src/share/vm/opto/block.hpp

Mon, 28 Jul 2008 17:12:52 -0700

author
kvn
date
Mon, 28 Jul 2008 17:12:52 -0700
changeset 688
b0fe4deeb9fb
parent 435
a61af66fc99e
child 853
72c5366e5d86
permissions
-rw-r--r--

6726999: nsk/stress/jck12a/jck12a010 assert(n != null,"Bad immediate dominator info.")
Summary: Escape Analysis fixes.
Reviewed-by: never, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 class Block;
    28 class CFGLoop;
    29 class MachCallNode;
    30 class Matcher;
    31 class RootNode;
    32 class VectorSet;
    33 struct Tarjan;
    35 //------------------------------Block_Array------------------------------------
    36 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
    37 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
    38 // Note that the constructor just zeros things, and since I use Arena
    39 // allocation I do not need a destructor to reclaim storage.
    40 class Block_Array : public ResourceObj {
    41   uint _size;                   // allocated size, as opposed to formal limit
    42   debug_only(uint _limit;)      // limit to formal domain
    43 protected:
    44   Block **_blocks;
    45   void grow( uint i );          // Grow array node to fit
    47 public:
    48   Arena *_arena;                // Arena to allocate in
    50   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    51     debug_only(_limit=0);
    52     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    53     for( int i = 0; i < OptoBlockListSize; i++ ) {
    54       _blocks[i] = NULL;
    55     }
    56   }
    57   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
    58   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
    59   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
    60   { assert( i < Max(), "oob" ); return _blocks[i]; }
    61   // Extend the mapping: index i maps to Block *n.
    62   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
    63   uint Max() const { debug_only(return _limit); return _size; }
    64 };
    67 class Block_List : public Block_Array {
    68 public:
    69   uint _cnt;
    70   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
    71   void push( Block *b ) { map(_cnt++,b); }
    72   Block *pop() { return _blocks[--_cnt]; }
    73   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
    74   void remove( uint i );
    75   void insert( uint i, Block *n );
    76   uint size() const { return _cnt; }
    77   void reset() { _cnt = 0; }
    78 };
    81 class CFGElement : public ResourceObj {
    82  public:
    83   float _freq; // Execution frequency (estimate)
    85   CFGElement() : _freq(0.0f) {}
    86   virtual bool is_block() { return false; }
    87   virtual bool is_loop()  { return false; }
    88   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
    89   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
    90 };
    92 //------------------------------Block------------------------------------------
    93 // This class defines a Basic Block.
    94 // Basic blocks are used during the output routines, and are not used during
    95 // any optimization pass.  They are created late in the game.
    96 class Block : public CFGElement {
    97  public:
    98   // Nodes in this block, in order
    99   Node_List _nodes;
   101   // Basic blocks have a Node which defines Control for all Nodes pinned in
   102   // this block.  This Node is a RegionNode.  Exception-causing Nodes
   103   // (division, subroutines) and Phi functions are always pinned.  Later,
   104   // every Node will get pinned to some block.
   105   Node *head() const { return _nodes[0]; }
   107   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
   108   // input edges to Regions and Phis.
   109   uint num_preds() const { return head()->req(); }
   110   Node *pred(uint i) const { return head()->in(i); }
   112   // Array of successor blocks, same size as projs array
   113   Block_Array _succs;
   115   // Basic blocks have some number of Nodes which split control to all
   116   // following blocks.  These Nodes are always Projections.  The field in
   117   // the Projection and the block-ending Node determine which Block follows.
   118   uint _num_succs;
   120   // Basic blocks also carry all sorts of good old fashioned DFS information
   121   // used to find loops, loop nesting depth, dominators, etc.
   122   uint _pre_order;              // Pre-order DFS number
   124   // Dominator tree
   125   uint _dom_depth;              // Depth in dominator tree for fast LCA
   126   Block* _idom;                 // Immediate dominator block
   128   CFGLoop *_loop;               // Loop to which this block belongs
   129   uint _rpo;                    // Number in reverse post order walk
   131   virtual bool is_block() { return true; }
   132   float succ_prob(uint i); // return probability of i'th successor
   134   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
   135 #ifdef ASSERT
   136   bool dominates(Block* that) {
   137     int dom_diff = this->_dom_depth - that->_dom_depth;
   138     if (dom_diff > 0)  return false;
   139     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
   140     return this == that;
   141   }
   142 #endif
   144   // Report the alignment required by this block.  Must be a power of 2.
