src/share/vm/memory/space.cpp

Fri, 07 Sep 2012 12:04:16 -0400

author
coleenp
date
Fri, 07 Sep 2012 12:04:16 -0400
changeset 4047
aed758eda82a
parent 4037
da91efe96a93
child 4300
2fc0334f613a
permissions
-rw-r--r--

7195833: NPG: Rename instanceClassLoaderKlass, instanceRefKlass and instanceMirrorKlass
Summary: Simple renaming to be consistent with instanceKlass->InstanceKlass renaming
Reviewed-by: stefank, jmasa

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "gc_implementation/shared/liveRange.hpp"
    29 #include "gc_implementation/shared/markSweep.hpp"
    30 #include "gc_implementation/shared/spaceDecorator.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/defNewGeneration.hpp"
    33 #include "memory/genCollectedHeap.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/oop.inline2.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/safepoint.hpp"
    41 #include "utilities/copy.hpp"
    42 #include "utilities/globalDefinitions.hpp"
    44 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    45 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    47 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    48                                                 HeapWord* top_obj) {
    49   if (top_obj != NULL) {
    50     if (_sp->block_is_obj(top_obj)) {
    51       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    52         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    53           // An arrayOop is starting on the dirty card - since we do exact
    54           // store checks for objArrays we are done.
    55         } else {
    56           // Otherwise, it is possible that the object starting on the dirty
    57           // card spans the entire card, and that the store happened on a
    58           // later card.  Figure out where the object ends.
    59           // Use the block_size() method of the space over which
    60           // the iteration is being done.  That space (e.g. CMS) may have
    61           // specific requirements on object sizes which will
    62           // be reflected in the block_size() method.
    63           top = top_obj + oop(top_obj)->size();
    64         }
    65       }
    66     } else {
    67       top = top_obj;
    68     }
    69   } else {
    70     assert(top == _sp->end(), "only case where top_obj == NULL");
    71   }
    72   return top;
    73 }
    75 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    76                                             HeapWord* bottom,
    77                                             HeapWord* top) {
    78   // 1. Blocks may or may not be objects.
    79   // 2. Even when a block_is_obj(), it may not entirely
    80   //    occupy the block if the block quantum is larger than
    81   //    the object size.
    82   // We can and should try to optimize by calling the non-MemRegion
    83   // version of oop_iterate() for all but the extremal objects
    84   // (for which we need to call the MemRegion version of
    85   // oop_iterate()) To be done post-beta XXX
    86   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    87     // As in the case of contiguous space above, we'd like to
    88     // just use the value returned by oop_iterate to increment the
    89     // current pointer; unfortunately, that won't work in CMS because
    90     // we'd need an interface change (it seems) to have the space
    91     // "adjust the object size" (for instance pad it up to its
    92     // block alignment or minimum block size restrictions. XXX
    93     if (_sp->block_is_obj(bottom) &&
    94         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    95       oop(bottom)->oop_iterate(_cl, mr);
    96     }
    97   }
    98 }
   100 // We get called with "mr" representing the dirty region
   101 // that we want to process. Because of imprecise marking,
   102 // we may need to extend the incoming "mr" to the right,
   103 // and scan more. However, because we may already have
   104 // scanned some of that extended region, we may need to
   105 // trim its right-end back some so we do not scan what
   106 // we (or another worker thread) may already have scanned
   107 // or planning to scan.
   108 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
   110   // Some collectors need to do special things whenever their dirty
   111   // cards are processed. For instance, CMS must remember mutator updates
   112   // (i.e. dirty cards) so as to re-scan mutated objects.
   113   // Such work can be piggy-backed here on dirty card scanning, so as to make
   114   // it slightly more efficient than doing a complete non-detructive pre-scan
   115   // of the card table.
