src/share/vm/opto/memnode.hpp

Mon, 28 Jul 2008 17:12:52 -0700

author
kvn
date
Mon, 28 Jul 2008 17:12:52 -0700
changeset 688
b0fe4deeb9fb
parent 631
d1605aabd0a1
child 801
8261ee795323
permissions
-rw-r--r--

6726999: nsk/stress/jck12a/jck12a010 assert(n != null,"Bad immediate dominator info.")
Summary: Escape Analysis fixes.
Reviewed-by: never, rasbold

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 class MultiNode;
    28 class PhaseCCP;
    29 class PhaseTransform;
    31 //------------------------------MemNode----------------------------------------
    32 // Load or Store, possibly throwing a NULL pointer exception
    33 class MemNode : public Node {
    34 protected:
    35 #ifdef ASSERT
    36   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    37 #endif
    38   virtual uint size_of() const; // Size is bigger (ASSERT only)
    39 public:
    40   enum { Control,               // When is it safe to do this load?
    41          Memory,                // Chunk of memory is being loaded from
    42          Address,               // Actually address, derived from base
    43          ValueIn,               // Value to store
    44          OopStore               // Preceeding oop store, only in StoreCM
    45   };
    46 protected:
    47   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    48     : Node(c0,c1,c2   ) {
    49     init_class_id(Class_Mem);
    50     debug_only(_adr_type=at; adr_type();)
    51   }
    52   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    53     : Node(c0,c1,c2,c3) {
    54     init_class_id(Class_Mem);
    55     debug_only(_adr_type=at; adr_type();)
    56   }
    57   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    58     : Node(c0,c1,c2,c3,c4) {
    59     init_class_id(Class_Mem);
    60     debug_only(_adr_type=at; adr_type();)
    61   }
    63 public:
    64   // Helpers for the optimizer.  Documented in memnode.cpp.
    65   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    66                                       Node* p2, AllocateNode* a2,
    67                                       PhaseTransform* phase);
    68   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    70   static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
    71   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
    72   // This one should probably be a phase-specific function:
    73   static bool all_controls_dominate(Node* dom, Node* sub);
    75   // Find any cast-away of null-ness and keep its control.
    76   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    77   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    79   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    81   // Shared code for Ideal methods:
    82   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    84   // Helper function for adr_type() implementations.
    85   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    87   // Raw access function, to allow copying of adr_type efficiently in
    88   // product builds and retain the debug info for debug builds.
    89   const TypePtr *raw_adr_type() const {
    90 #ifdef ASSERT
    91     return _adr_type;
    92 #else
    93     return 0;
    94 #endif
    95   }
    97   // Map a load or store opcode to its corresponding store opcode.
    98   // (Return -1 if unknown.)
    99   virtual int store_Opcode() const { return -1; }
   101   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   102   virtual BasicType memory_type() const = 0;
   103   virtual int memory_size() const {
   104 #ifdef ASSERT
   105     return type2aelembytes(memory_type(), true);
   106 #else
   107     return type2aelembytes(memory_type());
   108 #endif
   109   }
   111   // Search through memory states which precede this node (load or store).
   112   // Look for an exact match for the address, with no intervening
   113   // aliased stores.
   114   Node* find_previous_store(PhaseTransform* phase);
   116   // Can this node (load or store) accurately see a stored value in
   117   // the given memory state?  (The state may or may not be in(Memory).)
   118   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   120 #ifndef PRODUCT
   121   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   122   virtual void dump_spec(outputStream *st) const;
   123 #endif
   124 };
   126 //------------------------------LoadNode---------------------------------------
   127 // Load value; requires Memory and Address
   128 class LoadNode : public MemNode {
   129 protected:
   130   virtual uint cmp( const Node &n ) const;
   131   virtual uint size_of() const; // Size is bigger
   132   const Type* const _type;      // What kind of value is loaded?
   133 public:
   135   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   136     : MemNode(c,mem,adr,at), _type(rt) {
   137     init_class_id(Class_Load);
   138   }
   140   // Polymorphic factory method:
   141   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   142                      const TypePtr* at, const Type *rt, BasicType bt );
   144   virtual uint hash()   const;  // Check the type
   146   // Handle algebraic identities here.  If we have an identity, return the Node
   147   // we are equivalent to.  We look for Load of a Store.
   148   virtual Node *Identity( PhaseTransform *phase );
   150   // If the load is from Field memory and the pointer is non-null, we can
   151   // zero out the control input.
   152   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   154   // Split instance field load through Phi.
   155   Node* split_through_phi(PhaseGVN *phase);
   157   // Recover original value from boxed values
   158   Node *eliminate_autobox(PhaseGVN *phase);
   160   // Compute a new Type for this node.  Basically we just do the pre-check,
   161   // then call the virtual add() to set the type.
   162   virtual const Type *Value( PhaseTransform *phase ) const;
   164   // Common methods for LoadKlass and LoadNKlass nodes.
