src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp

Thu, 09 Apr 2015 15:59:26 +0200

author
mlarsson
date
Thu, 09 Apr 2015 15:59:26 +0200
changeset 7687
af8f16ac392c
parent 6267
a034dc5e910b
child 6876
710a3c8b516e
permissions
-rw-r--r--

8066771: Refactor VM GC operations caused by allocation failure
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "gc_implementation/shared/gcStats.hpp"
    30 #include "gc_implementation/shared/gcUtil.hpp"
    31 #include "gc_interface/gcCause.hpp"
    33 // This class keeps statistical information and computes the
    34 // optimal free space for both the young and old generation
    35 // based on current application characteristics (based on gc cost
    36 // and application footprint).
    37 //
    38 // It also computes an optimal tenuring threshold between the young
    39 // and old generations, so as to equalize the cost of collections
    40 // of those generations, as well as optimial survivor space sizes
    41 // for the young generation.
    42 //
    43 // While this class is specifically intended for a generational system
    44 // consisting of a young gen (containing an Eden and two semi-spaces)
    45 // and a tenured gen, as well as a perm gen for reflective data, it
    46 // makes NO references to specific generations.
    47 //
    48 // 05/02/2003 Update
    49 // The 1.5 policy makes use of data gathered for the costs of GC on
    50 // specific generations.  That data does reference specific
    51 // generation.  Also diagnostics specific to generations have
    52 // been added.
    54 // Forward decls
    55 class elapsedTimer;
    57 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
    58  friend class PSGCAdaptivePolicyCounters;
    59  private:
    60   // These values are used to record decisions made during the
    61   // policy.  For example, if the young generation was decreased
    62   // to decrease the GC cost of minor collections the value
    63   // decrease_young_gen_for_throughput_true is used.
    65   // Last calculated sizes, in bytes, and aligned
    66   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
    68   // Time statistics
    69   AdaptivePaddedAverage* _avg_major_pause;
    71   // Footprint statistics
    72   AdaptiveWeightedAverage* _avg_base_footprint;
    74   // Statistical data gathered for GC
    75   GCStats _gc_stats;
    77   size_t _survivor_size_limit;   // Limit in bytes of survivor size
    78   const double _collection_cost_margin_fraction;
    80   // Variable for estimating the major and minor pause times.
    81   // These variables represent linear least-squares fits of
    82   // the data.
    83   //   major pause time vs. old gen size
    84   LinearLeastSquareFit* _major_pause_old_estimator;
    85   //   major pause time vs. young gen size
    86   LinearLeastSquareFit* _major_pause_young_estimator;
    89   // These record the most recent collection times.  They
    90   // are available as an alternative to using the averages
    91   // for making ergonomic decisions.
    92   double _latest_major_mutator_interval_seconds;
    94   const size_t _space_alignment; // alignment for eden, survivors
    96   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
    98   // The amount of live data in the heap at the last full GC, used
    99   // as a baseline to help us determine when we need to perform the
   100   // next full GC.
   101   size_t _live_at_last_full_gc;
   103   // decrease/increase the old generation for minor pause time
   104   int _change_old_gen_for_min_pauses;
   106   // increase/decrease the young generation for major pause time
   107   int _change_young_gen_for_maj_pauses;
   110   // Flag indicating that the adaptive policy is ready to use
   111   bool _old_gen_policy_is_ready;
   113   // Changing the generation sizing depends on the data that is
   114   // gathered about the effects of changes on the pause times and
   115   // throughput.  These variable count the number of data points
   116   // gathered.  The policy may use these counters as a threshhold
   117   // for reliable data.
   118   julong _young_gen_change_for_major_pause_count;
   120   // To facilitate faster growth at start up, supplement the normal
   121   // growth percentage for the young gen eden and the
   122   // old gen space for promotion with these value which decay
   123   // with increasing collections.
   124   uint _young_gen_size_increment_supplement;
   125   uint _old_gen_size_increment_supplement;
   127   // The number of bytes absorbed from eden into the old gen by moving the
   128   // boundary over live data.
   129   size_t _bytes_absorbed_from_eden;
   131  private:
   133   // Accessors
   134   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
   135   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
   137   // Change the young generation size to achieve a minor GC pause time goal
   138   void adjust_promo_for_minor_pause_time(bool is_full_gc,
   139                                    size_t* desired_promo_size_ptr,
   140                                    size_t* desired_eden_size_ptr);
   141   void adjust_eden_for_minor_pause_time(bool is_full_gc,
   142                                    size_t* desired_eden_size_ptr);
   143   // Change the generation sizes to achieve a GC pause time goal
   144   // Returned sizes are not necessarily aligned.
