src/share/vm/gc_implementation/g1/concurrentMark.cpp

Wed, 24 Apr 2013 20:13:37 +0200

author
stefank
date
Wed, 24 Apr 2013 20:13:37 +0200
changeset 5018
b06ac540229e
parent 4904
7b835924c31c
child 5122
05a17f270c7e
permissions
-rw-r--r--

8013132: Add a flag to turn off the output of the verbose verification code
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1Log.hpp"
    33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    34 #include "gc_implementation/g1/g1RemSet.hpp"
    35 #include "gc_implementation/g1/heapRegion.inline.hpp"
    36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    38 #include "gc_implementation/shared/vmGCOperations.hpp"
    39 #include "memory/genOopClosures.inline.hpp"
    40 #include "memory/referencePolicy.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "runtime/handles.inline.hpp"
    44 #include "runtime/java.hpp"
    45 #include "services/memTracker.hpp"
    47 // Concurrent marking bit map wrapper
    49 CMBitMapRO::CMBitMapRO(int shifter) :
    50   _bm(),
    51   _shifter(shifter) {
    52   _bmStartWord = 0;
    53   _bmWordSize = 0;
    54 }
    56 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
    57                                                HeapWord* limit) const {
    58   // First we must round addr *up* to a possible object boundary.
    59   addr = (HeapWord*)align_size_up((intptr_t)addr,
    60                                   HeapWordSize << _shifter);
    61   size_t addrOffset = heapWordToOffset(addr);
    62   if (limit == NULL) {
    63     limit = _bmStartWord + _bmWordSize;
    64   }
    65   size_t limitOffset = heapWordToOffset(limit);
    66   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    67   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    68   assert(nextAddr >= addr, "get_next_one postcondition");
    69   assert(nextAddr == limit || isMarked(nextAddr),
    70          "get_next_one postcondition");
    71   return nextAddr;
    72 }
    74 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
    75                                                  HeapWord* limit) const {
    76   size_t addrOffset = heapWordToOffset(addr);
    77   if (limit == NULL) {
    78     limit = _bmStartWord + _bmWordSize;
    79   }
    80   size_t limitOffset = heapWordToOffset(limit);
    81   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    82   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    83   assert(nextAddr >= addr, "get_next_one postcondition");
    84   assert(nextAddr == limit || !isMarked(nextAddr),
    85          "get_next_one postcondition");
    86   return nextAddr;
    87 }
    89 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    90   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    91   return (int) (diff >> _shifter);
    92 }
    94 #ifndef PRODUCT
    95 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
    96   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
    97   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
    98          "size inconsistency");
    99   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
   100          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
   101 }
   102 #endif
   104 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   105   _bm.print_on_error(st, prefix);
   106 }
   108 bool CMBitMap::allocate(ReservedSpace heap_rs) {
   109   _bmStartWord = (HeapWord*)(heap_rs.base());
   110   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
   111   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
   112                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
   113   if (!brs.is_reserved()) {
   114     warning("ConcurrentMark marking bit map allocation failure");
   115     return false;
   116   }
   117   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
   118   // For now we'll just commit all of the bit map up front.
   119   // Later on we'll try to be more parsimonious with swap.
   120   if (!_virtual_space.initialize(brs, brs.size())) {
   121     warning("ConcurrentMark marking bit map backing store failure");
   122     return false;
   123   }
   124   assert(_virtual_space.committed_size() == brs.size(),
   125          "didn't reserve backing store for all of concurrent marking bit map?");
   126   _bm.set_map((uintptr_t*)_virtual_space.low());
   127   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
   128          _bmWordSize, "inconsistency in bit map sizing");
   129   _bm.set_size(_bmWordSize >> _shifter);
   130   return true;
   131 }
   133 void CMBitMap::clearAll() {
   134   _bm.clear();
   135   return;
   136 }
   138 void CMBitMap::markRange(MemRegion mr) {
   139   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   140   assert(!mr.is_empty(), "unexpected empty region");
   141   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   142           ((HeapWord *) mr.end())),
   143          "markRange memory region end is not card aligned");
   144   // convert address range into offset range
   145   _bm.at_put_range(heapWordToOffset(mr.start()),
   146                    heapWordToOffset(mr.end()), true);
   147 }
   149 void CMBitMap::clearRange(MemRegion mr) {
   150   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   151   assert(!mr.is_empty(), "unexpected empty region");
   152   // convert address range into offset range
   153   _bm.at_put_range(heapWordToOffset(mr.start()),
   154                    heapWordToOffset(mr.end()), false);
   155 }
   157 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   158                                             HeapWord* end_addr) {
   159   HeapWord* start = getNextMarkedWordAddress(addr);
   160   start = MIN2(start, end_addr);
   161   HeapWord* end   = getNextUnmarkedWordAddress(start);
   162   end = MIN2(end, end_addr);
   163   assert(start <= end, "Consistency check");
   164   MemRegion mr(start, end);
   165   if (!mr.is_empty()) {
   166     clearRange(mr);
   167   }
   168   return mr;
   169 }
   171 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   172   _base(NULL), _cm(cm)
   173 #ifdef ASSERT
   174   , _drain_in_progress(false)
   175   , _drain_in_progress_yields(false)
   176 #endif
   177 {}
   179 bool CMMarkStack::allocate(size_t capacity) {
   180   // allocate a stack of the requisite depth
   181   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   182   if (!rs.is_reserved()) {
   183     warning("ConcurrentMark MarkStack allocation failure");
   184     return false;
   185   }
   186   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   187   if (!_virtual_space.initialize(rs, rs.size())) {
   188     warning("ConcurrentMark MarkStack backing store failure");
   189     // Release the virtual memory reserved for the marking stack
   190     rs.release();
   191     return false;
   192   }
   193   assert(_virtual_space.committed_size() == rs.size(),
   194          "Didn't reserve backing store for all of ConcurrentMark stack?");
   195   _base = (oop*) _virtual_space.low();
   196   setEmpty();
   197   _capacity = (jint) capacity;
   198   _saved_index = -1;
   199   _should_expand = false;
   200   NOT_PRODUCT(_max_depth = 0);
   201   return true;
   202 }
   204 void CMMarkStack::expand() {
   205   // Called, during remark, if we've overflown the marking stack during marking.
   206   assert(isEmpty(), "stack should been emptied while handling overflow");
   207   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   208   // Clear expansion flag
   209   _should_expand = false;
   210   if (_capacity == (jint) MarkStackSizeMax) {
   211     if (PrintGCDetails && Verbose) {
   212       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   213     }
   214     return;
   215   }
   216   // Double capacity if possible
   217   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   218   // Do not give up existing stack until we have managed to
   219   // get the double capacity that we desired.
   220   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   221                                                            sizeof(oop)));
   222   if (rs.is_reserved()) {
   223     // Release the backing store associated with old stack
   224     _virtual_space.release();
   225     // Reinitialize virtual space for new stack
   226     if (!_virtual_space.initialize(rs, rs.size())) {
   227       fatal("Not enough swap for expanded marking stack capacity");
   228     }
   229     _base = (oop*)(_virtual_space.low());
   230     _index = 0;
   231     _capacity = new_capacity;
   232   } else {
   233     if (PrintGCDetails && Verbose) {
   234       // Failed to double capacity, continue;
   235       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   236                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   237                           _capacity / K, new_capacity / K);
   238     }
   239   }
   240 }
   242 void CMMarkStack::set_should_expand() {
   243   // If we're resetting the marking state because of an
   244   // marking stack overflow, record that we should, if
   245   // possible, expand the stack.
   246   _should_expand = _cm->has_overflown();
   247 }
   249 CMMarkStack::~CMMarkStack() {
   250   if (_base != NULL) {
   251     _base = NULL;
   252     _virtual_space.release();
   253   }
   254 }
   256 void CMMarkStack::par_push(oop ptr) {
   257   while (true) {
   258     if (isFull()) {
   259       _overflow = true;
   260       return;
   261     }
   262     // Otherwise...
   263     jint index = _index;
   264     jint next_index = index+1;
   265     jint res = Atomic::cmpxchg(next_index, &_index, index);
   266     if (res == index) {
   267       _base[index] = ptr;
   268       // Note that we don't maintain this atomically.  We could, but it
   269       // doesn't seem necessary.
   270       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   271       return;
   272     }
   273     // Otherwise, we need to try again.
   274   }
   275 }
   277 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   278   while (true) {
   279     if (isFull()) {
   280       _overflow = true;
   281       return;
   282     }
   283     // Otherwise...
   284     jint index = _index;
   285     jint next_index = index + n;
   286     if (next_index > _capacity) {
   287       _overflow = true;
   288       return;
   289     }
   290     jint res = Atomic::cmpxchg(next_index, &_index, index);
   291     if (res == index) {
   292       for (int i = 0; i < n; i++) {
   293         int  ind = index + i;
   294         assert(ind < _capacity, "By overflow test above.");
   295         _base[ind] = ptr_arr[i];
   296       }
   297       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   298       return;
   299     }
   300     // Otherwise, we need to try again.
   301   }
   302 }
   304 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   305   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   306   jint start = _index;
   307   jint next_index = start + n;
   308   if (next_index > _capacity) {
   309     _overflow = true;
   310     return;
   311   }
   312   // Otherwise.
   313   _index = next_index;
   314   for (int i = 0; i < n; i++) {
   315     int ind = start + i;
   316     assert(ind < _capacity, "By overflow test above.");
   317     _base[ind] = ptr_arr[i];
   318   }
   319   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   320 }
   322 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   323   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   324   jint index = _index;
   325   if (index == 0) {
   326     *n = 0;
   327     return false;
   328   } else {
   329     int k = MIN2(max, index);
   330     jint  new_ind = index - k;
   331     for (int j = 0; j < k; j++) {
   332       ptr_arr[j] = _base[new_ind + j];
   333     }
   334     _index = new_ind;
   335     *n = k;
   336     return true;
   337   }
   338 }
   340 template<class OopClosureClass>
   341 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   342   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   343          || SafepointSynchronize::is_at_safepoint(),
   344          "Drain recursion must be yield-safe.");
   345   bool res = true;
   346   debug_only(_drain_in_progress = true);
   347   debug_only(_drain_in_progress_yields = yield_after);
   348   while (!isEmpty()) {
   349     oop newOop = pop();
   350     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   351     assert(newOop->is_oop(), "Expected an oop");
   352     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   353            "only grey objects on this stack");
   354     newOop->oop_iterate(cl);
   355     if (yield_after && _cm->do_yield_check()) {
   356       res = false;
   357       break;
   358     }
   359   }
   360   debug_only(_drain_in_progress = false);
   361   return res;
   362 }
   364 void CMMarkStack::note_start_of_gc() {
   365   assert(_saved_index == -1,
   366          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   367   _saved_index = _index;
   368 }
   370 void CMMarkStack::note_end_of_gc() {
   371   // This is intentionally a guarantee, instead of an assert. If we
   372   // accidentally add something to the mark stack during GC, it
   373   // will be a correctness issue so it's better if we crash. we'll
   374   // only check this once per GC anyway, so it won't be a performance
   375   // issue in any way.
   376   guarantee(_saved_index == _index,
   377             err_msg("saved index: %d index: %d", _saved_index, _index));
   378   _saved_index = -1;
   379 }
   381 void CMMarkStack::oops_do(OopClosure* f) {
   382   assert(_saved_index == _index,
   383          err_msg("saved index: %d index: %d", _saved_index, _index));
   384   for (int i = 0; i < _index; i += 1) {
   385     f->do_oop(&_base[i]);
   386   }
   387 }
   389 bool ConcurrentMark::not_yet_marked(oop obj) const {
   390   return _g1h->is_obj_ill(obj);
   391 }
   393 CMRootRegions::CMRootRegions() :
   394   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   395   _should_abort(false),  _next_survivor(NULL) { }
   397 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   398   _young_list = g1h->young_list();
   399   _cm = cm;
   400 }
   402 void CMRootRegions::prepare_for_scan() {
   403   assert(!scan_in_progress(), "pre-condition");
   405   // Currently, only survivors can be root regions.
   406   assert(_next_survivor == NULL, "pre-condition");
   407   _next_survivor = _young_list->first_survivor_region();
   408   _scan_in_progress = (_next_survivor != NULL);
   409   _should_abort = false;
   410 }
   412 HeapRegion* CMRootRegions::claim_next() {
   413   if (_should_abort) {
   414     // If someone has set the should_abort flag, we return NULL to
   415     // force the caller to bail out of their loop.
   416     return NULL;
   417   }
   419   // Currently, only survivors can be root regions.
   420   HeapRegion* res = _next_survivor;
   421   if (res != NULL) {
   422     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   423     // Read it again in case it changed while we were waiting for the lock.
   424     res = _next_survivor;
   425     if (res != NULL) {
   426       if (res == _young_list->last_survivor_region()) {
   427         // We just claimed the last survivor so store NULL to indicate
   428         // that we're done.
   429         _next_survivor = NULL;
   430       } else {
   431         _next_survivor = res->get_next_young_region();
   432       }
   433     } else {
   434       // Someone else claimed the last survivor while we were trying
   435       // to take the lock so nothing else to do.
   436     }
   437   }
   438   assert(res == NULL || res->is_survivor(), "post-condition");
   440   return res;
   441 }
   443 void CMRootRegions::scan_finished() {
   444   assert(scan_in_progress(), "pre-condition");
   446   // Currently, only survivors can be root regions.
   447   if (!_should_abort) {
   448     assert(_next_survivor == NULL, "we should have claimed all survivors");
   449   }
   450   _next_survivor = NULL;
   452   {
   453     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   454     _scan_in_progress = false;
   455     RootRegionScan_lock->notify_all();
   456   }
   457 }
   459 bool CMRootRegions::wait_until_scan_finished() {
   460   if (!scan_in_progress()) return false;
   462   {
   463     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   464     while (scan_in_progress()) {
   465       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   466     }
   467   }
   468   return true;
   469 }
   471 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   472 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   473 #endif // _MSC_VER
   475 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   476   return MAX2((n_par_threads + 2) / 4, 1U);
   477 }
   479 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
   480   _g1h(g1h),
   481   _markBitMap1(MinObjAlignment - 1),
   482   _markBitMap2(MinObjAlignment - 1),
   484   _parallel_marking_threads(0),
   485   _max_parallel_marking_threads(0),
   486   _sleep_factor(0.0),
   487   _marking_task_overhead(1.0),
   488   _cleanup_sleep_factor(0.0),
   489   _cleanup_task_overhead(1.0),
   490   _cleanup_list("Cleanup List"),
   491   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   492   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
   493             CardTableModRefBS::card_shift,
   494             false /* in_resource_area*/),
   496   _prevMarkBitMap(&_markBitMap1),
   497   _nextMarkBitMap(&_markBitMap2),
   499   _markStack(this),
   500   // _finger set in set_non_marking_state
   502   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   503   // _active_tasks set in set_non_marking_state
   504   // _tasks set inside the constructor
   505   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   506   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   508   _has_overflown(false),
   509   _concurrent(false),
   510   _has_aborted(false),
   511   _restart_for_overflow(false),
   512   _concurrent_marking_in_progress(false),
   514   // _verbose_level set below
   516   _init_times(),
   517   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   518   _cleanup_times(),
   519   _total_counting_time(0.0),
   520   _total_rs_scrub_time(0.0),
   522   _parallel_workers(NULL),
   524   _count_card_bitmaps(NULL),
   525   _count_marked_bytes(NULL),
   526   _completed_initialization(false) {
   527   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   528   if (verbose_level < no_verbose) {
   529     verbose_level = no_verbose;
   530   }
   531   if (verbose_level > high_verbose) {
   532     verbose_level = high_verbose;
   533   }
   534   _verbose_level = verbose_level;
   536   if (verbose_low()) {
   537     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   538                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
   539   }
   541   if (!_markBitMap1.allocate(heap_rs)) {
   542     warning("Failed to allocate first CM bit map");
   543     return;
   544   }
   545   if (!_markBitMap2.allocate(heap_rs)) {
   546     warning("Failed to allocate second CM bit map");
   547     return;
   548   }
   550   // Create & start a ConcurrentMark thread.
   551   _cmThread = new ConcurrentMarkThread(this);
   552   assert(cmThread() != NULL, "CM Thread should have been created");
   553   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   555   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   556   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
   557   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
   559   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   560   satb_qs.set_buffer_size(G1SATBBufferSize);
   562   _root_regions.init(_g1h, this);
   564   if (ConcGCThreads > ParallelGCThreads) {
   565     warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
   566             "than ParallelGCThreads (" UINT32_FORMAT ").",
   567             ConcGCThreads, ParallelGCThreads);
   568     return;
   569   }
   570   if (ParallelGCThreads == 0) {
   571     // if we are not running with any parallel GC threads we will not
   572     // spawn any marking threads either
   573     _parallel_marking_threads =       0;
   574     _max_parallel_marking_threads =   0;
   575     _sleep_factor             =     0.0;
   576     _marking_task_overhead    =     1.0;
   577   } else {
   578     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   579       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   580       // if both are set
   581       _sleep_factor             = 0.0;
   582       _marking_task_overhead    = 1.0;
   583     } else if (G1MarkingOverheadPercent > 0) {
   584       // We will calculate the number of parallel marking threads based
   585       // on a target overhead with respect to the soft real-time goal
   586       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   587       double overall_cm_overhead =
   588         (double) MaxGCPauseMillis * marking_overhead /
   589         (double) GCPauseIntervalMillis;
   590       double cpu_ratio = 1.0 / (double) os::processor_count();
   591       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   592       double marking_task_overhead =
   593         overall_cm_overhead / marking_thread_num *
   594                                                 (double) os::processor_count();
   595       double sleep_factor =
   596                          (1.0 - marking_task_overhead) / marking_task_overhead;
   598       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   599       _sleep_factor             = sleep_factor;
   600       _marking_task_overhead    = marking_task_overhead;
   601     } else {
   602       // Calculate the number of parallel marking threads by scaling
   603       // the number of parallel GC threads.