   165   const Type *klass_value_common( PhaseTransform *phase ) const;
   166   Node *klass_identity_common( PhaseTransform *phase );
   168   virtual uint ideal_reg() const;
   169   virtual const Type *bottom_type() const;
   170   // Following method is copied from TypeNode:
   171   void set_type(const Type* t) {
   172     assert(t != NULL, "sanity");
   173     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   174     *(const Type**)&_type = t;   // cast away const-ness
   175     // If this node is in the hash table, make sure it doesn't need a rehash.
   176     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   177   }
   178   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   180   // Do not match memory edge
   181   virtual uint match_edge(uint idx) const;
   183   // Map a load opcode to its corresponding store opcode.
   184   virtual int store_Opcode() const = 0;
   186   // Check if the load's memory input is a Phi node with the same control.
   187   bool is_instance_field_load_with_local_phi(Node* ctrl);
   189 #ifndef PRODUCT
   190   virtual void dump_spec(outputStream *st) const;
   191 #endif
   192 protected:
   193   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   194                                      ciKlass* klass) const;
   195 };
   197 //------------------------------LoadBNode--------------------------------------
   198 // Load a byte (8bits signed) from memory
   199 class LoadBNode : public LoadNode {
   200 public:
   201   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   202     : LoadNode(c,mem,adr,at,ti) {}
   203   virtual int Opcode() const;
   204   virtual uint ideal_reg() const { return Op_RegI; }
   205   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   206   virtual int store_Opcode() const { return Op_StoreB; }
   207   virtual BasicType memory_type() const { return T_BYTE; }
   208 };
   210 //------------------------------LoadCNode--------------------------------------
   211 // Load a char (16bits unsigned) from memory
   212 class LoadCNode : public LoadNode {
   213 public:
   214   LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   215     : LoadNode(c,mem,adr,at,ti) {}
   216   virtual int Opcode() const;
   217   virtual uint ideal_reg() const { return Op_RegI; }
   218   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   219   virtual int store_Opcode() const { return Op_StoreC; }
   220   virtual BasicType memory_type() const { return T_CHAR; }
   221 };
   223 //------------------------------LoadINode--------------------------------------
   224 // Load an integer from memory
   225 class LoadINode : public LoadNode {
   226 public:
   227   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   228     : LoadNode(c,mem,adr,at,ti) {}
   229   virtual int Opcode() const;
   230   virtual uint ideal_reg() const { return Op_RegI; }
   231   virtual int store_Opcode() const { return Op_StoreI; }
   232   virtual BasicType memory_type() const { return T_INT; }
   233 };
   235 //------------------------------LoadRangeNode----------------------------------
   236 // Load an array length from the array
   237 class LoadRangeNode : public LoadINode {
   238 public:
   239   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   240     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   241   virtual int Opcode() const;
   242   virtual const Type *Value( PhaseTransform *phase ) const;
   243   virtual Node *Identity( PhaseTransform *phase );
   244 };
   246 //------------------------------LoadLNode--------------------------------------
   247 // Load a long from memory
   248 class LoadLNode : public LoadNode {
   249   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   250   virtual uint cmp( const Node &n ) const {
   251     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   252       && LoadNode::cmp(n);
   253   }
   254   virtual uint size_of() const { return sizeof(*this); }
   255   const bool _require_atomic_access;  // is piecewise load forbidden?
   257 public:
   258   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   259              const TypeLong *tl = TypeLong::LONG,
   260              bool require_atomic_access = false )
   261     : LoadNode(c,mem,adr,at,tl)
   262     , _require_atomic_access(require_atomic_access)
   263   {}
   264   virtual int Opcode() const;
   265   virtual uint ideal_reg() const { return Op_RegL; }
   266   virtual int store_Opcode() const { return Op_StoreL; }
   267   virtual BasicType memory_type() const { return T_LONG; }
   268   bool require_atomic_access() { return _require_atomic_access; }
   269   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   270 #ifndef PRODUCT
   271   virtual void dump_spec(outputStream *st) const {
   272     LoadNode::dump_spec(st);
   273     if (_require_atomic_access)  st->print(" Atomic!");
   274   }
   275 #endif
   276 };
   278 //------------------------------LoadL_unalignedNode----------------------------
   279 // Load a long from unaligned memory
   280 class LoadL_unalignedNode : public LoadLNode {
   281 public:
   282   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   283     : LoadLNode(c,mem,adr,at) {}
   284   virtual int Opcode() const;
   285 };
   287 //------------------------------LoadFNode--------------------------------------
   288 // Load a float (64 bits) from memory
   289 class LoadFNode : public LoadNode {
   290 public:
   291   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   292     : LoadNode(c,mem,adr,at,t) {}
   293   virtual int Opcode() const;
   294   virtual uint ideal_reg() const { return Op_RegF; }
   295   virtual int store_Opcode() const { return Op_StoreF; }
   296   virtual BasicType memory_type() const { return T_FLOAT; }
   297 };
   299 //------------------------------LoadDNode--------------------------------------
   300 // Load a double (64 bits) from memory
   301 class LoadDNode : public LoadNode {
   302 public:
   303   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   304     : LoadNode(c,mem,adr,at,t) {}
   305   virtual int Opcode() const;
   306   virtual uint ideal_reg() const { return Op_RegD; }
   307   virtual int store_Opcode() const { return Op_StoreD; }
