454   (void)const_cast<oop&>(_exception_oop = NULL);
  1455   _exception_pc  = 0;
  1456   _exception_handler_pc = 0;
  1457   _is_method_handle_return = 0;
  1458   _jvmti_thread_state= NULL;
  1459   _should_post_on_exceptions_flag = JNI_FALSE;
  1460   _jvmti_get_loaded_classes_closure = NULL;
  1461   _interp_only_mode    = 0;
  1462   _special_runtime_exit_condition = _no_async_condition;
  1463   _pending_async_exception = NULL;
  1464   _thread_stat = NULL;
  1465   _thread_stat = new ThreadStatistics();
  1466   _blocked_on_compilation = false;
  1467   _jni_active_critical = 0;
  1468   _do_not_unlock_if_synchronized = false;
  1469   _cached_monitor_info = NULL;
  1470   _parker = Parker::Allocate(this) ;
  1472 #ifndef PRODUCT
  1473   _jmp_ring_index = 0;
  1474   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1475     record_jump(NULL, NULL, NULL, 0);
  1477 #endif /* PRODUCT */
  1479   set_thread_profiler(NULL);
  1480   if (FlatProfiler::is_active()) {
  1481     // This is where we would decide to either give each thread it's own profiler
  1482     // or use one global one from FlatProfiler,
  1483     // or up to some count of the number of profiled threads, etc.
  1484     ThreadProfiler* pp = new ThreadProfiler();
  1485     pp->engage();
  1486     set_thread_profiler(pp);
  1489   // Setup safepoint state info for this thread
  1490   ThreadSafepointState::create(this);
  1492   debug_only(_java_call_counter = 0);
  1494   // JVMTI PopFrame support
  1495   _popframe_condition = popframe_inactive;
  1496   _popframe_preserved_args = NULL;
  1497   _popframe_preserved_args_size = 0;
  1499   pd_initialize();
  1502 #if INCLUDE_ALL_GCS
  1503 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1504 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1505 #endif // INCLUDE_ALL_GCS
  1507 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1508   Thread()
  1509 #if INCLUDE_ALL_GCS
  1510   , _satb_mark_queue(&_satb_mark_queue_set),
  1511   _dirty_card_queue(&_dirty_card_queue_set)
  1512 #endif // INCLUDE_ALL_GCS
  1514   initialize();
  1515   if (is_attaching_via_jni) {
  1516     _jni_attach_state = _attaching_via_jni;
  1517   } else {
  1518     _jni_attach_state = _not_attaching_via_jni;
  1520   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1523 bool JavaThread::reguard_stack(address cur_sp) {
  1524   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1525     return true; // Stack already guarded or guard pages not needed.
  1528   if (register_stack_overflow()) {
  1529     // For those architectures which have separate register and
  1530     // memory stacks, we must check the register stack to see if
  1531     // it has overflowed.
  1532     return false;
  1535   // Java code never executes within the yellow zone: the latter is only
  1536   // there to provoke an exception during stack banging.  If java code
  1537   // is executing there, either StackShadowPages should be larger, or
  1538   // some exception code in c1, c2 or the interpreter isn't unwinding
  1539   // when it should.
  1540   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1542   enable_stack_yellow_zone();
  1543   return true;
  1546 bool JavaThread::reguard_stack(void) {
  1547   return reguard_stack(os::current_stack_pointer());
  1551 void JavaThread::block_if_vm_exited() {
  1552   if (_terminated == _vm_exited) {
  1553     // _vm_exited is set at safepoint, and Threads_lock is never released
  1554     // we will block here forever
  1555     Threads_lock->lock_without_safepoint_check();
  1556     ShouldNotReachHere();
  1561 // Remove this ifdef when C1 is ported to the compiler interface.
  1562 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1564 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1565   Thread()
  1566 #if INCLUDE_ALL_GCS
  1567   , _satb_mark_queue(&_satb_mark_queue_set),
  1568   _dirty_card_queue(&_dirty_card_queue_set)
  1569 #endif // INCLUDE_ALL_GCS
  1571   if (TraceThreadEvents) {
  1572     tty->print_cr("creating thread %p", this);
  1574   initialize();
  1575   _jni_attach_state = _not_attaching_via_jni;
  1576   set_entry_point(entry_point);
  1577   // Create the native thread itself.
  1578   // %note runtime_23
  1579   os::ThreadType thr_type = os::java_thread;
  1580   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1581                                                      os::java_thread;
  1582   os::create_thread(this, thr_type, stack_sz);
  1583   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1584   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1585   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1586   // the exception consists of creating the exception object & initializing it, initialization
  1587   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1588   //
  1589   // The thread is still suspended when we reach here. Thread must be explicit started
  1590   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1591   // by calling Threads:add. The reason why this is not done here, is because the thread
  1592   // object must be fully initialized (take a look at JVM_Start)
  1595 JavaThread::~JavaThread() {
  1596   if (TraceThreadEvents) {
  1597       tty->print_cr("terminate thread %p", this);
  1600   // JSR166 -- return the parker to the free list
  1601   Parker::Release(_parker);
  1602   _parker = NULL ;
  1604   // Free any remaining  previous UnrollBlock
  1605   vframeArray* old_array = vframe_array_last();
  1607   if (old_array != NULL) {
  1608     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1609     old_array->set_unroll_block(NULL);
  1610     delete old_info;
  1611     delete old_array;
  1614   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1615   if (deferred != NULL) {
  1616     // This can only happen if thread is destroyed before deoptimization occurs.
  1617     assert(deferred->length() != 0, "empty array!");
  1618     do {
  1619       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1620       deferred->remove_at(0);
  1621       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1622       delete dlv;
  1623     } while (deferred->length() != 0);
  1624     delete deferred;
  1627   // All Java related clean up happens in exit
  1628   ThreadSafepointState::destroy(this);
  1629   if (_thread_profiler != NULL) delete _thread_profiler;
  1630   if (_thread_stat != NULL) delete _thread_stat;
  1634 // The first routine called by a new Java thread
  1635 void JavaThread::run() {
  1636   // initialize thread-local alloc buffer related fields
  1637   this->initialize_tlab();
  1639   // used to test validitity of stack trace backs
  1640   this->record_base_of_stack_pointer();
  1642   // Record real stack base and size.
  1643   this->record_stack_base_and_size();
  1645   // Initialize thread local storage; set before calling MutexLocker
  1646   this->initialize_thread_local_storage();
  1648   this->create_stack_guard_pages();
  1650   this->cache_global_variables();
  1652   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1653   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1654   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1656   assert(JavaThread::current() == this, "sanity check");
  1657   assert(!Thread::current()->owns_locks(), "sanity check");
  1659   DTRACE_THREAD_PROBE(start, this);
  1661   // This operation might block. We call that after all safepoint checks for a new thread has
  1662   // been completed.
  1663   this->set_active_handles(JNIHandleBlock::allocate_block());
  1665   if (JvmtiExport::should_post_thread_life()) {
  1666     JvmtiExport::post_thread_start(this);
  1669   EventThreadStart event;
  1670   if (event.should_commit()) {
  1671      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1672      event.commit();
  1675   // We call another function to do the rest so we are sure that the stack addresses used
  1676   // from there will be lower than the stack base just computed
  1677   thread_main_inner();
  1679   // Note, thread is no longer valid at this point!
  1683 void JavaThread::thread_main_inner() {
  1684   assert(JavaThread::current() == this, "sanity check");
  1685   assert(this->threadObj() != NULL, "just checking");
  1687   // Execute thread entry point unless this thread has a pending exception
  1688   // or has been stopped before starting.
  1689   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1690   if (!this->has_pending_exception() &&
  1691       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1693       ResourceMark rm(this);
  1694       this->set_native_thread_name(this->get_thread_name());
  1696     HandleMark hm(this);
  1697     this->entry_point()(this, this);
  1700   DTRACE_THREAD_PROBE(stop, this);
  1702   this->exit(false);
  1703   delete this;
  1707 static void ensure_join(JavaThread* thread) {
  1708   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1709   Handle threadObj(thread, thread->threadObj());
  1710   assert(threadObj.not_null(), "java thread object must exist");
  1711   ObjectLocker lock(threadObj, thread);
  1712   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1713   thread->clear_pending_exception();
  1714   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1715   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1716   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1717   // to complete once we've done the notify_all below
  1718   java_lang_Thread::set_thread(threadObj(), NULL);
  1719   lock.notify_all(thread);
  1720   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1721   thread->clear_pending_exception();
  1725 // For any new cleanup additions, please check to see if they need to be applied to
  1726 // cleanup_failed_attach_current_thread as well.
  1727 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1728   assert(this == JavaThread::current(),  "thread consistency check");
  1730   HandleMark hm(this);
  1731   Handle uncaught_exception(this, this->pending_exception());
  1732   this->clear_pending_exception();
  1733   Handle threadObj(this, this->threadObj());
  1734   assert(threadObj.not_null(), "Java thread object should be created");
  1736   if (get_thread_profiler() != NULL) {
  1737     get_thread_profiler()->disengage();
  1738     ResourceMark rm;
  1739     get_thread_profiler()->print(get_thread_name());
  1743   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1745     EXCEPTION_MARK;
  1747     CLEAR_PENDING_EXCEPTION;
  1749   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1750   // has to be fixed by a runtime query method
  1751   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1752     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1753     // java.lang.Thread.dispatchUncaughtException
  1754     if (uncaught_exception.not_null()) {
  1755       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1757         EXCEPTION_MARK;
  1758         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1759         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1760         // so call ThreadGroup.uncaughtException()
  1761         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1762         CallInfo callinfo;
  1763         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1764         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1765                                            vmSymbols::dispatchUncaughtException_name(),
  1766                                            vmSymbols::throwable_void_signature(),
  1767                                            KlassHandle(), false, false, THREAD);
  1768         CLEAR_PENDING_EXCEPTION;
  1769         methodHandle method = callinfo.selected_method();
  1770         if (method.not_null()) {
  1771           JavaValue result(T_VOID);
  1772           JavaCalls::call_virtual(&result,
  1773                                   threadObj, thread_klass,
  1774                                   vmSymbols::dispatchUncaughtException_name(),
  1775                                   vmSymbols::throwable_void_signature(),
  1776                                   uncaught_exception,
  1777                                   THREAD);
  1778         } else {
  1779           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1780           JavaValue result(T_VOID);
  1781           JavaCalls::call_virtual(&result,
  1782                                   group, thread_group,
  1783                                   vmSymbols::uncaughtException_name(),
  1784                                   vmSymbols::thread_throwable_void_signature(),
  1785                                   threadObj,           // Arg 1
  1786                                   uncaught_exception,  // Arg 2
  1787                                   THREAD);
  1789         if (HAS_PENDING_EXCEPTION) {
  1790           ResourceMark rm(this);
  1791           jio_fprintf(defaultStream::error_stream(),
  1792                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1793                 " in thread \"%s\"\n",
  1794                 pending_exception()->klass()->external_name(),
  1795                 get_thread_name());
  1796           CLEAR_PENDING_EXCEPTION;
  1801     // Called before the java thread exit since we want to read info
  1802     // from java_lang_Thread object
  1803     EventThreadEnd event;
  1804     if (event.should_commit()) {
  1805         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1806         event.commit();
  1809     // Call after last event on thread
  1810     EVENT_THREAD_EXIT(this);
  1812     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1813     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1814     // is deprecated anyhow.
  1815     if (!is_Compiler_thread()) {
  1816       int count = 3;
  1817       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1818         EXCEPTION_MARK;
  1819         JavaValue result(T_VOID);
  1820         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1821         JavaCalls::call_virtual(&result,
  1822                               threadObj, thread_klass,
  1823                               vmSymbols::exit_method_name(),
  1824                               vmSymbols::void_method_signature(),
  1825                               THREAD);
  1826         CLEAR_PENDING_EXCEPTION;
  1829     // notify JVMTI
  1830     if (JvmtiExport::should_post_thread_life()) {
  1831       JvmtiExport::post_thread_end(this);
  1834     // We have notified the agents that we are exiting, before we go on,
  1835     // we must check for a pending external suspend request and honor it
  1836     // in order to not surprise the thread that made the suspend request.
