src/share/vm/opto/lcm.cpp

Mon, 28 Jul 2008 17:12:52 -0700

author
kvn
date
Mon, 28 Jul 2008 17:12:52 -0700
changeset 688
b0fe4deeb9fb
parent 631
d1605aabd0a1
child 767
c792b641b8bd
child 791
1ee8caae33af
permissions
-rw-r--r--

6726999: nsk/stress/jck12a/jck12a010 assert(n != null,"Bad immediate dominator info.")
Summary: Escape Analysis fixes.
Reviewed-by: never, rasbold

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_lcm.cpp.incl"
    30 //------------------------------implicit_null_check----------------------------
    31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    33 // I can generate a memory op if there is not one nearby.
    34 // The proj is the control projection for the not-null case.
    35 // The val is the pointer being checked for nullness.
    36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    37   // Assume if null check need for 0 offset then always needed
    38   // Intel solaris doesn't support any null checks yet and no
    39   // mechanism exists (yet) to set the switches at an os_cpu level
    40   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    42   // Make sure the ptr-is-null path appears to be uncommon!
    43   float f = end()->as_MachIf()->_prob;
    44   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    45   if( f > PROB_UNLIKELY_MAG(4) ) return;
    47   uint bidx = 0;                // Capture index of value into memop
    48   bool was_store;               // Memory op is a store op
    50   // Get the successor block for if the test ptr is non-null
    51   Block* not_null_block;  // this one goes with the proj
    52   Block* null_block;
    53   if (_nodes[_nodes.size()-1] == proj) {
    54     null_block     = _succs[0];
    55     not_null_block = _succs[1];
    56   } else {
    57     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    58     not_null_block = _succs[0];
    59     null_block     = _succs[1];
    60   }
    62   // Search the exception block for an uncommon trap.
    63   // (See Parse::do_if and Parse::do_ifnull for the reason
    64   // we need an uncommon trap.  Briefly, we need a way to
    65   // detect failure of this optimization, as in 6366351.)
    66   {
    67     bool found_trap = false;
    68     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    69       Node* nn = null_block->_nodes[i1];
    70       if (nn->is_MachCall() &&
    71           nn->as_MachCall()->entry_point() ==
    72           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
    73         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    74         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    75           jint tr_con = trtype->is_int()->get_con();
    76           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
    77           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
    78           assert((int)reason < (int)BitsPerInt, "recode bit map");
    79           if (is_set_nth_bit(allowed_reasons, (int) reason)
    80               && action != Deoptimization::Action_none) {
    81             // This uncommon trap is sure to recompile, eventually.
    82             // When that happens, C->too_many_traps will prevent
    83             // this transformation from happening again.
    84             found_trap = true;
    85           }
    86         }
    87         break;
    88       }
    89     }
    90     if (!found_trap) {
    91       // We did not find an uncommon trap.
    92       return;
    93     }
    94   }
    96   // Search the successor block for a load or store who's base value is also
    97   // the tested value.  There may be several.
    98   Node_List *out = new Node_List(Thread::current()->resource_area());
    99   MachNode *best = NULL;        // Best found so far
   100   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   101     Node *m = val->out(i);
   102     if( !m->is_Mach() ) continue;
   103     MachNode *mach = m->as_Mach();
   104     was_store = false;
   105     switch( mach->ideal_Opcode() ) {
   106     case Op_LoadB:
   107     case Op_LoadC:
   108     case Op_LoadD:
   109     case Op_LoadF:
   110     case Op_LoadI:
   111     case Op_LoadL:
   112     case Op_LoadP:
   113     case Op_LoadN:
   114     case Op_LoadS:
   115     case Op_LoadKlass:
   116     case Op_LoadNKlass:
   117     case Op_LoadRange:
   118     case Op_LoadD_unaligned:
   119     case Op_LoadL_unaligned:
   120       break;
   121     case Op_StoreB:
   122     case Op_StoreC:
   123     case Op_StoreCM:
   124     case Op_StoreD:
   125     case Op_StoreF:
   126     case Op_StoreI:
   127     case Op_StoreL:
   128     case Op_StoreP:
   129     case Op_StoreN:
   130       was_store = true;         // Memory op is a store op
   131       // Stores will have their address in slot 2 (memory in slot 1).