   116   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
   117   if (pCl != NULL) {
   118     pCl->do_MemRegion(mr);
   119   }
   121   HeapWord* bottom = mr.start();
   122   HeapWord* last = mr.last();
   123   HeapWord* top = mr.end();
   124   HeapWord* bottom_obj;
   125   HeapWord* top_obj;
   127   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   128          _precision == CardTableModRefBS::Precise,
   129          "Only ones we deal with for now.");
   131   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   132          _cl->idempotent() || _last_bottom == NULL ||
   133          top <= _last_bottom,
   134          "Not decreasing");
   135   NOT_PRODUCT(_last_bottom = mr.start());
   137   bottom_obj = _sp->block_start(bottom);
   138   top_obj    = _sp->block_start(last);
   140   assert(bottom_obj <= bottom, "just checking");
   141   assert(top_obj    <= top,    "just checking");
   143   // Given what we think is the top of the memory region and
   144   // the start of the object at the top, get the actual
   145   // value of the top.
   146   top = get_actual_top(top, top_obj);
   148   // If the previous call did some part of this region, don't redo.
   149   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   150       _min_done != NULL &&
   151       _min_done < top) {
   152     top = _min_done;
   153   }
   155   // Top may have been reset, and in fact may be below bottom,
   156   // e.g. the dirty card region is entirely in a now free object
   157   // -- something that could happen with a concurrent sweeper.
   158   bottom = MIN2(bottom, top);
   159   MemRegion extended_mr = MemRegion(bottom, top);
   160   assert(bottom <= top &&
   161          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   162           _min_done == NULL ||
   163           top <= _min_done),
   164          "overlap!");
   166   // Walk the region if it is not empty; otherwise there is nothing to do.
   167   if (!extended_mr.is_empty()) {
   168     walk_mem_region(extended_mr, bottom_obj, top);
   169   }
   171   // An idempotent closure might be applied in any order, so we don't
   172   // record a _min_done for it.
   173   if (!_cl->idempotent()) {
   174     _min_done = bottom;
   175   } else {
   176     assert(_min_done == _last_explicit_min_done,
   177            "Don't update _min_done for idempotent cl");
   178   }
   179 }
   181 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
   182                                           CardTableModRefBS::PrecisionStyle precision,
   183                                           HeapWord* boundary) {
   184   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   185 }
   187 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   188                                                HeapWord* top_obj) {
   189   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   190     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   191       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   192         // An arrayOop is starting on the dirty card - since we do exact
   193         // store checks for objArrays we are done.
   194       } else {
   195         // Otherwise, it is possible that the object starting on the dirty
   196         // card spans the entire card, and that the store happened on a
   197         // later card.  Figure out where the object ends.
   198         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   199           "Block size and object size mismatch");
   200         top = top_obj + oop(top_obj)->size();
   201       }
   202     }
   203   } else {
   204     top = (_sp->toContiguousSpace())->top();
   205   }
   206   return top;
   207 }
   209 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   210                                       HeapWord* bottom,
   211                                       HeapWord* top) {
   212   // Note that this assumption won't hold if we have a concurrent
   213   // collector in this space, which may have freed up objects after
   214   // they were dirtied and before the stop-the-world GC that is
   215   // examining cards here.
   216   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   218   if (_boundary != NULL) {
   219     // We have a boundary outside of which we don't want to look
   220     // at objects, so create a filtering closure around the
   221     // oop closure before walking the region.
   222     FilteringClosure filter(_boundary, _cl);
   223     walk_mem_region_with_cl(mr, bottom, top, &filter);
   224   } else {
   225     // No boundary, simply walk the heap with the oop closure.
   226     walk_mem_region_with_cl(mr, bottom, top, _cl);
   227   }
   229 }
   231 // We must replicate this so that the static type of "FilteringClosure"
   232 // (see above) is apparent at the oop_iterate calls.