  1837     while (true) {
  1839         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1840         if (!is_external_suspend()) {
  1841           set_terminated(_thread_exiting);
  1842           ThreadService::current_thread_exiting(this);
  1843           break;
  1845         // Implied else:
  1846         // Things get a little tricky here. We have a pending external
  1847         // suspend request, but we are holding the SR_lock so we
  1848         // can't just self-suspend. So we temporarily drop the lock
  1849         // and then self-suspend.
  1852       ThreadBlockInVM tbivm(this);
  1853       java_suspend_self();
  1855       // We're done with this suspend request, but we have to loop around
  1856       // and check again. Eventually we will get SR_lock without a pending
  1857       // external suspend request and will be able to mark ourselves as
  1858       // exiting.
  1860     // no more external suspends are allowed at this point
  1861   } else {
  1862     // before_exit() has already posted JVMTI THREAD_END events
  1865   // Notify waiters on thread object. This has to be done after exit() is called
  1866   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1867   // group should have the destroyed bit set before waiters are notified).
  1868   ensure_join(this);
  1869   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1871   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1872   // held by this thread must be released.  A detach operation must only
  1873   // get here if there are no Java frames on the stack.  Therefore, any
  1874   // owned monitors at this point MUST be JNI-acquired monitors which are
  1875   // pre-inflated and in the monitor cache.
  1876   //
  1877   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1878   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1879     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1880     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1881     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1884   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1885   // is in a consistent state, in case GC happens
  1886   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1888   if (active_handles() != NULL) {
  1889     JNIHandleBlock* block = active_handles();
  1890     set_active_handles(NULL);
  1891     JNIHandleBlock::release_block(block);
  1894   if (free_handle_block() != NULL) {
  1895     JNIHandleBlock* block = free_handle_block();
  1896     set_free_handle_block(NULL);
  1897     JNIHandleBlock::release_block(block);
  1900   // These have to be removed while this is still a valid thread.
  1901   remove_stack_guard_pages();
  1903   if (UseTLAB) {
  1904     tlab().make_parsable(true);  // retire TLAB
  1907   if (JvmtiEnv::environments_might_exist()) {
  1908     JvmtiExport::cleanup_thread(this);
  1911   // We must flush any deferred card marks before removing a thread from
  1912   // the list of active threads.
  1913   Universe::heap()->flush_deferred_store_barrier(this);
  1914   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1916 #if INCLUDE_ALL_GCS
  1917   // We must flush the G1-related buffers before removing a thread
  1918   // from the list of active threads. We must do this after any deferred
  1919   // card marks have been flushed (above) so that any entries that are
  1920   // added to the thread's dirty card queue as a result are not lost.
  1921   if (UseG1GC) {
  1922     flush_barrier_queues();
  1924 #endif // INCLUDE_ALL_GCS
  1926   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1927   Threads::remove(this);
  1930 #if INCLUDE_ALL_GCS
  1931 // Flush G1-related queues.
  1932 void JavaThread::flush_barrier_queues() {
  1933   satb_mark_queue().flush();
  1934   dirty_card_queue().flush();
  1937 void JavaThread::initialize_queues() {
  1938   assert(!SafepointSynchronize::is_at_safepoint(),
  1939          "we should not be at a safepoint");
  1941   ObjPtrQueue& satb_queue = satb_mark_queue();
  1942   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1943   // The SATB queue should have been constructed with its active
  1944   // field set to false.
  1945   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1946   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1947   // If we are creating the thread during a marking cycle, we should
  1948   // set the active field of the SATB queue to true.
  1949   if (satb_queue_set.is_active()) {
  1950     satb_queue.set_active(true);
  1953   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1954   // The dirty card queue should have been constructed with its
  1955   // active field set to true.
  1956   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1958 #endif // INCLUDE_ALL_GCS
  1960 void JavaThread::cleanup_failed_attach_current_thread() {
  1961   if (get_thread_profiler() != NULL) {
  1962     get_thread_profiler()->disengage();
  1963     ResourceMark rm;
  1964     get_thread_profiler()->print(get_thread_name());
  1967   if (active_handles() != NULL) {
  1968     JNIHandleBlock* block = active_handles();
  1969     set_active_handles(NULL);
  1970     JNIHandleBlock::release_block(block);
  1973   if (free_handle_block() != NULL) {
  1974     JNIHandleBlock* block = free_handle_block();
  1975     set_free_handle_block(NULL);
  1976     JNIHandleBlock::release_block(block);
  1979   // These have to be removed while this is still a valid thread.
  1980   remove_stack_guard_pages();
  1982   if (UseTLAB) {
  1983     tlab().make_parsable(true);  // retire TLAB, if any
  1986 #if INCLUDE_ALL_GCS
  1987   if (UseG1GC) {
  1988     flush_barrier_queues();
  1990 #endif // INCLUDE_ALL_GCS
  1992   Threads::remove(this);
  1993   delete this;
  1999 JavaThread* JavaThread::active() {
  2000   Thread* thread = ThreadLocalStorage::thread();
  2001   assert(thread != NULL, "just checking");
  2002   if (thread->is_Java_thread()) {
  2003     return (JavaThread*) thread;
  2004   } else {
  2005     assert(thread->is_VM_thread(), "this must be a vm thread");
  2006     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  2007     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  2008     assert(ret->is_Java_thread(), "must be a Java thread");
  2009     return ret;
  2013 bool JavaThread::is_lock_owned(address adr) const {
  2014   if (Thread::is_lock_owned(adr)) return true;
  2016   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2017     if (chunk->contains(adr)) return true;
  2020   return false;
  2024 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2025   chunk->set_next(monitor_chunks());
  2026   set_monitor_chunks(chunk);
  2029 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2030   guarantee(monitor_chunks() != NULL, "must be non empty");
  2031   if (monitor_chunks() == chunk) {
  2032     set_monitor_chunks(chunk->next());
  2033   } else {
  2034     MonitorChunk* prev = monitor_chunks();
  2035     while (prev->next() != chunk) prev = prev->next();
  2036     prev->set_next(chunk->next());
  2040 // JVM support.
  2042 // Note: this function shouldn't block if it's called in
  2043 // _thread_in_native_trans state (such as from
  2044 // check_special_condition_for_native_trans()).
  2045 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2047   if (has_last_Java_frame() && has_async_condition()) {
  2048     // If we are at a polling page safepoint (not a poll return)
  2049     // then we must defer async exception because live registers
  2050     // will be clobbered by the exception path. Poll return is
  2051     // ok because the call we a returning from already collides
  2052     // with exception handling registers and so there is no issue.
  2053     // (The exception handling path kills call result registers but
  2054     //  this is ok since the exception kills the result anyway).
  2056     if (is_at_poll_safepoint()) {
  2057       // if the code we are returning to has deoptimized we must defer
  2058       // the exception otherwise live registers get clobbered on the
  2059       // exception path before deoptimization is able to retrieve them.
  2060       //
  2061       RegisterMap map(this, false);
  2062       frame caller_fr = last_frame().sender(&map);
  2063       assert(caller_fr.is_compiled_frame(), "what?");
  2064       if (caller_fr.is_deoptimized_frame()) {
  2065         if (TraceExceptions) {
  2066           ResourceMark rm;
  2067           tty->print_cr("deferred async exception at compiled safepoint");
  2069         return;
  2074   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2075   if (condition == _no_async_condition) {
  2076     // Conditions have changed since has_special_runtime_exit_condition()
  2077     // was called:
  2078     // - if we were here only because of an external suspend request,
  2079     //   then that was taken care of above (or cancelled) so we are done
  2080     // - if we were here because of another async request, then it has
  2081     //   been cleared between the has_special_runtime_exit_condition()
  2082     //   and now so again we are done
  2083     return;
  2086   // Check for pending async. exception
  2087   if (_pending_async_exception != NULL) {
  2088     // Only overwrite an already pending exception, if it is not a threadDeath.
  2089     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2091       // We cannot call Exceptions::_throw(...) here because we cannot block
  2092       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2094       if (TraceExceptions) {
  2095         ResourceMark rm;
  2096         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2097         if (has_last_Java_frame() ) {
  2098           frame f = last_frame();
  2099           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2101         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2103       _pending_async_exception = NULL;
  2104       clear_has_async_exception();
  2108   if (check_unsafe_error &&
  2109       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2110     condition = _no_async_condition;  // done
  2111     switch (thread_state()) {
  2112     case _thread_in_vm:
  2114         JavaThread* THREAD = this;
  2115         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2117     case _thread_in_native:
  2119         ThreadInVMfromNative tiv(this);
  2120         JavaThread* THREAD = this;
  2121         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2123     case _thread_in_Java:
  2125         ThreadInVMfromJava tiv(this);
  2126         JavaThread* THREAD = this;
  2127         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2129     default:
  2130       ShouldNotReachHere();
  2134   assert(condition == _no_async_condition || has_pending_exception() ||
  2135          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2136          "must have handled the async condition, if no exception");
  2139 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2140   //
  2141   // Check for pending external suspend. Internal suspend requests do
  2142   // not use handle_special_runtime_exit_condition().
  2143   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2144   // thread is not the current thread. In older versions of jdbx, jdbx
  2145   // threads could call into the VM with another thread's JNIEnv so we
  2146   // can be here operating on behalf of a suspended thread (4432884).
  2147   bool do_self_suspend = is_external_suspend_with_lock();
  2148   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2149     //
  2150     // Because thread is external suspended the safepoint code will count
  2151     // thread as at a safepoint. This can be odd because we can be here
  2152     // as _thread_in_Java which would normally transition to _thread_blocked
  2153     // at a safepoint. We would like to mark the thread as _thread_blocked
  2154     // before calling java_suspend_self like all other callers of it but
  2155     // we must then observe proper safepoint protocol. (We can't leave
  2156     // _thread_blocked with a safepoint in progress). However we can be
  2157     // here as _thread_in_native_trans so we can't use a normal transition
  2158     // constructor/destructor pair because they assert on that type of
  2159     // transition. We could do something like:
  2160     //
  2161     // JavaThreadState state = thread_state();
  2162     // set_thread_state(_thread_in_vm);
  2163     // {
  2164     //   ThreadBlockInVM tbivm(this);
  2165     //   java_suspend_self()
  2166     // }
  2167     // set_thread_state(_thread_in_vm_trans);
  2168     // if (safepoint) block;
  2169     // set_thread_state(state);
  2170     //
  2171     // but that is pretty messy. Instead we just go with the way the
  2172     // code has worked before and note that this is the only path to
  2173     // java_suspend_self that doesn't put the thread in _thread_blocked
  2174     // mode.
  2176     frame_anchor()->make_walkable(this);
  2177     java_suspend_self();
  2179     // We might be here for reasons in addition to the self-suspend request
  2180     // so check for other async requests.
  2183   if (check_asyncs) {
  2184     check_and_handle_async_exceptions();
  2188 void JavaThread::send_thread_stop(oop java_throwable)  {
  2189   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2190   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2191   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2193   // Do not throw asynchronous exceptions against the compiler thread
  2194   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2195   if (is_Compiler_thread()) return;
  2198     // Actually throw the Throwable against the target Thread - however
  2199     // only if there is no thread death exception installed already.
  2200     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2201       // If the topmost frame is a runtime stub, then we are calling into
  2202       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2203       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2204       // may not be valid
  2205       if (has_last_Java_frame()) {
  2206         frame f = last_frame();
  2207         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2208           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2209           RegisterMap reg_map(this, UseBiasedLocking);
  2210           frame compiled_frame = f.sender(&reg_map);
  2211           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2212             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2217       // Set async. pending exception in thread.
  2218       set_pending_async_exception(java_throwable);
  2220       if (TraceExceptions) {
  2221        ResourceMark rm;
  2222        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2224       // for AbortVMOnException flag
  2225       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2230   // Interrupt thread so it will wake up from a potential wait()
  2231   Thread::interrupt(this);
  2234 // External suspension mechanism.