   132       // If the value being nul-checked is in another slot, it means we
   133       // are storing the checked value, which does NOT check the value!
   134       if( mach->in(2) != val ) continue;
   135       break;                    // Found a memory op?
   136     case Op_StrComp:
   137     case Op_AryEq:
   138       // Not a legit memory op for implicit null check regardless of
   139       // embedded loads
   140       continue;
   141     default:                    // Also check for embedded loads
   142       if( !mach->needs_anti_dependence_check() )
   143         continue;               // Not an memory op; skip it
   144       break;
   145     }
   146     // check if the offset is not too high for implicit exception
   147     {
   148       intptr_t offset = 0;
   149       const TypePtr *adr_type = NULL;  // Do not need this return value here
   150       const Node* base = mach->get_base_and_disp(offset, adr_type);
   151       if (base == NULL || base == NodeSentinel) {
   152         // cannot reason about it; is probably not implicit null exception
   153       } else {
   154         const TypePtr* tptr = base->bottom_type()->is_ptr();
   155         // Give up if offset is not a compile-time constant
   156         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   157           continue;
   158         offset += tptr->_offset; // correct if base is offseted
   159         if( MacroAssembler::needs_explicit_null_check(offset) )
   160           continue;             // Give up is reference is beyond 4K page size
   161       }
   162     }
   164     // Check ctrl input to see if the null-check dominates the memory op
   165     Block *cb = cfg->_bbs[mach->_idx];
   166     cb = cb->_idom;             // Always hoist at least 1 block
   167     if( !was_store ) {          // Stores can be hoisted only one block
   168       while( cb->_dom_depth > (_dom_depth + 1))
   169         cb = cb->_idom;         // Hoist loads as far as we want
   170       // The non-null-block should dominate the memory op, too. Live
   171       // range spilling will insert a spill in the non-null-block if it is
   172       // needs to spill the memory op for an implicit null check.
   173       if (cb->_dom_depth == (_dom_depth + 1)) {
   174         if (cb != not_null_block) continue;
   175         cb = cb->_idom;
   176       }
   177     }
   178     if( cb != this ) continue;
   180     // Found a memory user; see if it can be hoisted to check-block
   181     uint vidx = 0;              // Capture index of value into memop
   182     uint j;
   183     for( j = mach->req()-1; j > 0; j-- ) {
   184       if( mach->in(j) == val ) vidx = j;
   185       // Block of memory-op input
   186       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   187       Block *b = this;          // Start from nul check
   188       while( b != inb && b->_dom_depth > inb->_dom_depth )
   189         b = b->_idom;           // search upwards for input
   190       // See if input dominates null check
   191       if( b != inb )
   192         break;
   193     }
   194     if( j > 0 )
   195       continue;
   196     Block *mb = cfg->_bbs[mach->_idx];
   197     // Hoisting stores requires more checks for the anti-dependence case.
   198     // Give up hoisting if we have to move the store past any load.
   199     if( was_store ) {
   200       Block *b = mb;            // Start searching here for a local load
   201       // mach use (faulting) trying to hoist
   202       // n might be blocker to hoisting
   203       while( b != this ) {
   204         uint k;
   205         for( k = 1; k < b->_nodes.size(); k++ ) {
   206           Node *n = b->_nodes[k];
   207           if( n->needs_anti_dependence_check() &&
   208               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   209             break;              // Found anti-dependent load
   210         }
   211         if( k < b->_nodes.size() )
   212           break;                // Found anti-dependent load
   213         // Make sure control does not do a merge (would have to check allpaths)
   214         if( b->num_preds() != 2 ) break;
   215         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   216       }
   217       if( b != this ) continue;
   218     }
   220     // Make sure this memory op is not already being used for a NullCheck
   221     Node *e = mb->end();
   222     if( e->is_MachNullCheck() && e->in(1) == mach )
   223       continue;                 // Already being used as a NULL check
   225     // Found a candidate!  Pick one with least dom depth - the highest
   226     // in the dom tree should be closest to the null check.