   308   virtual BasicType memory_type() const { return T_DOUBLE; }
   309 };
   311 //------------------------------LoadD_unalignedNode----------------------------
   312 // Load a double from unaligned memory
   313 class LoadD_unalignedNode : public LoadDNode {
   314 public:
   315   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   316     : LoadDNode(c,mem,adr,at) {}
   317   virtual int Opcode() const;
   318 };
   320 //------------------------------LoadPNode--------------------------------------
   321 // Load a pointer from memory (either object or array)
   322 class LoadPNode : public LoadNode {
   323 public:
   324   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   325     : LoadNode(c,mem,adr,at,t) {}
   326   virtual int Opcode() const;
   327   virtual uint ideal_reg() const { return Op_RegP; }
   328   virtual int store_Opcode() const { return Op_StoreP; }
   329   virtual BasicType memory_type() const { return T_ADDRESS; }
   330   // depends_only_on_test is almost always true, and needs to be almost always
   331   // true to enable key hoisting & commoning optimizations.  However, for the
   332   // special case of RawPtr loads from TLS top & end, the control edge carries
   333   // the dependence preventing hoisting past a Safepoint instead of the memory
   334   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   335   // Memory; itself an unfortunate consequence of having Nodes which produce
   336   // results (new raw memory state) inside of loops preventing all manner of
   337   // other optimizations).  Basically, it's ugly but so is the alternative.
   338   // See comment in macro.cpp, around line 125 expand_allocate_common().
   339   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   340 };
   343 //------------------------------LoadNNode--------------------------------------
   344 // Load a narrow oop from memory (either object or array)
   345 class LoadNNode : public LoadNode {
   346 public:
   347   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
   348     : LoadNode(c,mem,adr,at,t) {}
   349   virtual int Opcode() const;
   350   virtual uint ideal_reg() const { return Op_RegN; }
   351   virtual int store_Opcode() const { return Op_StoreN; }
   352   virtual BasicType memory_type() const { return T_NARROWOOP; }
   353   // depends_only_on_test is almost always true, and needs to be almost always
   354   // true to enable key hoisting & commoning optimizations.  However, for the
   355   // special case of RawPtr loads from TLS top & end, the control edge carries
   356   // the dependence preventing hoisting past a Safepoint instead of the memory
   357   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   358   // Memory; itself an unfortunate consequence of having Nodes which produce
   359   // results (new raw memory state) inside of loops preventing all manner of
   360   // other optimizations).  Basically, it's ugly but so is the alternative.
   361   // See comment in macro.cpp, around line 125 expand_allocate_common().
   362   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   363 };
   365 //------------------------------LoadKlassNode----------------------------------
   366 // Load a Klass from an object
   367 class LoadKlassNode : public LoadPNode {
   368 public:
   369   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
   370     : LoadPNode(c,mem,adr,at,tk) {}
   371   virtual int Opcode() const;
   372   virtual const Type *Value( PhaseTransform *phase ) const;
   373   virtual Node *Identity( PhaseTransform *phase );
   374   virtual bool depends_only_on_test() const { return true; }
   376   // Polymorphic factory method:
   377   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
   378                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
   379 };
   381 //------------------------------LoadNKlassNode---------------------------------
   382 // Load a narrow Klass from an object.
   383 class LoadNKlassNode : public LoadNNode {
   384 public:
   385   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
   386     : LoadNNode(c,mem,adr,at,tk) {}
   387   virtual int Opcode() const;
   388   virtual uint ideal_reg() const { return Op_RegN; }
   389   virtual int store_Opcode() const { return Op_StoreN; }
   390   virtual BasicType memory_type() const { return T_NARROWOOP; }
   392   virtual const Type *Value( PhaseTransform *phase ) const;
   393   virtual Node *Identity( PhaseTransform *phase );
   394   virtual bool depends_only_on_test() const { return true; }
   395 };
   398 //------------------------------LoadSNode--------------------------------------
   399 // Load a short (16bits signed) from memory
   400 class LoadSNode : public LoadNode {
   401 public:
   402   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   403     : LoadNode(c,mem,adr,at,ti) {}
   404   virtual int Opcode() const;
   405   virtual uint ideal_reg() const { return Op_RegI; }
   406   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   407   virtual int store_Opcode() const { return Op_StoreC; }
   408   virtual BasicType memory_type() const { return T_SHORT; }
   409 };
   411 //------------------------------StoreNode--------------------------------------
   412 // Store value; requires Store, Address and Value
   413 class StoreNode : public MemNode {
   414 protected:
   415   virtual uint cmp( const Node &n ) const;
   416   virtual bool depends_only_on_test() const { return false; }
   418   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   419   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   421 public:
   422   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   423     : MemNode(c,mem,adr,at,val) {
   424     init_class_id(Class_Store);
   425   }
   426   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   427     : MemNode(c,mem,adr,at,val,oop_store) {
   428     init_class_id(Class_Store);
   429   }
   431   // Polymorphic factory method:
   432   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   433                           const TypePtr* at, Node *val, BasicType bt );
   435   virtual uint hash() const;    // Check the type
   437   // If the store is to Field memory and the pointer is non-null, we can
   438   // zero out the control input.
