src/share/vm/opto/callnode.hpp

Mon, 28 Jul 2008 17:12:52 -0700

author
kvn
date
Mon, 28 Jul 2008 17:12:52 -0700
changeset 688
b0fe4deeb9fb
parent 631
d1605aabd0a1
child 801
8261ee795323
permissions
-rw-r--r--

6726999: nsk/stress/jck12a/jck12a010 assert(n != null,"Bad immediate dominator info.")
Summary: Escape Analysis fixes.
Reviewed-by: never, rasbold

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 class Chaitin;
    30 class NamedCounter;
    31 class MultiNode;
    32 class  SafePointNode;
    33 class   CallNode;
    34 class     CallJavaNode;
    35 class       CallStaticJavaNode;
    36 class       CallDynamicJavaNode;
    37 class     CallRuntimeNode;
    38 class       CallLeafNode;
    39 class         CallLeafNoFPNode;
    40 class     AllocateNode;
    41 class       AllocateArrayNode;
    42 class     LockNode;
    43 class     UnlockNode;
    44 class JVMState;
    45 class OopMap;
    46 class State;
    47 class StartNode;
    48 class MachCallNode;
    49 class FastLockNode;
    51 //------------------------------StartNode--------------------------------------
    52 // The method start node
    53 class StartNode : public MultiNode {
    54   virtual uint cmp( const Node &n ) const;
    55   virtual uint size_of() const; // Size is bigger
    56 public:
    57   const TypeTuple *_domain;
    58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    59     init_class_id(Class_Start);
    60     init_flags(Flag_is_block_start);
    61     init_req(0,this);
    62     init_req(1,root);
    63   }
    64   virtual int Opcode() const;
    65   virtual bool pinned() const { return true; };
    66   virtual const Type *bottom_type() const;
    67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    68   virtual const Type *Value( PhaseTransform *phase ) const;
    69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    71   virtual const RegMask &in_RegMask(uint) const;
    72   virtual Node *match( const ProjNode *proj, const Matcher *m );
    73   virtual uint ideal_reg() const { return 0; }
    74 #ifndef PRODUCT
    75   virtual void  dump_spec(outputStream *st) const;
    76 #endif
    77 };
    79 //------------------------------StartOSRNode-----------------------------------
    80 // The method start node for on stack replacement code
    81 class StartOSRNode : public StartNode {
    82 public:
    83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    84   virtual int   Opcode() const;
    85   static  const TypeTuple *osr_domain();
    86 };
    89 //------------------------------ParmNode---------------------------------------
    90 // Incoming parameters
    91 class ParmNode : public ProjNode {
    92   static const char * const names[TypeFunc::Parms+1];
    93 public:
    94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    95     init_class_id(Class_Parm);
    96   }
    97   virtual int Opcode() const;
    98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
    99   virtual uint ideal_reg() const;
   100 #ifndef PRODUCT
   101   virtual void dump_spec(outputStream *st) const;
   102 #endif
   103 };
   106 //------------------------------ReturnNode-------------------------------------
   107 // Return from subroutine node
   108 class ReturnNode : public Node {
   109 public:
   110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   111   virtual int Opcode() const;
   112   virtual bool  is_CFG() const { return true; }
   113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   114   virtual bool depends_only_on_test() const { return false; }
   115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   116   virtual const Type *Value( PhaseTransform *phase ) const;
   117   virtual uint ideal_reg() const { return NotAMachineReg; }
   118   virtual uint match_edge(uint idx) const;
   119 #ifndef PRODUCT
   120   virtual void dump_req() const;
   121 #endif
   122 };
   125 //------------------------------RethrowNode------------------------------------
   126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   127 // ends the current basic block like a ReturnNode.  Restores registers and
   128 // unwinds stack.  Rethrow happens in the caller's method.