   227     if( !best ||
   228         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   229       best = mach;
   230       bidx = vidx;
   232     }
   233   }
   234   // No candidate!
   235   if( !best ) return;
   237   // ---- Found an implicit null check
   238   extern int implicit_null_checks;
   239   implicit_null_checks++;
   241   // Hoist the memory candidate up to the end of the test block.
   242   Block *old_block = cfg->_bbs[best->_idx];
   243   old_block->find_remove(best);
   244   add_inst(best);
   245   cfg->_bbs.map(best->_idx,this);
   247   // Move the control dependence
   248   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   249     best->set_req(0, _nodes[0]);
   251   // Check for flag-killing projections that also need to be hoisted
   252   // Should be DU safe because no edge updates.
   253   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   254     Node* n = best->fast_out(j);
   255     if( n->Opcode() == Op_MachProj ) {
   256       cfg->_bbs[n->_idx]->find_remove(n);
   257       add_inst(n);
   258       cfg->_bbs.map(n->_idx,this);
   259     }
   260   }
   262   Compile *C = cfg->C;
   263   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   264   // One of two graph shapes got matched:
   265   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   266   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   267   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   268   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   269   // We need to flip the projections to keep the same semantics.
   270   if( proj->Opcode() == Op_IfTrue ) {
   271     // Swap order of projections in basic block to swap branch targets
   272     Node *tmp1 = _nodes[end_idx()+1];
   273     Node *tmp2 = _nodes[end_idx()+2];
   274     _nodes.map(end_idx()+1, tmp2);
   275     _nodes.map(end_idx()+2, tmp1);
   276     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   277     tmp1->replace_by(tmp);
   278     tmp2->replace_by(tmp1);
   279     tmp->replace_by(tmp2);
   280     tmp->destruct();
   281   }
   283   // Remove the existing null check; use a new implicit null check instead.
   284   // Since schedule-local needs precise def-use info, we need to correct
   285   // it as well.
   286   Node *old_tst = proj->in(0);
   287   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   288   _nodes.map(end_idx(),nul_chk);
   289   cfg->_bbs.map(nul_chk->_idx,this);
   290   // Redirect users of old_test to nul_chk
   291   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   292     old_tst->last_out(i2)->set_req(0, nul_chk);
   293   // Clean-up any dead code
   294   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   295     old_tst->set_req(i3, NULL);
   297   cfg->latency_from_uses(nul_chk);
   298   cfg->latency_from_uses(best);
   299 }
   302 //------------------------------select-----------------------------------------
   303 // Select a nice fellow from the worklist to schedule next. If there is only
   304 // one choice, then use it. Projections take top priority for correctness
   305 // reasons - if I see a projection, then it is next.  There are a number of
   306 // other special cases, for instructions that consume condition codes, et al.
   307 // These are chosen immediately. Some instructions are required to immediately
   308 // precede the last instruction in the block, and these are taken last. Of the
   309 // remaining cases (most), choose the instruction with the greatest latency
   310 // (that is, the most number of pseudo-cycles required to the end of the
   311 // routine). If there is a tie, choose the instruction with the most inputs.
   312 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   314   // If only a single entry on the stack, use it
   315   uint cnt = worklist.size();
   316   if (cnt == 1) {
   317     Node *n = worklist[0];
   318     worklist.map(0,worklist.pop());
   319     return n;
   320   }
   322   uint choice  = 0; // Bigger is most important
   323   uint latency = 0; // Bigger is scheduled first
   324   uint score   = 0; // Bigger is better
   325   int idx = -1;     // Index in worklist
   327   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   328     // Order in worklist is used to break ties.
   329     // See caller for how this is used to delay scheduling
   330     // of induction variable increments to after the other
   331     // uses of the phi are scheduled.