  2235 //
  2236 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2237 // to any VM_locks and it is at a transition
  2238 // Self-suspension will happen on the transition out of the vm.
  2239 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2240 //
  2241 // Guarantees on return:
  2242 //   + Target thread will not execute any new bytecode (that's why we need to
  2243 //     force a safepoint)
  2244 //   + Target thread will not enter any new monitors
  2245 //
  2246 void JavaThread::java_suspend() {
  2247   { MutexLocker mu(Threads_lock);
  2248     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2249        return;
  2253   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2254     if (!is_external_suspend()) {
  2255       // a racing resume has cancelled us; bail out now
  2256       return;
  2259     // suspend is done
  2260     uint32_t debug_bits = 0;
  2261     // Warning: is_ext_suspend_completed() may temporarily drop the
  2262     // SR_lock to allow the thread to reach a stable thread state if
  2263     // it is currently in a transient thread state.
  2264     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2265                                  SuspendRetryDelay, &debug_bits) ) {
  2266       return;
  2270   VM_ForceSafepoint vm_suspend;
  2271   VMThread::execute(&vm_suspend);
  2274 // Part II of external suspension.
  2275 // A JavaThread self suspends when it detects a pending external suspend
  2276 // request. This is usually on transitions. It is also done in places
  2277 // where continuing to the next transition would surprise the caller,
  2278 // e.g., monitor entry.
  2279 //
  2280 // Returns the number of times that the thread self-suspended.
  2281 //
  2282 // Note: DO NOT call java_suspend_self() when you just want to block current
  2283 //       thread. java_suspend_self() is the second stage of cooperative
  2284 //       suspension for external suspend requests and should only be used
  2285 //       to complete an external suspend request.
  2286 //
  2287 int JavaThread::java_suspend_self() {
  2288   int ret = 0;
  2290   // we are in the process of exiting so don't suspend
  2291   if (is_exiting()) {
  2292      clear_external_suspend();
  2293      return ret;
  2296   assert(_anchor.walkable() ||
  2297     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2298     "must have walkable stack");
  2300   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2302   assert(!this->is_ext_suspended(),
  2303     "a thread trying to self-suspend should not already be suspended");
  2305   if (this->is_suspend_equivalent()) {
  2306     // If we are self-suspending as a result of the lifting of a
  2307     // suspend equivalent condition, then the suspend_equivalent
  2308     // flag is not cleared until we set the ext_suspended flag so
  2309     // that wait_for_ext_suspend_completion() returns consistent
  2310     // results.
  2311     this->clear_suspend_equivalent();
  2314   // A racing resume may have cancelled us before we grabbed SR_lock
  2315   // above. Or another external suspend request could be waiting for us
  2316   // by the time we return from SR_lock()->wait(). The thread
  2317   // that requested the suspension may already be trying to walk our
  2318   // stack and if we return now, we can change the stack out from under
  2319   // it. This would be a "bad thing (TM)" and cause the stack walker
  2320   // to crash. We stay self-suspended until there are no more pending
  2321   // external suspend requests.
  2322   while (is_external_suspend()) {
  2323     ret++;
  2324     this->set_ext_suspended();
  2326     // _ext_suspended flag is cleared by java_resume()
  2327     while (is_ext_suspended()) {
  2328       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2332   return ret;
  2335 #ifdef ASSERT
  2336 // verify the JavaThread has not yet been published in the Threads::list, and
  2337 // hence doesn't need protection from concurrent access at this stage
  2338 void JavaThread::verify_not_published() {
  2339   if (!Threads_lock->owned_by_self()) {
  2340    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2341    assert( !Threads::includes(this),
  2342            "java thread shouldn't have been published yet!");
  2344   else {
  2345    assert( !Threads::includes(this),
  2346            "java thread shouldn't have been published yet!");
  2349 #endif
  2351 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2352 // progress or when _suspend_flags is non-zero.
  2353 // Current thread needs to self-suspend if there is a suspend request and/or
  2354 // block if a safepoint is in progress.
  2355 // Async exception ISN'T checked.
  2356 // Note only the ThreadInVMfromNative transition can call this function
  2357 // directly and when thread state is _thread_in_native_trans
  2358 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2359   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2361   JavaThread *curJT = JavaThread::current();
  2362   bool do_self_suspend = thread->is_external_suspend();
  2364   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2366   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2367   // thread is not the current thread. In older versions of jdbx, jdbx
  2368   // threads could call into the VM with another thread's JNIEnv so we
  2369   // can be here operating on behalf of a suspended thread (4432884).
  2370   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2371     JavaThreadState state = thread->thread_state();
  2373     // We mark this thread_blocked state as a suspend-equivalent so
  2374     // that a caller to is_ext_suspend_completed() won't be confused.
  2375     // The suspend-equivalent state is cleared by java_suspend_self().
  2376     thread->set_suspend_equivalent();
  2378     // If the safepoint code sees the _thread_in_native_trans state, it will
  2379     // wait until the thread changes to other thread state. There is no
  2380     // guarantee on how soon we can obtain the SR_lock and complete the
  2381     // self-suspend request. It would be a bad idea to let safepoint wait for
  2382     // too long. Temporarily change the state to _thread_blocked to
  2383     // let the VM thread know that this thread is ready for GC. The problem
  2384     // of changing thread state is that safepoint could happen just after
  2385     // java_suspend_self() returns after being resumed, and VM thread will
  2386     // see the _thread_blocked state. We must check for safepoint
  2387     // after restoring the state and make sure we won't leave while a safepoint
  2388     // is in progress.
  2389     thread->set_thread_state(_thread_blocked);
  2390     thread->java_suspend_self();
  2391     thread->set_thread_state(state);
  2392     // Make sure new state is seen by VM thread
  2393     if (os::is_MP()) {
  2394       if (UseMembar) {
  2395         // Force a fence between the write above and read below
  2396         OrderAccess::fence();
  2397       } else {
  2398         // Must use this rather than serialization page in particular on Windows
  2399         InterfaceSupport::serialize_memory(thread);
  2404   if (SafepointSynchronize::do_call_back()) {
  2405     // If we are safepointing, then block the caller which may not be
  2406     // the same as the target thread (see above).
  2407     SafepointSynchronize::block(curJT);
  2410   if (thread->is_deopt_suspend()) {
  2411     thread->clear_deopt_suspend();
  2412     RegisterMap map(thread, false);
  2413     frame f = thread->last_frame();
  2414     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2415       f = f.sender(&map);
  2417     if (f.id() == thread->must_deopt_id()) {
  2418       thread->clear_must_deopt_id();
  2419       f.deoptimize(thread);
  2420     } else {
  2421       fatal("missed deoptimization!");
  2426 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2427 // progress or when _suspend_flags is non-zero.
  2428 // Current thread needs to self-suspend if there is a suspend request and/or
  2429 // block if a safepoint is in progress.
  2430 // Also check for pending async exception (not including unsafe access error).
  2431 // Note only the native==>VM/Java barriers can call this function and when
  2432 // thread state is _thread_in_native_trans.
  2433 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2434   check_safepoint_and_suspend_for_native_trans(thread);
  2436   if (thread->has_async_exception()) {
  2437     // We are in _thread_in_native_trans state, don't handle unsafe
  2438     // access error since that may block.
  2439     thread->check_and_handle_async_exceptions(false);
  2443 // This is a variant of the normal
  2444 // check_special_condition_for_native_trans with slightly different
  2445 // semantics for use by critical native wrappers.  It does all the
  2446 // normal checks but also performs the transition back into
  2447 // thread_in_Java state.  This is required so that critical natives
  2448 // can potentially block and perform a GC if they are the last thread
  2449 // exiting the GC_locker.
  2450 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2451   check_special_condition_for_native_trans(thread);
  2453   // Finish the transition
  2454   thread->set_thread_state(_thread_in_Java);
  2456   if (thread->do_critical_native_unlock()) {
  2457     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2458     GC_locker::unlock_critical(thread);
  2459     thread->clear_critical_native_unlock();
  2463 // We need to guarantee the Threads_lock here, since resumes are not
  2464 // allowed during safepoint synchronization
  2465 // Can only resume from an external suspension
  2466 void JavaThread::java_resume() {
  2467   assert_locked_or_safepoint(Threads_lock);
  2469   // Sanity check: thread is gone, has started exiting or the thread
  2470   // was not externally suspended.
  2471   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2472     return;
  2475   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2477   clear_external_suspend();
  2479   if (is_ext_suspended()) {
  2480     clear_ext_suspended();
  2481     SR_lock()->notify_all();
  2485 void JavaThread::create_stack_guard_pages() {
  2486   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2487   address low_addr = stack_base() - stack_size();
  2488   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2490   int allocate = os::allocate_stack_guard_pages();
  2491   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2493   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2494     warning("Attempt to allocate stack guard pages failed.");
  2495     return;
  2498   if (os::guard_memory((char *) low_addr, len)) {
  2499     _stack_guard_state = stack_guard_enabled;
  2500   } else {
  2501     warning("Attempt to protect stack guard pages failed.");
  2502     if (os::uncommit_memory((char *) low_addr, len)) {
  2503       warning("Attempt to deallocate stack guard pages failed.");
  2508 void JavaThread::remove_stack_guard_pages() {
  2509   assert(Thread::current() == this, "from different thread");
  2510   if (_stack_guard_state == stack_guard_unused) return;
  2511   address low_addr = stack_base() - stack_size();
  2512   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2514   if (os::allocate_stack_guard_pages()) {
  2515     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2516       _stack_guard_state = stack_guard_unused;
  2517     } else {
  2518       warning("Attempt to deallocate stack guard pages failed.");
  2520   } else {
  2521     if (_stack_guard_state == stack_guard_unused) return;
  2522     if (os::unguard_memory((char *) low_addr, len)) {
  2523       _stack_guard_state = stack_guard_unused;
  2524     } else {
  2525         warning("Attempt to unprotect stack guard pages failed.");
  2530 void JavaThread::enable_stack_yellow_zone() {
  2531   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2532   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2534   // The base notation is from the stacks point of view, growing downward.
  2535   // We need to adjust it to work correctly with guard_memory()
  2536   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2538   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2539   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2541   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2542     _stack_guard_state = stack_guard_enabled;
  2543   } else {
  2544     warning("Attempt to guard stack yellow zone failed.");
  2546   enable_register_stack_guard();
  2549 void JavaThread::disable_stack_yellow_zone() {
  2550   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2551   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2553   // Simply return if called for a thread that does not use guard pages.
  2554   if (_stack_guard_state == stack_guard_unused) return;
  2556   // The base notation is from the stacks point of view, growing downward.
  2557   // We need to adjust it to work correctly with guard_memory()
  2558   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2560   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2561     _stack_guard_state = stack_guard_yellow_disabled;
  2562   } else {
  2563     warning("Attempt to unguard stack yellow zone failed.");
  2565   disable_register_stack_guard();
  2568 void JavaThread::enable_stack_red_zone() {
  2569   // The base notation is from the stacks point of view, growing downward.
  2570   // We need to adjust it to work correctly with guard_memory()
  2571   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2572   address base = stack_red_zone_base() - stack_red_zone_size();
  2574   guarantee(base < stack_base(),"Error calculating stack red zone");
  2575   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2577   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2578     warning("Attempt to guard stack red zone failed.");
  2582 void JavaThread::disable_stack_red_zone() {
  2583   // The base notation is from the stacks point of view, growing downward.
  2584   // We need to adjust it to work correctly with guard_memory()
  2585   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2586   address base = stack_red_zone_base() - stack_red_zone_size();
  2587   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2588     warning("Attempt to unguard stack red zone failed.");
  2592 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2593   // ignore is there is no stack
  2594   if (!has_last_Java_frame()) return;
  2595   // traverse the stack frames. Starts from top frame.
  2596   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2597     frame* fr = fst.current();
  2598     f(fr, fst.register_map());
  2603 #ifndef PRODUCT
  2604 // Deoptimization
  2605 // Function for testing deoptimization
  2606 void JavaThread::deoptimize() {
  2607   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2608   StackFrameStream fst(this, UseBiasedLocking);
  2609   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2610   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2611   // Iterate over all frames in the thread and deoptimize
  2612   for(; !fst.is_done(); fst.next()) {
  2613     if(fst.current()->can_be_deoptimized()) {
  2615       if (only_at) {
  2616         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2617         // consists of comma or carriage return separated numbers so
  2618         // search for the current bci in that string.