   145   void adjust_promo_for_pause_time(bool is_full_gc,
   146                          size_t* desired_promo_size_ptr,
   147                          size_t* desired_eden_size_ptr);
   148   void adjust_eden_for_pause_time(bool is_full_gc,
   149                          size_t* desired_promo_size_ptr,
   150                          size_t* desired_eden_size_ptr);
   151   // Change the generation sizes to achieve an application throughput goal
   152   // Returned sizes are not necessarily aligned.
   153   void adjust_promo_for_throughput(bool is_full_gc,
   154                              size_t* desired_promo_size_ptr);
   155   void adjust_eden_for_throughput(bool is_full_gc,
   156                              size_t* desired_eden_size_ptr);
   157   // Change the generation sizes to achieve minimum footprint
   158   // Returned sizes are not aligned.
   159   size_t adjust_promo_for_footprint(size_t desired_promo_size,
   160                                     size_t desired_total);
   161   size_t adjust_eden_for_footprint(size_t desired_promo_size,
   162                                    size_t desired_total);
   164   // Size in bytes for an increment or decrement of eden.
   165   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   166   virtual size_t eden_decrement(size_t cur_eden);
   167   size_t eden_decrement_aligned_down(size_t cur_eden);
   168   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
   170   // Size in bytes for an increment or decrement of the promotion area
   171   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
   172   virtual size_t promo_decrement(size_t cur_promo);
   173   size_t promo_decrement_aligned_down(size_t cur_promo);
   174   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
   176   // Returns a change that has been scaled down.  Result
   177   // is not aligned.  (If useful, move to some shared
   178   // location.)
   179   size_t scale_down(size_t change, double part, double total);
   181  protected:
   182   // Time accessors
   184   // Footprint accessors
   185   size_t live_space() const {
   186     return (size_t)(avg_base_footprint()->average() +
   187                     avg_young_live()->average() +
   188                     avg_old_live()->average());
   189   }
   190   size_t free_space() const {
   191     return _eden_size + _promo_size;
   192   }
   194   void set_promo_size(size_t new_size) {
   195     _promo_size = new_size;
   196   }
   197   void set_survivor_size(size_t new_size) {
   198     _survivor_size = new_size;
   199   }
   201   // Update estimators
   202   void update_minor_pause_old_estimator(double minor_pause_in_ms);
   204   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
   206  public:
   207   // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
   208   size_t eden_increment_aligned_up(size_t cur_eden);
   209   size_t eden_increment_aligned_down(size_t cur_eden);
   210   size_t promo_increment_aligned_up(size_t cur_promo);
   211   size_t promo_increment_aligned_down(size_t cur_promo);
   213   virtual size_t eden_increment(size_t cur_eden);
   214   virtual size_t promo_increment(size_t cur_promo);
   216   // Accessors for use by performance counters
   217   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
   218     return _gc_stats.avg_promoted();
   219   }
   220   AdaptiveWeightedAverage* avg_base_footprint() const {
   221     return _avg_base_footprint;
   222   }
   224   // Input arguments are initial free space sizes for young and old
   225   // generations, the initial survivor space size, the
   226   // alignment values and the pause & throughput goals.
   227   //
   228   // NEEDS_CLEANUP this is a singleton object
   229   PSAdaptiveSizePolicy(size_t init_eden_size,
   230                        size_t init_promo_size,
   231                        size_t init_survivor_size,
   232                        size_t space_alignment,
   233                        double gc_pause_goal_sec,
   234                        double gc_minor_pause_goal_sec,
   235                        uint gc_time_ratio);
   237   // Methods indicating events of interest to the adaptive size policy,
   238   // called by GC algorithms. It is the responsibility of users of this
   239   // policy to call these methods at the correct times!
   240   void major_collection_begin();
   241   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
   243   void tenured_allocation(size_t size) {
   244     _avg_pretenured->sample(size);
   245   }
   247   // Accessors
   248   // NEEDS_CLEANUP   should use sizes.hpp
   250   static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
   252   size_t calculated_old_free_size_in_bytes() const;
   254   size_t average_old_live_in_bytes() const {
   255     return (size_t) avg_old_live()->average();
   256   }
   258   size_t average_promoted_in_bytes() const {
   259     return (size_t)avg_promoted()->average();
   260   }
   262   size_t padded_average_promoted_in_bytes() const {
   263     return (size_t)avg_promoted()->padded_average();
   264   }
   266   int change_young_gen_for_maj_pauses() {
   267     return _change_young_gen_for_maj_pauses;
   268   }
   269   void set_change_young_gen_for_maj_pauses(int v) {
   270     _change_young_gen_for_maj_pauses = v;
   271   }
   273   int change_old_gen_for_min_pauses() {
   274     return _change_old_gen_for_min_pauses;
   275   }
   276   void set_change_old_gen_for_min_pauses(int v) {
   277     _change_old_gen_for_min_pauses = v;
   278   }
   280   // Return true if the old generation size was changed
   281   // to try to reach a pause time goal.