   332     Node *n = worklist[i];      // Get Node on worklist
   334     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   335     if( n->is_Proj() ||         // Projections always win
   336         n->Opcode()== Op_Con || // So does constant 'Top'
   337         iop == Op_CreateEx ||   // Create-exception must start block
   338         iop == Op_CheckCastPP
   339         ) {
   340       worklist.map(i,worklist.pop());
   341       return n;
   342     }
   344     // Final call in a block must be adjacent to 'catch'
   345     Node *e = end();
   346     if( e->is_Catch() && e->in(0)->in(0) == n )
   347       continue;
   349     // Memory op for an implicit null check has to be at the end of the block
   350     if( e->is_MachNullCheck() && e->in(1) == n )
   351       continue;
   353     uint n_choice  = 2;
   355     // See if this instruction is consumed by a branch. If so, then (as the
   356     // branch is the last instruction in the basic block) force it to the
   357     // end of the basic block
   358     if ( must_clone[iop] ) {
   359       // See if any use is a branch
   360       bool found_machif = false;
   362       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   363         Node* use = n->fast_out(j);
   365         // The use is a conditional branch, make them adjacent
   366         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   367           found_machif = true;
   368           break;
   369         }
   371         // More than this instruction pending for successor to be ready,
   372         // don't choose this if other opportunities are ready
   373         if (ready_cnt[use->_idx] > 1)
   374           n_choice = 1;
   375       }
   377       // loop terminated, prefer not to use this instruction
   378       if (found_machif)
   379         continue;
   380     }
   382     // See if this has a predecessor that is "must_clone", i.e. sets the
   383     // condition code. If so, choose this first
   384     for (uint j = 0; j < n->req() ; j++) {
   385       Node *inn = n->in(j);
   386       if (inn) {
   387         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   388           n_choice = 3;
   389           break;
   390         }
   391       }
   392     }
   394     // MachTemps should be scheduled last so they are near their uses
   395     if (n->is_MachTemp()) {
   396       n_choice = 1;
   397     }
   399     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
   400     uint n_score   = n->req();   // Many inputs get high score to break ties
   402     // Keep best latency found
   403     if( choice < n_choice ||
   404         ( choice == n_choice &&
   405           ( latency < n_latency ||
   406             ( latency == n_latency &&
   407               ( score < n_score ))))) {
   408       choice  = n_choice;
   409       latency = n_latency;
   410       score   = n_score;
   411       idx     = i;               // Also keep index in worklist
   412     }
   413   } // End of for all ready nodes in worklist
   415   assert(idx >= 0, "index should be set");
   416   Node *n = worklist[(uint)idx];      // Get the winner
   418   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   419   return n;
   420 }
   423 //------------------------------set_next_call----------------------------------
   424 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   425   if( next_call.test_set(n->_idx) ) return;
   426   for( uint i=0; i<n->len(); i++ ) {
   427     Node *m = n->in(i);
   428     if( !m ) continue;  // must see all nodes in block that precede call
   429     if( bbs[m->_idx] == this )
   430       set_next_call( m, next_call, bbs );
   431   }
   432 }
   434 //------------------------------needed_for_next_call---------------------------
   435 // Set the flag 'next_call' for each Node that is needed for the next call to
   436 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   437 // next subroutine call get priority - basically it moves things NOT needed
   438 // for the next call till after the call.  This prevents me from trying to
   439 // carry lots of stuff live across a call.
   440 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   441   // Find the next control-defining Node in this block
   442   Node* call = NULL;
   443   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   444     Node* m = this_call->fast_out(i);
   445     if( bbs[m->_idx] == this && // Local-block user
   446         m != this_call &&       // Not self-start node
   447         m->is_Call() )
   448       call = m;
   449       break;
   450   }
   451   if (call == NULL)  return;    // No next call (e.g., block end is near)
   452   // Set next-call for all inputs to this call
   453   set_next_call(call, next_call, bbs);
   454 }
   456 //------------------------------sched_call-------------------------------------
   457 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   458   RegMask regs;
   460   // Schedule all the users of the call right now.  All the users are
   461   // projection Nodes, so they must be scheduled next to the call.
   462   // Collect all the defined registers.