   145   // The previous block will insert nops to get this alignment.
   146   uint code_alignment();
   148   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
   149   // It is currently also used to scale such frequencies relative to
   150   // FreqCountInvocations relative to the old value of 1500.
   151 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
   153   // Register Pressure (estimate) for Splitting heuristic
   154   uint _reg_pressure;
   155   uint _ihrp_index;
   156   uint _freg_pressure;
   157   uint _fhrp_index;
   159   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
   160   // Since they hold unique node indexes, they do not need reinitialization.
   161   node_idx_t _raise_LCA_mark;
   162   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
   163   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
   164   node_idx_t _raise_LCA_visited;
   165   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
   166   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
   168   // Estimated size in bytes of first instructions in a loop.
   169   uint _first_inst_size;
   170   uint first_inst_size() const     { return _first_inst_size; }
   171   void set_first_inst_size(uint s) { _first_inst_size = s; }
   173   // Compute the size of first instructions in this block.
   174   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
   176   // Compute alignment padding if the block needs it.
   177   // Align a loop if loop's padding is less or equal to padding limit
   178   // or the size of first instructions in the loop > padding.
   179   uint alignment_padding(int current_offset) {
   180     int block_alignment = code_alignment();
   181     int max_pad = block_alignment-relocInfo::addr_unit();
   182     if( max_pad > 0 ) {
   183       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
   184       int current_alignment = current_offset & max_pad;
   185       if( current_alignment != 0 ) {
   186         uint padding = (block_alignment-current_alignment) & max_pad;
   187         if( !head()->is_Loop() ||
   188             padding <= (uint)MaxLoopPad ||
   189             first_inst_size() > padding ) {
   190           return padding;
   191         }
   192       }
   193     }
   194     return 0;
   195   }
   197   // Connector blocks. Connector blocks are basic blocks devoid of
   198   // instructions, but may have relevant non-instruction Nodes, such as
   199   // Phis or MergeMems. Such blocks are discovered and marked during the
   200   // RemoveEmpty phase, and elided during Output.
   201   bool _connector;
   202   void set_connector() { _connector = true; }
   203   bool is_connector() const { return _connector; };
   205   // Create a new Block with given head Node.
   206   // Creates the (empty) predecessor arrays.
   207   Block( Arena *a, Node *headnode )
   208     : CFGElement(),
   209       _nodes(a),
   210       _succs(a),
   211       _num_succs(0),
   212       _pre_order(0),
   213       _idom(0),
   214       _loop(NULL),
   215       _reg_pressure(0),
   216       _ihrp_index(1),
   217       _freg_pressure(0),
   218       _fhrp_index(1),
   219       _raise_LCA_mark(0),
   220       _raise_LCA_visited(0),
   221       _first_inst_size(999999),
   222       _connector(false) {
   223     _nodes.push(headnode);
   224   }
   226   // Index of 'end' Node
   227   uint end_idx() const {
   228     // %%%%% add a proj after every goto
   229     // so (last->is_block_proj() != last) always, then simplify this code
   230     // This will not give correct end_idx for block 0 when it only contains root.
   231     int last_idx = _nodes.size() - 1;
   232     Node *last  = _nodes[last_idx];
   233     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
   234     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
   235   }
   237   // Basic blocks have a Node which ends them.  This Node determines which
   238   // basic block follows this one in the program flow.  This Node is either an
   239   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
   240   Node *end() const { return _nodes[end_idx()]; }
   242   // Add an instruction to an existing block.  It must go after the head
   243   // instruction and before the end instruction.
   244   void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
   245   // Find node in block
   246   uint find_node( const Node *n ) const;
   247   // Find and remove n from block list
   248   void find_remove( const Node *n );
   250   // Schedule a call next in the block
   251   uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
   253   // Perform basic-block local scheduling
   254   Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
   255   void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
   256   void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
   257   bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
   258   // Cleanup if any code lands between a Call and his Catch
   259   void call_catch_cleanup(Block_Array &bbs);
   260   // Detect implicit-null-check opportunities.  Basically, find NULL checks
   261   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
   262   // I can generate a memory op if there is not one nearby.