   129 class RethrowNode : public Node {
   130  public:
   131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   132   virtual int Opcode() const;
   133   virtual bool  is_CFG() const { return true; }
   134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   135   virtual bool depends_only_on_test() const { return false; }
   136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   137   virtual const Type *Value( PhaseTransform *phase ) const;
   138   virtual uint match_edge(uint idx) const;
   139   virtual uint ideal_reg() const { return NotAMachineReg; }
   140 #ifndef PRODUCT
   141   virtual void dump_req() const;
   142 #endif
   143 };
   146 //------------------------------TailCallNode-----------------------------------
   147 // Pop stack frame and jump indirect
   148 class TailCallNode : public ReturnNode {
   149 public:
   150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   152     init_req(TypeFunc::Parms, target);
   153     init_req(TypeFunc::Parms+1, moop);
   154   }
   156   virtual int Opcode() const;
   157   virtual uint match_edge(uint idx) const;
   158 };
   160 //------------------------------TailJumpNode-----------------------------------
   161 // Pop stack frame and jump indirect
   162 class TailJumpNode : public ReturnNode {
   163 public:
   164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   166     init_req(TypeFunc::Parms, target);
   167     init_req(TypeFunc::Parms+1, ex_oop);
   168   }
   170   virtual int Opcode() const;
   171   virtual uint match_edge(uint idx) const;
   172 };
   174 //-------------------------------JVMState-------------------------------------
   175 // A linked list of JVMState nodes captures the whole interpreter state,
   176 // plus GC roots, for all active calls at some call site in this compilation
   177 // unit.  (If there is no inlining, then the list has exactly one link.)
   178 // This provides a way to map the optimized program back into the interpreter,
   179 // or to let the GC mark the stack.
   180 class JVMState : public ResourceObj {
   181 private:
   182   JVMState*         _caller;    // List pointer for forming scope chains
   183   uint              _depth;     // One mroe than caller depth, or one.
   184   uint              _locoff;    // Offset to locals in input edge mapping
   185   uint              _stkoff;    // Offset to stack in input edge mapping
   186   uint              _monoff;    // Offset to monitors in input edge mapping
   187   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   188   uint              _endoff;    // Offset to end of input edge mapping
   189   uint              _sp;        // Jave Expression Stack Pointer for this state
   190   int               _bci;       // Byte Code Index of this JVM point
   191   ciMethod*         _method;    // Method Pointer
   192   SafePointNode*    _map;       // Map node associated with this scope
   193 public:
   194   friend class Compile;
   196   // Because JVMState objects live over the entire lifetime of the
   197   // Compile object, they are allocated into the comp_arena, which
   198   // does not get resource marked or reset during the compile process
   199   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   200   void operator delete( void * ) { } // fast deallocation
   202   // Create a new JVMState, ready for abstract interpretation.
   203   JVMState(ciMethod* method, JVMState* caller);
   204   JVMState(int stack_size);  // root state; has a null method
   206   // Access functions for the JVM
   207   uint              locoff() const { return _locoff; }
   208   uint              stkoff() const { return _stkoff; }
   209   uint              argoff() const { return _stkoff + _sp; }
   210   uint              monoff() const { return _monoff; }
   211   uint              scloff() const { return _scloff; }
   212   uint              endoff() const { return _endoff; }
   213   uint              oopoff() const { return debug_end(); }
   215   int            loc_size() const { return _stkoff - _locoff; }
   216   int            stk_size() const { return _monoff - _stkoff; }
   217   int            mon_size() const { return _scloff - _monoff; }
   218   int            scl_size() const { return _endoff - _scloff; }
   220   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   221   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   222   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   223   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   225   uint              sp()     const { return _sp; }
   226   int               bci()    const { return _bci; }
   227   bool          has_method() const { return _method != NULL; }
   228   ciMethod*         method() const { assert(has_method(), ""); return _method; }
   229   JVMState*         caller() const { return _caller; }
   230   SafePointNode*    map()    const { return _map; }
   231   uint              depth()  const { return _depth; }
   232   uint        debug_start()  const; // returns locoff of root caller
   233   uint        debug_end()    const; // returns endoff of self
   234   uint        debug_size()   const {
   235     return loc_size() + sp() + mon_size() + scl_size();
   236   }
   237   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   239   // Returns the JVM state at the desired depth (1 == root).