   463   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   464     Node* n = mcall->fast_out(i);
   465     assert( n->Opcode()==Op_MachProj, "" );
   466     --ready_cnt[n->_idx];
   467     assert( !ready_cnt[n->_idx], "" );
   468     // Schedule next to call
   469     _nodes.map(node_cnt++, n);
   470     // Collect defined registers
   471     regs.OR(n->out_RegMask());
   472     // Check for scheduling the next control-definer
   473     if( n->bottom_type() == Type::CONTROL )
   474       // Warm up next pile of heuristic bits
   475       needed_for_next_call(n, next_call, bbs);
   477     // Children of projections are now all ready
   478     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   479       Node* m = n->fast_out(j); // Get user
   480       if( bbs[m->_idx] != this ) continue;
   481       if( m->is_Phi() ) continue;
   482       if( !--ready_cnt[m->_idx] )
   483         worklist.push(m);
   484     }
   486   }
   488   // Act as if the call defines the Frame Pointer.
   489   // Certainly the FP is alive and well after the call.
   490   regs.Insert(matcher.c_frame_pointer());
   492   // Set all registers killed and not already defined by the call.
   493   uint r_cnt = mcall->tf()->range()->cnt();
   494   int op = mcall->ideal_Opcode();
   495   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   496   bbs.map(proj->_idx,this);
   497   _nodes.insert(node_cnt++, proj);
   499   // Select the right register save policy.
   500   const char * save_policy;
   501   switch (op) {
   502     case Op_CallRuntime:
   503     case Op_CallLeaf:
   504     case Op_CallLeafNoFP:
   505       // Calling C code so use C calling convention
   506       save_policy = matcher._c_reg_save_policy;
   507       break;
   509     case Op_CallStaticJava:
   510     case Op_CallDynamicJava:
   511       // Calling Java code so use Java calling convention
   512       save_policy = matcher._register_save_policy;
   513       break;
   515     default:
   516       ShouldNotReachHere();
   517   }
   519   // When using CallRuntime mark SOE registers as killed by the call
   520   // so values that could show up in the RegisterMap aren't live in a
   521   // callee saved register since the register wouldn't know where to
   522   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   523   // have debug info on them.  Strictly speaking this only needs to be
   524   // done for oops since idealreg2debugmask takes care of debug info
   525   // references but there no way to handle oops differently than other
   526   // pointers as far as the kill mask goes.
   527   bool exclude_soe = op == Op_CallRuntime;
   529   // Fill in the kill mask for the call
   530   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   531     if( !regs.Member(r) ) {     // Not already defined by the call
   532       // Save-on-call register?
   533       if ((save_policy[r] == 'C') ||
   534           (save_policy[r] == 'A') ||
   535           ((save_policy[r] == 'E') && exclude_soe)) {
   536         proj->_rout.Insert(r);
   537       }
   538     }
   539   }
   541   return node_cnt;
   542 }
   545 //------------------------------schedule_local---------------------------------
   546 // Topological sort within a block.  Someday become a real scheduler.
   547 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   548   // Already "sorted" are the block start Node (as the first entry), and
   549   // the block-ending Node and any trailing control projections.  We leave
   550   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   551   // Node.  Everything else gets topo-sorted.
   553 #ifndef PRODUCT
   554     if (cfg->trace_opto_pipelining()) {
   555       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   556       for (uint i = 0;i < _nodes.size();i++) {
   557         tty->print("# ");
   558         _nodes[i]->fast_dump();
   559       }
   560       tty->print_cr("#");
   561     }
   562 #endif
   564   // RootNode is already sorted
   565   if( _nodes.size() == 1 ) return true;
   567   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   568   uint node_cnt = end_idx();
   569   uint phi_cnt = 1;
   570   uint i;
   571   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   572     Node *n = _nodes[i];
   573     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   574         (n->is_Proj()  && n->in(0) == head()) ) {
   575       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   576       _nodes.map(i,_nodes[phi_cnt]);
   577       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   578     } else {                    // All others
   579       // Count block-local inputs to 'n'
   580       uint cnt = n->len();      // Input count
   581       uint local = 0;
   582       for( uint j=0; j<cnt; j++ ) {
   583         Node *m = n->in(j);
   584         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   585           local++;              // One more block-local input
   586       }
   587       ready_cnt[n->_idx] = local; // Count em up
   589       // A few node types require changing a required edge to a precedence edge
   590       // before allocation.