   604       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   605       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   606       _sleep_factor             = 0.0;
   607       _marking_task_overhead    = 1.0;
   608     }
   610     assert(ConcGCThreads > 0, "Should have been set");
   611     _parallel_marking_threads = (uint) ConcGCThreads;
   612     _max_parallel_marking_threads = _parallel_marking_threads;
   614     if (parallel_marking_threads() > 1) {
   615       _cleanup_task_overhead = 1.0;
   616     } else {
   617       _cleanup_task_overhead = marking_task_overhead();
   618     }
   619     _cleanup_sleep_factor =
   620                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   622 #if 0
   623     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   624     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   625     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   626     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   627     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   628 #endif
   630     guarantee(parallel_marking_threads() > 0, "peace of mind");
   631     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   632          _max_parallel_marking_threads, false, true);
   633     if (_parallel_workers == NULL) {
   634       vm_exit_during_initialization("Failed necessary allocation.");
   635     } else {
   636       _parallel_workers->initialize_workers();
   637     }
   638   }
   640   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   641     uintx mark_stack_size =
   642       MIN2(MarkStackSizeMax,
   643           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   644     // Verify that the calculated value for MarkStackSize is in range.
   645     // It would be nice to use the private utility routine from Arguments.
   646     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   647       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   648               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   649               mark_stack_size, 1, MarkStackSizeMax);
   650       return;
   651     }
   652     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   653   } else {
   654     // Verify MarkStackSize is in range.
   655     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   656       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   657         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   658           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   659                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   660                   MarkStackSize, 1, MarkStackSizeMax);
   661           return;
   662         }
   663       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   664         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   665           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   666                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   667                   MarkStackSize, MarkStackSizeMax);
   668           return;
   669         }
   670       }
   671     }
   672   }
   674   if (!_markStack.allocate(MarkStackSize)) {
   675     warning("Failed to allocate CM marking stack");
   676     return;
   677   }
   679   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   680   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   682   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   683   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   685   BitMap::idx_t card_bm_size = _card_bm.size();
   687   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   688   _active_tasks = _max_worker_id;
   690   size_t max_regions = (size_t) _g1h->max_regions();
   691   for (uint i = 0; i < _max_worker_id; ++i) {
   692     CMTaskQueue* task_queue = new CMTaskQueue();
   693     task_queue->initialize();
   694     _task_queues->register_queue(i, task_queue);
   696     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   697     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   699     _tasks[i] = new CMTask(i, this,
   700                            _count_marked_bytes[i],
   701                            &_count_card_bitmaps[i],
   702                            task_queue, _task_queues);
   704     _accum_task_vtime[i] = 0.0;
   705   }
   707   // Calculate the card number for the bottom of the heap. Used
   708   // in biasing indexes into the accounting card bitmaps.
   709   _heap_bottom_card_num =
   710     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   711                                 CardTableModRefBS::card_shift);
   713   // Clear all the liveness counting data
   714   clear_all_count_data();
   716   // so that the call below can read a sensible value
   717   _heap_start = (HeapWord*) heap_rs.base();
   718   set_non_marking_state();
   719   _completed_initialization = true;
   720 }
   722 void ConcurrentMark::update_g1_committed(bool force) {
   723   // If concurrent marking is not in progress, then we do not need to
   724   // update _heap_end.
   725   if (!concurrent_marking_in_progress() && !force) return;
   727   MemRegion committed = _g1h->g1_committed();
   728   assert(committed.start() == _heap_start, "start shouldn't change");
   729   HeapWord* new_end = committed.end();
   730   if (new_end > _heap_end) {
   731     // The heap has been expanded.
   733     _heap_end = new_end;
   734   }
   735   // Notice that the heap can also shrink. However, this only happens
   736   // during a Full GC (at least currently) and the entire marking
   737   // phase will bail out and the task will not be restarted. So, let's
   738   // do nothing.
   739 }
   741 void ConcurrentMark::reset() {
   742   // Starting values for these two. This should be called in a STW
   743   // phase. CM will be notified of any future g1_committed expansions
   744   // will be at the end of evacuation pauses, when tasks are
   745   // inactive.
   746   MemRegion committed = _g1h->g1_committed();
   747   _heap_start = committed.start();
   748   _heap_end   = committed.end();
   750   // Separated the asserts so that we know which one fires.
   751   assert(_heap_start != NULL, "heap bounds should look ok");
   752   assert(_heap_end != NULL, "heap bounds should look ok");
   753   assert(_heap_start < _heap_end, "heap bounds should look ok");
   755   // Reset all the marking data structures and any necessary flags
   756   reset_marking_state();
   758   if (verbose_low()) {
   759     gclog_or_tty->print_cr("[global] resetting");
   760   }
   762   // We do reset all of them, since different phases will use
   763   // different number of active threads. So, it's easiest to have all
   764   // of them ready.
   765   for (uint i = 0; i < _max_worker_id; ++i) {
   766     _tasks[i]->reset(_nextMarkBitMap);
   767   }
   769   // we need this to make sure that the flag is on during the evac
   770   // pause with initial mark piggy-backed
   771   set_concurrent_marking_in_progress();
   772 }
   775 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   776   _markStack.set_should_expand();
   777   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   778   if (clear_overflow) {
   779     clear_has_overflown();
   780   } else {
   781     assert(has_overflown(), "pre-condition");
   782   }
   783   _finger = _heap_start;
   785   for (uint i = 0; i < _max_worker_id; ++i) {
   786     CMTaskQueue* queue = _task_queues->queue(i);
   787     queue->set_empty();
   788   }
   789 }
   791 void ConcurrentMark::set_concurrency(uint active_tasks) {
   792   assert(active_tasks <= _max_worker_id, "we should not have more");
   794   _active_tasks = active_tasks;
   795   // Need to update the three data structures below according to the
   796   // number of active threads for this phase.
   797   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   798   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   799   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   800 }
   802 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   803   set_concurrency(active_tasks);
   805   _concurrent = concurrent;
   806   // We propagate this to all tasks, not just the active ones.
   807   for (uint i = 0; i < _max_worker_id; ++i)
   808     _tasks[i]->set_concurrent(concurrent);
   810   if (concurrent) {
   811     set_concurrent_marking_in_progress();
   812   } else {
   813     // We currently assume that the concurrent flag has been set to
   814     // false before we start remark. At this point we should also be
   815     // in a STW phase.
   816     assert(!concurrent_marking_in_progress(), "invariant");
   817     assert(_finger == _heap_end,
   818            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   819                    _finger, _heap_end));
   820     update_g1_committed(true);
   821   }
   822 }
   824 void ConcurrentMark::set_non_marking_state() {
   825   // We set the global marking state to some default values when we're
   826   // not doing marking.
   827   reset_marking_state();
   828   _active_tasks = 0;
   829   clear_concurrent_marking_in_progress();
   830 }
   832 ConcurrentMark::~ConcurrentMark() {
   833   // The ConcurrentMark instance is never freed.
   834   ShouldNotReachHere();
   835 }
   837 void ConcurrentMark::clearNextBitmap() {
   838   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   839   G1CollectorPolicy* g1p = g1h->g1_policy();
   841   // Make sure that the concurrent mark thread looks to still be in
   842   // the current cycle.
   843   guarantee(cmThread()->during_cycle(), "invariant");
   845   // We are finishing up the current cycle by clearing the next
   846   // marking bitmap and getting it ready for the next cycle. During
   847   // this time no other cycle can start. So, let's make sure that this
   848   // is the case.
   849   guarantee(!g1h->mark_in_progress(), "invariant");
   851   // clear the mark bitmap (no grey objects to start with).
   852   // We need to do this in chunks and offer to yield in between
   853   // each chunk.
   854   HeapWord* start  = _nextMarkBitMap->startWord();
   855   HeapWord* end    = _nextMarkBitMap->endWord();
   856   HeapWord* cur    = start;
   857   size_t chunkSize = M;
   858   while (cur < end) {
   859     HeapWord* next = cur + chunkSize;
   860     if (next > end) {
   861       next = end;
   862     }
   863     MemRegion mr(cur,next);
   864     _nextMarkBitMap->clearRange(mr);
   865     cur = next;
   866     do_yield_check();
   868     // Repeat the asserts from above. We'll do them as asserts here to
   869     // minimize their overhead on the product. However, we'll have
   870     // them as guarantees at the beginning / end of the bitmap
   871     // clearing to get some checking in the product.
   872     assert(cmThread()->during_cycle(), "invariant");
   873     assert(!g1h->mark_in_progress(), "invariant");
   874   }
   876   // Clear the liveness counting data
   877   clear_all_count_data();
   879   // Repeat the asserts from above.
   880   guarantee(cmThread()->during_cycle(), "invariant");
   881   guarantee(!g1h->mark_in_progress(), "invariant");
   882 }
   884 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   885 public:
   886   bool doHeapRegion(HeapRegion* r) {
   887     if (!r->continuesHumongous()) {
   888       r->note_start_of_marking();
   889     }
   890     return false;
   891   }
   892 };
   894 void ConcurrentMark::checkpointRootsInitialPre() {
   895   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   896   G1CollectorPolicy* g1p = g1h->g1_policy();
   898   _has_aborted = false;
   900 #ifndef PRODUCT
   901   if (G1PrintReachableAtInitialMark) {
   902     print_reachable("at-cycle-start",
   903                     VerifyOption_G1UsePrevMarking, true /* all */);
   904   }
   905 #endif
   907   // Initialise marking structures. This has to be done in a STW phase.
   908   reset();
   910   // For each region note start of marking.
   911   NoteStartOfMarkHRClosure startcl;
   912   g1h->heap_region_iterate(&startcl);
   913 }
   916 void ConcurrentMark::checkpointRootsInitialPost() {
   917   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   919   // If we force an overflow during remark, the remark operation will
   920   // actually abort and we'll restart concurrent marking. If we always
   921   // force an oveflow during remark we'll never actually complete the
   922   // marking phase. So, we initilize this here, at the start of the
   923   // cycle, so that at the remaining overflow number will decrease at
   924   // every remark and we'll eventually not need to cause one.
   925   force_overflow_stw()->init();
   927   // Start Concurrent Marking weak-reference discovery.
   928   ReferenceProcessor* rp = g1h->ref_processor_cm();
   929   // enable ("weak") refs discovery
   930   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   931   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   933   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   934   // This is the start of  the marking cycle, we're expected all
   935   // threads to have SATB queues with active set to false.
   936   satb_mq_set.set_active_all_threads(true, /* new active value */
   937                                      false /* expected_active */);
   939   _root_regions.prepare_for_scan();
   941   // update_g1_committed() will be called at the end of an evac pause
   942   // when marking is on. So, it's also called at the end of the
   943   // initial-mark pause to update the heap end, if the heap expands
   944   // during it. No need to call it here.
   945 }
   947 /*
   948  * Notice that in the next two methods, we actually leave the STS
   949  * during the barrier sync and join it immediately afterwards. If we
   950  * do not do this, the following deadlock can occur: one thread could
   951  * be in the barrier sync code, waiting for the other thread to also
   952  * sync up, whereas another one could be trying to yield, while also
   953  * waiting for the other threads to sync up too.
   954  *
   955  * Note, however, that this code is also used during remark and in
   956  * this case we should not attempt to leave / enter the STS, otherwise
   957  * we'll either hit an asseert (debug / fastdebug) or deadlock
   958  * (product). So we should only leave / enter the STS if we are
   959  * operating concurrently.
   960  *
   961  * Because the thread that does the sync barrier has left the STS, it
   962  * is possible to be suspended for a Full GC or an evacuation pause
   963  * could occur. This is actually safe, since the entering the sync
   964  * barrier is one of the last things do_marking_step() does, and it
   965  * doesn't manipulate any data structures afterwards.
   966  */
   968 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   969   if (verbose_low()) {
   970     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   971   }
   973   if (concurrent()) {
   974     ConcurrentGCThread::stsLeave();
   975   }
   976   _first_overflow_barrier_sync.enter();
   977   if (concurrent()) {
   978     ConcurrentGCThread::stsJoin();
   979   }
   980   // at this point everyone should have synced up and not be doing any
   981   // more work
   983   if (verbose_low()) {
   984     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
   985   }
   987   // If we're executing the concurrent phase of marking, reset the marking
   988   // state; otherwise the marking state is reset after reference processing,
   989   // during the remark pause.
   990   // If we reset here as a result of an overflow during the remark we will
   991   // see assertion failures from any subsequent set_concurrency_and_phase()
   992   // calls.
   993   if (concurrent()) {
   994     // let the task associated with with worker 0 do this
   995     if (worker_id == 0) {
   996       // task 0 is responsible for clearing the global data structures
   997       // We should be here because of an overflow. During STW we should
   998       // not clear the overflow flag since we rely on it being true when
   999       // we exit this method to abort the pause and restart concurent
  1000       // marking.
  1001       reset_marking_state(true /* clear_overflow */);
  1002       force_overflow()->update();
  1004       if (G1Log::fine()) {
  1005         gclog_or_tty->date_stamp(PrintGCDateStamps);
  1006         gclog_or_tty->stamp(PrintGCTimeStamps);
  1007         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1012   // after this, each task should reset its own data structures then
  1013   // then go into the second barrier
  1016 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1017   if (verbose_low()) {
  1018     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1021   if (concurrent()) {
  1022     ConcurrentGCThread::stsLeave();
  1024   _second_overflow_barrier_sync.enter();
  1025   if (concurrent()) {
  1026     ConcurrentGCThread::stsJoin();
  1028   // at this point everything should be re-initialized and ready to go
  1030   if (verbose_low()) {
  1031     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1035 #ifndef PRODUCT
  1036 void ForceOverflowSettings::init() {
  1037   _num_remaining = G1ConcMarkForceOverflow;
  1038   _force = false;
  1039   update();
  1042 void ForceOverflowSettings::update() {
  1043   if (_num_remaining > 0) {
  1044     _num_remaining -= 1;
  1045     _force = true;
  1046   } else {
  1047     _force = false;
  1051 bool ForceOverflowSettings::should_force() {
  1052   if (_force) {
  1053     _force = false;
  1054     return true;
  1055   } else {
  1056     return false;
  1059 #endif // !PRODUCT
  1061 class CMConcurrentMarkingTask: public AbstractGangTask {
  1062 private:
  1063   ConcurrentMark*       _cm;
  1064   ConcurrentMarkThread* _cmt;
  1066 public:
  1067   void work(uint worker_id) {
  1068     assert(Thread::current()->is_ConcurrentGC_thread(),
  1069            "this should only be done by a conc GC thread");
  1070     ResourceMark rm;
  1072     double start_vtime = os::elapsedVTime();
  1074     ConcurrentGCThread::stsJoin();
  1076     assert(worker_id < _cm->active_tasks(), "invariant");
  1077     CMTask* the_task = _cm->task(worker_id);
  1078     the_task->record_start_time();
  1079     if (!_cm->has_aborted()) {
  1080       do {
  1081         double start_vtime_sec = os::elapsedVTime();
  1082         double start_time_sec = os::elapsedTime();
  1083         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1085         the_task->do_marking_step(mark_step_duration_ms,
  1086                                   true  /* do_termination */,
  1087                                   false /* is_serial*/);
  1089         double end_time_sec = os::elapsedTime();
  1090         double end_vtime_sec = os::elapsedVTime();
  1091         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1092         double elapsed_time_sec = end_time_sec - start_time_sec;
  1093         _cm->clear_has_overflown();
  1095         bool ret = _cm->do_yield_check(worker_id);
  1097         jlong sleep_time_ms;
  1098         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1099           sleep_time_ms =
  1100             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1101           ConcurrentGCThread::stsLeave();
  1102           os::sleep(Thread::current(), sleep_time_ms, false);
  1103           ConcurrentGCThread::stsJoin();
  1105         double end_time2_sec = os::elapsedTime();
  1106         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1108 #if 0
  1109           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1110                                  "overhead %1.4lf",
  1111                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1112                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1113           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1114                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1115 #endif
  1116       } while (!_cm->has_aborted() && the_task->has_aborted());
  1118     the_task->record_end_time();
  1119     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1121     ConcurrentGCThread::stsLeave();
  1123     double end_vtime = os::elapsedVTime();
  1124     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1127   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1128                           ConcurrentMarkThread* cmt) :
  1129       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1131   ~CMConcurrentMarkingTask() { }
  1132 };
  1134 // Calculates the number of active workers for a concurrent
  1135 // phase.
  1136 uint ConcurrentMark::calc_parallel_marking_threads() {
  1137   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1138     uint n_conc_workers = 0;
  1139     if (!UseDynamicNumberOfGCThreads ||
  1140         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1141          !ForceDynamicNumberOfGCThreads)) {
  1142       n_conc_workers = max_parallel_marking_threads();
  1143     } else {
  1144       n_conc_workers =
  1145         AdaptiveSizePolicy::calc_default_active_workers(
  1146                                      max_parallel_marking_threads(),
  1147                                      1, /* Minimum workers */
  1148                                      parallel_marking_threads(),
  1149                                      Threads::number_of_non_daemon_threads());
  1150       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1151       // that scaling has already gone into "_max_parallel_marking_threads".
  1153     assert(n_conc_workers > 0, "Always need at least 1");
  1154     return n_conc_workers;
  1156   // If we are not running with any parallel GC threads we will not
  1157   // have spawned any marking threads either. Hence the number of
  1158   // concurrent workers should be 0.
  1159   return 0;
  1162 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1163   // Currently, only survivors can be root regions.
  1164   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1165   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1167   const uintx interval = PrefetchScanIntervalInBytes;
  1168   HeapWord* curr = hr->bottom();
  1169   const HeapWord* end = hr->top();
  1170   while (curr < end) {
  1171     Prefetch::read(curr, interval);
  1172     oop obj = oop(curr);
  1173     int size = obj->oop_iterate(&cl);
  1174     assert(size == obj->size(), "sanity");
  1175     curr += size;
  1179 class CMRootRegionScanTask : public AbstractGangTask {
  1180 private:
  1181   ConcurrentMark* _cm;
  1183 public:
  1184   CMRootRegionScanTask(ConcurrentMark* cm) :
  1185     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1187   void work(uint worker_id) {
  1188     assert(Thread::current()->is_ConcurrentGC_thread(),
  1189            "this should only be done by a conc GC thread");
  1191     CMRootRegions* root_regions = _cm->root_regions();
  1192     HeapRegion* hr = root_regions->claim_next();
  1193     while (hr != NULL) {
  1194       _cm->scanRootRegion(hr, worker_id);
  1195       hr = root_regions->claim_next();
  1198 };
  1200 void ConcurrentMark::scanRootRegions() {
  1201   // scan_in_progress() will have been set to true only if there was
  1202   // at least one root region to scan. So, if it's false, we
  1203   // should not attempt to do any further work.