   240   JVMState* of_depth(int d) const;
   242   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   243   bool same_calls_as(const JVMState* that) const;
   245   // Monitors (monitors are stored as (boxNode, objNode) pairs
   246   enum { logMonitorEdges = 1 };
   247   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   248   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   249   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   250   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   251   bool is_monitor_box(uint off)    const {
   252     assert(is_mon(off), "should be called only for monitor edge");
   253     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   254   }
   255   bool is_monitor_use(uint off)    const { return (is_mon(off)
   256                                                    && is_monitor_box(off))
   257                                              || (caller() && caller()->is_monitor_use(off)); }
   259   // Initialization functions for the JVM
   260   void              set_locoff(uint off) { _locoff = off; }
   261   void              set_stkoff(uint off) { _stkoff = off; }
   262   void              set_monoff(uint off) { _monoff = off; }
   263   void              set_scloff(uint off) { _scloff = off; }
   264   void              set_endoff(uint off) { _endoff = off; }
   265   void              set_offsets(uint off) {
   266     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   267   }
   268   void              set_map(SafePointNode *map) { _map = map; }
   269   void              set_sp(uint sp) { _sp = sp; }
   270   void              set_bci(int bci) { _bci = bci; }
   272   // Miscellaneous utility functions
   273   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   274   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   276 #ifndef PRODUCT
   277   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   278   void      dump_spec(outputStream *st) const;
   279   void      dump_on(outputStream* st) const;
   280   void      dump() const {
   281     dump_on(tty);
   282   }
   283 #endif
   284 };
   286 //------------------------------SafePointNode----------------------------------
   287 // A SafePointNode is a subclass of a MultiNode for convenience (and
   288 // potential code sharing) only - conceptually it is independent of
   289 // the Node semantics.
   290 class SafePointNode : public MultiNode {
   291   virtual uint           cmp( const Node &n ) const;
   292   virtual uint           size_of() const;       // Size is bigger
   294 public:
   295   SafePointNode(uint edges, JVMState* jvms,
   296                 // A plain safepoint advertises no memory effects (NULL):
   297                 const TypePtr* adr_type = NULL)
   298     : MultiNode( edges ),
   299       _jvms(jvms),
   300       _oop_map(NULL),
   301       _adr_type(adr_type)
   302   {
   303     init_class_id(Class_SafePoint);
   304   }
   306   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   307   JVMState* const _jvms;      // Pointer to list of JVM State objects
   308   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   310   // Many calls take *all* of memory as input,
   311   // but some produce a limited subset of that memory as output.
   312   // The adr_type reports the call's behavior as a store, not a load.
   314   virtual JVMState* jvms() const { return _jvms; }
   315   void set_jvms(JVMState* s) {
   316     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   317   }
   318   OopMap *oop_map() const { return _oop_map; }
   319   void set_oop_map(OopMap *om) { _oop_map = om; }
   321   // Functionality from old debug nodes which has changed
   322   Node *local(JVMState* jvms, uint idx) const {
   323     assert(verify_jvms(jvms), "jvms must match");
   324     return in(jvms->locoff() + idx);
   325   }
   326   Node *stack(JVMState* jvms, uint idx) const {
   327     assert(verify_jvms(jvms), "jvms must match");
   328     return in(jvms->stkoff() + idx);
   329   }
   330   Node *argument(JVMState* jvms, uint idx) const {
   331     assert(verify_jvms(jvms), "jvms must match");
   332     return in(jvms->argoff() + idx);
   333   }
   334   Node *monitor_box(JVMState* jvms, uint idx) const {
   335     assert(verify_jvms(jvms), "jvms must match");
   336     return in(jvms->monitor_box_offset(idx));
   337   }
   338   Node *monitor_obj(JVMState* jvms, uint idx) const {
   339     assert(verify_jvms(jvms), "jvms must match");
   340     return in(jvms->monitor_obj_offset(idx));
   341   }
   343   void  set_local(JVMState* jvms, uint idx, Node *c);
   345   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   346     assert(verify_jvms(jvms), "jvms must match");
   347     set_req(jvms->stkoff() + idx, c);
   348   }
   349   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   350     assert(verify_jvms(jvms), "jvms must match");
   351     set_req(jvms->argoff() + idx, c);
   352   }
   353   void ensure_stack(JVMState* jvms, uint stk_size) {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     int grow_by = (int)stk_size - (int)jvms->stk_size();
   356     if (grow_by > 0)  grow_stack(jvms, grow_by);
   357   }
   358   void grow_stack(JVMState* jvms, uint grow_by);
   359   // Handle monitor stack
   360   void push_monitor( const FastLockNode *lock );
   361   void pop_monitor ();
   362   Node *peek_monitor_box() const;
   363   Node *peek_monitor_obj() const;
   365   // Access functions for the JVM
   366   Node *control  () const { return in(TypeFunc::Control  ); }
   367   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   368   Node *memory   () const { return in(TypeFunc::Memory   ); }
   369   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   370   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   372   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   373   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   374   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   376   MergeMemNode* merged_memory() const {
   377     return in(TypeFunc::Memory)->as_MergeMem();
   378   }
   380   // The parser marks useless maps as dead when it's done with them:
   381   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   383   // Exception states bubbling out of subgraphs such as inlined calls
   384   // are recorded here.  (There might be more than one, hence the "next".)