   233 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   234 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   235                                                    HeapWord* bottom,    \
   236                                                    HeapWord* top,       \
   237                                                    ClosureType* cl) {   \
   238   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   239   if (bottom < top) {                                                   \
   240     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   241     while (next_obj < top) {                                            \
   242       /* Bottom lies entirely below top, so we can call the */          \
   243       /* non-memRegion version of oop_iterate below. */                 \
   244       oop(bottom)->oop_iterate(cl);                                     \
   245       bottom = next_obj;                                                \
   246       next_obj = bottom + oop(bottom)->size();                          \
   247     }                                                                   \
   248     /* Last object. */                                                  \
   249     oop(bottom)->oop_iterate(cl, mr);                                   \
   250   }                                                                     \
   251 }
   253 // (There are only two of these, rather than N, because the split is due
   254 // only to the introduction of the FilteringClosure, a local part of the
   255 // impl of this abstraction.)
   256 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
   257 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   259 DirtyCardToOopClosure*
   260 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
   261                              CardTableModRefBS::PrecisionStyle precision,
   262                              HeapWord* boundary) {
   263   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   264 }
   266 void Space::initialize(MemRegion mr,
   267                        bool clear_space,
   268                        bool mangle_space) {
   269   HeapWord* bottom = mr.start();
   270   HeapWord* end    = mr.end();
   271   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   272          "invalid space boundaries");
   273   set_bottom(bottom);
   274   set_end(end);
   275   if (clear_space) clear(mangle_space);
   276 }
   278 void Space::clear(bool mangle_space) {
   279   if (ZapUnusedHeapArea && mangle_space) {
   280     mangle_unused_area();
   281   }
   282 }
   284 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   285     _concurrent_iteration_safe_limit(NULL) {
   286   _mangler = new GenSpaceMangler(this);
   287 }
   289 ContiguousSpace::~ContiguousSpace() {
   290   delete _mangler;
   291 }
   293 void ContiguousSpace::initialize(MemRegion mr,
   294                                  bool clear_space,
   295                                  bool mangle_space)
   296 {
   297   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   298   set_concurrent_iteration_safe_limit(top());
   299 }
   301 void ContiguousSpace::clear(bool mangle_space) {
   302   set_top(bottom());
   303   set_saved_mark();
   304   CompactibleSpace::clear(mangle_space);
   305 }
   307 bool ContiguousSpace::is_in(const void* p) const {
   308   return _bottom <= p && p < _top;
   309 }
   311 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   312   return p >= _top;
   313 }
   315 void OffsetTableContigSpace::clear(bool mangle_space) {
   316   ContiguousSpace::clear(mangle_space);
   317   _offsets.initialize_threshold();
   318 }
   320 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   321   Space::set_bottom(new_bottom);
   322   _offsets.set_bottom(new_bottom);
   323 }
   325 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   326   // Space should not advertize an increase in size
   327   // until after the underlying offest table has been enlarged.
   328   _offsets.resize(pointer_delta(new_end, bottom()));
   329   Space::set_end(new_end);
   330 }
   332 #ifndef PRODUCT
   334 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   335   mangler()->set_top_for_allocations(v);
   336 }
   337 void ContiguousSpace::set_top_for_allocations() {
   338   mangler()->set_top_for_allocations(top());
   339 }
   340 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   341   mangler()->check_mangled_unused_area(limit);
   342 }
   344 void ContiguousSpace::check_mangled_unused_area_complete() {
   345   mangler()->check_mangled_unused_area_complete();
   346 }
   348 // Mangled only the unused space that has not previously
   349 // been mangled and that has not been allocated since being
   350 // mangled.
   351 void ContiguousSpace::mangle_unused_area() {
   352   mangler()->mangle_unused_area();
   353 }
   354 void ContiguousSpace::mangle_unused_area_complete() {
   355   mangler()->mangle_unused_area_complete();
   356 }
   357 void ContiguousSpace::mangle_region(MemRegion mr) {
   358   // Although this method uses SpaceMangler::mangle_region() which
   359   // is not specific to a space, the when the ContiguousSpace version
   360   // is called, it is always with regard to a space and this
   361   // bounds checking is appropriate.