   591       if( UseConcMarkSweepGC ) {
   592         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   593           // Note: Required edges with an index greater than oper_input_base
   594           // are not supported by the allocator.
   595           // Note2: Can only depend on unmatched edge being last,
   596           // can not depend on its absolute position.
   597           Node *oop_store = n->in(n->req() - 1);
   598           n->del_req(n->req() - 1);
   599           n->add_prec(oop_store);
   600           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   601         }
   602       }
   603       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire &&
   604           n->req() > TypeFunc::Parms ) {
   605         // MemBarAcquire could be created without Precedent edge.
   606         // del_req() replaces the specified edge with the last input edge
   607         // and then removes the last edge. If the specified edge > number of
   608         // edges the last edge will be moved outside of the input edges array
   609         // and the edge will be lost. This is why this code should be
   610         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   611         Node *x = n->in(TypeFunc::Parms);
   612         n->del_req(TypeFunc::Parms);
   613         n->add_prec(x);
   614       }
   615     }
   616   }
   617   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   618     ready_cnt[_nodes[i2]->_idx] = 0;
   620   // All the prescheduled guys do not hold back internal nodes
   621   uint i3;
   622   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   623     Node *n = _nodes[i3];       // Get pre-scheduled
   624     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   625       Node* m = n->fast_out(j);
   626       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   627         ready_cnt[m->_idx]--;   // Fix ready count
   628     }
   629   }
   631   Node_List delay;
   632   // Make a worklist
   633   Node_List worklist;
   634   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   635     Node *m = _nodes[i4];
   636     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   637       if (m->is_iteratively_computed()) {
   638         // Push induction variable increments last to allow other uses
   639         // of the phi to be scheduled first. The select() method breaks
   640         // ties in scheduling by worklist order.
   641         delay.push(m);
   642       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   643         // Force the CreateEx to the top of the list so it's processed
   644         // first and ends up at the start of the block.
   645         worklist.insert(0, m);
   646       } else {
   647         worklist.push(m);         // Then on to worklist!
   648       }
   649     }
   650   }
   651   while (delay.size()) {
   652     Node* d = delay.pop();
   653     worklist.push(d);
   654   }
   656   // Warm up the 'next_call' heuristic bits
   657   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   659 #ifndef PRODUCT
   660     if (cfg->trace_opto_pipelining()) {
   661       for (uint j=0; j<_nodes.size(); j++) {
   662         Node     *n = _nodes[j];
   663         int     idx = n->_idx;
   664         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   665         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
   666         tty->print("%4d: %s\n", idx, n->Name());
   667       }
   668     }
   669 #endif
   671   // Pull from worklist and schedule
   672   while( worklist.size() ) {    // Worklist is not ready
   674 #ifndef PRODUCT
   675     if (cfg->trace_opto_pipelining()) {
   676       tty->print("#   ready list:");
   677       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   678         Node *n = worklist[i];      // Get Node on worklist
   679         tty->print(" %d", n->_idx);
   680       }
   681       tty->cr();
   682     }
   683 #endif
   685     // Select and pop a ready guy from worklist
   686     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   687     _nodes.map(phi_cnt++,n);    // Schedule him next
   689 #ifndef PRODUCT
   690     if (cfg->trace_opto_pipelining()) {
   691       tty->print("#    select %d: %s", n->_idx, n->Name());
   692       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
   693       n->dump();
   694       if (Verbose) {
   695         tty->print("#   ready list:");
   696         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   697           Node *n = worklist[i];      // Get Node on worklist
   698           tty->print(" %d", n->_idx);
   699         }
   700         tty->cr();
   701       }
   702     }
   704 #endif
   705     if( n->is_MachCall() ) {
   706       MachCallNode *mcall = n->as_MachCall();
   707       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   708       continue;
   709     }
   710     // Children are now all ready
   711     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   712       Node* m = n->fast_out(i5); // Get user
   713       if( cfg->_bbs[m->_idx] != this ) continue;
   714       if( m->is_Phi() ) continue;
   715       if( !--ready_cnt[m->_idx] )
   716         worklist.push(m);
   717     }
   718   }
   720   if( phi_cnt != end_idx() ) {
   721     // did not schedule all.  Retry, Bailout, or Die
   722     Compile* C = matcher.C;
   723     if (C->subsume_loads() == true && !C->failing()) {
   724       // Retry with subsume_loads == false
   725       // If this is the first failure, the sentinel string will "stick"
   726       // to the Compile object, and the C2Compiler will see it and retry.