   439   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   441   // Compute a new Type for this node.  Basically we just do the pre-check,
   442   // then call the virtual add() to set the type.
   443   virtual const Type *Value( PhaseTransform *phase ) const;
   445   // Check for identity function on memory (Load then Store at same address)
   446   virtual Node *Identity( PhaseTransform *phase );
   448   // Do not match memory edge
   449   virtual uint match_edge(uint idx) const;
   451   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   453   // Map a store opcode to its corresponding own opcode, trivially.
   454   virtual int store_Opcode() const { return Opcode(); }
   456   // have all possible loads of the value stored been optimized away?
   457   bool value_never_loaded(PhaseTransform *phase) const;
   458 };
   460 //------------------------------StoreBNode-------------------------------------
   461 // Store byte to memory
   462 class StoreBNode : public StoreNode {
   463 public:
   464   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   465   virtual int Opcode() const;
   466   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   467   virtual BasicType memory_type() const { return T_BYTE; }
   468 };
   470 //------------------------------StoreCNode-------------------------------------
   471 // Store char/short to memory
   472 class StoreCNode : public StoreNode {
   473 public:
   474   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   475   virtual int Opcode() const;
   476   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   477   virtual BasicType memory_type() const { return T_CHAR; }
   478 };
   480 //------------------------------StoreINode-------------------------------------
   481 // Store int to memory
   482 class StoreINode : public StoreNode {
   483 public:
   484   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   485   virtual int Opcode() const;
   486   virtual BasicType memory_type() const { return T_INT; }
   487 };
   489 //------------------------------StoreLNode-------------------------------------
   490 // Store long to memory
   491 class StoreLNode : public StoreNode {
   492   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   493   virtual uint cmp( const Node &n ) const {
   494     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   495       && StoreNode::cmp(n);
   496   }
   497   virtual uint size_of() const { return sizeof(*this); }
   498   const bool _require_atomic_access;  // is piecewise store forbidden?
   500 public:
   501   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   502               bool require_atomic_access = false )
   503     : StoreNode(c,mem,adr,at,val)
   504     , _require_atomic_access(require_atomic_access)
   505   {}
   506   virtual int Opcode() const;
   507   virtual BasicType memory_type() const { return T_LONG; }
   508   bool require_atomic_access() { return _require_atomic_access; }
   509   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   510 #ifndef PRODUCT
   511   virtual void dump_spec(outputStream *st) const {
   512     StoreNode::dump_spec(st);
   513     if (_require_atomic_access)  st->print(" Atomic!");
   514   }
   515 #endif
   516 };
   518 //------------------------------StoreFNode-------------------------------------
   519 // Store float to memory
   520 class StoreFNode : public StoreNode {
   521 public:
   522   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   523   virtual int Opcode() const;
   524   virtual BasicType memory_type() const { return T_FLOAT; }
   525 };
   527 //------------------------------StoreDNode-------------------------------------
   528 // Store double to memory
   529 class StoreDNode : public StoreNode {
   530 public:
   531   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   532   virtual int Opcode() const;
   533   virtual BasicType memory_type() const { return T_DOUBLE; }
   534 };
   536 //------------------------------StorePNode-------------------------------------
   537 // Store pointer to memory
   538 class StorePNode : public StoreNode {
   539 public:
   540   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   541   virtual int Opcode() const;
   542   virtual BasicType memory_type() const { return T_ADDRESS; }
   543 };
   545 //------------------------------StoreNNode-------------------------------------
   546 // Store narrow oop to memory
   547 class StoreNNode : public StoreNode {
   548 public:
   549   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   550   virtual int Opcode() const;
   551   virtual BasicType memory_type() const { return T_NARROWOOP; }
   552 };
   554 //------------------------------StoreCMNode-----------------------------------
   555 // Store card-mark byte to memory for CM
   556 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   557 // Preceeding equivalent StoreCMs may be eliminated.
   558 class StoreCMNode : public StoreNode {
   559 public:
   560   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {}
   561   virtual int Opcode() const;
   562   virtual Node *Identity( PhaseTransform *phase );
   563   virtual const Type *Value( PhaseTransform *phase ) const;
   564   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   565 };
   567 //------------------------------LoadPLockedNode---------------------------------
   568 // Load-locked a pointer from memory (either object or array).
   569 // On Sparc & Intel this is implemented as a normal pointer load.
   570 // On PowerPC and friends it's a real load-locked.