  1204   if (root_regions()->scan_in_progress()) {
  1205     _parallel_marking_threads = calc_parallel_marking_threads();
  1206     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1207            "Maximum number of marking threads exceeded");
  1208     uint active_workers = MAX2(1U, parallel_marking_threads());
  1210     CMRootRegionScanTask task(this);
  1211     if (use_parallel_marking_threads()) {
  1212       _parallel_workers->set_active_workers((int) active_workers);
  1213       _parallel_workers->run_task(&task);
  1214     } else {
  1215       task.work(0);
  1218     // It's possible that has_aborted() is true here without actually
  1219     // aborting the survivor scan earlier. This is OK as it's
  1220     // mainly used for sanity checking.
  1221     root_regions()->scan_finished();
  1225 void ConcurrentMark::markFromRoots() {
  1226   // we might be tempted to assert that:
  1227   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1228   //        "inconsistent argument?");
  1229   // However that wouldn't be right, because it's possible that
  1230   // a safepoint is indeed in progress as a younger generation
  1231   // stop-the-world GC happens even as we mark in this generation.
  1233   _restart_for_overflow = false;
  1234   force_overflow_conc()->init();
  1236   // _g1h has _n_par_threads
  1237   _parallel_marking_threads = calc_parallel_marking_threads();
  1238   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1239     "Maximum number of marking threads exceeded");
  1241   uint active_workers = MAX2(1U, parallel_marking_threads());
  1243   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1244   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1246   CMConcurrentMarkingTask markingTask(this, cmThread());
  1247   if (use_parallel_marking_threads()) {
  1248     _parallel_workers->set_active_workers((int)active_workers);
  1249     // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
  1250     // and the decisions on that MT processing is made elsewhere.
  1251     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1252     _parallel_workers->run_task(&markingTask);
  1253   } else {
  1254     markingTask.work(0);
  1256   print_stats();
  1259 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1260   // world is stopped at this checkpoint
  1261   assert(SafepointSynchronize::is_at_safepoint(),
  1262          "world should be stopped");
  1264   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1266   // If a full collection has happened, we shouldn't do this.
  1267   if (has_aborted()) {
  1268     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1269     return;
  1272   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1274   if (VerifyDuringGC) {
  1275     HandleMark hm;  // handle scope
  1276     Universe::heap()->prepare_for_verify();
  1277     Universe::verify(VerifyOption_G1UsePrevMarking,
  1278                      " VerifyDuringGC:(before)");
  1281   G1CollectorPolicy* g1p = g1h->g1_policy();
  1282   g1p->record_concurrent_mark_remark_start();
  1284   double start = os::elapsedTime();
  1286   checkpointRootsFinalWork();
  1288   double mark_work_end = os::elapsedTime();
  1290   weakRefsWork(clear_all_soft_refs);
  1292   if (has_overflown()) {
  1293     // Oops.  We overflowed.  Restart concurrent marking.
  1294     _restart_for_overflow = true;
  1295     if (G1TraceMarkStackOverflow) {
  1296       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1299     // Verify the heap w.r.t. the previous marking bitmap.
  1300     if (VerifyDuringGC) {
  1301       HandleMark hm;  // handle scope
  1302       Universe::heap()->prepare_for_verify();
  1303       Universe::verify(VerifyOption_G1UsePrevMarking,
  1304                        " VerifyDuringGC:(overflow)");
  1307     // Clear the marking state because we will be restarting
  1308     // marking due to overflowing the global mark stack.
  1309     reset_marking_state();
  1310   } else {
  1311     // Aggregate the per-task counting data that we have accumulated
  1312     // while marking.
  1313     aggregate_count_data();
  1315     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1316     // We're done with marking.
  1317     // This is the end of  the marking cycle, we're expected all
  1318     // threads to have SATB queues with active set to true.
  1319     satb_mq_set.set_active_all_threads(false, /* new active value */
  1320                                        true /* expected_active */);
  1322     if (VerifyDuringGC) {
  1323       HandleMark hm;  // handle scope
  1324       Universe::heap()->prepare_for_verify();
  1325       Universe::verify(VerifyOption_G1UseNextMarking,
  1326                        " VerifyDuringGC:(after)");
  1328     assert(!restart_for_overflow(), "sanity");
  1329     // Completely reset the marking state since marking completed
  1330     set_non_marking_state();
  1333   // Expand the marking stack, if we have to and if we can.
  1334   if (_markStack.should_expand()) {
  1335     _markStack.expand();
  1338   // Statistics
  1339   double now = os::elapsedTime();
  1340   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1341   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1342   _remark_times.add((now - start) * 1000.0);
  1344   g1p->record_concurrent_mark_remark_end();
  1347 // Base class of the closures that finalize and verify the
  1348 // liveness counting data.
  1349 class CMCountDataClosureBase: public HeapRegionClosure {
  1350 protected:
  1351   G1CollectedHeap* _g1h;
  1352   ConcurrentMark* _cm;
  1353   CardTableModRefBS* _ct_bs;
  1355   BitMap* _region_bm;
  1356   BitMap* _card_bm;
  1358   // Takes a region that's not empty (i.e., it has at least one
  1359   // live object in it and sets its corresponding bit on the region
  1360   // bitmap to 1. If the region is "starts humongous" it will also set
  1361   // to 1 the bits on the region bitmap that correspond to its
  1362   // associated "continues humongous" regions.
  1363   void set_bit_for_region(HeapRegion* hr) {
  1364     assert(!hr->continuesHumongous(), "should have filtered those out");
  1366     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1367     if (!hr->startsHumongous()) {
  1368       // Normal (non-humongous) case: just set the bit.
  1369       _region_bm->par_at_put(index, true);
  1370     } else {
  1371       // Starts humongous case: calculate how many regions are part of
  1372       // this humongous region and then set the bit range.
  1373       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1374       _region_bm->par_at_put_range(index, end_index, true);
  1378 public:
  1379   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1380                          BitMap* region_bm, BitMap* card_bm):
  1381     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1382     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1383     _region_bm(region_bm), _card_bm(card_bm) { }
  1384 };
  1386 // Closure that calculates the # live objects per region. Used
  1387 // for verification purposes during the cleanup pause.
  1388 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1389   CMBitMapRO* _bm;
  1390   size_t _region_marked_bytes;
  1392 public:
  1393   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1394                          BitMap* region_bm, BitMap* card_bm) :
  1395     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1396     _bm(bm), _region_marked_bytes(0) { }
  1398   bool doHeapRegion(HeapRegion* hr) {
  1400     if (hr->continuesHumongous()) {
  1401       // We will ignore these here and process them when their
  1402       // associated "starts humongous" region is processed (see
  1403       // set_bit_for_heap_region()). Note that we cannot rely on their
  1404       // associated "starts humongous" region to have their bit set to
  1405       // 1 since, due to the region chunking in the parallel region
  1406       // iteration, a "continues humongous" region might be visited
  1407       // before its associated "starts humongous".
  1408       return false;
  1411     HeapWord* ntams = hr->next_top_at_mark_start();
  1412     HeapWord* start = hr->bottom();
  1414     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1415            err_msg("Preconditions not met - "
  1416                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1417                    start, ntams, hr->end()));
  1419     // Find the first marked object at or after "start".
  1420     start = _bm->getNextMarkedWordAddress(start, ntams);
  1422     size_t marked_bytes = 0;
  1424     while (start < ntams) {
  1425       oop obj = oop(start);
  1426       int obj_sz = obj->size();
  1427       HeapWord* obj_end = start + obj_sz;
  1429       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1430       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1432       // Note: if we're looking at the last region in heap - obj_end
  1433       // could be actually just beyond the end of the heap; end_idx
  1434       // will then correspond to a (non-existent) card that is also
  1435       // just beyond the heap.
  1436       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1437         // end of object is not card aligned - increment to cover
  1438         // all the cards spanned by the object
  1439         end_idx += 1;
  1442       // Set the bits in the card BM for the cards spanned by this object.
  1443       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1445       // Add the size of this object to the number of marked bytes.
  1446       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1448       // Find the next marked object after this one.
  1449       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1452     // Mark the allocated-since-marking portion...
  1453     HeapWord* top = hr->top();
  1454     if (ntams < top) {
  1455       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1456       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1458       // Note: if we're looking at the last region in heap - top
  1459       // could be actually just beyond the end of the heap; end_idx
  1460       // will then correspond to a (non-existent) card that is also
  1461       // just beyond the heap.
  1462       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1463         // end of object is not card aligned - increment to cover
  1464         // all the cards spanned by the object
  1465         end_idx += 1;
  1467       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1469       // This definitely means the region has live objects.
  1470       set_bit_for_region(hr);
  1473     // Update the live region bitmap.
  1474     if (marked_bytes > 0) {
  1475       set_bit_for_region(hr);
  1478     // Set the marked bytes for the current region so that
  1479     // it can be queried by a calling verificiation routine
  1480     _region_marked_bytes = marked_bytes;
  1482     return false;
  1485   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1486 };
  1488 // Heap region closure used for verifying the counting data
  1489 // that was accumulated concurrently and aggregated during
  1490 // the remark pause. This closure is applied to the heap
  1491 // regions during the STW cleanup pause.
  1493 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1494   G1CollectedHeap* _g1h;
  1495   ConcurrentMark* _cm;
  1496   CalcLiveObjectsClosure _calc_cl;
  1497   BitMap* _region_bm;   // Region BM to be verified
  1498   BitMap* _card_bm;     // Card BM to be verified
  1499   bool _verbose;        // verbose output?
  1501   BitMap* _exp_region_bm; // Expected Region BM values
  1502   BitMap* _exp_card_bm;   // Expected card BM values
  1504   int _failures;
  1506 public:
  1507   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1508                                 BitMap* region_bm,
  1509                                 BitMap* card_bm,
  1510                                 BitMap* exp_region_bm,
  1511                                 BitMap* exp_card_bm,
  1512                                 bool verbose) :
  1513     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1514     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1515     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1516     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1517     _failures(0) { }
  1519   int failures() const { return _failures; }
  1521   bool doHeapRegion(HeapRegion* hr) {
  1522     if (hr->continuesHumongous()) {
  1523       // We will ignore these here and process them when their
  1524       // associated "starts humongous" region is processed (see
  1525       // set_bit_for_heap_region()). Note that we cannot rely on their
  1526       // associated "starts humongous" region to have their bit set to
  1527       // 1 since, due to the region chunking in the parallel region
  1528       // iteration, a "continues humongous" region might be visited
  1529       // before its associated "starts humongous".
  1530       return false;
  1533     int failures = 0;
  1535     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1536     // this region and set the corresponding bits in the expected region
  1537     // and card bitmaps.
  1538     bool res = _calc_cl.doHeapRegion(hr);
  1539     assert(res == false, "should be continuing");
  1541     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1542                     Mutex::_no_safepoint_check_flag);
  1544     // Verify the marked bytes for this region.
  1545     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1546     size_t act_marked_bytes = hr->next_marked_bytes();
  1548     // We're not OK if expected marked bytes > actual marked bytes. It means
  1549     // we have missed accounting some objects during the actual marking.
  1550     if (exp_marked_bytes > act_marked_bytes) {
  1551       if (_verbose) {
  1552         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1553                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1554                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1556       failures += 1;
  1559     // Verify the bit, for this region, in the actual and expected
  1560     // (which was just calculated) region bit maps.
  1561     // We're not OK if the bit in the calculated expected region
  1562     // bitmap is set and the bit in the actual region bitmap is not.
  1563     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1565     bool expected = _exp_region_bm->at(index);
  1566     bool actual = _region_bm->at(index);
  1567     if (expected && !actual) {
  1568       if (_verbose) {
  1569         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1570                                "expected: %s, actual: %s",
  1571                                hr->hrs_index(),
  1572                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1574       failures += 1;
  1577     // Verify that the card bit maps for the cards spanned by the current
  1578     // region match. We have an error if we have a set bit in the expected
  1579     // bit map and the corresponding bit in the actual bitmap is not set.
  1581     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1582     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1584     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1585       expected = _exp_card_bm->at(i);
  1586       actual = _card_bm->at(i);
  1588       if (expected && !actual) {
  1589         if (_verbose) {
  1590           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1591                                  "expected: %s, actual: %s",
  1592                                  hr->hrs_index(), i,
  1593                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1595         failures += 1;
  1599     if (failures > 0 && _verbose)  {
  1600       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1601                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1602                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
  1603                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1606     _failures += failures;
  1608     // We could stop iteration over the heap when we
  1609     // find the first violating region by returning true.
  1610     return false;
  1612 };
  1615 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1616 protected:
  1617   G1CollectedHeap* _g1h;
  1618   ConcurrentMark* _cm;
  1619   BitMap* _actual_region_bm;
  1620   BitMap* _actual_card_bm;
  1622   uint    _n_workers;
  1624   BitMap* _expected_region_bm;
  1625   BitMap* _expected_card_bm;
  1627   int  _failures;
  1628   bool _verbose;
  1630 public:
  1631   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1632                             BitMap* region_bm, BitMap* card_bm,
  1633                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1634     : AbstractGangTask("G1 verify final counting"),
  1635       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1636       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1637       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1638       _failures(0), _verbose(false),
  1639       _n_workers(0) {
  1640     assert(VerifyDuringGC, "don't call this otherwise");
  1642     // Use the value already set as the number of active threads
  1643     // in the call to run_task().
  1644     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1645       assert( _g1h->workers()->active_workers() > 0,
  1646         "Should have been previously set");
  1647       _n_workers = _g1h->workers()->active_workers();
  1648     } else {
  1649       _n_workers = 1;
  1652     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1653     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1655     _verbose = _cm->verbose_medium();
  1658   void work(uint worker_id) {
  1659     assert(worker_id < _n_workers, "invariant");
  1661     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1662                                             _actual_region_bm, _actual_card_bm,
  1663                                             _expected_region_bm,
  1664                                             _expected_card_bm,
  1665                                             _verbose);
  1667     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1668       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1669                                             worker_id,
  1670                                             _n_workers,
  1671                                             HeapRegion::VerifyCountClaimValue);
  1672     } else {
  1673       _g1h->heap_region_iterate(&verify_cl);
  1676     Atomic::add(verify_cl.failures(), &_failures);
  1679   int failures() const { return _failures; }
  1680 };
  1682 // Closure that finalizes the liveness counting data.
  1683 // Used during the cleanup pause.
  1684 // Sets the bits corresponding to the interval [NTAMS, top]
  1685 // (which contains the implicitly live objects) in the
  1686 // card liveness bitmap. Also sets the bit for each region,
  1687 // containing live data, in the region liveness bitmap.
  1689 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1690  public:
  1691   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1692                               BitMap* region_bm,
  1693                               BitMap* card_bm) :
  1694     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1696   bool doHeapRegion(HeapRegion* hr) {
  1698     if (hr->continuesHumongous()) {
  1699       // We will ignore these here and process them when their
  1700       // associated "starts humongous" region is processed (see
  1701       // set_bit_for_heap_region()). Note that we cannot rely on their
  1702       // associated "starts humongous" region to have their bit set to
  1703       // 1 since, due to the region chunking in the parallel region
  1704       // iteration, a "continues humongous" region might be visited
  1705       // before its associated "starts humongous".
  1706       return false;
  1709     HeapWord* ntams = hr->next_top_at_mark_start();
  1710     HeapWord* top   = hr->top();
  1712     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1714     // Mark the allocated-since-marking portion...
  1715     if (ntams < top) {
  1716       // This definitely means the region has live objects.
  1717       set_bit_for_region(hr);
  1719       // Now set the bits in the card bitmap for [ntams, top)
  1720       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1721       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1723       // Note: if we're looking at the last region in heap - top
  1724       // could be actually just beyond the end of the heap; end_idx
  1725       // will then correspond to a (non-existent) card that is also
  1726       // just beyond the heap.
  1727       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1728         // end of object is not card aligned - increment to cover
  1729         // all the cards spanned by the object
  1730         end_idx += 1;
  1733       assert(end_idx <= _card_bm->size(),
  1734              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1735                      end_idx, _card_bm->size()));
  1736       assert(start_idx < _card_bm->size(),
  1737              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1738                      start_idx, _card_bm->size()));
  1740       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1743     // Set the bit for the region if it contains live data
  1744     if (hr->next_marked_bytes() > 0) {
  1745       set_bit_for_region(hr);
  1748     return false;
  1750 };
  1752 class G1ParFinalCountTask: public AbstractGangTask {
  1753 protected:
  1754   G1CollectedHeap* _g1h;
  1755   ConcurrentMark* _cm;
  1756   BitMap* _actual_region_bm;
  1757   BitMap* _actual_card_bm;
  1759   uint    _n_workers;
  1761 public:
  1762   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1763     : AbstractGangTask("G1 final counting"),
  1764       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1765       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1766       _n_workers(0) {
  1767     // Use the value already set as the number of active threads
  1768     // in the call to run_task().
  1769     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1770       assert( _g1h->workers()->active_workers() > 0,
  1771         "Should have been previously set");
  1772       _n_workers = _g1h->workers()->active_workers();
  1773     } else {
  1774       _n_workers = 1;
  1778   void work(uint worker_id) {
  1779     assert(worker_id < _n_workers, "invariant");
  1781     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1782                                                 _actual_region_bm,
  1783                                                 _actual_card_bm);
  1785     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1786       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1787                                             worker_id,
  1788                                             _n_workers,
  1789                                             HeapRegion::FinalCountClaimValue);
  1790     } else {
  1791       _g1h->heap_region_iterate(&final_update_cl);
  1794 };
  1796 class G1ParNoteEndTask;
  1798 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1799   G1CollectedHeap* _g1;
  1800   int _worker_num;
  1801   size_t _max_live_bytes;
  1802   uint _regions_claimed;
  1803   size_t _freed_bytes;
  1804   FreeRegionList* _local_cleanup_list;
  1805   OldRegionSet* _old_proxy_set;
  1806   HumongousRegionSet* _humongous_proxy_set;
  1807   HRRSCleanupTask* _hrrs_cleanup_task;
  1808   double _claimed_region_time;
  1809   double _max_region_time;
  1811 public:
  1812   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1813                              int worker_num,
  1814                              FreeRegionList* local_cleanup_list,
  1815                              OldRegionSet* old_proxy_set,
  1816                              HumongousRegionSet* humongous_proxy_set,
  1817                              HRRSCleanupTask* hrrs_cleanup_task) :
  1818     _g1(g1), _worker_num(worker_num),
  1819     _max_live_bytes(0), _regions_claimed(0),
  1820     _freed_bytes(0),
  1821     _claimed_region_time(0.0), _max_region_time(0.0),
  1822     _local_cleanup_list(local_cleanup_list),
  1823     _old_proxy_set(old_proxy_set),
  1824     _humongous_proxy_set(humongous_proxy_set),
  1825     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1827   size_t freed_bytes() { return _freed_bytes; }
  1829   bool doHeapRegion(HeapRegion *hr) {
  1830     if (hr->continuesHumongous()) {
  1831       return false;
  1833     // We use a claim value of zero here because all regions
  1834     // were claimed with value 1 in the FinalCount task.