  2619         address pc = fst.current()->pc();
  2620         nmethod* nm =  (nmethod*) fst.current()->cb();
  2621         ScopeDesc* sd = nm->scope_desc_at( pc);
  2622         char buffer[8];
  2623         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2624         size_t len = strlen(buffer);
  2625         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2626         while (found != NULL) {
  2627           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2628               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2629             // Check that the bci found is bracketed by terminators.
  2630             break;
  2632           found = strstr(found + 1, buffer);
  2634         if (!found) {
  2635           continue;
  2639       if (DebugDeoptimization && !deopt) {
  2640         deopt = true; // One-time only print before deopt
  2641         tty->print_cr("[BEFORE Deoptimization]");
  2642         trace_frames();
  2643         trace_stack();
  2645       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2649   if (DebugDeoptimization && deopt) {
  2650     tty->print_cr("[AFTER Deoptimization]");
  2651     trace_frames();
  2656 // Make zombies
  2657 void JavaThread::make_zombies() {
  2658   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2659     if (fst.current()->can_be_deoptimized()) {
  2660       // it is a Java nmethod
  2661       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2662       nm->make_not_entrant();
  2666 #endif // PRODUCT
  2669 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2670   if (!has_last_Java_frame()) return;
  2671   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2672   StackFrameStream fst(this, UseBiasedLocking);
  2673   for(; !fst.is_done(); fst.next()) {
  2674     if (fst.current()->should_be_deoptimized()) {
  2675       if (LogCompilation && xtty != NULL) {
  2676         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2677         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2678                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2681       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2687 // GC support
  2688 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2690 void JavaThread::gc_epilogue() {
  2691   frames_do(frame_gc_epilogue);
  2695 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2697 void JavaThread::gc_prologue() {
  2698   frames_do(frame_gc_prologue);
  2701 // If the caller is a NamedThread, then remember, in the current scope,
  2702 // the given JavaThread in its _processed_thread field.
  2703 class RememberProcessedThread: public StackObj {
  2704   NamedThread* _cur_thr;
  2705 public:
  2706   RememberProcessedThread(JavaThread* jthr) {
  2707     Thread* thread = Thread::current();
  2708     if (thread->is_Named_thread()) {
  2709       _cur_thr = (NamedThread *)thread;
  2710       _cur_thr->set_processed_thread(jthr);
  2711     } else {
  2712       _cur_thr = NULL;
  2716   ~RememberProcessedThread() {
  2717     if (_cur_thr) {
  2718       _cur_thr->set_processed_thread(NULL);
  2721 };
  2723 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  2724   // Verify that the deferred card marks have been flushed.
  2725   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2727   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2728   // since there may be more than one thread using each ThreadProfiler.
  2730   // Traverse the GCHandles
  2731   Thread::oops_do(f, cld_f, cf);
  2733   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2734           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2736   if (has_last_Java_frame()) {
  2737     // Record JavaThread to GC thread
  2738     RememberProcessedThread rpt(this);
  2740     // Traverse the privileged stack
  2741     if (_privileged_stack_top != NULL) {
  2742       _privileged_stack_top->oops_do(f);
  2745     // traverse the registered growable array
  2746     if (_array_for_gc != NULL) {
  2747       for (int index = 0; index < _array_for_gc->length(); index++) {
  2748         f->do_oop(_array_for_gc->adr_at(index));
  2752     // Traverse the monitor chunks
  2753     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2754       chunk->oops_do(f);
  2757     // Traverse the execution stack
  2758     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2759       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2763   // callee_target is never live across a gc point so NULL it here should
  2764   // it still contain a methdOop.
  2766   set_callee_target(NULL);
  2768   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2769   // If we have deferred set_locals there might be oops waiting to be
  2770   // written
  2771   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2772   if (list != NULL) {
  2773     for (int i = 0; i < list->length(); i++) {
  2774       list->at(i)->oops_do(f);
  2778   // Traverse instance variables at the end since the GC may be moving things
  2779   // around using this function
  2780   f->do_oop((oop*) &_threadObj);
  2781   f->do_oop((oop*) &_vm_result);
  2782   f->do_oop((oop*) &_exception_oop);
  2783   f->do_oop((oop*) &_pending_async_exception);
  2785   if (jvmti_thread_state() != NULL) {
  2786     jvmti_thread_state()->oops_do(f);
  2790 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2791   Thread::nmethods_do(cf);  // (super method is a no-op)
  2793   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2794           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2796   if (has_last_Java_frame()) {
  2797     // Traverse the execution stack
  2798     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2799       fst.current()->nmethods_do(cf);
  2804 void JavaThread::metadata_do(void f(Metadata*)) {
  2805   Thread::metadata_do(f);
  2806   if (has_last_Java_frame()) {
  2807     // Traverse the execution stack to call f() on the methods in the stack
  2808     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2809       fst.current()->metadata_do(f);
  2811   } else if (is_Compiler_thread()) {
  2812     // need to walk ciMetadata in current compile tasks to keep alive.
  2813     CompilerThread* ct = (CompilerThread*)this;
  2814     if (ct->env() != NULL) {
  2815       ct->env()->metadata_do(f);
  2820 // Printing
  2821 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2822   switch (_thread_state) {
  2823   case _thread_uninitialized:     return "_thread_uninitialized";
  2824   case _thread_new:               return "_thread_new";
  2825   case _thread_new_trans:         return "_thread_new_trans";
  2826   case _thread_in_native:         return "_thread_in_native";
  2827   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2828   case _thread_in_vm:             return "_thread_in_vm";
  2829   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2830   case _thread_in_Java:           return "_thread_in_Java";
  2831   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2832   case _thread_blocked:           return "_thread_blocked";
  2833   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2834   default:                        return "unknown thread state";
  2838 #ifndef PRODUCT
  2839 void JavaThread::print_thread_state_on(outputStream *st) const {
  2840   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2841 };
  2842 void JavaThread::print_thread_state() const {
  2843   print_thread_state_on(tty);
  2844 };
  2845 #endif // PRODUCT
  2847 // Called by Threads::print() for VM_PrintThreads operation
  2848 void JavaThread::print_on(outputStream *st) const {
  2849   st->print("\"%s\" ", get_thread_name());
  2850   oop thread_oop = threadObj();
  2851   if (thread_oop != NULL) {
  2852     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2853     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2854     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2856   Thread::print_on(st);
  2857   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2858   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2859   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2860     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2862 #ifndef PRODUCT
  2863   print_thread_state_on(st);
  2864   _safepoint_state->print_on(st);
  2865 #endif // PRODUCT
  2868 // Called by fatal error handler. The difference between this and
  2869 // JavaThread::print() is that we can't grab lock or allocate memory.
  2870 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2871   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2872   oop thread_obj = threadObj();
  2873   if (thread_obj != NULL) {
  2874      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2876   st->print(" [");
  2877   st->print("%s", _get_thread_state_name(_thread_state));
  2878   if (osthread()) {
  2879     st->print(", id=%d", osthread()->thread_id());
  2881   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2882             _stack_base - _stack_size, _stack_base);
  2883   st->print("]");
  2884   return;
  2887 // Verification
  2889 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2891 void JavaThread::verify() {
  2892   // Verify oops in the thread.
  2893   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2895   // Verify the stack frames.
  2896   frames_do(frame_verify);
  2899 // CR 6300358 (sub-CR 2137150)
  2900 // Most callers of this method assume that it can't return NULL but a
  2901 // thread may not have a name whilst it is in the process of attaching to
  2902 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2903 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2904 // if vm exit occurs during initialization). These cases can all be accounted
  2905 // for such that this method never returns NULL.
  2906 const char* JavaThread::get_thread_name() const {
  2907 #ifdef ASSERT
  2908   // early safepoints can hit while current thread does not yet have TLS
  2909   if (!SafepointSynchronize::is_at_safepoint()) {
  2910     Thread *cur = Thread::current();
  2911     if (!(cur->is_Java_thread() && cur == this)) {
  2912       // Current JavaThreads are allowed to get their own name without
  2913       // the Threads_lock.
  2914       assert_locked_or_safepoint(Threads_lock);
  2917 #endif // ASSERT
  2918     return get_thread_name_string();
  2921 // Returns a non-NULL representation of this thread's name, or a suitable
  2922 // descriptive string if there is no set name
  2923 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2924   const char* name_str;
  2925   oop thread_obj = threadObj();
  2926   if (thread_obj != NULL) {
  2927     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2928     if (name != NULL) {
  2929       if (buf == NULL) {
  2930         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2932       else {
  2933         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2936     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2937       name_str = "<no-name - thread is attaching>";
  2939     else {
  2940       name_str = Thread::name();
  2943   else {
  2944     name_str = Thread::name();
  2946   assert(name_str != NULL, "unexpected NULL thread name");
  2947   return name_str;
  2951 const char* JavaThread::get_threadgroup_name() const {
  2952   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2953   oop thread_obj = threadObj();
  2954   if (thread_obj != NULL) {
  2955     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2956     if (thread_group != NULL) {
  2957       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2958       // ThreadGroup.name can be null
  2959       if (name != NULL) {
  2960         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2961         return str;
  2965   return NULL;
  2968 const char* JavaThread::get_parent_name() const {
  2969   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2970   oop thread_obj = threadObj();
  2971   if (thread_obj != NULL) {
  2972     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2973     if (thread_group != NULL) {
  2974       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2975       if (parent != NULL) {
  2976         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2977         // ThreadGroup.name can be null
  2978         if (name != NULL) {
  2979           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2980           return str;
  2985   return NULL;
  2988 ThreadPriority JavaThread::java_priority() const {
  2989   oop thr_oop = threadObj();
  2990   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2991   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2992   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2993   return priority;
  2996 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2998   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2999   // Link Java Thread object <-> C++ Thread
  3001   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  3002   // and put it into a new Handle.  The Handle "thread_oop" can then
  3003   // be used to pass the C++ thread object to other methods.
  3005   // Set the Java level thread object (jthread) field of the
  3006   // new thread (a JavaThread *) to C++ thread object using the
  3007   // "thread_oop" handle.
  3009   // Set the thread field (a JavaThread *) of the
  3010   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3012   Handle thread_oop(Thread::current(),
  3013                     JNIHandles::resolve_non_null(jni_thread));
  3014   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3015     "must be initialized");
  3016   set_threadObj(thread_oop());
  3017   java_lang_Thread::set_thread(thread_oop(), this);
  3019   if (prio == NoPriority) {
  3020     prio = java_lang_Thread::priority(thread_oop());
  3021     assert(prio != NoPriority, "A valid priority should be present");
  3024   // Push the Java priority down to the native thread; needs Threads_lock
  3025   Thread::set_priority(this, prio);
  3027   prepare_ext();
  3029   // Add the new thread to the Threads list and set it in motion.
  3030   // We must have threads lock in order to call Threads::add.
  3031   // It is crucial that we do not block before the thread is
  3032   // added to the Threads list for if a GC happens, then the java_thread oop
  3033   // will not be visited by GC.