   263   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
   265   // Return the empty status of a block
   266   enum { not_empty, empty_with_goto, completely_empty };
   267   int is_Empty() const;
   269   // Forward through connectors
   270   Block* non_connector() {
   271     Block* s = this;
   272     while (s->is_connector()) {
   273       s = s->_succs[0];
   274     }
   275     return s;
   276   }
   278   // Successor block, after forwarding through connectors
   279   Block* non_connector_successor(int i) const {
   280     return _succs[i]->non_connector();
   281   }
   283   // Examine block's code shape to predict if it is not commonly executed.
   284   bool has_uncommon_code() const;
   286   // Use frequency calculations and code shape to predict if the block
   287   // is uncommon.
   288   bool is_uncommon( Block_Array &bbs ) const;
   290 #ifndef PRODUCT
   291   // Debugging print of basic block
   292   void dump_bidx(const Block* orig) const;
   293   void dump_pred(const Block_Array *bbs, Block* orig) const;
   294   void dump_head( const Block_Array *bbs ) const;
   295   void dump( ) const;
   296   void dump( const Block_Array *bbs ) const;
   297 #endif
   298 };
   301 //------------------------------PhaseCFG---------------------------------------
   302 // Build an array of Basic Block pointers, one per Node.
   303 class PhaseCFG : public Phase {
   304  private:
   305   // Build a proper looking cfg.  Return count of basic blocks
   306   uint build_cfg();
   308   // Perform DFS search.
   309   // Setup 'vertex' as DFS to vertex mapping.
   310   // Setup 'semi' as vertex to DFS mapping.
   311   // Set 'parent' to DFS parent.
   312   uint DFS( Tarjan *tarjan );
   314   // Helper function to insert a node into a block
   315   void schedule_node_into_block( Node *n, Block *b );
   317   // Set the basic block for pinned Nodes
   318   void schedule_pinned_nodes( VectorSet &visited );
   320   // I'll need a few machine-specific GotoNodes.  Clone from this one.
   321   MachNode *_goto;
   322   void insert_goto_at(uint block_no, uint succ_no);
   324   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
   325   void verify_anti_dependences(Block* LCA, Node* load) {
   326     assert(LCA == _bbs[load->_idx], "should already be scheduled");
   327     insert_anti_dependences(LCA, load, true);
   328   }
   330  public:
   331   PhaseCFG( Arena *a, RootNode *r, Matcher &m );
   333   uint _num_blocks;             // Count of basic blocks
   334   Block_List _blocks;           // List of basic blocks
   335   RootNode *_root;              // Root of whole program
   336   Block_Array _bbs;             // Map Nodes to owning Basic Block
   337   Block *_broot;                // Basic block of root
   338   uint _rpo_ctr;
   339   CFGLoop* _root_loop;
   341   // Per node latency estimation, valid only during GCM
   342   GrowableArray<uint> _node_latency;
   344 #ifndef PRODUCT
   345   bool _trace_opto_pipelining;  // tracing flag
   346 #endif
   348   // Build dominators
   349   void Dominators();
   351   // Estimate block frequencies based on IfNode probabilities
   352   void Estimate_Block_Frequency();
   354   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
   355   // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
   356   void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
   358   // Compute the (backwards) latency of a node from the uses
   359   void latency_from_uses(Node *n);
   361   // Compute the (backwards) latency of a node from a single use
   362   int latency_from_use(Node *n, const Node *def, Node *use);
   364   // Compute the (backwards) latency of a node from the uses of this instruction
   365   void partial_latency_of_defs(Node *n);
   367   // Schedule Nodes early in their basic blocks.
   368   bool schedule_early(VectorSet &visited, Node_List &roots);
   370   // For each node, find the latest block it can be scheduled into
   371   // and then select the cheapest block between the latest and earliest
   372   // block to place the node.
   373   void schedule_late(VectorSet &visited, Node_List &stack);
   375   // Pick a block between early and late that is a cheaper alternative
   376   // to late. Helper for schedule_late.