   385   // This feature is used only for safepoints which serve as "maps"
   386   // for JVM states during parsing, intrinsic expansion, etc.
   387   SafePointNode*         next_exception() const;
   388   void               set_next_exception(SafePointNode* n);
   389   bool                   has_exceptions() const { return next_exception() != NULL; }
   391   // Standard Node stuff
   392   virtual int            Opcode() const;
   393   virtual bool           pinned() const { return true; }
   394   virtual const Type    *Value( PhaseTransform *phase ) const;
   395   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   396   virtual const TypePtr *adr_type() const { return _adr_type; }
   397   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   398   virtual Node          *Identity( PhaseTransform *phase );
   399   virtual uint           ideal_reg() const { return 0; }
   400   virtual const RegMask &in_RegMask(uint) const;
   401   virtual const RegMask &out_RegMask() const;
   402   virtual uint           match_edge(uint idx) const;
   404   static  bool           needs_polling_address_input();
   406 #ifndef PRODUCT
   407   virtual void              dump_spec(outputStream *st) const;
   408 #endif
   409 };
   411 //------------------------------SafePointScalarObjectNode----------------------
   412 // A SafePointScalarObjectNode represents the state of a scalarized object
   413 // at a safepoint.
   415 class SafePointScalarObjectNode: public TypeNode {
   416   uint _first_index; // First input edge index of a SafePoint node where
   417                      // states of the scalarized object fields are collected.
   418   uint _n_fields;    // Number of non-static fields of the scalarized object.
   419   DEBUG_ONLY(AllocateNode* _alloc;)
   420 public:
   421   SafePointScalarObjectNode(const TypeOopPtr* tp,
   422 #ifdef ASSERT
   423                             AllocateNode* alloc,
   424 #endif
   425                             uint first_index, uint n_fields);
   426   virtual int Opcode() const;
   427   virtual uint           ideal_reg() const;
   428   virtual const RegMask &in_RegMask(uint) const;
   429   virtual const RegMask &out_RegMask() const;
   430   virtual uint           match_edge(uint idx) const;
   432   uint first_index() const { return _first_index; }
   433   uint n_fields()    const { return _n_fields; }
   434   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
   436   virtual uint size_of() const { return sizeof(*this); }
   438   // Assumes that "this" is an argument to a safepoint node "s", and that
   439   // "new_call" is being created to correspond to "s".  But the difference
   440   // between the start index of the jvmstates of "new_call" and "s" is
   441   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   442   // corresponds appropriately to "this" in "new_call".  Assumes that
   443   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   444   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   445   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   447 #ifndef PRODUCT
   448   virtual void              dump_spec(outputStream *st) const;
   449 #endif
   450 };
   452 //------------------------------CallNode---------------------------------------
   453 // Call nodes now subsume the function of debug nodes at callsites, so they
   454 // contain the functionality of a full scope chain of debug nodes.
   455 class CallNode : public SafePointNode {
   456 public:
   457   const TypeFunc *_tf;        // Function type
   458   address      _entry_point;  // Address of method being called
   459   float        _cnt;          // Estimate of number of times called
   461   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   462     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   463       _tf(tf),
   464       _entry_point(addr),
   465       _cnt(COUNT_UNKNOWN)
   466   {
   467     init_class_id(Class_Call);
   468     init_flags(Flag_is_Call);
   469   }
   471   const TypeFunc* tf()        const { return _tf; }
   472   const address entry_point() const { return _entry_point; }
   473   const float   cnt()         const { return _cnt; }
   475   void set_tf(const TypeFunc* tf) { _tf = tf; }
   476   void set_entry_point(address p) { _entry_point = p; }
   477   void set_cnt(float c)           { _cnt = c; }
   479   virtual const Type *bottom_type() const;
   480   virtual const Type *Value( PhaseTransform *phase ) const;
   481   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   482   virtual uint        cmp( const Node &n ) const;
   483   virtual uint        size_of() const = 0;
   484   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   485   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   486   virtual uint        ideal_reg() const { return NotAMachineReg; }
   487   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   488   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   489   virtual bool        guaranteed_safepoint()  { return true; }
   490   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   491   // the node the JVMState must be cloned.