   727       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   728     }
   729     // assert( phi_cnt == end_idx(), "did not schedule all" );
   730     return false;
   731   }
   733 #ifndef PRODUCT
   734   if (cfg->trace_opto_pipelining()) {
   735     tty->print_cr("#");
   736     tty->print_cr("# after schedule_local");
   737     for (uint i = 0;i < _nodes.size();i++) {
   738       tty->print("# ");
   739       _nodes[i]->fast_dump();
   740     }
   741     tty->cr();
   742   }
   743 #endif
   746   return true;
   747 }
   749 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   750 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   751   for (uint l = 0; l < use->len(); l++) {
   752     if (use->in(l) == old_def) {
   753       if (l < use->req()) {
   754         use->set_req(l, new_def);
   755       } else {
   756         use->rm_prec(l);
   757         use->add_prec(new_def);
   758         l--;
   759       }
   760     }
   761   }
   762 }
   764 //------------------------------catch_cleanup_find_cloned_def------------------
   765 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   766   assert( use_blk != def_blk, "Inter-block cleanup only");
   768   // The use is some block below the Catch.  Find and return the clone of the def
   769   // that dominates the use. If there is no clone in a dominating block, then
   770   // create a phi for the def in a dominating block.
   772   // Find which successor block dominates this use.  The successor
   773   // blocks must all be single-entry (from the Catch only; I will have
   774   // split blocks to make this so), hence they all dominate.
   775   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   776     use_blk = use_blk->_idom;
   778   // Find the successor
   779   Node *fixup = NULL;
   781   uint j;
   782   for( j = 0; j < def_blk->_num_succs; j++ )
   783     if( use_blk == def_blk->_succs[j] )
   784       break;
   786   if( j == def_blk->_num_succs ) {
   787     // Block at same level in dom-tree is not a successor.  It needs a
   788     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   789     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   790     for(uint k = 1; k < use_blk->num_preds(); k++) {
   791       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   792     }
   794     // Check to see if the use_blk already has an identical phi inserted.
   795     // If it exists, it will be at the first position since all uses of a
   796     // def are processed together.
   797     Node *phi = use_blk->_nodes[1];
   798     if( phi->is_Phi() ) {
   799       fixup = phi;
   800       for (uint k = 1; k < use_blk->num_preds(); k++) {
   801         if (phi->in(k) != inputs[k]) {
   802           // Not a match
   803           fixup = NULL;
   804           break;
   805         }
   806       }
   807     }
   809     // If an existing PhiNode was not found, make a new one.
   810     if (fixup == NULL) {
   811       Node *new_phi = PhiNode::make(use_blk->head(), def);
   812       use_blk->_nodes.insert(1, new_phi);
   813       bbs.map(new_phi->_idx, use_blk);
   814       for (uint k = 1; k < use_blk->num_preds(); k++) {
   815         new_phi->set_req(k, inputs[k]);
   816       }
   817       fixup = new_phi;
   818     }
   820   } else {
   821     // Found the use just below the Catch.  Make it use the clone.
   822     fixup = use_blk->_nodes[n_clone_idx];
   823   }
   825   return fixup;
   826 }
   828 //--------------------------catch_cleanup_intra_block--------------------------
   829 // Fix all input edges in use that reference "def".  The use is in the same
   830 // block as the def and both have been cloned in each successor block.