   571 class LoadPLockedNode : public LoadPNode {
   572 public:
   573   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   574     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   575   virtual int Opcode() const;
   576   virtual int store_Opcode() const { return Op_StorePConditional; }
   577   virtual bool depends_only_on_test() const { return true; }
   578 };
   580 //------------------------------LoadLLockedNode---------------------------------
   581 // Load-locked a pointer from memory (either object or array).
   582 // On Sparc & Intel this is implemented as a normal long load.
   583 class LoadLLockedNode : public LoadLNode {
   584 public:
   585   LoadLLockedNode( Node *c, Node *mem, Node *adr )
   586     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
   587   virtual int Opcode() const;
   588   virtual int store_Opcode() const { return Op_StoreLConditional; }
   589 };
   591 //------------------------------SCMemProjNode---------------------------------------
   592 // This class defines a projection of the memory  state of a store conditional node.
   593 // These nodes return a value, but also update memory.
   594 class SCMemProjNode : public ProjNode {
   595 public:
   596   enum {SCMEMPROJCON = (uint)-2};
   597   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   598   virtual int Opcode() const;
   599   virtual bool      is_CFG() const  { return false; }
   600   virtual const Type *bottom_type() const {return Type::MEMORY;}
   601   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   602   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   603   virtual const Type *Value( PhaseTransform *phase ) const;
   604 #ifndef PRODUCT
   605   virtual void dump_spec(outputStream *st) const {};
   606 #endif
   607 };
   609 //------------------------------LoadStoreNode---------------------------
   610 // Note: is_Mem() method returns 'true' for this class.
   611 class LoadStoreNode : public Node {
   612 public:
   613   enum {
   614     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   615   };
   616   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   617   virtual bool depends_only_on_test() const { return false; }
   618   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   619   virtual uint ideal_reg() const { return Op_RegI; }
   620   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   621 };
   623 //------------------------------StorePConditionalNode---------------------------
   624 // Conditionally store pointer to memory, if no change since prior
   625 // load-locked.  Sets flags for success or failure of the store.
   626 class StorePConditionalNode : public LoadStoreNode {
   627 public:
   628   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   629   virtual int Opcode() const;
   630   // Produces flags
   631   virtual uint ideal_reg() const { return Op_RegFlags; }
   632 };
   634 //------------------------------StoreLConditionalNode---------------------------
   635 // Conditionally store long to memory, if no change since prior
   636 // load-locked.  Sets flags for success or failure of the store.
   637 class StoreLConditionalNode : public LoadStoreNode {
   638 public:
   639   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   640   virtual int Opcode() const;
   641 };
   644 //------------------------------CompareAndSwapLNode---------------------------
   645 class CompareAndSwapLNode : public LoadStoreNode {
   646 public:
   647   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   648   virtual int Opcode() const;
   649 };
   652 //------------------------------CompareAndSwapINode---------------------------
   653 class CompareAndSwapINode : public LoadStoreNode {
   654 public:
   655   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   656   virtual int Opcode() const;
   657 };
   660 //------------------------------CompareAndSwapPNode---------------------------
   661 class CompareAndSwapPNode : public LoadStoreNode {
   662 public:
   663   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   664   virtual int Opcode() const;
   665 };
   667 //------------------------------CompareAndSwapNNode---------------------------
   668 class CompareAndSwapNNode : public LoadStoreNode {
   669 public:
   670   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   671   virtual int Opcode() const;
   672 };
   674 //------------------------------ClearArray-------------------------------------
   675 class ClearArrayNode: public Node {
   676 public:
   677   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
   678   virtual int         Opcode() const;
   679   virtual const Type *bottom_type() const { return Type::MEMORY; }
   680   // ClearArray modifies array elements, and so affects only the
   681   // array memory addressed by the bottom_type of its base address.
   682   virtual const class TypePtr *adr_type() const;
   683   virtual Node *Identity( PhaseTransform *phase );
   684   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   685   virtual uint match_edge(uint idx) const;
   687   // Clear the given area of an object or array.
   688   // The start offset must always be aligned mod BytesPerInt.
   689   // The end offset must always be aligned mod BytesPerLong.
   690   // Return the new memory.