   377   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
   379   // Compute the instruction global latency with a backwards walk
   380   void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
   382   // Remove empty basic blocks
   383   void RemoveEmpty();
   384   bool MoveToNext(Block* bx, uint b_index);
   385   void MoveToEnd(Block* bx, uint b_index);
   387   // Check for NeverBranch at block end.  This needs to become a GOTO to the
   388   // true target.  NeverBranch are treated as a conditional branch that always
   389   // goes the same direction for most of the optimizer and are used to give a
   390   // fake exit path to infinite loops.  At this late stage they need to turn
   391   // into Goto's so that when you enter the infinite loop you indeed hang.
   392   void convert_NeverBranch_to_Goto(Block *b);
   394   CFGLoop* create_loop_tree();
   396   // Insert a node into a block, and update the _bbs
   397   void insert( Block *b, uint idx, Node *n ) {
   398     b->_nodes.insert( idx, n );
   399     _bbs.map( n->_idx, b );
   400   }
   402 #ifndef PRODUCT
   403   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
   405   // Debugging print of CFG
   406   void dump( ) const;           // CFG only
   407   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
   408   void verify() const;
   409   void dump_headers();
   410 #else
   411   bool trace_opto_pipelining() const { return false; }
   412 #endif
   413 };
   416 //------------------------------UnionFindInfo----------------------------------
   417 // Map Block indices to a block-index for a cfg-cover.
   418 // Array lookup in the optimized case.
   419 class UnionFind : public ResourceObj {
   420   uint _cnt, _max;
   421   uint* _indices;
   422   ReallocMark _nesting;  // assertion check for reallocations
   423 public:
   424   UnionFind( uint max );
   425   void reset( uint max );  // Reset to identity map for [0..max]
   427   uint lookup( uint nidx ) const {
   428     return _indices[nidx];
   429   }
   430   uint operator[] (uint nidx) const { return lookup(nidx); }
   432   void map( uint from_idx, uint to_idx ) {
   433     assert( from_idx < _cnt, "oob" );
   434     _indices[from_idx] = to_idx;
   435   }
   436   void extend( uint from_idx, uint to_idx );
   438   uint Size() const { return _cnt; }
   440   uint Find( uint idx ) {
   441     assert( idx < 65536, "Must fit into uint");
   442     uint uf_idx = lookup(idx);
   443     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
   444   }
   445   uint Find_compress( uint idx );
   446   uint Find_const( uint idx ) const;
   447   void Union( uint idx1, uint idx2 );
   449 };
   451 //----------------------------BlockProbPair---------------------------
   452 // Ordered pair of Node*.
   453 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
   454 protected:
   455   Block* _target;      // block target
   456   float  _prob;        // probability of edge to block
   457 public:
   458   BlockProbPair() : _target(NULL), _prob(0.0) {}
   459   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
   461   Block* get_target() const { return _target; }
   462   float get_prob() const { return _prob; }
   463 };
   465 //------------------------------CFGLoop-------------------------------------------
   466 class CFGLoop : public CFGElement {
   467   int _id;
   468   int _depth;
   469   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
   470   CFGLoop *_sibling;     // null terminated list
   471   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
   472   GrowableArray<CFGElement*> _members; // list of members of loop
   473   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
   474   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
   475   void update_succ_freq(Block* b, float freq);
   477  public:
   478   CFGLoop(int id) :
   479     CFGElement(),
   480     _id(id),
   481     _depth(0),
   482     _parent(NULL),
   483     _sibling(NULL),
   484     _child(NULL),
   485     _exit_prob(1.0f) {}
   486   CFGLoop* parent() { return _parent; }
   487   void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
   488   void add_member(CFGElement *s) { _members.push(s); }
   489   void add_nested_loop(CFGLoop* cl);
   490   Block* head() {
   491     assert(_members.at(0)->is_block(), "head must be a block");
   492     Block* hd = _members.at(0)->as_Block();
   493     assert(hd->_loop == this, "just checking");
   494     assert(hd->head()->is_Loop(), "must begin with loop head node");
   495     return hd;
   496   }
   497   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
   498   void compute_loop_depth(int depth);
   499   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
   500   void scale_freq();   // scale frequency by loop trip count (including outer loops)
   501   bool in_loop_nest(Block* b);
   502   float trip_count() const { return 1.0f / _exit_prob; }
   503   virtual bool is_loop()  { return true; }
   504   int id() { return _id; }
   506 #ifndef PRODUCT
   507   void dump( ) const;
   508   void dump_tree() const;
   509 #endif
   510 };

mercurial