  3034   Threads::add(this);
  3037 oop JavaThread::current_park_blocker() {
  3038   // Support for JSR-166 locks
  3039   oop thread_oop = threadObj();
  3040   if (thread_oop != NULL &&
  3041       JDK_Version::current().supports_thread_park_blocker()) {
  3042     return java_lang_Thread::park_blocker(thread_oop);
  3044   return NULL;
  3048 void JavaThread::print_stack_on(outputStream* st) {
  3049   if (!has_last_Java_frame()) return;
  3050   ResourceMark rm;
  3051   HandleMark   hm;
  3053   RegisterMap reg_map(this);
  3054   vframe* start_vf = last_java_vframe(&reg_map);
  3055   int count = 0;
  3056   for (vframe* f = start_vf; f; f = f->sender() ) {
  3057     if (f->is_java_frame()) {
  3058       javaVFrame* jvf = javaVFrame::cast(f);
  3059       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3061       // Print out lock information
  3062       if (JavaMonitorsInStackTrace) {
  3063         jvf->print_lock_info_on(st, count);
  3065     } else {
  3066       // Ignore non-Java frames
  3069     // Bail-out case for too deep stacks
  3070     count++;
  3071     if (MaxJavaStackTraceDepth == count) return;
  3076 // JVMTI PopFrame support
  3077 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3078   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3079   if (in_bytes(size_in_bytes) != 0) {
  3080     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3081     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3082     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3086 void* JavaThread::popframe_preserved_args() {
  3087   return _popframe_preserved_args;
  3090 ByteSize JavaThread::popframe_preserved_args_size() {
  3091   return in_ByteSize(_popframe_preserved_args_size);
  3094 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3095   int sz = in_bytes(popframe_preserved_args_size());
  3096   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3097   return in_WordSize(sz / wordSize);
  3100 void JavaThread::popframe_free_preserved_args() {
  3101   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3102   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3103   _popframe_preserved_args = NULL;
  3104   _popframe_preserved_args_size = 0;
  3107 #ifndef PRODUCT
  3109 void JavaThread::trace_frames() {
  3110   tty->print_cr("[Describe stack]");
  3111   int frame_no = 1;
  3112   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3113     tty->print("  %d. ", frame_no++);
  3114     fst.current()->print_value_on(tty,this);
  3115     tty->cr();
  3119 class PrintAndVerifyOopClosure: public OopClosure {
  3120  protected:
  3121   template <class T> inline void do_oop_work(T* p) {
  3122     oop obj = oopDesc::load_decode_heap_oop(p);
  3123     if (obj == NULL) return;
  3124     tty->print(INTPTR_FORMAT ": ", p);
  3125     if (obj->is_oop_or_null()) {
  3126       if (obj->is_objArray()) {
  3127         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3128       } else {
  3129         obj->print();
  3131     } else {
  3132       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3134     tty->cr();
  3136  public:
  3137   virtual void do_oop(oop* p) { do_oop_work(p); }
  3138   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3139 };
  3142 static void oops_print(frame* f, const RegisterMap *map) {
  3143   PrintAndVerifyOopClosure print;
  3144   f->print_value();
  3145   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3148 // Print our all the locations that contain oops and whether they are
  3149 // valid or not.  This useful when trying to find the oldest frame
  3150 // where an oop has gone bad since the frame walk is from youngest to
  3151 // oldest.
  3152 void JavaThread::trace_oops() {
  3153   tty->print_cr("[Trace oops]");
  3154   frames_do(oops_print);
  3158 #ifdef ASSERT
  3159 // Print or validate the layout of stack frames
  3160 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3161   ResourceMark rm;
  3162   PRESERVE_EXCEPTION_MARK;
  3163   FrameValues values;
  3164   int frame_no = 0;
  3165   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3166     fst.current()->describe(values, ++frame_no);
  3167     if (depth == frame_no) break;
  3169   if (validate_only) {
  3170     values.validate();
  3171   } else {
  3172     tty->print_cr("[Describe stack layout]");
  3173     values.print(this);
  3176 #endif
  3178 void JavaThread::trace_stack_from(vframe* start_vf) {
  3179   ResourceMark rm;
  3180   int vframe_no = 1;
  3181   for (vframe* f = start_vf; f; f = f->sender() ) {
  3182     if (f->is_java_frame()) {
  3183       javaVFrame::cast(f)->print_activation(vframe_no++);
  3184     } else {
  3185       f->print();
  3187     if (vframe_no > StackPrintLimit) {
  3188       tty->print_cr("...<more frames>...");
  3189       return;
  3195 void JavaThread::trace_stack() {
  3196   if (!has_last_Java_frame()) return;
  3197   ResourceMark rm;
  3198   HandleMark   hm;
  3199   RegisterMap reg_map(this);
  3200   trace_stack_from(last_java_vframe(&reg_map));
  3204 #endif // PRODUCT
  3207 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3208   assert(reg_map != NULL, "a map must be given");
  3209   frame f = last_frame();
  3210   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3211     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3213   return NULL;
  3217 Klass* JavaThread::security_get_caller_class(int depth) {
  3218   vframeStream vfst(this);
  3219   vfst.security_get_caller_frame(depth);
  3220   if (!vfst.at_end()) {
  3221     return vfst.method()->method_holder();
  3223   return NULL;
  3226 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3227   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3228   CompileBroker::compiler_thread_loop();
  3231 // Create a CompilerThread
  3232 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3233 : JavaThread(&compiler_thread_entry) {
  3234   _env   = NULL;
  3235   _log   = NULL;
  3236   _task  = NULL;
  3237   _queue = queue;
  3238   _counters = counters;
  3239   _buffer_blob = NULL;
  3240   _scanned_nmethod = NULL;
  3241   _compiler = NULL;
  3243 #ifndef PRODUCT
  3244   _ideal_graph_printer = NULL;
  3245 #endif
  3248 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  3249   JavaThread::oops_do(f, cld_f, cf);
  3250   if (_scanned_nmethod != NULL && cf != NULL) {
  3251     // Safepoints can occur when the sweeper is scanning an nmethod so
  3252     // process it here to make sure it isn't unloaded in the middle of
  3253     // a scan.
  3254     cf->do_code_blob(_scanned_nmethod);
  3259 // ======= Threads ========
  3261 // The Threads class links together all active threads, and provides
  3262 // operations over all threads.  It is protected by its own Mutex
  3263 // lock, which is also used in other contexts to protect thread
  3264 // operations from having the thread being operated on from exiting
  3265 // and going away unexpectedly (e.g., safepoint synchronization)
  3267 JavaThread* Threads::_thread_list = NULL;
  3268 int         Threads::_number_of_threads = 0;
  3269 int         Threads::_number_of_non_daemon_threads = 0;
  3270 int         Threads::_return_code = 0;
  3271 size_t      JavaThread::_stack_size_at_create = 0;
  3272 #ifdef ASSERT
  3273 bool        Threads::_vm_complete = false;
  3274 #endif
  3276 // All JavaThreads
  3277 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3279 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3280 void Threads::threads_do(ThreadClosure* tc) {
  3281   assert_locked_or_safepoint(Threads_lock);
  3282   // ALL_JAVA_THREADS iterates through all JavaThreads
  3283   ALL_JAVA_THREADS(p) {
  3284     tc->do_thread(p);
  3286   // Someday we could have a table or list of all non-JavaThreads.
  3287   // For now, just manually iterate through them.
  3288   tc->do_thread(VMThread::vm_thread());
  3289   Universe::heap()->gc_threads_do(tc);
  3290   WatcherThread *wt = WatcherThread::watcher_thread();
  3291   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3292   // the data for WatcherThread is still valid upon being examined. However,
  3293   // considering that WatchThread terminates when the VM is on the way to
  3294   // exit at safepoint, the chance of the above is extremely small. The right
  3295   // way to prevent termination of WatcherThread would be to acquire
  3296   // Terminator_lock, but we can't do that without violating the lock rank
  3297   // checking in some cases.
  3298   if (wt != NULL)
  3299     tc->do_thread(wt);
  3301   // If CompilerThreads ever become non-JavaThreads, add them here
  3304 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3306   extern void JDK_Version_init();
  3308   // Check version
  3309   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3311   // Initialize the output stream module
  3312   ostream_init();
  3314   // Process java launcher properties.
  3315   Arguments::process_sun_java_launcher_properties(args);
  3317   // Initialize the os module before using TLS
  3318   os::init();
  3320   // Initialize system properties.
  3321   Arguments::init_system_properties();
  3323   // So that JDK version can be used as a discrimintor when parsing arguments
  3324   JDK_Version_init();
  3326   // Update/Initialize System properties after JDK version number is known
  3327   Arguments::init_version_specific_system_properties();
  3329   // Parse arguments
  3330   jint parse_result = Arguments::parse(args);
  3331   if (parse_result != JNI_OK) return parse_result;
  3333   os::init_before_ergo();
  3335   jint ergo_result = Arguments::apply_ergo();
  3336   if (ergo_result != JNI_OK) return ergo_result;
  3338   if (PauseAtStartup) {
  3339     os::pause();
  3342 #ifndef USDT2
  3343   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3344 #else /* USDT2 */
  3345   HOTSPOT_VM_INIT_BEGIN();
  3346 #endif /* USDT2 */
  3348   // Record VM creation timing statistics
  3349   TraceVmCreationTime create_vm_timer;
  3350   create_vm_timer.start();
  3352   // Timing (must come after argument parsing)
  3353   TraceTime timer("Create VM", TraceStartupTime);
  3355   // Initialize the os module after parsing the args
  3356   jint os_init_2_result = os::init_2();
  3357   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3359   jint adjust_after_os_result = Arguments::adjust_after_os();
  3360   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3362   // intialize TLS
  3363   ThreadLocalStorage::init();
  3365   // Initialize output stream logging
  3366   ostream_init_log();
  3368   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3369   // Must be before create_vm_init_agents()
  3370   if (Arguments::init_libraries_at_startup()) {
  3371     convert_vm_init_libraries_to_agents();
  3374   // Launch -agentlib/-agentpath and converted -Xrun agents
  3375   if (Arguments::init_agents_at_startup()) {
  3376     create_vm_init_agents();
  3379   // Initialize Threads state
  3380   _thread_list = NULL;
  3381   _number_of_threads = 0;
  3382   _number_of_non_daemon_threads = 0;
  3384   // Initialize global data structures and create system classes in heap
  3385   vm_init_globals();
  3387   // Attach the main thread to this os thread
  3388   JavaThread* main_thread = new JavaThread();
  3389   main_thread->set_thread_state(_thread_in_vm);
  3390   // must do this before set_active_handles and initialize_thread_local_storage
  3391   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3392   // change the stack size recorded here to one based on the java thread
  3393   // stacksize. This adjusted size is what is used to figure the placement
  3394   // of the guard pages.
  3395   main_thread->record_stack_base_and_size();
  3396   main_thread->initialize_thread_local_storage();
  3398   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3400   if (!main_thread->set_as_starting_thread()) {
  3401     vm_shutdown_during_initialization(
  3402       "Failed necessary internal allocation. Out of swap space");
  3403     delete main_thread;
  3404     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3405     return JNI_ENOMEM;
  3408   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3409   // crash Linux VM, see notes in os_linux.cpp.
  3410   main_thread->create_stack_guard_pages();
  3412   // Initialize Java-Level synchronization subsystem
  3413   ObjectMonitor::Initialize() ;
  3415   // Initialize global modules
  3416   jint status = init_globals();
  3417   if (status != JNI_OK) {
  3418     delete main_thread;
  3419     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3420     return status;
  3423   // Should be done after the heap is fully created
  3424   main_thread->cache_global_variables();
  3426   HandleMark hm;
  3428   { MutexLocker mu(Threads_lock);
  3429     Threads::add(main_thread);
  3432   // Any JVMTI raw monitors entered in onload will transition into
  3433   // real raw monitor. VM is setup enough here for raw monitor enter.
  3434   JvmtiExport::transition_pending_onload_raw_monitors();
  3436   // Create the VMThread
  3437   { TraceTime timer("Start VMThread", TraceStartupTime);
  3438     VMThread::create();
  3439     Thread* vmthread = VMThread::vm_thread();
  3441     if (!os::create_thread(vmthread, os::vm_thread))
  3442       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3444     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3445     // Monitors can have spurious returns, must always check another state flag
  3447       MutexLocker ml(Notify_lock);
  3448       os::start_thread(vmthread);
  3449       while (vmthread->active_handles() == NULL) {
  3450         Notify_lock->wait();
  3455   assert (Universe::is_fully_initialized(), "not initialized");
  3456   if (VerifyDuringStartup) {
  3457     // Make sure we're starting with a clean slate.
  3458     VM_Verify verify_op;
  3459     VMThread::execute(&verify_op);
  3462   EXCEPTION_MARK;
  3464   // At this point, the Universe is initialized, but we have not executed
  3465   // any byte code.  Now is a good time (the only time) to dump out the
  3466   // internal state of the JVM for sharing.