   492   virtual void        clone_jvms() { }   // default is not to clone
   494   // Returns true if the call may modify n
   495   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   496   // Does this node have a use of n other than in debug information?
   497   bool                has_non_debug_use(Node *n);
   498   // Returns the unique CheckCastPP of a call
   499   // or result projection is there are several CheckCastPP
   500   // or returns NULL if there is no one.
   501   Node *result_cast();
   503   virtual uint match_edge(uint idx) const;
   505 #ifndef PRODUCT
   506   virtual void        dump_req()  const;
   507   virtual void        dump_spec(outputStream *st) const;
   508 #endif
   509 };
   511 //------------------------------CallJavaNode-----------------------------------
   512 // Make a static or dynamic subroutine call node using Java calling
   513 // convention.  (The "Java" calling convention is the compiler's calling
   514 // convention, as opposed to the interpreter's or that of native C.)
   515 class CallJavaNode : public CallNode {
   516 protected:
   517   virtual uint cmp( const Node &n ) const;
   518   virtual uint size_of() const; // Size is bigger
   520   bool    _optimized_virtual;
   521   ciMethod* _method;            // Method being direct called
   522 public:
   523   const int       _bci;         // Byte Code Index of call byte code
   524   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   525     : CallNode(tf, addr, TypePtr::BOTTOM),
   526       _method(method), _bci(bci), _optimized_virtual(false)
   527   {
   528     init_class_id(Class_CallJava);
   529   }
   531   virtual int   Opcode() const;
   532   ciMethod* method() const                { return _method; }
   533   void  set_method(ciMethod *m)           { _method = m; }
   534   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   535   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   537 #ifndef PRODUCT
   538   virtual void  dump_spec(outputStream *st) const;
   539 #endif
   540 };
   542 //------------------------------CallStaticJavaNode-----------------------------
   543 // Make a direct subroutine call using Java calling convention (for static
   544 // calls and optimized virtual calls, plus calls to wrappers for run-time
   545 // routines); generates static stub.
   546 class CallStaticJavaNode : public CallJavaNode {
   547   virtual uint cmp( const Node &n ) const;
   548   virtual uint size_of() const; // Size is bigger
   549 public:
   550   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   551     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   552     init_class_id(Class_CallStaticJava);
   553   }
   554   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   555                      const TypePtr* adr_type)
   556     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   557     init_class_id(Class_CallStaticJava);
   558     // This node calls a runtime stub, which often has narrow memory effects.
   559     _adr_type = adr_type;
   560   }
   561   const char *_name;            // Runtime wrapper name
   563   // If this is an uncommon trap, return the request code, else zero.
   564   int uncommon_trap_request() const;
   565   static int extract_uncommon_trap_request(const Node* call);
   567   virtual int         Opcode() const;
   568 #ifndef PRODUCT
   569   virtual void        dump_spec(outputStream *st) const;
   570 #endif
   571 };
   573 //------------------------------CallDynamicJavaNode----------------------------
   574 // Make a dispatched call using Java calling convention.
   575 class CallDynamicJavaNode : public CallJavaNode {
   576   virtual uint cmp( const Node &n ) const;
   577   virtual uint size_of() const; // Size is bigger
   578 public:
   579   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   580     init_class_id(Class_CallDynamicJava);
   581   }
   583   int _vtable_index;
   584   virtual int   Opcode() const;
   585 #ifndef PRODUCT
   586   virtual void  dump_spec(outputStream *st) const;
   587 #endif
   588 };
   590 //------------------------------CallRuntimeNode--------------------------------
   591 // Make a direct subroutine call node into compiled C++ code.