  1835     _g1->reset_gc_time_stamps(hr);
  1836     double start = os::elapsedTime();
  1837     _regions_claimed++;
  1838     hr->note_end_of_marking();
  1839     _max_live_bytes += hr->max_live_bytes();
  1840     _g1->free_region_if_empty(hr,
  1841                               &_freed_bytes,
  1842                               _local_cleanup_list,
  1843                               _old_proxy_set,
  1844                               _humongous_proxy_set,
  1845                               _hrrs_cleanup_task,
  1846                               true /* par */);
  1847     double region_time = (os::elapsedTime() - start);
  1848     _claimed_region_time += region_time;
  1849     if (region_time > _max_region_time) {
  1850       _max_region_time = region_time;
  1852     return false;
  1855   size_t max_live_bytes() { return _max_live_bytes; }
  1856   uint regions_claimed() { return _regions_claimed; }
  1857   double claimed_region_time_sec() { return _claimed_region_time; }
  1858   double max_region_time_sec() { return _max_region_time; }
  1859 };
  1861 class G1ParNoteEndTask: public AbstractGangTask {
  1862   friend class G1NoteEndOfConcMarkClosure;
  1864 protected:
  1865   G1CollectedHeap* _g1h;
  1866   size_t _max_live_bytes;
  1867   size_t _freed_bytes;
  1868   FreeRegionList* _cleanup_list;
  1870 public:
  1871   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1872                    FreeRegionList* cleanup_list) :
  1873     AbstractGangTask("G1 note end"), _g1h(g1h),
  1874     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1876   void work(uint worker_id) {
  1877     double start = os::elapsedTime();
  1878     FreeRegionList local_cleanup_list("Local Cleanup List");
  1879     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
  1880     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
  1881     HRRSCleanupTask hrrs_cleanup_task;
  1882     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
  1883                                            &old_proxy_set,
  1884                                            &humongous_proxy_set,
  1885                                            &hrrs_cleanup_task);
  1886     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1887       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1888                                             _g1h->workers()->active_workers(),
  1889                                             HeapRegion::NoteEndClaimValue);
  1890     } else {
  1891       _g1h->heap_region_iterate(&g1_note_end);
  1893     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1895     // Now update the lists
  1896     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
  1897                                             NULL /* free_list */,
  1898                                             &old_proxy_set,
  1899                                             &humongous_proxy_set,
  1900                                             true /* par */);
  1902       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1903       _max_live_bytes += g1_note_end.max_live_bytes();
  1904       _freed_bytes += g1_note_end.freed_bytes();
  1906       // If we iterate over the global cleanup list at the end of
  1907       // cleanup to do this printing we will not guarantee to only
  1908       // generate output for the newly-reclaimed regions (the list
  1909       // might not be empty at the beginning of cleanup; we might
  1910       // still be working on its previous contents). So we do the
  1911       // printing here, before we append the new regions to the global
  1912       // cleanup list.
  1914       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1915       if (hr_printer->is_active()) {
  1916         HeapRegionLinkedListIterator iter(&local_cleanup_list);
  1917         while (iter.more_available()) {
  1918           HeapRegion* hr = iter.get_next();
  1919           hr_printer->cleanup(hr);
  1923       _cleanup_list->add_as_tail(&local_cleanup_list);
  1924       assert(local_cleanup_list.is_empty(), "post-condition");
  1926       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1929   size_t max_live_bytes() { return _max_live_bytes; }
  1930   size_t freed_bytes() { return _freed_bytes; }
  1931 };
  1933 class G1ParScrubRemSetTask: public AbstractGangTask {
  1934 protected:
  1935   G1RemSet* _g1rs;
  1936   BitMap* _region_bm;
  1937   BitMap* _card_bm;
  1938 public:
  1939   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1940                        BitMap* region_bm, BitMap* card_bm) :
  1941     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1942     _region_bm(region_bm), _card_bm(card_bm) { }
  1944   void work(uint worker_id) {
  1945     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1946       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1947                        HeapRegion::ScrubRemSetClaimValue);
  1948     } else {
  1949       _g1rs->scrub(_region_bm, _card_bm);
  1953 };
  1955 void ConcurrentMark::cleanup() {
  1956   // world is stopped at this checkpoint
  1957   assert(SafepointSynchronize::is_at_safepoint(),
  1958          "world should be stopped");
  1959   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1961   // If a full collection has happened, we shouldn't do this.
  1962   if (has_aborted()) {
  1963     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1964     return;
  1967   HRSPhaseSetter x(HRSPhaseCleanup);
  1968   g1h->verify_region_sets_optional();
  1970   if (VerifyDuringGC) {
  1971     HandleMark hm;  // handle scope
  1972     Universe::heap()->prepare_for_verify();
  1973     Universe::verify(VerifyOption_G1UsePrevMarking,
  1974                      " VerifyDuringGC:(before)");
  1977   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  1978   g1p->record_concurrent_mark_cleanup_start();
  1980   double start = os::elapsedTime();
  1982   HeapRegionRemSet::reset_for_cleanup_tasks();
  1984   uint n_workers;
  1986   // Do counting once more with the world stopped for good measure.
  1987   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  1989   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1990    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1991            "sanity check");
  1993     g1h->set_par_threads();
  1994     n_workers = g1h->n_par_threads();
  1995     assert(g1h->n_par_threads() == n_workers,
  1996            "Should not have been reset");
  1997     g1h->workers()->run_task(&g1_par_count_task);
  1998     // Done with the parallel phase so reset to 0.
  1999     g1h->set_par_threads(0);
  2001     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2002            "sanity check");
  2003   } else {
  2004     n_workers = 1;
  2005     g1_par_count_task.work(0);
  2008   if (VerifyDuringGC) {
  2009     // Verify that the counting data accumulated during marking matches
  2010     // that calculated by walking the marking bitmap.
  2012     // Bitmaps to hold expected values
  2013     BitMap expected_region_bm(_region_bm.size(), false);
  2014     BitMap expected_card_bm(_card_bm.size(), false);
  2016     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2017                                                  &_region_bm,
  2018                                                  &_card_bm,
  2019                                                  &expected_region_bm,
  2020                                                  &expected_card_bm);
  2022     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2023       g1h->set_par_threads((int)n_workers);
  2024       g1h->workers()->run_task(&g1_par_verify_task);
  2025       // Done with the parallel phase so reset to 0.
  2026       g1h->set_par_threads(0);
  2028       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2029              "sanity check");
  2030     } else {
  2031       g1_par_verify_task.work(0);
  2034     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2037   size_t start_used_bytes = g1h->used();
  2038   g1h->set_marking_complete();
  2040   double count_end = os::elapsedTime();
  2041   double this_final_counting_time = (count_end - start);
  2042   _total_counting_time += this_final_counting_time;
  2044   if (G1PrintRegionLivenessInfo) {
  2045     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2046     _g1h->heap_region_iterate(&cl);
  2049   // Install newly created mark bitMap as "prev".
  2050   swapMarkBitMaps();
  2052   g1h->reset_gc_time_stamp();
  2054   // Note end of marking in all heap regions.
  2055   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2056   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2057     g1h->set_par_threads((int)n_workers);
  2058     g1h->workers()->run_task(&g1_par_note_end_task);
  2059     g1h->set_par_threads(0);
  2061     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2062            "sanity check");
  2063   } else {
  2064     g1_par_note_end_task.work(0);
  2066   g1h->check_gc_time_stamps();
  2068   if (!cleanup_list_is_empty()) {
  2069     // The cleanup list is not empty, so we'll have to process it
  2070     // concurrently. Notify anyone else that might be wanting free
  2071     // regions that there will be more free regions coming soon.
  2072     g1h->set_free_regions_coming();
  2075   // call below, since it affects the metric by which we sort the heap
  2076   // regions.
  2077   if (G1ScrubRemSets) {
  2078     double rs_scrub_start = os::elapsedTime();
  2079     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2080     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2081       g1h->set_par_threads((int)n_workers);
  2082       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2083       g1h->set_par_threads(0);
  2085       assert(g1h->check_heap_region_claim_values(
  2086                                             HeapRegion::ScrubRemSetClaimValue),
  2087              "sanity check");
  2088     } else {
  2089       g1_par_scrub_rs_task.work(0);
  2092     double rs_scrub_end = os::elapsedTime();
  2093     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2094     _total_rs_scrub_time += this_rs_scrub_time;
  2097   // this will also free any regions totally full of garbage objects,
  2098   // and sort the regions.
  2099   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2101   // Statistics.
  2102   double end = os::elapsedTime();
  2103   _cleanup_times.add((end - start) * 1000.0);
  2105   if (G1Log::fine()) {
  2106     g1h->print_size_transition(gclog_or_tty,
  2107                                start_used_bytes,
  2108                                g1h->used(),
  2109                                g1h->capacity());
  2112   // Clean up will have freed any regions completely full of garbage.
  2113   // Update the soft reference policy with the new heap occupancy.
  2114   Universe::update_heap_info_at_gc();
  2116   // We need to make this be a "collection" so any collection pause that
  2117   // races with it goes around and waits for completeCleanup to finish.
  2118   g1h->increment_total_collections();
  2120   // We reclaimed old regions so we should calculate the sizes to make
  2121   // sure we update the old gen/space data.
  2122   g1h->g1mm()->update_sizes();
  2124   if (VerifyDuringGC) {
  2125     HandleMark hm;  // handle scope
  2126     Universe::heap()->prepare_for_verify();
  2127     Universe::verify(VerifyOption_G1UsePrevMarking,
  2128                      " VerifyDuringGC:(after)");
  2131   g1h->verify_region_sets_optional();
  2134 void ConcurrentMark::completeCleanup() {
  2135   if (has_aborted()) return;
  2137   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2139   _cleanup_list.verify_optional();
  2140   FreeRegionList tmp_free_list("Tmp Free List");
  2142   if (G1ConcRegionFreeingVerbose) {
  2143     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2144                            "cleanup list has %u entries",
  2145                            _cleanup_list.length());
  2148   // Noone else should be accessing the _cleanup_list at this point,
  2149   // so it's not necessary to take any locks
  2150   while (!_cleanup_list.is_empty()) {
  2151     HeapRegion* hr = _cleanup_list.remove_head();
  2152     assert(hr != NULL, "the list was not empty");
  2153     hr->par_clear();
  2154     tmp_free_list.add_as_tail(hr);
  2156     // Instead of adding one region at a time to the secondary_free_list,
  2157     // we accumulate them in the local list and move them a few at a
  2158     // time. This also cuts down on the number of notify_all() calls
  2159     // we do during this process. We'll also append the local list when
  2160     // _cleanup_list is empty (which means we just removed the last
  2161     // region from the _cleanup_list).
  2162     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2163         _cleanup_list.is_empty()) {
  2164       if (G1ConcRegionFreeingVerbose) {
  2165         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2166                                "appending %u entries to the secondary_free_list, "
  2167                                "cleanup list still has %u entries",
  2168                                tmp_free_list.length(),
  2169                                _cleanup_list.length());
  2173         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2174         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
  2175         SecondaryFreeList_lock->notify_all();
  2178       if (G1StressConcRegionFreeing) {
  2179         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2180           os::sleep(Thread::current(), (jlong) 1, false);
  2185   assert(tmp_free_list.is_empty(), "post-condition");
  2188 // Supporting Object and Oop closures for reference discovery
  2189 // and processing in during marking
  2191 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2192   HeapWord* addr = (HeapWord*)obj;
  2193   return addr != NULL &&
  2194          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2197 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2198 // Uses the CMTask associated with a worker thread (for serial reference
  2199 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2200 // trace referent objects.
  2201 //
  2202 // Using the CMTask and embedded local queues avoids having the worker
  2203 // threads operating on the global mark stack. This reduces the risk
  2204 // of overflowing the stack - which we would rather avoid at this late
  2205 // state. Also using the tasks' local queues removes the potential
  2206 // of the workers interfering with each other that could occur if
  2207 // operating on the global stack.
  2209 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2210   ConcurrentMark* _cm;
  2211   CMTask*         _task;
  2212   int             _ref_counter_limit;
  2213   int             _ref_counter;
  2214   bool            _is_serial;
  2215  public:
  2216   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2217     _cm(cm), _task(task), _is_serial(is_serial),
  2218     _ref_counter_limit(G1RefProcDrainInterval) {
  2219     assert(_ref_counter_limit > 0, "sanity");
  2220     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2221     _ref_counter = _ref_counter_limit;
  2224   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2225   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2227   template <class T> void do_oop_work(T* p) {
  2228     if (!_cm->has_overflown()) {
  2229       oop obj = oopDesc::load_decode_heap_oop(p);
  2230       if (_cm->verbose_high()) {
  2231         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2232                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2233                                _task->worker_id(), p, (void*) obj);
  2236       _task->deal_with_reference(obj);
  2237       _ref_counter--;
  2239       if (_ref_counter == 0) {
  2240         // We have dealt with _ref_counter_limit references, pushing them
  2241         // and objects reachable from them on to the local stack (and
  2242         // possibly the global stack). Call CMTask::do_marking_step() to
  2243         // process these entries.
  2244         //
  2245         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2246         // there's nothing more to do (i.e. we're done with the entries that
  2247         // were pushed as a result of the CMTask::deal_with_reference() calls
  2248         // above) or we overflow.
  2249         //
  2250         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2251         // flag while there may still be some work to do. (See the comment at
  2252         // the beginning of CMTask::do_marking_step() for those conditions -
  2253         // one of which is reaching the specified time target.) It is only
  2254         // when CMTask::do_marking_step() returns without setting the
  2255         // has_aborted() flag that the marking step has completed.
  2256         do {
  2257           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2258           _task->do_marking_step(mark_step_duration_ms,
  2259                                  false      /* do_termination */,
  2260                                  _is_serial);
  2261         } while (_task->has_aborted() && !_cm->has_overflown());
  2262         _ref_counter = _ref_counter_limit;
  2264     } else {
  2265       if (_cm->verbose_high()) {
  2266          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2270 };
  2272 // 'Drain' oop closure used by both serial and parallel reference processing.
  2273 // Uses the CMTask associated with a given worker thread (for serial
  2274 // reference processing the CMtask for worker 0 is used). Calls the
  2275 // do_marking_step routine, with an unbelievably large timeout value,
  2276 // to drain the marking data structures of the remaining entries
  2277 // added by the 'keep alive' oop closure above.
  2279 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2280   ConcurrentMark* _cm;
  2281   CMTask*         _task;
  2282   bool            _is_serial;
  2283  public:
  2284   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2285     _cm(cm), _task(task), _is_serial(is_serial) {
  2286     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2289   void do_void() {
  2290     do {
  2291       if (_cm->verbose_high()) {
  2292         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2293                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2296       // We call CMTask::do_marking_step() to completely drain the local
  2297       // and global marking stacks of entries pushed by the 'keep alive'
  2298       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2299       //
  2300       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2301       // if there's nothing more to do (i.e. we'completely drained the
  2302       // entries that were pushed as a a result of applying the 'keep alive'
  2303       // closure to the entries on the discovered ref lists) or we overflow
  2304       // the global marking stack.
  2305       //
  2306       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2307       // flag while there may still be some work to do. (See the comment at
  2308       // the beginning of CMTask::do_marking_step() for those conditions -
  2309       // one of which is reaching the specified time target.) It is only
  2310       // when CMTask::do_marking_step() returns without setting the
  2311       // has_aborted() flag that the marking step has completed.
  2313       _task->do_marking_step(1000000000.0 /* something very large */,
  2314                              true         /* do_termination */,
  2315                              _is_serial);
  2316     } while (_task->has_aborted() && !_cm->has_overflown());
  2318 };
  2320 // Implementation of AbstractRefProcTaskExecutor for parallel
  2321 // reference processing at the end of G1 concurrent marking
  2323 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2324 private:
  2325   G1CollectedHeap* _g1h;
  2326   ConcurrentMark*  _cm;
  2327   WorkGang*        _workers;
  2328   int              _active_workers;
  2330 public:
  2331   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2332                         ConcurrentMark* cm,
  2333                         WorkGang* workers,
  2334                         int n_workers) :
  2335     _g1h(g1h), _cm(cm),
  2336     _workers(workers), _active_workers(n_workers) { }
  2338   // Executes the given task using concurrent marking worker threads.
  2339   virtual void execute(ProcessTask& task);
  2340   virtual void execute(EnqueueTask& task);
  2341 };
  2343 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2344   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2345   ProcessTask&     _proc_task;
  2346   G1CollectedHeap* _g1h;
  2347   ConcurrentMark*  _cm;
  2349 public:
  2350   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2351                      G1CollectedHeap* g1h,
  2352                      ConcurrentMark* cm) :
  2353     AbstractGangTask("Process reference objects in parallel"),
  2354     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2355     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2356     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2359   virtual void work(uint worker_id) {
  2360     CMTask* task = _cm->task(worker_id);
  2361     G1CMIsAliveClosure g1_is_alive(_g1h);
  2362     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2363     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2365     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2367 };
  2369 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2370   assert(_workers != NULL, "Need parallel worker threads.");
  2371   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2373   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2375   // We need to reset the concurrency level before each
  2376   // proxy task execution, so that the termination protocol
  2377   // and overflow handling in CMTask::do_marking_step() knows
  2378   // how many workers to wait for.
  2379   _cm->set_concurrency(_active_workers);
  2380   _g1h->set_par_threads(_active_workers);
  2381   _workers->run_task(&proc_task_proxy);
  2382   _g1h->set_par_threads(0);
  2385 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2386   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2387   EnqueueTask& _enq_task;
  2389 public:
  2390   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2391     AbstractGangTask("Enqueue reference objects in parallel"),
  2392     _enq_task(enq_task) { }
  2394   virtual void work(uint worker_id) {
  2395     _enq_task.work(worker_id);
  2397 };
  2399 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2400   assert(_workers != NULL, "Need parallel worker threads.");
  2401   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2403   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2405   // Not strictly necessary but...