  3467   if (DumpSharedSpaces) {
  3468     MetaspaceShared::preload_and_dump(CHECK_0);
  3469     ShouldNotReachHere();
  3472   // Always call even when there are not JVMTI environments yet, since environments
  3473   // may be attached late and JVMTI must track phases of VM execution
  3474   JvmtiExport::enter_start_phase();
  3476   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3477   JvmtiExport::post_vm_start();
  3480     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3482     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3483       create_vm_init_libraries();
  3486     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3488     // Initialize java_lang.System (needed before creating the thread)
  3489     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3490     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3491     Handle thread_group = create_initial_thread_group(CHECK_0);
  3492     Universe::set_main_thread_group(thread_group());
  3493     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3494     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3495     main_thread->set_threadObj(thread_object);
  3496     // Set thread status to running since main thread has
  3497     // been started and running.
  3498     java_lang_Thread::set_thread_status(thread_object,
  3499                                         java_lang_Thread::RUNNABLE);
  3501     // The VM creates & returns objects of this class. Make sure it's initialized.
  3502     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3504     // The VM preresolves methods to these classes. Make sure that they get initialized
  3505     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3506     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3507     call_initializeSystemClass(CHECK_0);
  3509     // get the Java runtime name after java.lang.System is initialized
  3510     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3511     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3513     // an instance of OutOfMemory exception has been allocated earlier
  3514     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3515     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3516     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3517     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3518     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3519     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3520     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3521     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3524   // See        : bugid 4211085.
  3525   // Background : the static initializer of java.lang.Compiler tries to read
  3526   //              property"java.compiler" and read & write property "java.vm.info".
  3527   //              When a security manager is installed through the command line
  3528   //              option "-Djava.security.manager", the above properties are not
  3529   //              readable and the static initializer for java.lang.Compiler fails
  3530   //              resulting in a NoClassDefFoundError.  This can happen in any
  3531   //              user code which calls methods in java.lang.Compiler.
  3532   // Hack :       the hack is to pre-load and initialize this class, so that only
  3533   //              system domains are on the stack when the properties are read.
  3534   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3535   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3536   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3537   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3538   //              Once that is done, we should remove this hack.
  3539   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3541   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3542   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3543   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3544   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3545   // This should also be taken out as soon as 4211383 gets fixed.
  3546   reset_vm_info_property(CHECK_0);
  3548   quicken_jni_functions();
  3550   // Must be run after init_ft which initializes ft_enabled
  3551   if (TRACE_INITIALIZE() != JNI_OK) {
  3552     vm_exit_during_initialization("Failed to initialize tracing backend");
  3555   // Set flag that basic initialization has completed. Used by exceptions and various
  3556   // debug stuff, that does not work until all basic classes have been initialized.
  3557   set_init_completed();
  3559   Metaspace::post_initialize();
  3561 #ifndef USDT2
  3562   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3563 #else /* USDT2 */
  3564   HOTSPOT_VM_INIT_END();
  3565 #endif /* USDT2 */
  3567   // record VM initialization completion time
  3568 #if INCLUDE_MANAGEMENT
  3569   Management::record_vm_init_completed();
  3570 #endif // INCLUDE_MANAGEMENT
  3572   // Compute system loader. Note that this has to occur after set_init_completed, since
  3573   // valid exceptions may be thrown in the process.
  3574   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3575   // set_init_completed has just been called, causing exceptions not to be shortcut
  3576   // anymore. We call vm_exit_during_initialization directly instead.
  3577   SystemDictionary::compute_java_system_loader(THREAD);
  3578   if (HAS_PENDING_EXCEPTION) {
  3579     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3582 #if INCLUDE_ALL_GCS
  3583   // Support for ConcurrentMarkSweep. This should be cleaned up
  3584   // and better encapsulated. The ugly nested if test would go away
  3585   // once things are properly refactored. XXX YSR
  3586   if (UseConcMarkSweepGC || UseG1GC) {
  3587     if (UseConcMarkSweepGC) {
  3588       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3589     } else {
  3590       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3592     if (HAS_PENDING_EXCEPTION) {
  3593       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3596 #endif // INCLUDE_ALL_GCS
  3598   // Always call even when there are not JVMTI environments yet, since environments
  3599   // may be attached late and JVMTI must track phases of VM execution
  3600   JvmtiExport::enter_live_phase();
  3602   // Signal Dispatcher needs to be started before VMInit event is posted
  3603   os::signal_init();
  3605   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3606   if (!DisableAttachMechanism) {
  3607     AttachListener::vm_start();
  3608     if (StartAttachListener || AttachListener::init_at_startup()) {
  3609       AttachListener::init();
  3613   // Launch -Xrun agents
  3614   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3615   // back-end can launch with -Xdebug -Xrunjdwp.
  3616   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3617     create_vm_init_libraries();
  3620   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3621   JvmtiExport::post_vm_initialized();
  3623   if (TRACE_START() != JNI_OK) {
  3624     vm_exit_during_initialization("Failed to start tracing backend.");
  3627   if (CleanChunkPoolAsync) {
  3628     Chunk::start_chunk_pool_cleaner_task();
  3631   // initialize compiler(s)
  3632 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3633   CompileBroker::compilation_init();
  3634 #endif
  3636   if (EnableInvokeDynamic) {
  3637     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
  3638     // It is done after compilers are initialized, because otherwise compilations of
  3639     // signature polymorphic MH intrinsics can be missed
  3640     // (see SystemDictionary::find_method_handle_intrinsic).
  3641     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
  3642     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
  3643     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  3646 #if INCLUDE_MANAGEMENT
  3647   Management::initialize(THREAD);
  3648 #endif // INCLUDE_MANAGEMENT
  3650   if (HAS_PENDING_EXCEPTION) {
  3651     // management agent fails to start possibly due to
  3652     // configuration problem and is responsible for printing
  3653     // stack trace if appropriate. Simply exit VM.
  3654     vm_exit(1);
  3657   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3658   if (MemProfiling)                   MemProfiler::engage();
  3659   StatSampler::engage();
  3660   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3662   BiasedLocking::init();
  3664 #if INCLUDE_RTM_OPT
  3665   RTMLockingCounters::init();
  3666 #endif
  3668   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3669     call_postVMInitHook(THREAD);
  3670     // The Java side of PostVMInitHook.run must deal with all
  3671     // exceptions and provide means of diagnosis.
  3672     if (HAS_PENDING_EXCEPTION) {
  3673       CLEAR_PENDING_EXCEPTION;
  3678       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3679       // Make sure the watcher thread can be started by WatcherThread::start()
  3680       // or by dynamic enrollment.
  3681       WatcherThread::make_startable();
  3682       // Start up the WatcherThread if there are any periodic tasks
  3683       // NOTE:  All PeriodicTasks should be registered by now. If they
  3684       //   aren't, late joiners might appear to start slowly (we might
  3685       //   take a while to process their first tick).
  3686       if (PeriodicTask::num_tasks() > 0) {
  3687           WatcherThread::start();
  3691   // Give os specific code one last chance to start
  3692   os::init_3();
  3694   create_vm_timer.end();
  3695 #ifdef ASSERT
  3696   _vm_complete = true;
  3697 #endif
  3698   return JNI_OK;
  3701 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3702 extern "C" {
  3703   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3705 // Find a command line agent library and return its entry point for
  3706 //         -agentlib:  -agentpath:   -Xrun
  3707 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3708 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3709   OnLoadEntry_t on_load_entry = NULL;
  3710   void *library = NULL;
  3712   if (!agent->valid()) {
  3713     char buffer[JVM_MAXPATHLEN];
  3714     char ebuf[1024];
  3715     const char *name = agent->name();
  3716     const char *msg = "Could not find agent library ";
  3718     // First check to see if agent is statically linked into executable
  3719     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
  3720       library = agent->os_lib();
  3721     } else if (agent->is_absolute_path()) {
  3722       library = os::dll_load(name, ebuf, sizeof ebuf);
  3723       if (library == NULL) {
  3724         const char *sub_msg = " in absolute path, with error: ";
  3725         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3726         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3727         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3728         // If we can't find the agent, exit.
  3729         vm_exit_during_initialization(buf, NULL);
  3730         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3732     } else {
  3733       // Try to load the agent from the standard dll directory
  3734       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3735                              name)) {
  3736         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3738       if (library == NULL) { // Try the local directory
  3739         char ns[1] = {0};
  3740         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3741           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3743         if (library == NULL) {
  3744           const char *sub_msg = " on the library path, with error: ";
  3745           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3746           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3747           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3748           // If we can't find the agent, exit.
  3749           vm_exit_during_initialization(buf, NULL);
  3750           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3754     agent->set_os_lib(library);
  3755     agent->set_valid();
  3758   // Find the OnLoad function.
  3759   on_load_entry =
  3760     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
  3761                                                           false,
  3762                                                           on_load_symbols,
  3763                                                           num_symbol_entries));
  3764   return on_load_entry;
  3767 // Find the JVM_OnLoad entry point
  3768 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3769   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3770   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3773 // Find the Agent_OnLoad entry point
  3774 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3775   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3776   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3779 // For backwards compatibility with -Xrun
  3780 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3781 // treated like -agentpath:
  3782 // Must be called before agent libraries are created
  3783 void Threads::convert_vm_init_libraries_to_agents() {
  3784   AgentLibrary* agent;
  3785   AgentLibrary* next;
  3787   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3788     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3789     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3791     // If there is an JVM_OnLoad function it will get called later,
  3792     // otherwise see if there is an Agent_OnLoad
  3793     if (on_load_entry == NULL) {
  3794       on_load_entry = lookup_agent_on_load(agent);
  3795       if (on_load_entry != NULL) {
  3796         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3797         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3798         Arguments::convert_library_to_agent(agent);
  3799       } else {
  3800         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3806 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3807 // Invokes Agent_OnLoad
  3808 // Called very early -- before JavaThreads exist
  3809 void Threads::create_vm_init_agents() {
  3810   extern struct JavaVM_ main_vm;
  3811   AgentLibrary* agent;
  3813   JvmtiExport::enter_onload_phase();
  3815   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3816     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3818     if (on_load_entry != NULL) {
  3819       // Invoke the Agent_OnLoad function
  3820       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3821       if (err != JNI_OK) {
  3822         vm_exit_during_initialization("agent library failed to init", agent->name());
  3824     } else {
  3825       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3828   JvmtiExport::enter_primordial_phase();
  3831 extern "C" {
  3832   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3835 void Threads::shutdown_vm_agents() {
  3836   // Send any Agent_OnUnload notifications
  3837   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3838   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  3839   extern struct JavaVM_ main_vm;
  3840   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3842     // Find the Agent_OnUnload function.
  3843     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3844       os::find_agent_function(agent,
  3845       false,
  3846       on_unload_symbols,
  3847       num_symbol_entries));
  3849     // Invoke the Agent_OnUnload function
  3850     if (unload_entry != NULL) {
  3851       JavaThread* thread = JavaThread::current();
  3852       ThreadToNativeFromVM ttn(thread);
  3853       HandleMark hm(thread);
  3854       (*unload_entry)(&main_vm);
  3859 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3860 // Invokes JVM_OnLoad
  3861 void Threads::create_vm_init_libraries() {
  3862   extern struct JavaVM_ main_vm;
  3863   AgentLibrary* agent;
  3865   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3866     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3868     if (on_load_entry != NULL) {
  3869       // Invoke the JVM_OnLoad function
  3870       JavaThread* thread = JavaThread::current();
  3871       ThreadToNativeFromVM ttn(thread);
  3872       HandleMark hm(thread);
  3873       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3874       if (err != JNI_OK) {
  3875         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3877     } else {
  3878       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3883 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
  3884   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
  3886   JavaThread* java_thread = NULL;
  3887   // Sequential search for now.  Need to do better optimization later.