   691   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   692                             intptr_t start_offset,
   693                             intptr_t end_offset,
   694                             PhaseGVN* phase);
   695   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   696                             intptr_t start_offset,
   697                             Node* end_offset,
   698                             PhaseGVN* phase);
   699   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   700                             Node* start_offset,
   701                             Node* end_offset,
   702                             PhaseGVN* phase);
   703 };
   705 //------------------------------StrComp-------------------------------------
   706 class StrCompNode: public Node {
   707 public:
   708   StrCompNode(Node *control,
   709               Node* char_array_mem,
   710               Node* value_mem,
   711               Node* count_mem,
   712               Node* offset_mem,
   713               Node* s1, Node* s2): Node(control,
   714                                         char_array_mem,
   715                                         value_mem,
   716                                         count_mem,
   717                                         offset_mem,
   718                                         s1, s2) {};
   719   virtual int Opcode() const;
   720   virtual bool depends_only_on_test() const { return false; }
   721   virtual const Type* bottom_type() const { return TypeInt::INT; }
   722   // a StrCompNode (conservatively) aliases with everything:
   723   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   724   virtual uint match_edge(uint idx) const;
   725   virtual uint ideal_reg() const { return Op_RegI; }
   726   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   727 };
   729 //------------------------------AryEq---------------------------------------
   730 class AryEqNode: public Node {
   731 public:
   732   AryEqNode(Node *control, Node* s1, Node* s2): Node(control, s1, s2) {};
   733   virtual int Opcode() const;
   734   virtual bool depends_only_on_test() const { return false; }
   735   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   736   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   737   virtual uint ideal_reg() const { return Op_RegI; }
   738   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   739 };
   741 //------------------------------MemBar-----------------------------------------
   742 // There are different flavors of Memory Barriers to match the Java Memory
   743 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   744 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   745 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   746 // preceeding ref can be moved to after them.  We insert a MemBar-Release
   747 // before a FastUnlock or volatile-store.  All volatiles need to be
   748 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   749 // seperate it from any following volatile-load.
   750 class MemBarNode: public MultiNode {
   751   virtual uint hash() const ;                  // { return NO_HASH; }
   752   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   754   virtual uint size_of() const { return sizeof(*this); }
   755   // Memory type this node is serializing.  Usually either rawptr or bottom.
   756   const TypePtr* _adr_type;
   758 public:
   759   enum {
   760     Precedent = TypeFunc::Parms  // optional edge to force precedence
   761   };
   762   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   763   virtual int Opcode() const = 0;
   764   virtual const class TypePtr *adr_type() const { return _adr_type; }
   765   virtual const Type *Value( PhaseTransform *phase ) const;
   766   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   767   virtual uint match_edge(uint idx) const { return 0; }
   768   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   769   virtual Node *match( const ProjNode *proj, const Matcher *m );
   770   // Factory method.  Builds a wide or narrow membar.
   771   // Optional 'precedent' becomes an extra edge if not null.
   772   static MemBarNode* make(Compile* C, int opcode,
   773                           int alias_idx = Compile::AliasIdxBot,
   774                           Node* precedent = NULL);
   775 };
   777 // "Acquire" - no following ref can move before (but earlier refs can
   778 // follow, like an early Load stalled in cache).  Requires multi-cpu
   779 // visibility.  Inserted after a volatile load or FastLock.
   780 class MemBarAcquireNode: public MemBarNode {
   781 public:
   782   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   783     : MemBarNode(C, alias_idx, precedent) {}
   784   virtual int Opcode() const;
   785 };
   787 // "Release" - no earlier ref can move after (but later refs can move
   788 // up, like a speculative pipelined cache-hitting Load).  Requires
   789 // multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
   790 class MemBarReleaseNode: public MemBarNode {
   791 public:
   792   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   793     : MemBarNode(C, alias_idx, precedent) {}
   794   virtual int Opcode() const;
   795 };
   797 // Ordering between a volatile store and a following volatile load.
   798 // Requires multi-CPU visibility?
   799 class MemBarVolatileNode: public MemBarNode {
   800 public:
   801   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   802     : MemBarNode(C, alias_idx, precedent) {}
   803   virtual int Opcode() const;
   804 };
   806 // Ordering within the same CPU.  Used to order unsafe memory references
   807 // inside the compiler when we lack alias info.  Not needed "outside" the
   808 // compiler because the CPU does all the ordering for us.
   809 class MemBarCPUOrderNode: public MemBarNode {
   810 public:
   811   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
   812     : MemBarNode(C, alias_idx, precedent) {}
   813   virtual int Opcode() const;
   814   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   815 };
   817 // Isolation of object setup after an AllocateNode and before next safepoint.
   818 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
   819 class InitializeNode: public MemBarNode {
   820   friend class AllocateNode;
   822   bool _is_complete;
   824 public:
   825   enum {
   826     Control    = TypeFunc::Control,
   827     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
   828     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
   829     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
   830   };
   832   InitializeNode(Compile* C, int adr_type, Node* rawoop);
   833   virtual int Opcode() const;
   834   virtual uint size_of() const { return sizeof(*this); }
   835   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   836   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
   838   // Manage incoming memory edges via a MergeMem on in(Memory):
   839   Node* memory(uint alias_idx);
   841   // The raw memory edge coming directly from the Allocation.
   842   // The contents of this memory are *always* all-zero-bits.
   843   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
   845   // Return the corresponding allocation for this initialization (or null if none).
   846   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   847   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   848   AllocateNode* allocation();
   850   // Anything other than zeroing in this init?
   851   bool is_non_zero();
   853   // An InitializeNode must completed before macro expansion is done.
   854   // Completion requires that the AllocateNode must be followed by
   855   // initialization of the new memory to zero, then to any initializers.