   362   MemRegion space_mr(bottom(), end());
   363   assert(space_mr.contains(mr), "Mangling outside space");
   364   SpaceMangler::mangle_region(mr);
   365 }
   366 #endif  // NOT_PRODUCT
   368 void CompactibleSpace::initialize(MemRegion mr,
   369                                   bool clear_space,
   370                                   bool mangle_space) {
   371   Space::initialize(mr, clear_space, mangle_space);
   372   set_compaction_top(bottom());
   373   _next_compaction_space = NULL;
   374 }
   376 void CompactibleSpace::clear(bool mangle_space) {
   377   Space::clear(mangle_space);
   378   _compaction_top = bottom();
   379 }
   381 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   382                                     CompactPoint* cp, HeapWord* compact_top) {
   383   // q is alive
   384   // First check if we should switch compaction space
   385   assert(this == cp->space, "'this' should be current compaction space.");
   386   size_t compaction_max_size = pointer_delta(end(), compact_top);
   387   while (size > compaction_max_size) {
   388     // switch to next compaction space
   389     cp->space->set_compaction_top(compact_top);
   390     cp->space = cp->space->next_compaction_space();
   391     if (cp->space == NULL) {
   392       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   393       assert(cp->gen != NULL, "compaction must succeed");
   394       cp->space = cp->gen->first_compaction_space();
   395       assert(cp->space != NULL, "generation must have a first compaction space");
   396     }
   397     compact_top = cp->space->bottom();
   398     cp->space->set_compaction_top(compact_top);
   399     cp->threshold = cp->space->initialize_threshold();
   400     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   401   }
   403   // store the forwarding pointer into the mark word
   404   if ((HeapWord*)q != compact_top) {
   405     q->forward_to(oop(compact_top));
   406     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   407   } else {
   408     // if the object isn't moving we can just set the mark to the default
   409     // mark and handle it specially later on.
   410     q->init_mark();
   411     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   412   }
   414   VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
   415   compact_top += size;
   417   // we need to update the offset table so that the beginnings of objects can be
   418   // found during scavenge.  Note that we are updating the offset table based on
   419   // where the object will be once the compaction phase finishes.
   420   if (compact_top > cp->threshold)
   421     cp->threshold =
   422       cp->space->cross_threshold(compact_top - size, compact_top);
   423   return compact_top;
   424 }
   427 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   428                                         HeapWord* q, size_t deadlength) {
   429   if (allowed_deadspace_words >= deadlength) {
   430     allowed_deadspace_words -= deadlength;
   431     CollectedHeap::fill_with_object(q, deadlength);
   432     oop(q)->set_mark(oop(q)->mark()->set_marked());
   433     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   434     // Recall that we required "q == compaction_top".
   435     return true;
   436   } else {
   437     allowed_deadspace_words = 0;
   438     return false;
   439   }
   440 }
   442 #define block_is_always_obj(q) true
   443 #define obj_size(q) oop(q)->size()
   444 #define adjust_obj_size(s) s
   446 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   447   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   448 }
   450 // Faster object search.
   451 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   452   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   453 }
   455 void Space::adjust_pointers() {
   456   // adjust all the interior pointers to point at the new locations of objects
   457   // Used by MarkSweep::mark_sweep_phase3()
   459   // First check to see if there is any work to be done.
   460   if (used() == 0) {
   461     return;  // Nothing to do.
   462   }
   464   // Otherwise...
   465   HeapWord* q = bottom();
   466   HeapWord* t = end();
   468   debug_only(HeapWord* prev_q = NULL);
   469   while (q < t) {
   470     if (oop(q)->is_gc_marked()) {
   471       // q is alive
   473       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
   474       // point all the oops to the new location
   475       size_t size = oop(q)->adjust_pointers();
   476       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
   478       debug_only(prev_q = q);
   479       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
   481       q += size;
   482     } else {
   483       // q is not a live object.  But we're not in a compactible space,
   484       // So we don't have live ranges.
   485       debug_only(prev_q = q);
   486       q += block_size(q);
   487       assert(q > prev_q, "we should be moving forward through memory");
   488     }
   489   }
   490   assert(q == t, "just checking");
   491 }
   493 void CompactibleSpace::adjust_pointers() {
   494   // Check first is there is any work to do.