   831 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   833   // Both the use and def have been cloned. For each successor block,
   834   // get the clone of the use, and make its input the clone of the def
   835   // found in that block.
   837   uint use_idx = blk->find_node(use);
   838   uint offset_idx = use_idx - beg;
   839   for( uint k = 0; k < blk->_num_succs; k++ ) {
   840     // Get clone in each successor block
   841     Block *sb = blk->_succs[k];
   842     Node *clone = sb->_nodes[offset_idx+1];
   843     assert( clone->Opcode() == use->Opcode(), "" );
   845     // Make use-clone reference the def-clone
   846     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   847   }
   848 }
   850 //------------------------------catch_cleanup_inter_block---------------------
   851 // Fix all input edges in use that reference "def".  The use is in a different
   852 // block than the def.
   853 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   854   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   856   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   857   catch_cleanup_fix_all_inputs(use, def, new_def);
   858 }
   860 //------------------------------call_catch_cleanup-----------------------------
   861 // If we inserted any instructions between a Call and his CatchNode,
   862 // clone the instructions on all paths below the Catch.
   863 void Block::call_catch_cleanup(Block_Array &bbs) {
   865   // End of region to clone
   866   uint end = end_idx();
   867   if( !_nodes[end]->is_Catch() ) return;
   868   // Start of region to clone
   869   uint beg = end;
   870   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   871         !_nodes[beg-1]->in(0)->is_Call() ) {
   872     beg--;
   873     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   874   }
   875   // Range of inserted instructions is [beg, end)
   876   if( beg == end ) return;
   878   // Clone along all Catch output paths.  Clone area between the 'beg' and
   879   // 'end' indices.
   880   for( uint i = 0; i < _num_succs; i++ ) {
   881     Block *sb = _succs[i];
   882     // Clone the entire area; ignoring the edge fixup for now.
   883     for( uint j = end; j > beg; j-- ) {
   884       Node *clone = _nodes[j-1]->clone();
   885       sb->_nodes.insert( 1, clone );
   886       bbs.map(clone->_idx,sb);
   887     }
   888   }
   891   // Fixup edges.  Check the def-use info per cloned Node
   892   for(uint i2 = beg; i2 < end; i2++ ) {
   893     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
   894     Node *n = _nodes[i2];        // Node that got cloned
   895     // Need DU safe iterator because of edge manipulation in calls.
   896     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
   897     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
   898       out->push(n->fast_out(j1));
   899     }
   900     uint max = out->size();
   901     for (uint j = 0; j < max; j++) {// For all users
   902       Node *use = out->pop();
   903       Block *buse = bbs[use->_idx];
   904       if( use->is_Phi() ) {
   905         for( uint k = 1; k < use->req(); k++ )
   906           if( use->in(k) == n ) {
   907             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
   908             use->set_req(k, fixup);
   909           }
   910       } else {
   911         if (this == buse) {
   912           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
   913         } else {
   914           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
   915         }
   916       }
   917     } // End for all users
   919   } // End of for all Nodes in cloned area
   921   // Remove the now-dead cloned ops
   922   for(uint i3 = beg; i3 < end; i3++ ) {
   923     _nodes[beg]->disconnect_inputs(NULL);
   924     _nodes.remove(beg);
   925   }
   927   // If the successor blocks have a CreateEx node, move it back to the top
   928   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
   929     Block *sb = _succs[i4];
   930     uint new_cnt = end - beg;
   931     // Remove any newly created, but dead, nodes.
   932     for( uint j = new_cnt; j > 0; j-- ) {
   933       Node *n = sb->_nodes[j];
   934       if (n->outcnt() == 0 &&
   935           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
   936         n->disconnect_inputs(NULL);
   937         sb->_nodes.remove(j);
   938         new_cnt--;
   939       }
   940     }
   941     // If any newly created nodes remain, move the CreateEx node to the top
   942     if (new_cnt > 0) {
   943       Node *cex = sb->_nodes[1+new_cnt];
   944       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   945         sb->_nodes.remove(1+new_cnt);
   946         sb->_nodes.insert(1,cex);
   947       }
   948     }
   949   }
   950 }

mercurial