   282   bool old_gen_changed_for_pauses() {
   283     bool result = _change_old_gen_for_maj_pauses != 0 ||
   284                   _change_old_gen_for_min_pauses != 0;
   285     return result;
   286   }
   288   // Return true if the young generation size was changed
   289   // to try to reach a pause time goal.
   290   bool young_gen_changed_for_pauses() {
   291     bool result = _change_young_gen_for_min_pauses != 0 ||
   292                   _change_young_gen_for_maj_pauses != 0;
   293     return result;
   294   }
   295   // end flags for pause goal
   297   // Return true if the old generation size was changed
   298   // to try to reach a throughput goal.
   299   bool old_gen_changed_for_throughput() {
   300     bool result = _change_old_gen_for_throughput != 0;
   301     return result;
   302   }
   304   // Return true if the young generation size was changed
   305   // to try to reach a throughput goal.
   306   bool young_gen_changed_for_throughput() {
   307     bool result = _change_young_gen_for_throughput != 0;
   308     return result;
   309   }
   311   int decrease_for_footprint() { return _decrease_for_footprint; }
   314   // Accessors for estimators.  The slope of the linear fit is
   315   // currently all that is used for making decisions.
   317   LinearLeastSquareFit* major_pause_old_estimator() {
   318     return _major_pause_old_estimator;
   319   }
   321   LinearLeastSquareFit* major_pause_young_estimator() {
   322     return _major_pause_young_estimator;
   323   }
   326   virtual void clear_generation_free_space_flags();
   328   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
   329   float major_pause_young_slope() {
   330     return _major_pause_young_estimator->slope();
   331   }
   332   float major_collection_slope() { return _major_collection_estimator->slope();}
   334   bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
   336   // Given the amount of live data in the heap, should we
   337   // perform a Full GC?
   338   bool should_full_GC(size_t live_in_old_gen);
   340   // Calculates optimal (free) space sizes for both the young and old
   341   // generations.  Stores results in _eden_size and _promo_size.
   342   // Takes current used space in all generations as input, as well
   343   // as an indication if a full gc has just been performed, for use
   344   // in deciding if an OOM error should be thrown.
   345   void compute_generations_free_space(size_t young_live,
   346                                       size_t eden_live,
   347                                       size_t old_live,
   348                                       size_t cur_eden,  // current eden in bytes
   349                                       size_t max_old_gen_size,
   350                                       size_t max_eden_size,
   351                                       bool   is_full_gc);
   353   void compute_eden_space_size(size_t young_live,
   354                                size_t eden_live,
   355                                size_t cur_eden,  // current eden in bytes
   356                                size_t max_eden_size,
   357                                bool   is_full_gc);
   359   void compute_old_gen_free_space(size_t old_live,
   360                                              size_t cur_eden,  // current eden in bytes
   361                                              size_t max_old_gen_size,
   362                                              bool   is_full_gc);
   364   // Calculates new survivor space size;  returns a new tenuring threshold
   365   // value. Stores new survivor size in _survivor_size.
   366   uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
   367                                                  uint    tenuring_threshold,
   368                                                  size_t survivor_limit);
   370   // Return the maximum size of a survivor space if the young generation were of
   371   // size gen_size.
   372   size_t max_survivor_size(size_t gen_size) {
   373     // Never allow the target survivor size to grow more than MinSurvivorRatio
   374     // of the young generation size.  We cannot grow into a two semi-space
   375     // system, with Eden zero sized.  Even if the survivor space grows, from()
   376     // might grow by moving the bottom boundary "down" -- so from space will
   377     // remain almost full anyway (top() will be near end(), but there will be a
   378     // large filler object at the bottom).
   379     const size_t sz = gen_size / MinSurvivorRatio;
   380     const size_t alignment = _space_alignment;
   381     return sz > alignment ? align_size_down(sz, alignment) : alignment;
   382   }
   384   size_t live_at_last_full_gc() {
   385     return _live_at_last_full_gc;
   386   }
   388   size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
   389   void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
   391   void set_bytes_absorbed_from_eden(size_t val) {
   392     _bytes_absorbed_from_eden = val;
   393   }
   395   // Update averages that are always used (even
   396   // if adaptive sizing is turned off).
   397   void update_averages(bool is_survivor_overflow,
   398                        size_t survived,
   399                        size_t promoted);
   401   // Printing support
   402   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   404   // Decay the supplemental growth additive.
   405   void decay_supplemental_growth(bool is_full_gc);
   406 };
   408 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP

mercurial