   592 class CallRuntimeNode : public CallNode {
   593   virtual uint cmp( const Node &n ) const;
   594   virtual uint size_of() const; // Size is bigger
   595 public:
   596   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   597                   const TypePtr* adr_type)
   598     : CallNode(tf, addr, adr_type),
   599       _name(name)
   600   {
   601     init_class_id(Class_CallRuntime);
   602   }
   604   const char *_name;            // Printable name, if _method is NULL
   605   virtual int   Opcode() const;
   606   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   608 #ifndef PRODUCT
   609   virtual void  dump_spec(outputStream *st) const;
   610 #endif
   611 };
   613 //------------------------------CallLeafNode-----------------------------------
   614 // Make a direct subroutine call node into compiled C++ code, without
   615 // safepoints
   616 class CallLeafNode : public CallRuntimeNode {
   617 public:
   618   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   619                const TypePtr* adr_type)
   620     : CallRuntimeNode(tf, addr, name, adr_type)
   621   {
   622     init_class_id(Class_CallLeaf);
   623   }
   624   virtual int   Opcode() const;
   625   virtual bool        guaranteed_safepoint()  { return false; }
   626 #ifndef PRODUCT
   627   virtual void  dump_spec(outputStream *st) const;
   628 #endif
   629 };
   631 //------------------------------CallLeafNoFPNode-------------------------------
   632 // CallLeafNode, not using floating point or using it in the same manner as
   633 // the generated code
   634 class CallLeafNoFPNode : public CallLeafNode {
   635 public:
   636   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   637                    const TypePtr* adr_type)
   638     : CallLeafNode(tf, addr, name, adr_type)
   639   {
   640   }
   641   virtual int   Opcode() const;
   642 };
   645 //------------------------------Allocate---------------------------------------
   646 // High-level memory allocation
   647 //
   648 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   649 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   650 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   651 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   652 //  order to differentiate the uses of the projection on the normal control path from
   653 //  those on the exception return path.
   654 //
   655 class AllocateNode : public CallNode {
   656 public:
   657   enum {
   658     // Output:
   659     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   660     // Inputs:
   661     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   662     KlassNode,                        // type (maybe dynamic) of the obj.
   663     InitialTest,                      // slow-path test (may be constant)
   664     ALength,                          // array length (or TOP if none)
   665     ParmLimit
   666   };
   668   static const TypeFunc* alloc_type() {
   669     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   670     fields[AllocSize]   = TypeInt::POS;
   671     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   672     fields[InitialTest] = TypeInt::BOOL;
   673     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   675     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   677     // create result type (range)
   678     fields = TypeTuple::fields(1);
   679     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   681     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   683     return TypeFunc::make(domain, range);
   684   }
   686   bool _is_scalar_replaceable;  // Result of Escape Analysis
   688   virtual uint size_of() const; // Size is bigger
   689   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   690                Node *size, Node *klass_node, Node *initial_test);
   691   // Expansion modifies the JVMState, so we need to clone it
   692   virtual void  clone_jvms() {
   693     set_jvms(jvms()->clone_deep(Compile::current()));
   694   }
   695   virtual int Opcode() const;
   696   virtual uint ideal_reg() const { return Op_RegP; }
   697   virtual bool        guaranteed_safepoint()  { return false; }
   699   // allocations do not modify their arguments
   700   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   702   // Pattern-match a possible usage of AllocateNode.
   703   // Return null if no allocation is recognized.
   704   // The operand is the pointer produced by the (possible) allocation.
   705   // It must be a projection of the Allocate or its subsequent CastPP.
   706   // (Note:  This function is defined in file graphKit.cpp, near
   707   // GraphKit::new_instance/new_array, whose output it recognizes.)
   708   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   709   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   711   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   712   // an offset, which is reported back to the caller.
   713   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   714   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   715                                         intptr_t& offset);
   717   // Dig the klass operand out of a (possible) allocation site.
   718   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   719     AllocateNode* allo = Ideal_allocation(ptr, phase);
   720     return (allo == NULL) ? NULL : allo->in(KlassNode);
   721   }
   723   // Conservatively small estimate of offset of first non-header byte.
   724   int minimum_header_size() {
   725     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   726                                 instanceOopDesc::base_offset_in_bytes();
   727   }
   729   // Return the corresponding initialization barrier (or null if none).
   730   // Walks out edges to find it...