  3888   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
  3889     oop tobj = thread->threadObj();
  3890     if (!thread->is_exiting() &&
  3891         tobj != NULL &&
  3892         java_tid == java_lang_Thread::thread_id(tobj)) {
  3893       java_thread = thread;
  3894       break;
  3897   return java_thread;
  3901 // Last thread running calls java.lang.Shutdown.shutdown()
  3902 void JavaThread::invoke_shutdown_hooks() {
  3903   HandleMark hm(this);
  3905   // We could get here with a pending exception, if so clear it now.
  3906   if (this->has_pending_exception()) {
  3907     this->clear_pending_exception();
  3910   EXCEPTION_MARK;
  3911   Klass* k =
  3912     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3913                                       THREAD);
  3914   if (k != NULL) {
  3915     // SystemDictionary::resolve_or_null will return null if there was
  3916     // an exception.  If we cannot load the Shutdown class, just don't
  3917     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3918     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3919     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3920     // was called, the Shutdown class would have already been loaded
  3921     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3922     instanceKlassHandle shutdown_klass (THREAD, k);
  3923     JavaValue result(T_VOID);
  3924     JavaCalls::call_static(&result,
  3925                            shutdown_klass,
  3926                            vmSymbols::shutdown_method_name(),
  3927                            vmSymbols::void_method_signature(),
  3928                            THREAD);
  3930   CLEAR_PENDING_EXCEPTION;
  3933 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3934 // the program falls off the end of main(). Another VM exit path is through
  3935 // vm_exit() when the program calls System.exit() to return a value or when
  3936 // there is a serious error in VM. The two shutdown paths are not exactly
  3937 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3938 // and VM_Exit op at VM level.
  3939 //
  3940 // Shutdown sequence:
  3941 //   + Shutdown native memory tracking if it is on
  3942 //   + Wait until we are the last non-daemon thread to execute
  3943 //     <-- every thing is still working at this moment -->
  3944 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3945 //        shutdown hooks, run finalizers if finalization-on-exit
  3946 //   + Call before_exit(), prepare for VM exit
  3947 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3948 //        currently the only user of this mechanism is File.deleteOnExit())
  3949 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3950 //        post thread end and vm death events to JVMTI,
  3951 //        stop signal thread
  3952 //   + Call JavaThread::exit(), it will:
  3953 //      > release JNI handle blocks, remove stack guard pages
  3954 //      > remove this thread from Threads list
  3955 //     <-- no more Java code from this thread after this point -->
  3956 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3957 //     the compiler threads at safepoint
  3958 //     <-- do not use anything that could get blocked by Safepoint -->
  3959 //   + Disable tracing at JNI/JVM barriers
  3960 //   + Set _vm_exited flag for threads that are still running native code
  3961 //   + Delete this thread
  3962 //   + Call exit_globals()
  3963 //      > deletes tty
  3964 //      > deletes PerfMemory resources
  3965 //   + Return to caller
  3967 bool Threads::destroy_vm() {
  3968   JavaThread* thread = JavaThread::current();
  3970 #ifdef ASSERT
  3971   _vm_complete = false;
  3972 #endif
  3973   // Wait until we are the last non-daemon thread to execute
  3974   { MutexLocker nu(Threads_lock);
  3975     while (Threads::number_of_non_daemon_threads() > 1 )
  3976       // This wait should make safepoint checks, wait without a timeout,
  3977       // and wait as a suspend-equivalent condition.
  3978       //
  3979       // Note: If the FlatProfiler is running and this thread is waiting
  3980       // for another non-daemon thread to finish, then the FlatProfiler
  3981       // is waiting for the external suspend request on this thread to
  3982       // complete. wait_for_ext_suspend_completion() will eventually
  3983       // timeout, but that takes time. Making this wait a suspend-
  3984       // equivalent condition solves that timeout problem.
  3985       //
  3986       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3987                          Mutex::_as_suspend_equivalent_flag);
  3990   // Hang forever on exit if we are reporting an error.
  3991   if (ShowMessageBoxOnError && is_error_reported()) {
  3992     os::infinite_sleep();
  3994   os::wait_for_keypress_at_exit();
  3996   if (JDK_Version::is_jdk12x_version()) {
  3997     // We are the last thread running, so check if finalizers should be run.
  3998     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3999     HandleMark rm(thread);
  4000     Universe::run_finalizers_on_exit();
  4001   } else {
  4002     // run Java level shutdown hooks
  4003     thread->invoke_shutdown_hooks();
  4006   before_exit(thread);
  4008   thread->exit(true);
  4010   // Stop VM thread.
  4012     // 4945125 The vm thread comes to a safepoint during exit.
  4013     // GC vm_operations can get caught at the safepoint, and the
  4014     // heap is unparseable if they are caught. Grab the Heap_lock
  4015     // to prevent this. The GC vm_operations will not be able to
  4016     // queue until after the vm thread is dead. After this point,
  4017     // we'll never emerge out of the safepoint before the VM exits.
  4019     MutexLocker ml(Heap_lock);
  4021     VMThread::wait_for_vm_thread_exit();
  4022     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4023     VMThread::destroy();
  4026   // clean up ideal graph printers
  4027 #if defined(COMPILER2) && !defined(PRODUCT)
  4028   IdealGraphPrinter::clean_up();
  4029 #endif
  4031   // Now, all Java threads are gone except daemon threads. Daemon threads
  4032   // running Java code or in VM are stopped by the Safepoint. However,
  4033   // daemon threads executing native code are still running.  But they
  4034   // will be stopped at native=>Java/VM barriers. Note that we can't
  4035   // simply kill or suspend them, as it is inherently deadlock-prone.
  4037 #ifndef PRODUCT
  4038   // disable function tracing at JNI/JVM barriers
  4039   TraceJNICalls = false;
  4040   TraceJVMCalls = false;
  4041   TraceRuntimeCalls = false;
  4042 #endif
  4044   VM_Exit::set_vm_exited();
  4046   notify_vm_shutdown();
  4048   delete thread;
  4050   // exit_globals() will delete tty
  4051   exit_globals();
  4053   return true;
  4057 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4058   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4059   return is_supported_jni_version(version);
  4063 jboolean Threads::is_supported_jni_version(jint version) {
  4064   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4065   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4066   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4067   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4068   return JNI_FALSE;
  4072 void Threads::add(JavaThread* p, bool force_daemon) {
  4073   // The threads lock must be owned at this point
  4074   assert_locked_or_safepoint(Threads_lock);
  4076   // See the comment for this method in thread.hpp for its purpose and
  4077   // why it is called here.
  4078   p->initialize_queues();
  4079   p->set_next(_thread_list);
  4080   _thread_list = p;
  4081   _number_of_threads++;
  4082   oop threadObj = p->threadObj();
  4083   bool daemon = true;
  4084   // Bootstrapping problem: threadObj can be null for initial
  4085   // JavaThread (or for threads attached via JNI)
  4086   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4087     _number_of_non_daemon_threads++;
  4088     daemon = false;
  4091   ThreadService::add_thread(p, daemon);
  4093   // Possible GC point.
  4094   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4097 void Threads::remove(JavaThread* p) {
  4098   // Extra scope needed for Thread_lock, so we can check
  4099   // that we do not remove thread without safepoint code notice
  4100   { MutexLocker ml(Threads_lock);
  4102     assert(includes(p), "p must be present");
  4104     JavaThread* current = _thread_list;
  4105     JavaThread* prev    = NULL;
  4107     while (current != p) {
  4108       prev    = current;
  4109       current = current->next();
  4112     if (prev) {
  4113       prev->set_next(current->next());
  4114     } else {
  4115       _thread_list = p->next();
  4117     _number_of_threads--;
  4118     oop threadObj = p->threadObj();
  4119     bool daemon = true;
  4120     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4121       _number_of_non_daemon_threads--;
  4122       daemon = false;
  4124       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4125       // on destroy_vm will wake up.
  4126       if (number_of_non_daemon_threads() == 1)
  4127         Threads_lock->notify_all();
  4129     ThreadService::remove_thread(p, daemon);
  4131     // Make sure that safepoint code disregard this thread. This is needed since
  4132     // the thread might mess around with locks after this point. This can cause it
  4133     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4134     // of this thread since it is removed from the queue.
  4135     p->set_terminated_value();
  4136   } // unlock Threads_lock
  4138   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4139   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4142 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4143 bool Threads::includes(JavaThread* p) {
  4144   assert(Threads_lock->is_locked(), "sanity check");
  4145   ALL_JAVA_THREADS(q) {
  4146     if (q == p ) {
  4147       return true;
  4150   return false;
  4153 // Operations on the Threads list for GC.  These are not explicitly locked,
  4154 // but the garbage collector must provide a safe context for them to run.
  4155 // In particular, these things should never be called when the Threads_lock
  4156 // is held by some other thread. (Note: the Safepoint abstraction also
  4157 // uses the Threads_lock to gurantee this property. It also makes sure that
  4158 // all threads gets blocked when exiting or starting).
  4160 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4161   ALL_JAVA_THREADS(p) {
  4162     p->oops_do(f, cld_f, cf);
  4164   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4167 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4168   // Introduce a mechanism allowing parallel threads to claim threads as
  4169   // root groups.  Overhead should be small enough to use all the time,
  4170   // even in sequential code.
  4171   SharedHeap* sh = SharedHeap::heap();
  4172   // Cannot yet substitute active_workers for n_par_threads
  4173   // because of G1CollectedHeap::verify() use of
  4174   // SharedHeap::process_roots().  n_par_threads == 0 will
  4175   // turn off parallelism in process_roots while active_workers
  4176   // is being used for parallelism elsewhere.
  4177   bool is_par = sh->n_par_threads() > 0;
  4178   assert(!is_par ||
  4179          (SharedHeap::heap()->n_par_threads() ==
  4180           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4181   int cp = SharedHeap::heap()->strong_roots_parity();
  4182   ALL_JAVA_THREADS(p) {
  4183     if (p->claim_oops_do(is_par, cp)) {
  4184       p->oops_do(f, cld_f, cf);
  4187   VMThread* vmt = VMThread::vm_thread();
  4188   if (vmt->claim_oops_do(is_par, cp)) {
  4189     vmt->oops_do(f, cld_f, cf);
  4193 #if INCLUDE_ALL_GCS
  4194 // Used by ParallelScavenge
  4195 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4196   ALL_JAVA_THREADS(p) {
  4197     q->enqueue(new ThreadRootsTask(p));
  4199   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4202 // Used by Parallel Old
  4203 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4204   ALL_JAVA_THREADS(p) {
  4205     q->enqueue(new ThreadRootsMarkingTask(p));
  4207   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4209 #endif // INCLUDE_ALL_GCS
  4211 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4212   ALL_JAVA_THREADS(p) {
  4213     p->nmethods_do(cf);
  4215   VMThread::vm_thread()->nmethods_do(cf);
  4218 void Threads::metadata_do(void f(Metadata*)) {
  4219   ALL_JAVA_THREADS(p) {
  4220     p->metadata_do(f);
  4224 void Threads::gc_epilogue() {
  4225   ALL_JAVA_THREADS(p) {
  4226     p->gc_epilogue();
  4230 void Threads::gc_prologue() {
  4231   ALL_JAVA_THREADS(p) {
  4232     p->gc_prologue();
  4236 void Threads::deoptimized_wrt_marked_nmethods() {
  4237   ALL_JAVA_THREADS(p) {
  4238     p->deoptimized_wrt_marked_nmethods();
  4243 // Get count Java threads that are waiting to enter the specified monitor.
  4244 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4245   address monitor, bool doLock) {
  4246   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4247     "must grab Threads_lock or be at safepoint");
  4248   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4250   int i = 0;
  4252     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4253     ALL_JAVA_THREADS(p) {
  4254       if (p->is_Compiler_thread()) continue;
  4256       address pending = (address)p->current_pending_monitor();
  4257       if (pending == monitor) {             // found a match
  4258         if (i < count) result->append(p);   // save the first count matches
  4259         i++;
  4263   return result;
  4267 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4268   assert(doLock ||
  4269          Threads_lock->owned_by_self() ||
  4270          SafepointSynchronize::is_at_safepoint(),
  4271          "must grab Threads_lock or be at safepoint");
  4273   // NULL owner means not locked so we can skip the search
  4274   if (owner == NULL) return NULL;
  4277     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4278     ALL_JAVA_THREADS(p) {
  4279       // first, see if owner is the address of a Java thread
  4280       if (owner == (address)p) return p;
  4283   // Cannot assert on lack of success here since this function may be
  4284   // used by code that is trying to report useful problem information
  4285   // like deadlock detection.