   856   bool is_complete() { return _is_complete; }
   858   // Mark complete.  (Must not yet be complete.)
   859   void set_complete(PhaseGVN* phase);
   861 #ifdef ASSERT
   862   // ensure all non-degenerate stores are ordered and non-overlapping
   863   bool stores_are_sane(PhaseTransform* phase);
   864 #endif //ASSERT
   866   // See if this store can be captured; return offset where it initializes.
   867   // Return 0 if the store cannot be moved (any sort of problem).
   868   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
   870   // Capture another store; reformat it to write my internal raw memory.
   871   // Return the captured copy, else NULL if there is some sort of problem.
   872   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
   874   // Find captured store which corresponds to the range [start..start+size).
   875   // Return my own memory projection (meaning the initial zero bits)
   876   // if there is no such store.  Return NULL if there is a problem.
   877   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
   879   // Called when the associated AllocateNode is expanded into CFG.
   880   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
   881                         intptr_t header_size, Node* size_in_bytes,
   882                         PhaseGVN* phase);
   884  private:
   885   void remove_extra_zeroes();
   887   // Find out where a captured store should be placed (or already is placed).
   888   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
   889                                      PhaseTransform* phase);
   891   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
   893   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
   895   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
   897   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
   898                                PhaseGVN* phase);
   900   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
   901 };
   903 //------------------------------MergeMem---------------------------------------
   904 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
   905 class MergeMemNode: public Node {
   906   virtual uint hash() const ;                  // { return NO_HASH; }
   907   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   908   friend class MergeMemStream;
   909   MergeMemNode(Node* def);  // clients use MergeMemNode::make
   911 public:
   912   // If the input is a whole memory state, clone it with all its slices intact.
   913   // Otherwise, make a new memory state with just that base memory input.
   914   // In either case, the result is a newly created MergeMem.
   915   static MergeMemNode* make(Compile* C, Node* base_memory);
   917   virtual int Opcode() const;
   918   virtual Node *Identity( PhaseTransform *phase );
   919   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   920   virtual uint ideal_reg() const { return NotAMachineReg; }
   921   virtual uint match_edge(uint idx) const { return 0; }
   922   virtual const RegMask &out_RegMask() const;
   923   virtual const Type *bottom_type() const { return Type::MEMORY; }
   924   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
   925   // sparse accessors
   926   // Fetch the previously stored "set_memory_at", or else the base memory.
   927   // (Caller should clone it if it is a phi-nest.)
   928   Node* memory_at(uint alias_idx) const;
   929   // set the memory, regardless of its previous value
   930   void set_memory_at(uint alias_idx, Node* n);
   931   // the "base" is the memory that provides the non-finite support
   932   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
   933   // warning: setting the base can implicitly set any of the other slices too
   934   void set_base_memory(Node* def);
   935   // sentinel value which denotes a copy of the base memory:
   936   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
   937   static Node* make_empty_memory(); // where the sentinel comes from
   938   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
   939   // hook for the iterator, to perform any necessary setup
   940   void iteration_setup(const MergeMemNode* other = NULL);
   941   // push sentinels until I am at least as long as the other (semantic no-op)
   942   void grow_to_match(const MergeMemNode* other);
   943   bool verify_sparse() const PRODUCT_RETURN0;
   944 #ifndef PRODUCT
   945   virtual void dump_spec(outputStream *st) const;
   946 #endif
   947 };
   949 class MergeMemStream : public StackObj {
   950  private:
   951   MergeMemNode*       _mm;
   952   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
   953   Node*               _mm_base;  // loop-invariant base memory of _mm
   954   int                 _idx;
   955   int                 _cnt;
   956   Node*               _mem;
   957   Node*               _mem2;
   958   int                 _cnt2;
   960   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
   961     // subsume_node will break sparseness at times, whenever a memory slice
   962     // folds down to a copy of the base ("fat") memory.  In such a case,
   963     // the raw edge will update to base, although it should be top.
   964     // This iterator will recognize either top or base_memory as an
   965     // "empty" slice.  See is_empty, is_empty2, and next below.
   966     //
   967     // The sparseness property is repaired in MergeMemNode::Ideal.
   968     // As long as access to a MergeMem goes through this iterator
   969     // or the memory_at accessor, flaws in the sparseness will
   970     // never be observed.
   971     //
   972     // Also, iteration_setup repairs sparseness.