   495   if (used() == 0) {
   496     return;   // Nothing to do.
   497   }
   499   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   500 }
   502 void CompactibleSpace::compact() {
   503   SCAN_AND_COMPACT(obj_size);
   504 }
   506 void Space::print_short() const { print_short_on(tty); }
   508 void Space::print_short_on(outputStream* st) const {
   509   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   510               (int) ((double) used() * 100 / capacity()));
   511 }
   513 void Space::print() const { print_on(tty); }
   515 void Space::print_on(outputStream* st) const {
   516   print_short_on(st);
   517   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   518                 bottom(), end());
   519 }
   521 void ContiguousSpace::print_on(outputStream* st) const {
   522   print_short_on(st);
   523   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   524                 bottom(), top(), end());
   525 }
   527 void OffsetTableContigSpace::print_on(outputStream* st) const {
   528   print_short_on(st);
   529   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   530                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   531               bottom(), top(), _offsets.threshold(), end());
   532 }
   534 void ContiguousSpace::verify() const {
   535   HeapWord* p = bottom();
   536   HeapWord* t = top();
   537   HeapWord* prev_p = NULL;
   538   while (p < t) {
   539     oop(p)->verify();
   540     prev_p = p;
   541     p += oop(p)->size();
   542   }
   543   guarantee(p == top(), "end of last object must match end of space");
   544   if (top() != end()) {
   545     guarantee(top() == block_start_const(end()-1) &&
   546               top() == block_start_const(top()),
   547               "top should be start of unallocated block, if it exists");
   548   }
   549 }
   551 void Space::oop_iterate(ExtendedOopClosure* blk) {
   552   ObjectToOopClosure blk2(blk);
   553   object_iterate(&blk2);
   554 }
   556 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   557   guarantee(false, "NYI");
   558   return bottom();
   559 }
   561 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   562                                           ObjectClosureCareful* cl) {
   563   guarantee(false, "NYI");
   564   return bottom();
   565 }
   568 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   569   assert(!mr.is_empty(), "Should be non-empty");
   570   // We use MemRegion(bottom(), end()) rather than used_region() below
   571   // because the two are not necessarily equal for some kinds of
   572   // spaces, in particular, certain kinds of free list spaces.
   573   // We could use the more complicated but more precise:
   574   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   575   // but the slight imprecision seems acceptable in the assertion check.
   576   assert(MemRegion(bottom(), end()).contains(mr),
   577          "Should be within used space");
   578   HeapWord* prev = cl->previous();   // max address from last time
   579   if (prev >= mr.end()) { // nothing to do
   580     return;
   581   }
   582   // This assert will not work when we go from cms space to perm
   583   // space, and use same closure. Easy fix deferred for later. XXX YSR
   584   // assert(prev == NULL || contains(prev), "Should be within space");
   586   bool last_was_obj_array = false;
   587   HeapWord *blk_start_addr, *region_start_addr;
   588   if (prev > mr.start()) {
   589     region_start_addr = prev;
   590     blk_start_addr    = prev;
   591     // The previous invocation may have pushed "prev" beyond the
   592     // last allocated block yet there may be still be blocks
   593     // in this region due to a particular coalescing policy.
   594     // Relax the assertion so that the case where the unallocated
   595     // block is maintained and "prev" is beyond the unallocated
   596     // block does not cause the assertion to fire.