  2406   //
  2407   // We need to reset the concurrency level before each
  2408   // proxy task execution, so that the termination protocol
  2409   // and overflow handling in CMTask::do_marking_step() knows
  2410   // how many workers to wait for.
  2411   _cm->set_concurrency(_active_workers);
  2412   _g1h->set_par_threads(_active_workers);
  2413   _workers->run_task(&enq_task_proxy);
  2414   _g1h->set_par_threads(0);
  2417 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2418   if (has_overflown()) {
  2419     // Skip processing the discovered references if we have
  2420     // overflown the global marking stack. Reference objects
  2421     // only get discovered once so it is OK to not
  2422     // de-populate the discovered reference lists. We could have,
  2423     // but the only benefit would be that, when marking restarts,
  2424     // less reference objects are discovered.
  2425     return;
  2428   ResourceMark rm;
  2429   HandleMark   hm;
  2431   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2433   // Is alive closure.
  2434   G1CMIsAliveClosure g1_is_alive(g1h);
  2436   // Inner scope to exclude the cleaning of the string and symbol
  2437   // tables from the displayed time.
  2439     if (G1Log::finer()) {
  2440       gclog_or_tty->put(' ');
  2442     TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
  2444     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2446     // See the comment in G1CollectedHeap::ref_processing_init()
  2447     // about how reference processing currently works in G1.
  2449     // Set the soft reference policy
  2450     rp->setup_policy(clear_all_soft_refs);
  2451     assert(_markStack.isEmpty(), "mark stack should be empty");
  2453     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2454     // in serial reference processing. Note these closures are also
  2455     // used for serially processing (by the the current thread) the
  2456     // JNI references during parallel reference processing.
  2457     //
  2458     // These closures do not need to synchronize with the worker
  2459     // threads involved in parallel reference processing as these
  2460     // instances are executed serially by the current thread (e.g.
  2461     // reference processing is not multi-threaded and is thus
  2462     // performed by the current thread instead of a gang worker).
  2463     //
  2464     // The gang tasks involved in parallel reference procssing create
  2465     // their own instances of these closures, which do their own
  2466     // synchronization among themselves.
  2467     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2468     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2470     // We need at least one active thread. If reference processing
  2471     // is not multi-threaded we use the current (VMThread) thread,
  2472     // otherwise we use the work gang from the G1CollectedHeap and
  2473     // we utilize all the worker threads we can.
  2474     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2475     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2476     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2478     // Parallel processing task executor.
  2479     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2480                                               g1h->workers(), active_workers);
  2481     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2483     // Set the concurrency level. The phase was already set prior to
  2484     // executing the remark task.
  2485     set_concurrency(active_workers);
  2487     // Set the degree of MT processing here.  If the discovery was done MT,
  2488     // the number of threads involved during discovery could differ from
  2489     // the number of active workers.  This is OK as long as the discovered
  2490     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2491     rp->set_active_mt_degree(active_workers);
  2493     // Process the weak references.
  2494     rp->process_discovered_references(&g1_is_alive,
  2495                                       &g1_keep_alive,
  2496                                       &g1_drain_mark_stack,
  2497                                       executor);
  2499     // The do_oop work routines of the keep_alive and drain_marking_stack
  2500     // oop closures will set the has_overflown flag if we overflow the
  2501     // global marking stack.
  2503     assert(_markStack.overflow() || _markStack.isEmpty(),
  2504             "mark stack should be empty (unless it overflowed)");
  2506     if (_markStack.overflow()) {
  2507       // This should have been done already when we tried to push an
  2508       // entry on to the global mark stack. But let's do it again.
  2509       set_has_overflown();
  2512     assert(rp->num_q() == active_workers, "why not");
  2514     rp->enqueue_discovered_references(executor);
  2516     rp->verify_no_references_recorded();
  2517     assert(!rp->discovery_enabled(), "Post condition");
  2520   // Now clean up stale oops in StringTable
  2521   StringTable::unlink(&g1_is_alive);
  2522   // Clean up unreferenced symbols in symbol table.
  2523   SymbolTable::unlink();
  2526 void ConcurrentMark::swapMarkBitMaps() {
  2527   CMBitMapRO* temp = _prevMarkBitMap;
  2528   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2529   _nextMarkBitMap  = (CMBitMap*)  temp;
  2532 class CMRemarkTask: public AbstractGangTask {
  2533 private:
  2534   ConcurrentMark* _cm;
  2535   bool            _is_serial;
  2536 public:
  2537   void work(uint worker_id) {
  2538     // Since all available tasks are actually started, we should
  2539     // only proceed if we're supposed to be actived.
  2540     if (worker_id < _cm->active_tasks()) {
  2541       CMTask* task = _cm->task(worker_id);
  2542       task->record_start_time();
  2543       do {
  2544         task->do_marking_step(1000000000.0 /* something very large */,
  2545                               true         /* do_termination       */,
  2546                               _is_serial);
  2547       } while (task->has_aborted() && !_cm->has_overflown());
  2548       // If we overflow, then we do not want to restart. We instead
  2549       // want to abort remark and do concurrent marking again.
  2550       task->record_end_time();
  2554   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2555     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2556     _cm->terminator()->reset_for_reuse(active_workers);
  2558 };
  2560 void ConcurrentMark::checkpointRootsFinalWork() {
  2561   ResourceMark rm;
  2562   HandleMark   hm;
  2563   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2565   g1h->ensure_parsability(false);
  2567   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2568     G1CollectedHeap::StrongRootsScope srs(g1h);
  2569     // this is remark, so we'll use up all active threads
  2570     uint active_workers = g1h->workers()->active_workers();
  2571     if (active_workers == 0) {
  2572       assert(active_workers > 0, "Should have been set earlier");
  2573       active_workers = (uint) ParallelGCThreads;
  2574       g1h->workers()->set_active_workers(active_workers);
  2576     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2577     // Leave _parallel_marking_threads at it's
  2578     // value originally calculated in the ConcurrentMark
  2579     // constructor and pass values of the active workers
  2580     // through the gang in the task.
  2582     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2583     // We will start all available threads, even if we decide that the
  2584     // active_workers will be fewer. The extra ones will just bail out
  2585     // immediately.
  2586     g1h->set_par_threads(active_workers);
  2587     g1h->workers()->run_task(&remarkTask);
  2588     g1h->set_par_threads(0);
  2589   } else {
  2590     G1CollectedHeap::StrongRootsScope srs(g1h);
  2591     uint active_workers = 1;
  2592     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2594     // Note - if there's no work gang then the VMThread will be
  2595     // the thread to execute the remark - serially. We have
  2596     // to pass true for the is_serial parameter so that
  2597     // CMTask::do_marking_step() doesn't enter the sync
  2598     // barriers in the event of an overflow. Doing so will
  2599     // cause an assert that the current thread is not a
  2600     // concurrent GC thread.
  2601     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2602     remarkTask.work(0);
  2604   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2605   guarantee(has_overflown() ||
  2606             satb_mq_set.completed_buffers_num() == 0,
  2607             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2608                     BOOL_TO_STR(has_overflown()),
  2609                     satb_mq_set.completed_buffers_num()));
  2611   print_stats();
  2614 #ifndef PRODUCT
  2616 class PrintReachableOopClosure: public OopClosure {
  2617 private:
  2618   G1CollectedHeap* _g1h;
  2619   outputStream*    _out;
  2620   VerifyOption     _vo;
  2621   bool             _all;
  2623 public:
  2624   PrintReachableOopClosure(outputStream* out,
  2625                            VerifyOption  vo,
  2626                            bool          all) :
  2627     _g1h(G1CollectedHeap::heap()),
  2628     _out(out), _vo(vo), _all(all) { }
  2630   void do_oop(narrowOop* p) { do_oop_work(p); }
  2631   void do_oop(      oop* p) { do_oop_work(p); }
  2633   template <class T> void do_oop_work(T* p) {
  2634     oop         obj = oopDesc::load_decode_heap_oop(p);
  2635     const char* str = NULL;
  2636     const char* str2 = "";
  2638     if (obj == NULL) {
  2639       str = "";
  2640     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2641       str = " O";
  2642     } else {
  2643       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2644       guarantee(hr != NULL, "invariant");
  2645       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2646       bool marked = _g1h->is_marked(obj, _vo);
  2648       if (over_tams) {
  2649         str = " >";
  2650         if (marked) {
  2651           str2 = " AND MARKED";
  2653       } else if (marked) {
  2654         str = " M";
  2655       } else {
  2656         str = " NOT";
  2660     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2661                    p, (void*) obj, str, str2);
  2663 };
  2665 class PrintReachableObjectClosure : public ObjectClosure {
  2666 private:
  2667   G1CollectedHeap* _g1h;
  2668   outputStream*    _out;
  2669   VerifyOption     _vo;
  2670   bool             _all;
  2671   HeapRegion*      _hr;
  2673 public:
  2674   PrintReachableObjectClosure(outputStream* out,
  2675                               VerifyOption  vo,
  2676                               bool          all,
  2677                               HeapRegion*   hr) :
  2678     _g1h(G1CollectedHeap::heap()),
  2679     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2681   void do_object(oop o) {
  2682     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2683     bool marked = _g1h->is_marked(o, _vo);
  2684     bool print_it = _all || over_tams || marked;
  2686     if (print_it) {
  2687       _out->print_cr(" "PTR_FORMAT"%s",
  2688                      o, (over_tams) ? " >" : (marked) ? " M" : "");
  2689       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2690       o->oop_iterate_no_header(&oopCl);
  2693 };
  2695 class PrintReachableRegionClosure : public HeapRegionClosure {
  2696 private:
  2697   G1CollectedHeap* _g1h;
  2698   outputStream*    _out;
  2699   VerifyOption     _vo;
  2700   bool             _all;
  2702 public:
  2703   bool doHeapRegion(HeapRegion* hr) {
  2704     HeapWord* b = hr->bottom();
  2705     HeapWord* e = hr->end();
  2706     HeapWord* t = hr->top();
  2707     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2708     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2709                    "TAMS: "PTR_FORMAT, b, e, t, p);
  2710     _out->cr();
  2712     HeapWord* from = b;
  2713     HeapWord* to   = t;
  2715     if (to > from) {
  2716       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
  2717       _out->cr();
  2718       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2719       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2720       _out->cr();
  2723     return false;
  2726   PrintReachableRegionClosure(outputStream* out,
  2727                               VerifyOption  vo,
  2728                               bool          all) :
  2729     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2730 };
  2732 void ConcurrentMark::print_reachable(const char* str,
  2733                                      VerifyOption vo,
  2734                                      bool all) {
  2735   gclog_or_tty->cr();
  2736   gclog_or_tty->print_cr("== Doing heap dump... ");
  2738   if (G1PrintReachableBaseFile == NULL) {
  2739     gclog_or_tty->print_cr("  #### error: no base file defined");
  2740     return;
  2743   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2744       (JVM_MAXPATHLEN - 1)) {
  2745     gclog_or_tty->print_cr("  #### error: file name too long");
  2746     return;
  2749   char file_name[JVM_MAXPATHLEN];
  2750   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2751   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2753   fileStream fout(file_name);
  2754   if (!fout.is_open()) {
  2755     gclog_or_tty->print_cr("  #### error: could not open file");
  2756     return;
  2759   outputStream* out = &fout;
  2760   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2761   out->cr();
  2763   out->print_cr("--- ITERATING OVER REGIONS");
  2764   out->cr();
  2765   PrintReachableRegionClosure rcl(out, vo, all);
  2766   _g1h->heap_region_iterate(&rcl);
  2767   out->cr();
  2769   gclog_or_tty->print_cr("  done");
  2770   gclog_or_tty->flush();
  2773 #endif // PRODUCT
  2775 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2776   // Note we are overriding the read-only view of the prev map here, via
  2777   // the cast.
  2778   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2781 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2782   _nextMarkBitMap->clearRange(mr);
  2785 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2786   clearRangePrevBitmap(mr);
  2787   clearRangeNextBitmap(mr);
  2790 HeapRegion*
  2791 ConcurrentMark::claim_region(uint worker_id) {
  2792   // "checkpoint" the finger
  2793   HeapWord* finger = _finger;
  2795   // _heap_end will not change underneath our feet; it only changes at
  2796   // yield points.
  2797   while (finger < _heap_end) {
  2798     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2800     // Note on how this code handles humongous regions. In the
  2801     // normal case the finger will reach the start of a "starts
  2802     // humongous" (SH) region. Its end will either be the end of the
  2803     // last "continues humongous" (CH) region in the sequence, or the
  2804     // standard end of the SH region (if the SH is the only region in
  2805     // the sequence). That way claim_region() will skip over the CH
  2806     // regions. However, there is a subtle race between a CM thread
  2807     // executing this method and a mutator thread doing a humongous
  2808     // object allocation. The two are not mutually exclusive as the CM
  2809     // thread does not need to hold the Heap_lock when it gets
  2810     // here. So there is a chance that claim_region() will come across
  2811     // a free region that's in the progress of becoming a SH or a CH
  2812     // region. In the former case, it will either
  2813     //   a) Miss the update to the region's end, in which case it will
  2814     //      visit every subsequent CH region, will find their bitmaps
  2815     //      empty, and do nothing, or
  2816     //   b) Will observe the update of the region's end (in which case
  2817     //      it will skip the subsequent CH regions).
  2818     // If it comes across a region that suddenly becomes CH, the
  2819     // scenario will be similar to b). So, the race between
  2820     // claim_region() and a humongous object allocation might force us
  2821     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2822     // iterations) but it should not introduce and correctness issues.
  2823     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  2824     HeapWord*   bottom        = curr_region->bottom();
  2825     HeapWord*   end           = curr_region->end();
  2826     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2828     if (verbose_low()) {
  2829       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2830                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2831                              "limit = "PTR_FORMAT,
  2832                              worker_id, curr_region, bottom, end, limit);
  2835     // Is the gap between reading the finger and doing the CAS too long?
  2836     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2837     if (res == finger) {
  2838       // we succeeded
  2840       // notice that _finger == end cannot be guaranteed here since,
  2841       // someone else might have moved the finger even further
  2842       assert(_finger >= end, "the finger should have moved forward");
  2844       if (verbose_low()) {
  2845         gclog_or_tty->print_cr("[%u] we were successful with region = "
  2846                                PTR_FORMAT, worker_id, curr_region);
  2849       if (limit > bottom) {
  2850         if (verbose_low()) {
  2851           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  2852                                  "returning it ", worker_id, curr_region);
  2854         return curr_region;
  2855       } else {
  2856         assert(limit == bottom,
  2857                "the region limit should be at bottom");
  2858         if (verbose_low()) {
  2859           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  2860                                  "returning NULL", worker_id, curr_region);
  2862         // we return NULL and the caller should try calling
  2863         // claim_region() again.
  2864         return NULL;
  2866     } else {
  2867       assert(_finger > finger, "the finger should have moved forward");
  2868       if (verbose_low()) {
  2869         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  2870                                "global finger = "PTR_FORMAT", "
  2871                                "our finger = "PTR_FORMAT,
  2872                                worker_id, _finger, finger);
  2875       // read it again
  2876       finger = _finger;
  2880   return NULL;
  2883 #ifndef PRODUCT
  2884 enum VerifyNoCSetOopsPhase {
  2885   VerifyNoCSetOopsStack,
  2886   VerifyNoCSetOopsQueues,
  2887   VerifyNoCSetOopsSATBCompleted,
  2888   VerifyNoCSetOopsSATBThread
  2889 };
  2891 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  2892 private:
  2893   G1CollectedHeap* _g1h;
  2894   VerifyNoCSetOopsPhase _phase;
  2895   int _info;
  2897   const char* phase_str() {
  2898     switch (_phase) {
  2899     case VerifyNoCSetOopsStack:         return "Stack";
  2900     case VerifyNoCSetOopsQueues:        return "Queue";
  2901     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  2902     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  2903     default:                            ShouldNotReachHere();
  2905     return NULL;
  2908   void do_object_work(oop obj) {
  2909     guarantee(!_g1h->obj_in_cs(obj),
  2910               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  2911                       (void*) obj, phase_str(), _info));
  2914 public:
  2915   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  2917   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  2918     _phase = phase;
  2919     _info = info;
  2922   virtual void do_oop(oop* p) {
  2923     oop obj = oopDesc::load_decode_heap_oop(p);
  2924     do_object_work(obj);
  2927   virtual void do_oop(narrowOop* p) {
  2928     // We should not come across narrow oops while scanning marking
  2929     // stacks and SATB buffers.
  2930     ShouldNotReachHere();
  2933   virtual void do_object(oop obj) {
  2934     do_object_work(obj);
  2936 };
  2938 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  2939                                          bool verify_enqueued_buffers,
  2940                                          bool verify_thread_buffers,
  2941                                          bool verify_fingers) {
  2942   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2943   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  2944     return;
  2947   VerifyNoCSetOopsClosure cl;
  2949   if (verify_stacks) {
  2950     // Verify entries on the global mark stack
  2951     cl.set_phase(VerifyNoCSetOopsStack);
  2952     _markStack.oops_do(&cl);
  2954     // Verify entries on the task queues
  2955     for (uint i = 0; i < _max_worker_id; i += 1) {
  2956       cl.set_phase(VerifyNoCSetOopsQueues, i);
  2957       CMTaskQueue* queue = _task_queues->queue(i);
  2958       queue->oops_do(&cl);
  2962   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  2964   // Verify entries on the enqueued SATB buffers
  2965   if (verify_enqueued_buffers) {
  2966     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  2967     satb_qs.iterate_completed_buffers_read_only(&cl);
  2970   // Verify entries on the per-thread SATB buffers
  2971   if (verify_thread_buffers) {
  2972     cl.set_phase(VerifyNoCSetOopsSATBThread);
  2973     satb_qs.iterate_thread_buffers_read_only(&cl);
  2976   if (verify_fingers) {
  2977     // Verify the global finger
  2978     HeapWord* global_finger = finger();
  2979     if (global_finger != NULL && global_finger < _heap_end) {
  2980       // The global finger always points to a heap region boundary. We
  2981       // use heap_region_containing_raw() to get the containing region
  2982       // given that the global finger could be pointing to a free region
  2983       // which subsequently becomes continues humongous. If that
  2984       // happens, heap_region_containing() will return the bottom of the
  2985       // corresponding starts humongous region and the check below will
  2986       // not hold any more.