   973     assert(mm->verify_sparse(), "please, no dups of base");
   974     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
   976     _mm  = mm;
   977     _mm_base = mm->base_memory();
   978     _mm2 = mm2;
   979     _cnt = mm->req();
   980     _idx = Compile::AliasIdxBot-1; // start at the base memory
   981     _mem = NULL;
   982     _mem2 = NULL;
   983   }
   985 #ifdef ASSERT
   986   Node* check_memory() const {
   987     if (at_base_memory())
   988       return _mm->base_memory();
   989     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
   990       return _mm->memory_at(_idx);
   991     else
   992       return _mm_base;
   993   }
   994   Node* check_memory2() const {
   995     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
   996   }
   997 #endif
   999   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1000   void assert_synch() const {
  1001     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1002            "no side-effects except through the stream");
  1005  public:
  1007   // expected usages:
  1008   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1009   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1011   // iterate over one merge
  1012   MergeMemStream(MergeMemNode* mm) {
  1013     mm->iteration_setup();
  1014     init(mm);
  1015     debug_only(_cnt2 = 999);
  1017   // iterate in parallel over two merges
  1018   // only iterates through non-empty elements of mm2
  1019   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1020     assert(mm2, "second argument must be a MergeMem also");
  1021     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1022     mm->iteration_setup(mm2);
  1023     init(mm, mm2);
  1024     _cnt2 = mm2->req();
  1026 #ifdef ASSERT
  1027   ~MergeMemStream() {
  1028     assert_synch();
  1030 #endif
  1032   MergeMemNode* all_memory() const {
  1033     return _mm;
  1035   Node* base_memory() const {
  1036     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1037     return _mm_base;
  1039   const MergeMemNode* all_memory2() const {
  1040     assert(_mm2 != NULL, "");
  1041     return _mm2;
  1043   bool at_base_memory() const {
  1044     return _idx == Compile::AliasIdxBot;
  1046   int alias_idx() const {
  1047     assert(_mem, "must call next 1st");
  1048     return _idx;
  1051   const TypePtr* adr_type() const {
  1052     return Compile::current()->get_adr_type(alias_idx());
  1055   const TypePtr* adr_type(Compile* C) const {
  1056     return C->get_adr_type(alias_idx());
  1058   bool is_empty() const {
  1059     assert(_mem, "must call next 1st");
  1060     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1061     return _mem->is_top();
  1063   bool is_empty2() const {
  1064     assert(_mem2, "must call next 1st");
  1065     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1066     return _mem2->is_top();
  1068   Node* memory() const {
  1069     assert(!is_empty(), "must not be empty");
  1070     assert_synch();
  1071     return _mem;
  1073   // get the current memory, regardless of empty or non-empty status
  1074   Node* force_memory() const {
  1075     assert(!is_empty() || !at_base_memory(), "");
  1076     // Use _mm_base to defend against updates to _mem->base_memory().
  1077     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1078     assert(mem == check_memory(), "");
  1079     return mem;
  1081   Node* memory2() const {
  1082     assert(_mem2 == check_memory2(), "");
  1083     return _mem2;
  1085   void set_memory(Node* mem) {
  1086     if (at_base_memory()) {
  1087       // Note that this does not change the invariant _mm_base.
  1088       _mm->set_base_memory(mem);
  1089     } else {
  1090       _mm->set_memory_at(_idx, mem);
  1092     _mem = mem;
  1093     assert_synch();
  1096   // Recover from a side effect to the MergeMemNode.
  1097   void set_memory() {
  1098     _mem = _mm->in(_idx);
  1101   bool next()  { return next(false); }
  1102   bool next2() { return next(true); }
  1104   bool next_non_empty()  { return next_non_empty(false); }
  1105   bool next_non_empty2() { return next_non_empty(true); }
  1106   // next_non_empty2 can yield states where is_empty() is true
  1108  private:
  1109   // find the next item, which might be empty
  1110   bool next(bool have_mm2) {
  1111     assert((_mm2 != NULL) == have_mm2, "use other next");
  1112     assert_synch();
  1113     if (++_idx < _cnt) {
  1114       // Note:  This iterator allows _mm to be non-sparse.
  1115       // It behaves the same whether _mem is top or base_memory.
  1116       _mem = _mm->in(_idx);
  1117       if (have_mm2)
  1118         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1119       return true;
  1121     return false;
  1124   // find the next non-empty item
  1125   bool next_non_empty(bool have_mm2) {
  1126     while (next(have_mm2)) {
  1127       if (!is_empty()) {
  1128         // make sure _mem2 is filled in sensibly
  1129         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1130         return true;
  1131       } else if (have_mm2 && !is_empty2()) {
  1132         return true;   // is_empty() == true
  1135     return false;
  1137 };
  1139 //------------------------------Prefetch---------------------------------------
  1141 // Non-faulting prefetch load.  Prefetch for many reads.
  1142 class PrefetchReadNode : public Node {
  1143 public:
  1144   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1145   virtual int Opcode() const;
  1146   virtual uint ideal_reg() const { return NotAMachineReg; }
  1147   virtual uint match_edge(uint idx) const { return idx==2; }
  1148   virtual const Type *bottom_type() const { return Type::ABIO; }
  1149 };
  1151 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1152 class PrefetchWriteNode : public Node {
  1153 public:
  1154   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1155   virtual int Opcode() const;
  1156   virtual uint ideal_reg() const { return NotAMachineReg; }
  1157   virtual uint match_edge(uint idx) const { return idx==2; }
  1158   virtual const Type *bottom_type() const { return Type::ABIO; }
  1159 };

mercurial