   597     assert((BlockOffsetArrayUseUnallocatedBlock &&
   598             (!is_in(prev))) ||
   599            (blk_start_addr == block_start(region_start_addr)), "invariant");
   600   } else {
   601     region_start_addr = mr.start();
   602     blk_start_addr    = block_start(region_start_addr);
   603   }
   604   HeapWord* region_end_addr = mr.end();
   605   MemRegion derived_mr(region_start_addr, region_end_addr);
   606   while (blk_start_addr < region_end_addr) {
   607     const size_t size = block_size(blk_start_addr);
   608     if (block_is_obj(blk_start_addr)) {
   609       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   610     } else {
   611       last_was_obj_array = false;
   612     }
   613     blk_start_addr += size;
   614   }
   615   if (!last_was_obj_array) {
   616     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   617            "Should be within (closed) used space");
   618     assert(blk_start_addr > prev, "Invariant");
   619     cl->set_previous(blk_start_addr); // min address for next time
   620   }
   621 }
   623 bool Space::obj_is_alive(const HeapWord* p) const {
   624   assert (block_is_obj(p), "The address should point to an object");
   625   return true;
   626 }
   628 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   629   assert(!mr.is_empty(), "Should be non-empty");
   630   assert(used_region().contains(mr), "Should be within used space");
   631   HeapWord* prev = cl->previous();   // max address from last time
   632   if (prev >= mr.end()) { // nothing to do
   633     return;
   634   }
   635   // See comment above (in more general method above) in case you
   636   // happen to use this method.
   637   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   639   bool last_was_obj_array = false;
   640   HeapWord *obj_start_addr, *region_start_addr;
   641   if (prev > mr.start()) {
   642     region_start_addr = prev;
   643     obj_start_addr    = prev;
   644     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   645   } else {
   646     region_start_addr = mr.start();
   647     obj_start_addr    = block_start(region_start_addr);
   648   }
   649   HeapWord* region_end_addr = mr.end();
   650   MemRegion derived_mr(region_start_addr, region_end_addr);
   651   while (obj_start_addr < region_end_addr) {
   652     oop obj = oop(obj_start_addr);
   653     const size_t size = obj->size();
   654     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   655     obj_start_addr += size;
   656   }
   657   if (!last_was_obj_array) {
   658     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   659            "Should be within (closed) used space");
   660     assert(obj_start_addr > prev, "Invariant");
   661     cl->set_previous(obj_start_addr); // min address for next time
   662   }
   663 }
   665 #ifndef SERIALGC
   666 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   667                                                                             \
   668   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   669     HeapWord* obj_addr = mr.start();                                        \
   670     HeapWord* t = mr.end();                                                 \
   671     while (obj_addr < t) {                                                  \
   672       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   673       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   674     }                                                                       \
   675   }
   677   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   679 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   680 #endif // SERIALGC
   682 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
   683   if (is_empty()) return;
   684   HeapWord* obj_addr = bottom();
   685   HeapWord* t = top();
   686   // Could call objects iterate, but this is easier.
   687   while (obj_addr < t) {
   688     obj_addr += oop(obj_addr)->oop_iterate(blk);
   689   }
   690 }
   692 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
   693   if (is_empty()) {
   694     return;
   695   }
   696   MemRegion cur = MemRegion(bottom(), top());
   697   mr = mr.intersection(cur);
   698   if (mr.is_empty()) {
   699     return;
   700   }
   701   if (mr.equals(cur)) {
   702     oop_iterate(blk);
   703     return;
   704   }
   705   assert(mr.end() <= top(), "just took an intersection above");
   706   HeapWord* obj_addr = block_start(mr.start());
   707   HeapWord* t = mr.end();
   709   // Handle first object specially.
   710   oop obj = oop(obj_addr);
   711   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   712   obj_addr += obj->oop_iterate(&smr_blk);
   713   while (obj_addr < t) {
   714     oop obj = oop(obj_addr);
   715     assert(obj->is_oop(), "expected an oop");
   716     obj_addr += obj->size();
   717     // If "obj_addr" is not greater than top, then the
   718     // entire object "obj" is within the region.
   719     if (obj_addr <= t) {
   720       obj->oop_iterate(blk);
   721     } else {
   722       // "obj" extends beyond end of region
   723       obj->oop_iterate(&smr_blk);
   724       break;
   725     }
   726   };
   727 }
   729 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   730   if (is_empty()) return;
   731   WaterMark bm = bottom_mark();
   732   object_iterate_from(bm, blk);
   733 }
   735 // For a continguous space object_iterate() and safe_object_iterate()
   736 // are the same.