  4286   if (UseHeavyMonitors) return NULL;
  4288   //
  4289   // If we didn't find a matching Java thread and we didn't force use of
  4290   // heavyweight monitors, then the owner is the stack address of the
  4291   // Lock Word in the owning Java thread's stack.
  4292   //
  4293   JavaThread* the_owner = NULL;
  4295     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4296     ALL_JAVA_THREADS(q) {
  4297       if (q->is_lock_owned(owner)) {
  4298         the_owner = q;
  4299         break;
  4303   // cannot assert on lack of success here; see above comment
  4304   return the_owner;
  4307 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4308 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4309   char buf[32];
  4310   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
  4312   st->print_cr("Full thread dump %s (%s %s):",
  4313                 Abstract_VM_Version::vm_name(),
  4314                 Abstract_VM_Version::vm_release(),
  4315                 Abstract_VM_Version::vm_info_string()
  4316                );
  4317   st->cr();
  4319 #if INCLUDE_ALL_GCS
  4320   // Dump concurrent locks
  4321   ConcurrentLocksDump concurrent_locks;
  4322   if (print_concurrent_locks) {
  4323     concurrent_locks.dump_at_safepoint();
  4325 #endif // INCLUDE_ALL_GCS
  4327   ALL_JAVA_THREADS(p) {
  4328     ResourceMark rm;
  4329     p->print_on(st);
  4330     if (print_stacks) {
  4331       if (internal_format) {
  4332         p->trace_stack();
  4333       } else {
  4334         p->print_stack_on(st);
  4337     st->cr();
  4338 #if INCLUDE_ALL_GCS
  4339     if (print_concurrent_locks) {
  4340       concurrent_locks.print_locks_on(p, st);
  4342 #endif // INCLUDE_ALL_GCS
  4345   VMThread::vm_thread()->print_on(st);
  4346   st->cr();
  4347   Universe::heap()->print_gc_threads_on(st);
  4348   WatcherThread* wt = WatcherThread::watcher_thread();
  4349   if (wt != NULL) {
  4350     wt->print_on(st);
  4351     st->cr();
  4353   CompileBroker::print_compiler_threads_on(st);
  4354   st->flush();
  4357 // Threads::print_on_error() is called by fatal error handler. It's possible
  4358 // that VM is not at safepoint and/or current thread is inside signal handler.
  4359 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4360 // memory (even in resource area), it might deadlock the error handler.
  4361 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4362   bool found_current = false;
  4363   st->print_cr("Java Threads: ( => current thread )");
  4364   ALL_JAVA_THREADS(thread) {
  4365     bool is_current = (current == thread);
  4366     found_current = found_current || is_current;
  4368     st->print("%s", is_current ? "=>" : "  ");
  4370     st->print(PTR_FORMAT, thread);
  4371     st->print(" ");
  4372     thread->print_on_error(st, buf, buflen);
  4373     st->cr();
  4375   st->cr();
  4377   st->print_cr("Other Threads:");
  4378   if (VMThread::vm_thread()) {
  4379     bool is_current = (current == VMThread::vm_thread());
  4380     found_current = found_current || is_current;
  4381     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4383     st->print(PTR_FORMAT, VMThread::vm_thread());
  4384     st->print(" ");
  4385     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4386     st->cr();
  4388   WatcherThread* wt = WatcherThread::watcher_thread();
  4389   if (wt != NULL) {
  4390     bool is_current = (current == wt);
  4391     found_current = found_current || is_current;
  4392     st->print("%s", is_current ? "=>" : "  ");
  4394     st->print(PTR_FORMAT, wt);
  4395     st->print(" ");
  4396     wt->print_on_error(st, buf, buflen);
  4397     st->cr();
  4399   if (!found_current) {
  4400     st->cr();
  4401     st->print("=>" PTR_FORMAT " (exited) ", current);
  4402     current->print_on_error(st, buf, buflen);
  4403     st->cr();
  4407 // Internal SpinLock and Mutex
  4408 // Based on ParkEvent
  4410 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4411 //
  4412 // We employ SpinLocks _only for low-contention, fixed-length
  4413 // short-duration critical sections where we're concerned
  4414 // about native mutex_t or HotSpot Mutex:: latency.
  4415 // The mux construct provides a spin-then-block mutual exclusion
  4416 // mechanism.
  4417 //
  4418 // Testing has shown that contention on the ListLock guarding gFreeList
  4419 // is common.  If we implement ListLock as a simple SpinLock it's common
  4420 // for the JVM to devolve to yielding with little progress.  This is true
  4421 // despite the fact that the critical sections protected by ListLock are
  4422 // extremely short.
  4423 //
  4424 // TODO-FIXME: ListLock should be of type SpinLock.
  4425 // We should make this a 1st-class type, integrated into the lock
  4426 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4427 // should have sufficient padding to avoid false-sharing and excessive
  4428 // cache-coherency traffic.
  4431 typedef volatile int SpinLockT ;
  4433 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4434   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4435      return ;   // normal fast-path return
  4438   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4439   TEVENT (SpinAcquire - ctx) ;
  4440   int ctr = 0 ;
  4441   int Yields = 0 ;
  4442   for (;;) {
  4443      while (*adr != 0) {
  4444         ++ctr ;
  4445         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4446            if (Yields > 5) {
  4447              os::naked_short_sleep(1);
  4448            } else {
  4449              os::NakedYield() ;
  4450              ++Yields ;
  4452         } else {
  4453            SpinPause() ;
  4456      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4460 void Thread::SpinRelease (volatile int * adr) {
  4461   assert (*adr != 0, "invariant") ;
  4462   OrderAccess::fence() ;      // guarantee at least release consistency.
  4463   // Roach-motel semantics.
  4464   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4465   // but prior LDs and STs within the critical section can't be allowed
  4466   // to reorder or float past the ST that releases the lock.
  4467   *adr = 0 ;
  4470 // muxAcquire and muxRelease:
  4471 //
  4472 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4473 //    The LSB of the word is set IFF the lock is held.
  4474 //    The remainder of the word points to the head of a singly-linked list
  4475 //    of threads blocked on the lock.
  4476 //
  4477 // *  The current implementation of muxAcquire-muxRelease uses its own
  4478 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4479 //    minimizing the peak number of extant ParkEvent instances then
  4480 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4481 //    as certain invariants were satisfied.  Specifically, care would need
  4482 //    to be taken with regards to consuming unpark() "permits".
  4483 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4484 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4485 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4486 //    consume an unpark() permit intended for monitorenter, for instance.
  4487 //    One way around this would be to widen the restricted-range semaphore
  4488 //    implemented in park().  Another alternative would be to provide
  4489 //    multiple instances of the PlatformEvent() for each thread.  One
  4490 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4491 //
  4492 // *  Usage:
  4493 //    -- Only as leaf locks
  4494 //    -- for short-term locking only as muxAcquire does not perform
  4495 //       thread state transitions.
  4496 //
  4497 // Alternatives:
  4498 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4499 //    but with parking or spin-then-park instead of pure spinning.
  4500 // *  Use Taura-Oyama-Yonenzawa locks.
  4501 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4502 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4503 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4504 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4505 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4506 //    boundaries by using placement-new.
  4507 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4508 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4509 //    The validity of the backlinks must be ratified before we trust the value.
  4510 //    If the backlinks are invalid the exiting thread must back-track through the
  4511 //    the forward links, which are always trustworthy.
  4512 // *  Add a successor indication.  The LockWord is currently encoded as
  4513 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4514 //    to provide the usual futile-wakeup optimization.
  4515 //    See RTStt for details.
  4516 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4517 //
  4520 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4521 enum MuxBits { LOCKBIT = 1 } ;
  4523 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4524   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4525   if (w == 0) return ;
  4526   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4527      return ;
  4530   TEVENT (muxAcquire - Contention) ;
  4531   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4532   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4533   for (;;) {
  4534      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4536      // Optional spin phase: spin-then-park strategy
  4537      while (--its >= 0) {
  4538        w = *Lock ;
  4539        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4540           return ;
  4544      Self->reset() ;
  4545      Self->OnList = intptr_t(Lock) ;
  4546      // The following fence() isn't _strictly necessary as the subsequent
  4547      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4548      OrderAccess::fence();
  4549      for (;;) {
  4550         w = *Lock ;
  4551         if ((w & LOCKBIT) == 0) {
  4552             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4553                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4554                 return ;
  4556             continue ;      // Interference -- *Lock changed -- Just retry
  4558         assert (w & LOCKBIT, "invariant") ;
  4559         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4560         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4563      while (Self->OnList != 0) {
  4564         Self->park() ;
  4569 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4570   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4571   if (w == 0) return ;
  4572   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4573     return ;
  4576   TEVENT (muxAcquire - Contention) ;
  4577   ParkEvent * ReleaseAfter = NULL ;
  4578   if (ev == NULL) {
  4579     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4581   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4582   for (;;) {
  4583     guarantee (ev->OnList == 0, "invariant") ;
  4584     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4586     // Optional spin phase: spin-then-park strategy
  4587     while (--its >= 0) {
  4588       w = *Lock ;
  4589       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4590         if (ReleaseAfter != NULL) {
  4591           ParkEvent::Release (ReleaseAfter) ;
  4593         return ;
  4597     ev->reset() ;
  4598     ev->OnList = intptr_t(Lock) ;
  4599     // The following fence() isn't _strictly necessary as the subsequent
  4600     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4601     OrderAccess::fence();
  4602     for (;;) {
  4603       w = *Lock ;
  4604       if ((w & LOCKBIT) == 0) {
  4605         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4606           ev->OnList = 0 ;
  4607           // We call ::Release while holding the outer lock, thus
  4608           // artificially lengthening the critical section.
  4609           // Consider deferring the ::Release() until the subsequent unlock(),
  4610           // after we've dropped the outer lock.
  4611           if (ReleaseAfter != NULL) {
  4612             ParkEvent::Release (ReleaseAfter) ;
  4614           return ;
  4616         continue ;      // Interference -- *Lock changed -- Just retry
  4618       assert (w & LOCKBIT, "invariant") ;
  4619       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4620       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4623     while (ev->OnList != 0) {
  4624       ev->park() ;
  4629 // Release() must extract a successor from the list and then wake that thread.
  4630 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4631 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4632 // Release() would :
  4633 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4634 // (B) Extract a successor from the private list "in-hand"
  4635 // (C) attempt to CAS() the residual back into *Lock over null.
  4636 //     If there were any newly arrived threads and the CAS() would fail.
  4637 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4638 //     with the RATs and repeat as needed.  Alternately, Release() might
  4639 //     detach and extract a successor, but then pass the residual list to the wakee.
  4640 //     The wakee would be responsible for reattaching and remerging before it
  4641 //     competed for the lock.
  4642 //
  4643 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4644 // multiple concurrent pushers, but only one popper or detacher.
  4645 // This implementation pops from the head of the list.  This is unfair,
  4646 // but tends to provide excellent throughput as hot threads remain hot.
  4647 // (We wake recently run threads first).
  4649 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4650   for (;;) {
  4651     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4652     assert (w & LOCKBIT, "invariant") ;
  4653     if (w == LOCKBIT) return ;
  4654     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4655     assert (List != NULL, "invariant") ;
  4656     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4657     ParkEvent * nxt = List->ListNext ;
  4659     // The following CAS() releases the lock and pops the head element.
  4660     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4661       continue ;
  4663     List->OnList = 0 ;
  4664     OrderAccess::fence() ;
  4665     List->unpark () ;
  4666     return ;
  4671 void Threads::verify() {
  4672   ALL_JAVA_THREADS(p) {
  4673     p->verify();
  4675   VMThread* thread = VMThread::vm_thread();
  4676   if (thread != NULL) thread->verify();

mercurial