   731   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   732   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   733   InitializeNode* initialization();
   735   // Convenience for initialization->maybe_set_complete(phase)
   736   bool maybe_set_complete(PhaseGVN* phase);
   737 };
   739 //------------------------------AllocateArray---------------------------------
   740 //
   741 // High-level array allocation
   742 //
   743 class AllocateArrayNode : public AllocateNode {
   744 public:
   745   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   746                     Node* size, Node* klass_node, Node* initial_test,
   747                     Node* count_val
   748                     )
   749     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   750                    initial_test)
   751   {
   752     init_class_id(Class_AllocateArray);
   753     set_req(AllocateNode::ALength,        count_val);
   754   }
   755   virtual int Opcode() const;
   756   virtual uint size_of() const; // Size is bigger
   758   // Pattern-match a possible usage of AllocateArrayNode.
   759   // Return null if no allocation is recognized.
   760   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   761     AllocateNode* allo = Ideal_allocation(ptr, phase);
   762     return (allo == NULL || !allo->is_AllocateArray())
   763            ? NULL : allo->as_AllocateArray();
   764   }
   766   // Dig the length operand out of a (possible) array allocation site.
   767   static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
   768     AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
   769     return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
   770   }
   771 };
   773 //------------------------------AbstractLockNode-----------------------------------
   774 class AbstractLockNode: public CallNode {
   775 private:
   776  bool _eliminate;    // indicates this lock can be safely eliminated
   777 #ifndef PRODUCT
   778   NamedCounter* _counter;
   779 #endif
   781 protected:
   782   // helper functions for lock elimination
   783   //
   785   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   786                             GrowableArray<AbstractLockNode*> &lock_ops);
   787   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   788                                        GrowableArray<AbstractLockNode*> &lock_ops);
   789   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   790                                GrowableArray<AbstractLockNode*> &lock_ops);
   791   LockNode *find_matching_lock(UnlockNode* unlock);
   794 public:
   795   AbstractLockNode(const TypeFunc *tf)
   796     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   797       _eliminate(false)
   798   {
   799 #ifndef PRODUCT
   800     _counter = NULL;
   801 #endif
   802   }
   803   virtual int Opcode() const = 0;
   804   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   805   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   806   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   807   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   809   virtual uint size_of() const { return sizeof(*this); }
   811   bool is_eliminated()         {return _eliminate; }
   812   // mark node as eliminated and update the counter if there is one
   813   void set_eliminated();
   815   // locking does not modify its arguments
   816   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   818 #ifndef PRODUCT
   819   void create_lock_counter(JVMState* s);
   820   NamedCounter* counter() const { return _counter; }
   821 #endif
   822 };
   824 //------------------------------Lock---------------------------------------
   825 // High-level lock operation
   826 //
   827 // This is a subclass of CallNode because it is a macro node which gets expanded
   828 // into a code sequence containing a call.  This node takes 3 "parameters":
   829 //    0  -  object to lock
   830 //    1 -   a BoxLockNode
   831 //    2 -   a FastLockNode
   832 //
   833 class LockNode : public AbstractLockNode {
   834 public:
   836   static const TypeFunc *lock_type() {
   837     // create input type (domain)
   838     const Type **fields = TypeTuple::fields(3);
   839     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   840     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   841     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   842     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   844     // create result type (range)
   845     fields = TypeTuple::fields(0);
   847     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   849     return TypeFunc::make(domain,range);
   850   }
   852   virtual int Opcode() const;
   853   virtual uint size_of() const; // Size is bigger
   854   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   855     init_class_id(Class_Lock);
   856     init_flags(Flag_is_macro);
   857     C->add_macro_node(this);
   858   }
   859   virtual bool        guaranteed_safepoint()  { return false; }
   861   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   862   // Expansion modifies the JVMState, so we need to clone it
   863   virtual void  clone_jvms() {
   864     set_jvms(jvms()->clone_deep(Compile::current()));
   865   }
   866 };
   868 //------------------------------Unlock---------------------------------------
   869 // High-level unlock operation
   870 class UnlockNode : public AbstractLockNode {
   871 public:
   872   virtual int Opcode() const;
   873   virtual uint size_of() const; // Size is bigger
   874   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   875     init_class_id(Class_Unlock);
   876     init_flags(Flag_is_macro);
   877     C->add_macro_node(this);
   878   }
   879   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   880   // unlock is never a safepoint
   881   virtual bool        guaranteed_safepoint()  { return false; }
   882 };

mercurial