   737 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   738   object_iterate(blk);
   739 }
   741 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   742   assert(mark.space() == this, "Mark does not match space");
   743   HeapWord* p = mark.point();
   744   while (p < top()) {
   745     blk->do_object(oop(p));
   746     p += oop(p)->size();
   747   }
   748 }
   750 HeapWord*
   751 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   752   HeapWord * limit = concurrent_iteration_safe_limit();
   753   assert(limit <= top(), "sanity check");
   754   for (HeapWord* p = bottom(); p < limit;) {
   755     size_t size = blk->do_object_careful(oop(p));
   756     if (size == 0) {
   757       return p;  // failed at p
   758     } else {
   759       p += size;
   760     }
   761   }
   762   return NULL; // all done
   763 }
   765 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   766                                                                           \
   767 void ContiguousSpace::                                                    \
   768 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   769   HeapWord* t;                                                            \
   770   HeapWord* p = saved_mark_word();                                        \
   771   assert(p != NULL, "expected saved mark");                               \
   772                                                                           \
   773   const intx interval = PrefetchScanIntervalInBytes;                      \
   774   do {                                                                    \
   775     t = top();                                                            \
   776     while (p < t) {                                                       \
   777       Prefetch::write(p, interval);                                       \
   778       debug_only(HeapWord* prev = p);                                     \
   779       oop m = oop(p);                                                     \
   780       p += m->oop_iterate(blk);                                           \
   781     }                                                                     \
   782   } while (t < top());                                                    \
   783                                                                           \
   784   set_saved_mark_word(p);                                                 \
   785 }
   787 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   789 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   791 // Very general, slow implementation.
   792 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   793   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   794   if (p >= top()) {
   795     return top();
   796   } else {
   797     HeapWord* last = bottom();
   798     HeapWord* cur = last;
   799     while (cur <= p) {
   800       last = cur;
   801       cur += oop(cur)->size();
   802     }
   803     assert(oop(last)->is_oop(), "Should be an object start");
   804     return last;
   805   }
   806 }
   808 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   809   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   810   HeapWord* current_top = top();
   811   assert(p <= current_top, "p is not a block start");
   812   assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
   813   if (p < current_top)
   814     return oop(p)->size();
   815   else {
   816     assert(p == current_top, "just checking");
   817     return pointer_delta(end(), (HeapWord*) p);
   818   }
   819 }
   821 // This version requires locking.
   822 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   823                                                 HeapWord* const end_value) {
   824   // In G1 there are places where a GC worker can allocates into a
   825   // region using this serial allocation code without being prone to a
   826   // race with other GC workers (we ensure that no other GC worker can
   827   // access the same region at the same time). So the assert below is
   828   // too strong in the case of G1.
   829   assert(Heap_lock->owned_by_self() ||
   830          (SafepointSynchronize::is_at_safepoint() &&
   831                                (Thread::current()->is_VM_thread() || UseG1GC)),
   832          "not locked");
   833   HeapWord* obj = top();
   834   if (pointer_delta(end_value, obj) >= size) {
   835     HeapWord* new_top = obj + size;
   836     set_top(new_top);
   837     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   838     return obj;
   839   } else {
   840     return NULL;
   841   }
   842 }
   844 // This version is lock-free.
   845 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   846                                                     HeapWord* const end_value) {
   847   do {
   848     HeapWord* obj = top();
   849     if (pointer_delta(end_value, obj) >= size) {
   850       HeapWord* new_top = obj + size;
   851       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   852       // result can be one of two:
   853       //  the old top value: the exchange succeeded
   854       //  otherwise: the new value of the top is returned.
   855       if (result == obj) {
   856         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   857         return obj;
   858       }
   859     } else {
   860       return NULL;
   861     }
   862   } while (true);
   863 }
   865 // Requires locking.
   866 HeapWord* ContiguousSpace::allocate(size_t size) {
   867   return allocate_impl(size, end());
   868 }
   870 // Lock-free.