  2987       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  2988       guarantee(global_finger == global_hr->bottom(),
  2989                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  2990                         global_finger, HR_FORMAT_PARAMS(global_hr)));
  2993     // Verify the task fingers
  2994     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  2995     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  2996       CMTask* task = _tasks[i];
  2997       HeapWord* task_finger = task->finger();
  2998       if (task_finger != NULL && task_finger < _heap_end) {
  2999         // See above note on the global finger verification.
  3000         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3001         guarantee(task_finger == task_hr->bottom() ||
  3002                   !task_hr->in_collection_set(),
  3003                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3004                           task_finger, HR_FORMAT_PARAMS(task_hr)));
  3009 #endif // PRODUCT
  3011 // Aggregate the counting data that was constructed concurrently
  3012 // with marking.
  3013 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3014   G1CollectedHeap* _g1h;
  3015   ConcurrentMark* _cm;
  3016   CardTableModRefBS* _ct_bs;
  3017   BitMap* _cm_card_bm;
  3018   uint _max_worker_id;
  3020  public:
  3021   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3022                               BitMap* cm_card_bm,
  3023                               uint max_worker_id) :
  3024     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3025     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3026     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3028   bool doHeapRegion(HeapRegion* hr) {
  3029     if (hr->continuesHumongous()) {
  3030       // We will ignore these here and process them when their
  3031       // associated "starts humongous" region is processed.
  3032       // Note that we cannot rely on their associated
  3033       // "starts humongous" region to have their bit set to 1
  3034       // since, due to the region chunking in the parallel region
  3035       // iteration, a "continues humongous" region might be visited
  3036       // before its associated "starts humongous".
  3037       return false;
  3040     HeapWord* start = hr->bottom();
  3041     HeapWord* limit = hr->next_top_at_mark_start();
  3042     HeapWord* end = hr->end();
  3044     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3045            err_msg("Preconditions not met - "
  3046                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3047                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3048                    start, limit, hr->top(), hr->end()));
  3050     assert(hr->next_marked_bytes() == 0, "Precondition");
  3052     if (start == limit) {
  3053       // NTAMS of this region has not been set so nothing to do.
  3054       return false;
  3057     // 'start' should be in the heap.
  3058     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3059     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3060     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3062     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3063     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3064     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3066     // If ntams is not card aligned then we bump card bitmap index
  3067     // for limit so that we get the all the cards spanned by
  3068     // the object ending at ntams.
  3069     // Note: if this is the last region in the heap then ntams
  3070     // could be actually just beyond the end of the the heap;
  3071     // limit_idx will then  correspond to a (non-existent) card
  3072     // that is also outside the heap.
  3073     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3074       limit_idx += 1;
  3077     assert(limit_idx <= end_idx, "or else use atomics");
  3079     // Aggregate the "stripe" in the count data associated with hr.
  3080     uint hrs_index = hr->hrs_index();
  3081     size_t marked_bytes = 0;
  3083     for (uint i = 0; i < _max_worker_id; i += 1) {
  3084       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3085       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3087       // Fetch the marked_bytes in this region for task i and
  3088       // add it to the running total for this region.
  3089       marked_bytes += marked_bytes_array[hrs_index];
  3091       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3092       // into the global card bitmap.
  3093       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3095       while (scan_idx < limit_idx) {
  3096         assert(task_card_bm->at(scan_idx) == true, "should be");
  3097         _cm_card_bm->set_bit(scan_idx);
  3098         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3100         // BitMap::get_next_one_offset() can handle the case when
  3101         // its left_offset parameter is greater than its right_offset
  3102         // parameter. It does, however, have an early exit if
  3103         // left_offset == right_offset. So let's limit the value
  3104         // passed in for left offset here.
  3105         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3106         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3110     // Update the marked bytes for this region.
  3111     hr->add_to_marked_bytes(marked_bytes);
  3113     // Next heap region
  3114     return false;
  3116 };
  3118 class G1AggregateCountDataTask: public AbstractGangTask {
  3119 protected:
  3120   G1CollectedHeap* _g1h;
  3121   ConcurrentMark* _cm;
  3122   BitMap* _cm_card_bm;
  3123   uint _max_worker_id;
  3124   int _active_workers;
  3126 public:
  3127   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3128                            ConcurrentMark* cm,
  3129                            BitMap* cm_card_bm,
  3130                            uint max_worker_id,
  3131                            int n_workers) :
  3132     AbstractGangTask("Count Aggregation"),
  3133     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3134     _max_worker_id(max_worker_id),
  3135     _active_workers(n_workers) { }
  3137   void work(uint worker_id) {
  3138     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3140     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3141       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3142                                             _active_workers,
  3143                                             HeapRegion::AggregateCountClaimValue);
  3144     } else {
  3145       _g1h->heap_region_iterate(&cl);
  3148 };
  3151 void ConcurrentMark::aggregate_count_data() {
  3152   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3153                         _g1h->workers()->active_workers() :
  3154                         1);
  3156   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3157                                            _max_worker_id, n_workers);
  3159   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3160     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3161            "sanity check");
  3162     _g1h->set_par_threads(n_workers);
  3163     _g1h->workers()->run_task(&g1_par_agg_task);
  3164     _g1h->set_par_threads(0);
  3166     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3167            "sanity check");
  3168     _g1h->reset_heap_region_claim_values();
  3169   } else {
  3170     g1_par_agg_task.work(0);
  3174 // Clear the per-worker arrays used to store the per-region counting data
  3175 void ConcurrentMark::clear_all_count_data() {
  3176   // Clear the global card bitmap - it will be filled during
  3177   // liveness count aggregation (during remark) and the
  3178   // final counting task.
  3179   _card_bm.clear();
  3181   // Clear the global region bitmap - it will be filled as part
  3182   // of the final counting task.
  3183   _region_bm.clear();
  3185   uint max_regions = _g1h->max_regions();
  3186   assert(_max_worker_id > 0, "uninitialized");
  3188   for (uint i = 0; i < _max_worker_id; i += 1) {
  3189     BitMap* task_card_bm = count_card_bitmap_for(i);
  3190     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3192     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3193     assert(marked_bytes_array != NULL, "uninitialized");
  3195     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3196     task_card_bm->clear();
  3200 void ConcurrentMark::print_stats() {
  3201   if (verbose_stats()) {
  3202     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3203     for (size_t i = 0; i < _active_tasks; ++i) {
  3204       _tasks[i]->print_stats();
  3205       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3210 // abandon current marking iteration due to a Full GC
  3211 void ConcurrentMark::abort() {
  3212   // Clear all marks to force marking thread to do nothing
  3213   _nextMarkBitMap->clearAll();
  3214   // Clear the liveness counting data
  3215   clear_all_count_data();
  3216   // Empty mark stack
  3217   reset_marking_state();
  3218   for (uint i = 0; i < _max_worker_id; ++i) {
  3219     _tasks[i]->clear_region_fields();
  3221   _has_aborted = true;
  3223   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3224   satb_mq_set.abandon_partial_marking();
  3225   // This can be called either during or outside marking, we'll read
  3226   // the expected_active value from the SATB queue set.
  3227   satb_mq_set.set_active_all_threads(
  3228                                  false, /* new active value */
  3229                                  satb_mq_set.is_active() /* expected_active */);
  3232 static void print_ms_time_info(const char* prefix, const char* name,
  3233                                NumberSeq& ns) {
  3234   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3235                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3236   if (ns.num() > 0) {
  3237     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3238                            prefix, ns.sd(), ns.maximum());
  3242 void ConcurrentMark::print_summary_info() {
  3243   gclog_or_tty->print_cr(" Concurrent marking:");
  3244   print_ms_time_info("  ", "init marks", _init_times);
  3245   print_ms_time_info("  ", "remarks", _remark_times);
  3247     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3248     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3251   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3252   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3253                          _total_counting_time,
  3254                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3255                           (double)_cleanup_times.num()
  3256                          : 0.0));
  3257   if (G1ScrubRemSets) {
  3258     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3259                            _total_rs_scrub_time,
  3260                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3261                             (double)_cleanup_times.num()
  3262                            : 0.0));
  3264   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3265                          (_init_times.sum() + _remark_times.sum() +
  3266                           _cleanup_times.sum())/1000.0);
  3267   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3268                 "(%8.2f s marking).",
  3269                 cmThread()->vtime_accum(),
  3270                 cmThread()->vtime_mark_accum());
  3273 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3274   if (use_parallel_marking_threads()) {
  3275     _parallel_workers->print_worker_threads_on(st);
  3279 void ConcurrentMark::print_on_error(outputStream* st) const {
  3280   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3281       _prevMarkBitMap, _nextMarkBitMap);
  3282   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3283   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3286 // We take a break if someone is trying to stop the world.
  3287 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3288   if (should_yield()) {
  3289     if (worker_id == 0) {
  3290       _g1h->g1_policy()->record_concurrent_pause();
  3292     cmThread()->yield();
  3293     return true;
  3294   } else {
  3295     return false;
  3299 bool ConcurrentMark::should_yield() {
  3300   return cmThread()->should_yield();
  3303 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3304   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3305   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3308 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3309                                                  void* last) {
  3310   return containing_card_is_marked(start) &&
  3311          containing_card_is_marked(last);
  3314 #ifndef PRODUCT
  3315 // for debugging purposes
  3316 void ConcurrentMark::print_finger() {
  3317   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3318                          _heap_start, _heap_end, _finger);
  3319   for (uint i = 0; i < _max_worker_id; ++i) {
  3320     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
  3322   gclog_or_tty->print_cr("");
  3324 #endif
  3326 void CMTask::scan_object(oop obj) {
  3327   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3329   if (_cm->verbose_high()) {
  3330     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3331                            _worker_id, (void*) obj);
  3334   size_t obj_size = obj->size();
  3335   _words_scanned += obj_size;
  3337   obj->oop_iterate(_cm_oop_closure);
  3338   statsOnly( ++_objs_scanned );
  3339   check_limits();
  3342 // Closure for iteration over bitmaps
  3343 class CMBitMapClosure : public BitMapClosure {
  3344 private:
  3345   // the bitmap that is being iterated over
  3346   CMBitMap*                   _nextMarkBitMap;
  3347   ConcurrentMark*             _cm;
  3348   CMTask*                     _task;
  3350 public:
  3351   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3352     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3354   bool do_bit(size_t offset) {
  3355     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3356     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3357     assert( addr < _cm->finger(), "invariant");
  3359     statsOnly( _task->increase_objs_found_on_bitmap() );
  3360     assert(addr >= _task->finger(), "invariant");
  3362     // We move that task's local finger along.
  3363     _task->move_finger_to(addr);
  3365     _task->scan_object(oop(addr));
  3366     // we only partially drain the local queue and global stack
  3367     _task->drain_local_queue(true);
  3368     _task->drain_global_stack(true);
  3370     // if the has_aborted flag has been raised, we need to bail out of
  3371     // the iteration
  3372     return !_task->has_aborted();
  3374 };
  3376 // Closure for iterating over objects, currently only used for
  3377 // processing SATB buffers.
  3378 class CMObjectClosure : public ObjectClosure {
  3379 private:
  3380   CMTask* _task;
  3382 public:
  3383   void do_object(oop obj) {
  3384     _task->deal_with_reference(obj);
  3387   CMObjectClosure(CMTask* task) : _task(task) { }
  3388 };
  3390 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3391                                ConcurrentMark* cm,
  3392                                CMTask* task)
  3393   : _g1h(g1h), _cm(cm), _task(task) {
  3394   assert(_ref_processor == NULL, "should be initialized to NULL");
  3396   if (G1UseConcMarkReferenceProcessing) {
  3397     _ref_processor = g1h->ref_processor_cm();
  3398     assert(_ref_processor != NULL, "should not be NULL");
  3402 void CMTask::setup_for_region(HeapRegion* hr) {
  3403   // Separated the asserts so that we know which one fires.
  3404   assert(hr != NULL,
  3405         "claim_region() should have filtered out continues humongous regions");
  3406   assert(!hr->continuesHumongous(),
  3407         "claim_region() should have filtered out continues humongous regions");
  3409   if (_cm->verbose_low()) {
  3410     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3411                            _worker_id, hr);
  3414   _curr_region  = hr;
  3415   _finger       = hr->bottom();
  3416   update_region_limit();
  3419 void CMTask::update_region_limit() {
  3420   HeapRegion* hr            = _curr_region;
  3421   HeapWord* bottom          = hr->bottom();
  3422   HeapWord* limit           = hr->next_top_at_mark_start();
  3424   if (limit == bottom) {
  3425     if (_cm->verbose_low()) {
  3426       gclog_or_tty->print_cr("[%u] found an empty region "
  3427                              "["PTR_FORMAT", "PTR_FORMAT")",
  3428                              _worker_id, bottom, limit);
  3430     // The region was collected underneath our feet.
  3431     // We set the finger to bottom to ensure that the bitmap
  3432     // iteration that will follow this will not do anything.
  3433     // (this is not a condition that holds when we set the region up,
  3434     // as the region is not supposed to be empty in the first place)
  3435     _finger = bottom;
  3436   } else if (limit >= _region_limit) {
  3437     assert(limit >= _finger, "peace of mind");
  3438   } else {
  3439     assert(limit < _region_limit, "only way to get here");
  3440     // This can happen under some pretty unusual circumstances.  An
  3441     // evacuation pause empties the region underneath our feet (NTAMS
  3442     // at bottom). We then do some allocation in the region (NTAMS
  3443     // stays at bottom), followed by the region being used as a GC
  3444     // alloc region (NTAMS will move to top() and the objects
  3445     // originally below it will be grayed). All objects now marked in
  3446     // the region are explicitly grayed, if below the global finger,
  3447     // and we do not need in fact to scan anything else. So, we simply
  3448     // set _finger to be limit to ensure that the bitmap iteration
  3449     // doesn't do anything.
  3450     _finger = limit;
  3453   _region_limit = limit;
  3456 void CMTask::giveup_current_region() {
  3457   assert(_curr_region != NULL, "invariant");
  3458   if (_cm->verbose_low()) {
  3459     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3460                            _worker_id, _curr_region);
  3462   clear_region_fields();
  3465 void CMTask::clear_region_fields() {
  3466   // Values for these three fields that indicate that we're not
  3467   // holding on to a region.
  3468   _curr_region   = NULL;
  3469   _finger        = NULL;
  3470   _region_limit  = NULL;
  3473 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3474   if (cm_oop_closure == NULL) {
  3475     assert(_cm_oop_closure != NULL, "invariant");
  3476   } else {
  3477     assert(_cm_oop_closure == NULL, "invariant");
  3479   _cm_oop_closure = cm_oop_closure;
  3482 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3483   guarantee(nextMarkBitMap != NULL, "invariant");
  3485   if (_cm->verbose_low()) {
  3486     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3489   _nextMarkBitMap                = nextMarkBitMap;
  3490   clear_region_fields();
  3492   _calls                         = 0;
  3493   _elapsed_time_ms               = 0.0;
  3494   _termination_time_ms           = 0.0;
  3495   _termination_start_time_ms     = 0.0;
  3497 #if _MARKING_STATS_
  3498   _local_pushes                  = 0;
  3499   _local_pops                    = 0;
  3500   _local_max_size                = 0;
  3501   _objs_scanned                  = 0;
  3502   _global_pushes                 = 0;
  3503   _global_pops                   = 0;
  3504   _global_max_size               = 0;
  3505   _global_transfers_to           = 0;
  3506   _global_transfers_from         = 0;
  3507   _regions_claimed               = 0;
  3508   _objs_found_on_bitmap          = 0;
  3509   _satb_buffers_processed        = 0;
  3510   _steal_attempts                = 0;
  3511   _steals                        = 0;
  3512   _aborted                       = 0;
  3513   _aborted_overflow              = 0;
  3514   _aborted_cm_aborted            = 0;
  3515   _aborted_yield                 = 0;
  3516   _aborted_timed_out             = 0;
  3517   _aborted_satb                  = 0;
  3518   _aborted_termination           = 0;
  3519 #endif // _MARKING_STATS_
  3522 bool CMTask::should_exit_termination() {
  3523   regular_clock_call();
  3524   // This is called when we are in the termination protocol. We should
  3525   // quit if, for some reason, this task wants to abort or the global
  3526   // stack is not empty (this means that we can get work from it).
  3527   return !_cm->mark_stack_empty() || has_aborted();
  3530 void CMTask::reached_limit() {
  3531   assert(_words_scanned >= _words_scanned_limit ||
  3532          _refs_reached >= _refs_reached_limit ,
  3533          "shouldn't have been called otherwise");
  3534   regular_clock_call();
  3537 void CMTask::regular_clock_call() {
  3538   if (has_aborted()) return;
  3540   // First, we need to recalculate the words scanned and refs reached
  3541   // limits for the next clock call.
  3542   recalculate_limits();
  3544   // During the regular clock call we do the following
  3546   // (1) If an overflow has been flagged, then we abort.
  3547   if (_cm->has_overflown()) {
  3548     set_has_aborted();
  3549     return;
  3552   // If we are not concurrent (i.e. we're doing remark) we don't need
  3553   // to check anything else. The other steps are only needed during
  3554   // the concurrent marking phase.
  3555   if (!concurrent()) return;
  3557   // (2) If marking has been aborted for Full GC, then we also abort.
  3558   if (_cm->has_aborted()) {
  3559     set_has_aborted();
  3560     statsOnly( ++_aborted_cm_aborted );
  3561     return;
  3564   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3566   // (3) If marking stats are enabled, then we update the step history.
  3567 #if _MARKING_STATS_
  3568   if (_words_scanned >= _words_scanned_limit) {
  3569     ++_clock_due_to_scanning;
  3571   if (_refs_reached >= _refs_reached_limit) {
  3572     ++_clock_due_to_marking;
  3575   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3576   _interval_start_time_ms = curr_time_ms;
  3577   _all_clock_intervals_ms.add(last_interval_ms);
  3579   if (_cm->verbose_medium()) {
  3580       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3581                         "scanned = %d%s, refs reached = %d%s",
  3582                         _worker_id, last_interval_ms,
  3583                         _words_scanned,
  3584                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3585                         _refs_reached,
  3586                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3588 #endif // _MARKING_STATS_
  3590   // (4) We check whether we should yield. If we have to, then we abort.
  3591   if (_cm->should_yield()) {
  3592     // We should yield. To do this we abort the task. The caller is
  3593     // responsible for yielding.
  3594     set_has_aborted();
  3595     statsOnly( ++_aborted_yield );
  3596     return;
  3599   // (5) We check whether we've reached our time quota. If we have,
  3600   // then we abort.
  3601   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3602   if (elapsed_time_ms > _time_target_ms) {
  3603     set_has_aborted();
  3604     _has_timed_out = true;
  3605     statsOnly( ++_aborted_timed_out );
  3606     return;
  3609   // (6) Finally, we check whether there are enough completed STAB
  3610   // buffers available for processing. If there are, we abort.
  3611   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3612   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3613     if (_cm->verbose_low()) {
  3614       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3615                              _worker_id);
  3617     // we do need to process SATB buffers, we'll abort and restart
  3618     // the marking task to do so
  3619     set_has_aborted();
  3620     statsOnly( ++_aborted_satb );
  3621     return;
  3625 void CMTask::recalculate_limits() {
  3626   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3627   _words_scanned_limit      = _real_words_scanned_limit;
  3629   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3630   _refs_reached_limit       = _real_refs_reached_limit;
  3633 void CMTask::decrease_limits() {
  3634   // This is called when we believe that we're going to do an infrequent
  3635   // operation which will increase the per byte scanned cost (i.e. move
  3636   // entries to/from the global stack). It basically tries to decrease the
  3637   // scanning limit so that the clock is called earlier.
  3639   if (_cm->verbose_medium()) {
  3640     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3643   _words_scanned_limit = _real_words_scanned_limit -
  3644     3 * words_scanned_period / 4;
  3645   _refs_reached_limit  = _real_refs_reached_limit -
  3646     3 * refs_reached_period / 4;
  3649 void CMTask::move_entries_to_global_stack() {
  3650   // local array where we'll store the entries that will be popped
  3651   // from the local queue
  3652   oop buffer[global_stack_transfer_size];
  3654   int n = 0;
  3655   oop obj;
  3656   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3657     buffer[n] = obj;
  3658     ++n;
  3661   if (n > 0) {
  3662     // we popped at least one entry from the local queue
  3664     statsOnly( ++_global_transfers_to; _local_pops += n );
  3666     if (!_cm->mark_stack_push(buffer, n)) {
  3667       if (_cm->verbose_low()) {
  3668         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3669                                _worker_id);
  3671       set_has_aborted();
  3672     } else {
  3673       // the transfer was successful
  3675       if (_cm->verbose_medium()) {
  3676         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3677                                _worker_id, n);
  3679       statsOnly( int tmp_size = _cm->mark_stack_size();
  3680                  if (tmp_size > _global_max_size) {
  3681                    _global_max_size = tmp_size;
  3683                  _global_pushes += n );
  3687   // this operation was quite expensive, so decrease the limits
  3688   decrease_limits();
  3691 void CMTask::get_entries_from_global_stack() {
  3692   // local array where we'll store the entries that will be popped
  3693   // from the global stack.
  3694   oop buffer[global_stack_transfer_size];
  3695   int n;
  3696   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3697   assert(n <= global_stack_transfer_size,
  3698          "we should not pop more than the given limit");
  3699   if (n > 0) {
  3700     // yes, we did actually pop at least one entry
  3702     statsOnly( ++_global_transfers_from; _global_pops += n );
  3703     if (_cm->verbose_medium()) {
  3704       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3705                              _worker_id, n);
  3707     for (int i = 0; i < n; ++i) {
  3708       bool success = _task_queue->push(buffer[i]);
  3709       // We only call this when the local queue is empty or under a
  3710       // given target limit. So, we do not expect this push to fail.
  3711       assert(success, "invariant");
  3714     statsOnly( int tmp_size = _task_queue->size();
  3715                if (tmp_size > _local_max_size) {
  3716                  _local_max_size = tmp_size;
  3718                _local_pushes += n );
  3721   // this operation was quite expensive, so decrease the limits
  3722   decrease_limits();
  3725 void CMTask::drain_local_queue(bool partially) {
  3726   if (has_aborted()) return;
  3728   // Decide what the target size is, depending whether we're going to
  3729   // drain it partially (so that other tasks can steal if they run out
  3730   // of things to do) or totally (at the very end).
  3731   size_t target_size;
  3732   if (partially) {
  3733     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3734   } else {
  3735     target_size = 0;
  3738   if (_task_queue->size() > target_size) {
  3739     if (_cm->verbose_high()) {
  3740       gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
  3741                              _worker_id, target_size);
  3744     oop obj;
  3745     bool ret = _task_queue->pop_local(obj);
  3746     while (ret) {
  3747       statsOnly( ++_local_pops );
  3749       if (_cm->verbose_high()) {
  3750         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3751                                (void*) obj);
  3754       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3755       assert(!_g1h->is_on_master_free_list(
  3756                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3758       scan_object(obj);
  3760       if (_task_queue->size() <= target_size || has_aborted()) {
  3761         ret = false;
  3762       } else {
  3763         ret = _task_queue->pop_local(obj);
  3767     if (_cm->verbose_high()) {
  3768       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3769                              _worker_id, _task_queue->size());
  3774 void CMTask::drain_global_stack(bool partially) {
  3775   if (has_aborted()) return;
  3777   // We have a policy to drain the local queue before we attempt to
  3778   // drain the global stack.
  3779   assert(partially || _task_queue->size() == 0, "invariant");
  3781   // Decide what the target size is, depending whether we're going to
  3782   // drain it partially (so that other tasks can steal if they run out
  3783   // of things to do) or totally (at the very end).  Notice that,
  3784   // because we move entries from the global stack in chunks or
  3785   // because another task might be doing the same, we might in fact
  3786   // drop below the target. But, this is not a problem.
  3787   size_t target_size;
  3788   if (partially) {
  3789     target_size = _cm->partial_mark_stack_size_target();
  3790   } else {
  3791     target_size = 0;
  3794   if (_cm->mark_stack_size() > target_size) {
  3795     if (_cm->verbose_low()) {
  3796       gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
  3797                              _worker_id, target_size);
  3800     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3801       get_entries_from_global_stack();
  3802       drain_local_queue(partially);
  3805     if (_cm->verbose_low()) {
  3806       gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
  3807                              _worker_id, _cm->mark_stack_size());
  3812 // SATB Queue has several assumptions on whether to call the par or
  3813 // non-par versions of the methods. this is why some of the code is
  3814 // replicated. We should really get rid of the single-threaded version
  3815 // of the code to simplify things.
  3816 void CMTask::drain_satb_buffers() {
  3817   if (has_aborted()) return;
  3819   // We set this so that the regular clock knows that we're in the
  3820   // middle of draining buffers and doesn't set the abort flag when it
  3821   // notices that SATB buffers are available for draining. It'd be
  3822   // very counter productive if it did that. :-)
  3823   _draining_satb_buffers = true;
  3825   CMObjectClosure oc(this);
  3826   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3827   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3828     satb_mq_set.set_par_closure(_worker_id, &oc);
  3829   } else {
  3830     satb_mq_set.set_closure(&oc);
  3833   // This keeps claiming and applying the closure to completed buffers
  3834   // until we run out of buffers or we need to abort.
  3835   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3836     while (!has_aborted() &&
  3837            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  3838       if (_cm->verbose_medium()) {
  3839         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3841       statsOnly( ++_satb_buffers_processed );
  3842       regular_clock_call();
  3844   } else {
  3845     while (!has_aborted() &&
  3846            satb_mq_set.apply_closure_to_completed_buffer()) {
  3847       if (_cm->verbose_medium()) {
  3848         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3850       statsOnly( ++_satb_buffers_processed );
  3851       regular_clock_call();
  3855   if (!concurrent() && !has_aborted()) {
  3856     // We should only do this during remark.
  3857     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3858       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
  3859     } else {
  3860       satb_mq_set.iterate_closure_all_threads();
  3864   _draining_satb_buffers = false;
  3866   assert(has_aborted() ||
  3867          concurrent() ||
  3868          satb_mq_set.completed_buffers_num() == 0, "invariant");
  3870   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3871     satb_mq_set.set_par_closure(_worker_id, NULL);
  3872   } else {
  3873     satb_mq_set.set_closure(NULL);
  3876   // again, this was a potentially expensive operation, decrease the
  3877   // limits to get the regular clock call early
  3878   decrease_limits();
  3881 void CMTask::print_stats() {
  3882   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  3883                          _worker_id, _calls);
  3884   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  3885                          _elapsed_time_ms, _termination_time_ms);
  3886   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3887                          _step_times_ms.num(), _step_times_ms.avg(),
  3888                          _step_times_ms.sd());
  3889   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  3890                          _step_times_ms.maximum(), _step_times_ms.sum());
  3892 #if _MARKING_STATS_
  3893   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3894                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  3895                          _all_clock_intervals_ms.sd());
  3896   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  3897                          _all_clock_intervals_ms.maximum(),
  3898                          _all_clock_intervals_ms.sum());
  3899   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  3900                          _clock_due_to_scanning, _clock_due_to_marking);
  3901   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  3902                          _objs_scanned, _objs_found_on_bitmap);
  3903   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  3904                          _local_pushes, _local_pops, _local_max_size);
  3905   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  3906                          _global_pushes, _global_pops, _global_max_size);
  3907   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  3908                          _global_transfers_to,_global_transfers_from);
  3909   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  3910   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  3911   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  3912                          _steal_attempts, _steals);
  3913   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  3914   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  3915                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  3916   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  3917                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  3918 #endif // _MARKING_STATS_
  3921 /*****************************************************************************
  3923     The do_marking_step(time_target_ms, ...) method is the building
  3924     block of the parallel marking framework. It can be called in parallel
  3925     with other invocations of do_marking_step() on different tasks
  3926     (but only one per task, obviously) and concurrently with the
  3927     mutator threads, or during remark, hence it eliminates the need
  3928     for two versions of the code. When called during remark, it will
  3929     pick up from where the task left off during the concurrent marking
  3930     phase. Interestingly, tasks are also claimable during evacuation
  3931     pauses too, since do_marking_step() ensures that it aborts before
  3932     it needs to yield.
  3934     The data structures that it uses to do marking work are the
  3935     following:
  3937       (1) Marking Bitmap. If there are gray objects that appear only
  3938       on the bitmap (this happens either when dealing with an overflow
  3939       or when the initial marking phase has simply marked the roots
  3940       and didn't push them on the stack), then tasks claim heap
  3941       regions whose bitmap they then scan to find gray objects. A
  3942       global finger indicates where the end of the last claimed region
  3943       is. A local finger indicates how far into the region a task has
  3944       scanned. The two fingers are used to determine how to gray an
  3945       object (i.e. whether simply marking it is OK, as it will be
  3946       visited by a task in the future, or whether it needs to be also
  3947       pushed on a stack).
  3949       (2) Local Queue. The local queue of the task which is accessed
  3950       reasonably efficiently by the task. Other tasks can steal from
  3951       it when they run out of work. Throughout the marking phase, a
  3952       task attempts to keep its local queue short but not totally
  3953       empty, so that entries are available for stealing by other
  3954       tasks. Only when there is no more work, a task will totally
  3955       drain its local queue.
  3957       (3) Global Mark Stack. This handles local queue overflow. During
  3958       marking only sets of entries are moved between it and the local
  3959       queues, as access to it requires a mutex and more fine-grain
  3960       interaction with it which might cause contention. If it
  3961       overflows, then the marking phase should restart and iterate
  3962       over the bitmap to identify gray objects. Throughout the marking
  3963       phase, tasks attempt to keep the global mark stack at a small
  3964       length but not totally empty, so that entries are available for
  3965       popping by other tasks. Only when there is no more work, tasks
  3966       will totally drain the global mark stack.
  3968       (4) SATB Buffer Queue. This is where completed SATB buffers are
  3969       made available. Buffers are regularly removed from this queue
  3970       and scanned for roots, so that the queue doesn't get too
  3971       long. During remark, all completed buffers are processed, as
  3972       well as the filled in parts of any uncompleted buffers.
  3974     The do_marking_step() method tries to abort when the time target
  3975     has been reached. There are a few other cases when the
  3976     do_marking_step() method also aborts:
  3978       (1) When the marking phase has been aborted (after a Full GC).
  3980       (2) When a global overflow (on the global stack) has been
  3981       triggered. Before the task aborts, it will actually sync up with
  3982       the other tasks to ensure that all the marking data structures
  3983       (local queues, stacks, fingers etc.)  are re-initialized so that
  3984       when do_marking_step() completes, the marking phase can
  3985       immediately restart.
  3987       (3) When enough completed SATB buffers are available. The
  3988       do_marking_step() method only tries to drain SATB buffers right
  3989       at the beginning. So, if enough buffers are available, the
  3990       marking step aborts and the SATB buffers are processed at
  3991       the beginning of the next invocation.
  3993       (4) To yield. when we have to yield then we abort and yield
  3994       right at the end of do_marking_step(). This saves us from a lot
  3995       of hassle as, by yielding we might allow a Full GC. If this
  3996       happens then objects will be compacted underneath our feet, the
  3997       heap might shrink, etc. We save checking for this by just
  3998       aborting and doing the yield right at the end.
  4000     From the above it follows that the do_marking_step() method should
  4001     be called in a loop (or, otherwise, regularly) until it completes.
  4003     If a marking step completes without its has_aborted() flag being
  4004     true, it means it has completed the current marking phase (and
  4005     also all other marking tasks have done so and have all synced up).
  4007     A method called regular_clock_call() is invoked "regularly" (in
  4008     sub ms intervals) throughout marking. It is this clock method that
  4009     checks all the abort conditions which were mentioned above and
  4010     decides when the task should abort. A work-based scheme is used to
  4011     trigger this clock method: when the number of object words the
  4012     marking phase has scanned or the number of references the marking
  4013     phase has visited reach a given limit. Additional invocations to
  4014     the method clock have been planted in a few other strategic places
  4015     too. The initial reason for the clock method was to avoid calling
  4016     vtime too regularly, as it is quite expensive. So, once it was in
  4017     place, it was natural to piggy-back all the other conditions on it
  4018     too and not constantly check them throughout the code.
  4020     If do_termination is true then do_marking_step will enter its
  4021     termination protocol.
  4023     The value of is_serial must be true when do_marking_step is being
  4024     called serially (i.e. by the VMThread) and do_marking_step should
  4025     skip any synchronization in the termination and overflow code.
  4026     Examples include the serial remark code and the serial reference
  4027     processing closures.
  4029     The value of is_serial must be false when do_marking_step is
  4030     being called by any of the worker threads in a work gang.
  4031     Examples include the concurrent marking code (CMMarkingTask),
  4032     the MT remark code, and the MT reference processing closures.
  4034  *****************************************************************************/
  4036 void CMTask::do_marking_step(double time_target_ms,
  4037                              bool do_termination,
  4038                              bool is_serial) {
  4039   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4040   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4042   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4043   assert(_task_queues != NULL, "invariant");
  4044   assert(_task_queue != NULL, "invariant");
  4045   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4047   assert(!_claimed,
  4048          "only one thread should claim this task at any one time");
  4050   // OK, this doesn't safeguard again all possible scenarios, as it is
  4051   // possible for two threads to set the _claimed flag at the same
  4052   // time. But it is only for debugging purposes anyway and it will
  4053   // catch most problems.
  4054   _claimed = true;
  4056   _start_time_ms = os::elapsedVTime() * 1000.0;
  4057   statsOnly( _interval_start_time_ms = _start_time_ms );
  4059   // If do_stealing is true then do_marking_step will attempt to
  4060   // steal work from the other CMTasks. It only makes sense to
  4061   // enable stealing when the termination protocol is enabled
  4062   // and do_marking_step() is not being called serially.
  4063   bool do_stealing = do_termination && !is_serial;
  4065   double diff_prediction_ms =
  4066     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4067   _time_target_ms = time_target_ms - diff_prediction_ms;
  4069   // set up the variables that are used in the work-based scheme to
  4070   // call the regular clock method
  4071   _words_scanned = 0;
  4072   _refs_reached  = 0;
  4073   recalculate_limits();
  4075   // clear all flags
  4076   clear_has_aborted();
  4077   _has_timed_out = false;
  4078   _draining_satb_buffers = false;
  4080   ++_calls;
  4082   if (_cm->verbose_low()) {
  4083     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4084                            "target = %1.2lfms >>>>>>>>>>",
  4085                            _worker_id, _calls, _time_target_ms);
  4088   // Set up the bitmap and oop closures. Anything that uses them is
  4089   // eventually called from this method, so it is OK to allocate these
  4090   // statically.
  4091   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4092   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4093   set_cm_oop_closure(&cm_oop_closure);
  4095   if (_cm->has_overflown()) {
  4096     // This can happen if the mark stack overflows during a GC pause
  4097     // and this task, after a yield point, restarts. We have to abort
  4098     // as we need to get into the overflow protocol which happens
  4099     // right at the end of this task.
  4100     set_has_aborted();
  4103   // First drain any available SATB buffers. After this, we will not
  4104   // look at SATB buffers before the next invocation of this method.
  4105   // If enough completed SATB buffers are queued up, the regular clock
  4106   // will abort this task so that it restarts.
  4107   drain_satb_buffers();
  4108   // ...then partially drain the local queue and the global stack
  4109   drain_local_queue(true);
  4110   drain_global_stack(true);
  4112   do {
  4113     if (!has_aborted() && _curr_region != NULL) {
  4114       // This means that we're already holding on to a region.
  4115       assert(_finger != NULL, "if region is not NULL, then the finger "
  4116              "should not be NULL either");
  4118       // We might have restarted this task after an evacuation pause
  4119       // which might have evacuated the region we're holding on to
  4120       // underneath our feet. Let's read its limit again to make sure
  4121       // that we do not iterate over a region of the heap that
  4122       // contains garbage (update_region_limit() will also move
  4123       // _finger to the start of the region if it is found empty).
  4124       update_region_limit();
  4125       // We will start from _finger not from the start of the region,
  4126       // as we might be restarting this task after aborting half-way
  4127       // through scanning this region. In this case, _finger points to
  4128       // the address where we last found a marked object. If this is a
  4129       // fresh region, _finger points to start().
  4130       MemRegion mr = MemRegion(_finger, _region_limit);
  4132       if (_cm->verbose_low()) {
  4133         gclog_or_tty->print_cr("[%u] we're scanning part "
  4134                                "["PTR_FORMAT", "PTR_FORMAT") "
  4135                                "of region "HR_FORMAT,
  4136                                _worker_id, _finger, _region_limit,
  4137                                HR_FORMAT_PARAMS(_curr_region));
  4140       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4141              "humongous regions should go around loop once only");
  4143       // Some special cases:
  4144       // If the memory region is empty, we can just give up the region.
  4145       // If the current region is humongous then we only need to check
  4146       // the bitmap for the bit associated with the start of the object,
  4147       // scan the object if it's live, and give up the region.
  4148       // Otherwise, let's iterate over the bitmap of the part of the region
  4149       // that is left.
  4150       // If the iteration is successful, give up the region.
  4151       if (mr.is_empty()) {
  4152         giveup_current_region();
  4153         regular_clock_call();
  4154       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4155         if (_nextMarkBitMap->isMarked(mr.start())) {
  4156           // The object is marked - apply the closure
  4157           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4158           bitmap_closure.do_bit(offset);
  4160         // Even if this task aborted while scanning the humongous object
  4161         // we can (and should) give up the current region.
  4162         giveup_current_region();
  4163         regular_clock_call();
  4164       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4165         giveup_current_region();
  4166         regular_clock_call();
  4167       } else {
  4168         assert(has_aborted(), "currently the only way to do so");
  4169         // The only way to abort the bitmap iteration is to return
  4170         // false from the do_bit() method. However, inside the
  4171         // do_bit() method we move the _finger to point to the
  4172         // object currently being looked at. So, if we bail out, we
  4173         // have definitely set _finger to something non-null.
  4174         assert(_finger != NULL, "invariant");
  4176         // Region iteration was actually aborted. So now _finger
  4177         // points to the address of the object we last scanned. If we
  4178         // leave it there, when we restart this task, we will rescan
  4179         // the object. It is easy to avoid this. We move the finger by
  4180         // enough to point to the next possible object header (the
  4181         // bitmap knows by how much we need to move it as it knows its
  4182         // granularity).
  4183         assert(_finger < _region_limit, "invariant");
  4184         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4185         // Check if bitmap iteration was aborted while scanning the last object
  4186         if (new_finger >= _region_limit) {
  4187           giveup_current_region();
  4188         } else {
  4189           move_finger_to(new_finger);
  4193     // At this point we have either completed iterating over the
  4194     // region we were holding on to, or we have aborted.
  4196     // We then partially drain the local queue and the global stack.
  4197     // (Do we really need this?)
  4198     drain_local_queue(true);
  4199     drain_global_stack(true);
  4201     // Read the note on the claim_region() method on why it might
  4202     // return NULL with potentially more regions available for
  4203     // claiming and why we have to check out_of_regions() to determine
  4204     // whether we're done or not.
  4205     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4206       // We are going to try to claim a new region. We should have
  4207       // given up on the previous one.
  4208       // Separated the asserts so that we know which one fires.
  4209       assert(_curr_region  == NULL, "invariant");
  4210       assert(_finger       == NULL, "invariant");
  4211       assert(_region_limit == NULL, "invariant");
  4212       if (_cm->verbose_low()) {
  4213         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4215       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4216       if (claimed_region != NULL) {
  4217         // Yes, we managed to claim one
  4218         statsOnly( ++_regions_claimed );
  4220         if (_cm->verbose_low()) {
  4221           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4222                                  "region "PTR_FORMAT,
  4223                                  _worker_id, claimed_region);
  4226         setup_for_region(claimed_region);
  4227         assert(_curr_region == claimed_region, "invariant");
  4229       // It is important to call the regular clock here. It might take
  4230       // a while to claim a region if, for example, we hit a large
  4231       // block of empty regions. So we need to call the regular clock
  4232       // method once round the loop to make sure it's called
  4233       // frequently enough.
  4234       regular_clock_call();
  4237     if (!has_aborted() && _curr_region == NULL) {
  4238       assert(_cm->out_of_regions(),
  4239              "at this point we should be out of regions");
  4241   } while ( _curr_region != NULL && !has_aborted());
  4243   if (!has_aborted()) {
  4244     // We cannot check whether the global stack is empty, since other
  4245     // tasks might be pushing objects to it concurrently.
  4246     assert(_cm->out_of_regions(),
  4247            "at this point we should be out of regions");
  4249     if (_cm->verbose_low()) {
  4250       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4253     // Try to reduce the number of available SATB buffers so that
  4254     // remark has less work to do.
  4255     drain_satb_buffers();
  4258   // Since we've done everything else, we can now totally drain the
  4259   // local queue and global stack.
  4260   drain_local_queue(false);
  4261   drain_global_stack(false);
  4263   // Attempt at work stealing from other task's queues.
  4264   if (do_stealing && !has_aborted()) {
  4265     // We have not aborted. This means that we have finished all that
  4266     // we could. Let's try to do some stealing...
  4268     // We cannot check whether the global stack is empty, since other
  4269     // tasks might be pushing objects to it concurrently.
  4270     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4271            "only way to reach here");
  4273     if (_cm->verbose_low()) {
  4274       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4277     while (!has_aborted()) {
  4278       oop obj;
  4279       statsOnly( ++_steal_attempts );
  4281       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4282         if (_cm->verbose_medium()) {
  4283           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4284                                  _worker_id, (void*) obj);
  4287         statsOnly( ++_steals );
  4289         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4290                "any stolen object should be marked");
  4291         scan_object(obj);
  4293         // And since we're towards the end, let's totally drain the
  4294         // local queue and global stack.
  4295         drain_local_queue(false);
  4296         drain_global_stack(false);
  4297       } else {
  4298         break;
  4303   // If we are about to wrap up and go into termination, check if we
  4304   // should raise the overflow flag.
  4305   if (do_termination && !has_aborted()) {
  4306     if (_cm->force_overflow()->should_force()) {
  4307       _cm->set_has_overflown();
  4308       regular_clock_call();
  4312   // We still haven't aborted. Now, let's try to get into the
  4313   // termination protocol.
  4314   if (do_termination && !has_aborted()) {
  4315     // We cannot check whether the global stack is empty, since other
  4316     // tasks might be concurrently pushing objects on it.
  4317     // Separated the asserts so that we know which one fires.
  4318     assert(_cm->out_of_regions(), "only way to reach here");
  4319     assert(_task_queue->size() == 0, "only way to reach here");
  4321     if (_cm->verbose_low()) {
  4322       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4325     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4327     // The CMTask class also extends the TerminatorTerminator class,
  4328     // hence its should_exit_termination() method will also decide
  4329     // whether to exit the termination protocol or not.
  4330     bool finished = (is_serial ||
  4331                      _cm->terminator()->offer_termination(this));
  4332     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4333     _termination_time_ms +=
  4334       termination_end_time_ms - _termination_start_time_ms;
  4336     if (finished) {
  4337       // We're all done.
  4339       if (_worker_id == 0) {
  4340         // let's allow task 0 to do this
  4341         if (concurrent()) {
  4342           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4343           // we need to set this to false before the next
  4344           // safepoint. This way we ensure that the marking phase
  4345           // doesn't observe any more heap expansions.
  4346           _cm->clear_concurrent_marking_in_progress();
  4350       // We can now guarantee that the global stack is empty, since
  4351       // all other tasks have finished. We separated the guarantees so
  4352       // that, if a condition is false, we can immediately find out
  4353       // which one.
  4354       guarantee(_cm->out_of_regions(), "only way to reach here");
  4355       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4356       guarantee(_task_queue->size() == 0, "only way to reach here");
  4357       guarantee(!_cm->has_overflown(), "only way to reach here");
  4358       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4360       if (_cm->verbose_low()) {
  4361         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4363     } else {
  4364       // Apparently there's more work to do. Let's abort this task. It
  4365       // will restart it and we can hopefully find more things to do.
  4367       if (_cm->verbose_low()) {
  4368         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4369                                _worker_id);
  4372       set_has_aborted();
  4373       statsOnly( ++_aborted_termination );
  4377   // Mainly for debugging purposes to make sure that a pointer to the
  4378   // closure which was statically allocated in this frame doesn't
  4379   // escape it by accident.
  4380   set_cm_oop_closure(NULL);
  4381   double end_time_ms = os::elapsedVTime() * 1000.0;
  4382   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4383   // Update the step history.
  4384   _step_times_ms.add(elapsed_time_ms);
  4386   if (has_aborted()) {
  4387     // The task was aborted for some reason.
  4389     statsOnly( ++_aborted );
  4391     if (_has_timed_out) {
  4392       double diff_ms = elapsed_time_ms - _time_target_ms;
  4393       // Keep statistics of how well we did with respect to hitting
  4394       // our target only if we actually timed out (if we aborted for
  4395       // other reasons, then the results might get skewed).
  4396       _marking_step_diffs_ms.add(diff_ms);
  4399     if (_cm->has_overflown()) {
  4400       // This is the interesting one. We aborted because a global
  4401       // overflow was raised. This means we have to restart the
  4402       // marking phase and start iterating over regions. However, in
  4403       // order to do this we have to make sure that all tasks stop
  4404       // what they are doing and re-initialise in a safe manner. We
  4405       // will achieve this with the use of two barrier sync points.
  4407       if (_cm->verbose_low()) {
  4408         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4411       if (!is_serial) {
  4412         // We only need to enter the sync barrier if being called
  4413         // from a parallel context
  4414         _cm->enter_first_sync_barrier(_worker_id);
  4416         // When we exit this sync barrier we know that all tasks have
  4417         // stopped doing marking work. So, it's now safe to
  4418         // re-initialise our data structures. At the end of this method,
  4419         // task 0 will clear the global data structures.
  4422       statsOnly( ++_aborted_overflow );
  4424       // We clear the local state of this task...
  4425       clear_region_fields();
  4427       if (!is_serial) {
  4428         // ...and enter the second barrier.
  4429         _cm->enter_second_sync_barrier(_worker_id);
  4431       // At this point, if we're during the concurrent phase of
  4432       // marking, everything has been re-initialized and we're
  4433       // ready to restart.
  4436     if (_cm->verbose_low()) {
  4437       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4438                              "elapsed = %1.2lfms <<<<<<<<<<",
  4439                              _worker_id, _time_target_ms, elapsed_time_ms);
  4440       if (_cm->has_aborted()) {
  4441         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4442                                _worker_id);
  4445   } else {
  4446     if (_cm->verbose_low()) {
  4447       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4448                              "elapsed = %1.2lfms <<<<<<<<<<",
  4449                              _worker_id, _time_target_ms, elapsed_time_ms);
  4453   _claimed = false;
  4456 CMTask::CMTask(uint worker_id,
  4457                ConcurrentMark* cm,
  4458                size_t* marked_bytes,
  4459                BitMap* card_bm,
  4460                CMTaskQueue* task_queue,
  4461                CMTaskQueueSet* task_queues)
  4462   : _g1h(G1CollectedHeap::heap()),
  4463     _worker_id(worker_id), _cm(cm),
  4464     _claimed(false),
  4465     _nextMarkBitMap(NULL), _hash_seed(17),
  4466     _task_queue(task_queue),
  4467     _task_queues(task_queues),
  4468     _cm_oop_closure(NULL),
  4469     _marked_bytes_array(marked_bytes),
  4470     _card_bm(card_bm) {
  4471   guarantee(task_queue != NULL, "invariant");
  4472   guarantee(task_queues != NULL, "invariant");
  4474   statsOnly( _clock_due_to_scanning = 0;
  4475              _clock_due_to_marking  = 0 );
  4477   _marking_step_diffs_ms.add(0.5);
  4480 // These are formatting macros that are used below to ensure
  4481 // consistent formatting. The *_H_* versions are used to format the
  4482 // header for a particular value and they should be kept consistent
  4483 // with the corresponding macro. Also note that most of the macros add
  4484 // the necessary white space (as a prefix) which makes them a bit
  4485 // easier to compose.
  4487 // All the output lines are prefixed with this string to be able to
  4488 // identify them easily in a large log file.
  4489 #define G1PPRL_LINE_PREFIX            "###"
  4491 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4492 #ifdef _LP64
  4493 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4494 #else // _LP64
  4495 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4496 #endif // _LP64
  4498 // For per-region info
  4499 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4500 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4501 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4502 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4503 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4504 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4506 // For summary info
  4507 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4508 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4509 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4510 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4512 G1PrintRegionLivenessInfoClosure::
  4513 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4514   : _out(out),
  4515     _total_used_bytes(0), _total_capacity_bytes(0),
  4516     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4517     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4518     _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  4519   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4520   MemRegion g1_committed = g1h->g1_committed();
  4521   MemRegion g1_reserved = g1h->g1_reserved();
  4522   double now = os::elapsedTime();
  4524   // Print the header of the output.
  4525   _out->cr();
  4526   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4527   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4528                  G1PPRL_SUM_ADDR_FORMAT("committed")
  4529                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4530                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4531                  g1_committed.start(), g1_committed.end(),
  4532                  g1_reserved.start(), g1_reserved.end(),
  4533                  HeapRegion::GrainBytes);
  4534   _out->print_cr(G1PPRL_LINE_PREFIX);
  4535   _out->print_cr(G1PPRL_LINE_PREFIX
  4536                  G1PPRL_TYPE_H_FORMAT
  4537                  G1PPRL_ADDR_BASE_H_FORMAT
  4538                  G1PPRL_BYTE_H_FORMAT
  4539                  G1PPRL_BYTE_H_FORMAT
  4540                  G1PPRL_BYTE_H_FORMAT
  4541                  G1PPRL_DOUBLE_H_FORMAT,
  4542                  "type", "address-range",
  4543                  "used", "prev-live", "next-live", "gc-eff");
  4544   _out->print_cr(G1PPRL_LINE_PREFIX
  4545                  G1PPRL_TYPE_H_FORMAT
  4546                  G1PPRL_ADDR_BASE_H_FORMAT
  4547                  G1PPRL_BYTE_H_FORMAT
  4548                  G1PPRL_BYTE_H_FORMAT
  4549                  G1PPRL_BYTE_H_FORMAT
  4550                  G1PPRL_DOUBLE_H_FORMAT,
  4551                  "", "",
  4552                  "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
  4555 // It takes as a parameter a reference to one of the _hum_* fields, it
  4556 // deduces the corresponding value for a region in a humongous region
  4557 // series (either the region size, or what's left if the _hum_* field
  4558 // is < the region size), and updates the _hum_* field accordingly.
  4559 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4560   size_t bytes = 0;
  4561   // The > 0 check is to deal with the prev and next live bytes which
  4562   // could be 0.
  4563   if (*hum_bytes > 0) {
  4564     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4565     *hum_bytes -= bytes;
  4567   return bytes;
  4570 // It deduces the values for a region in a humongous region series
  4571 // from the _hum_* fields and updates those accordingly. It assumes
  4572 // that that _hum_* fields have already been set up from the "starts
  4573 // humongous" region and we visit the regions in address order.
  4574 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4575                                                      size_t* capacity_bytes,
  4576                                                      size_t* prev_live_bytes,
  4577                                                      size_t* next_live_bytes) {
  4578   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4579   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4580   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4581   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4582   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4585 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4586   const char* type = "";
  4587   HeapWord* bottom       = r->bottom();
  4588   HeapWord* end          = r->end();
  4589   size_t capacity_bytes  = r->capacity();
  4590   size_t used_bytes      = r->used();
  4591   size_t prev_live_bytes = r->live_bytes();
  4592   size_t next_live_bytes = r->next_live_bytes();
  4593   double gc_eff          = r->gc_efficiency();
  4594   if (r->used() == 0) {
  4595     type = "FREE";
  4596   } else if (r->is_survivor()) {
  4597     type = "SURV";
  4598   } else if (r->is_young()) {
  4599     type = "EDEN";
  4600   } else if (r->startsHumongous()) {
  4601     type = "HUMS";
  4603     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4604            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4605            "they should have been zeroed after the last time we used them");
  4606     // Set up the _hum_* fields.
  4607     _hum_capacity_bytes  = capacity_bytes;
  4608     _hum_used_bytes      = used_bytes;
  4609     _hum_prev_live_bytes = prev_live_bytes;
  4610     _hum_next_live_bytes = next_live_bytes;
  4611     get_hum_bytes(&used_bytes, &capacity_bytes,
  4612                   &prev_live_bytes, &next_live_bytes);
  4613     end = bottom + HeapRegion::GrainWords;
  4614   } else if (r->continuesHumongous()) {
  4615     type = "HUMC";
  4616     get_hum_bytes(&used_bytes, &capacity_bytes,
  4617                   &prev_live_bytes, &next_live_bytes);
  4618     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4619   } else {
  4620     type = "OLD";
  4623   _total_used_bytes      += used_bytes;
  4624   _total_capacity_bytes  += capacity_bytes;
  4625   _total_prev_live_bytes += prev_live_bytes;
  4626   _total_next_live_bytes += next_live_bytes;
  4628   // Print a line for this particular region.
  4629   _out->print_cr(G1PPRL_LINE_PREFIX
  4630                  G1PPRL_TYPE_FORMAT
  4631                  G1PPRL_ADDR_BASE_FORMAT
  4632                  G1PPRL_BYTE_FORMAT
  4633                  G1PPRL_BYTE_FORMAT
  4634                  G1PPRL_BYTE_FORMAT
  4635                  G1PPRL_DOUBLE_FORMAT,
  4636                  type, bottom, end,
  4637                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
  4639   return false;
  4642 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4643   // Print the footer of the output.
  4644   _out->print_cr(G1PPRL_LINE_PREFIX);
  4645   _out->print_cr(G1PPRL_LINE_PREFIX
  4646                  " SUMMARY"
  4647                  G1PPRL_SUM_MB_FORMAT("capacity")
  4648                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4649                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4650                  G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
  4651                  bytes_to_mb(_total_capacity_bytes),
  4652                  bytes_to_mb(_total_used_bytes),
  4653                  perc(_total_used_bytes, _total_capacity_bytes),
  4654                  bytes_to_mb(_total_prev_live_bytes),
  4655                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4656                  bytes_to_mb(_total_next_live_bytes),
  4657                  perc(_total_next_live_bytes, _total_capacity_bytes));
  4658   _out->cr();

mercurial