   871 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   872   return par_allocate_impl(size, end());
   873 }
   875 void ContiguousSpace::allocate_temporary_filler(int factor) {
   876   // allocate temporary type array decreasing free size with factor 'factor'
   877   assert(factor >= 0, "just checking");
   878   size_t size = pointer_delta(end(), top());
   880   // if space is full, return
   881   if (size == 0) return;
   883   if (factor > 0) {
   884     size -= size/factor;
   885   }
   886   size = align_object_size(size);
   888   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
   889   if (size >= (size_t)align_object_size(array_header_size)) {
   890     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
   891     // allocate uninitialized int array
   892     typeArrayOop t = (typeArrayOop) allocate(size);
   893     assert(t != NULL, "allocation should succeed");
   894     t->set_mark(markOopDesc::prototype());
   895     t->set_klass(Universe::intArrayKlassObj());
   896     t->set_length((int)length);
   897   } else {
   898     assert(size == CollectedHeap::min_fill_size(),
   899            "size for smallest fake object doesn't match");
   900     instanceOop obj = (instanceOop) allocate(size);
   901     obj->set_mark(markOopDesc::prototype());
   902     obj->set_klass_gap(0);
   903     obj->set_klass(SystemDictionary::Object_klass());
   904   }
   905 }
   907 void EdenSpace::clear(bool mangle_space) {
   908   ContiguousSpace::clear(mangle_space);
   909   set_soft_end(end());
   910 }
   912 // Requires locking.
   913 HeapWord* EdenSpace::allocate(size_t size) {
   914   return allocate_impl(size, soft_end());
   915 }
   917 // Lock-free.
   918 HeapWord* EdenSpace::par_allocate(size_t size) {
   919   return par_allocate_impl(size, soft_end());
   920 }
   922 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   923 {
   924   do {
   925     // The invariant is top() should be read before end() because
   926     // top() can't be greater than end(), so if an update of _soft_end
   927     // occurs between 'end_val = end();' and 'top_val = top();' top()
   928     // also can grow up to the new end() and the condition
   929     // 'top_val > end_val' is true. To ensure the loading order
   930     // OrderAccess::loadload() is required after top() read.
   931     HeapWord* obj = top();
   932     OrderAccess::loadload();
   933     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   934       HeapWord* new_top = obj + size;
   935       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   936       // result can be one of two:
   937       //  the old top value: the exchange succeeded
   938       //  otherwise: the new value of the top is returned.
   939       if (result == obj) {
   940         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   941         return obj;
   942       }
   943     } else {
   944       return NULL;
   945     }
   946   } while (true);
   947 }
   950 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   951   return _offsets.initialize_threshold();
   952 }
   954 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   955   _offsets.alloc_block(start, end);
   956   return _offsets.threshold();
   957 }
   959 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   960                                                MemRegion mr) :
   961   _offsets(sharedOffsetArray, mr),
   962   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   963 {
   964   _offsets.set_contig_space(this);
   965   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   966 }
   968 #define OBJ_SAMPLE_INTERVAL 0
   969 #define BLOCK_SAMPLE_INTERVAL 100
   971 void OffsetTableContigSpace::verify() const {
   972   HeapWord* p = bottom();
   973   HeapWord* prev_p = NULL;
   974   int objs = 0;
   975   int blocks = 0;
   977   if (VerifyObjectStartArray) {
   978     _offsets.verify();
   979   }
   981   while (p < top()) {
   982     size_t size = oop(p)->size();
   983     // For a sampling of objects in the space, find it using the
   984     // block offset table.
   985     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   986       guarantee(p == block_start_const(p + (size/2)),
   987                 "check offset computation");
   988       blocks = 0;
   989     } else {
   990       blocks++;
   991     }
   993     if (objs == OBJ_SAMPLE_INTERVAL) {
   994       oop(p)->verify();
   995       objs = 0;
   996     } else {
   997       objs++;
   998     }
   999     prev_p = p;
  1000     p += size;
  1002   guarantee(p == top(), "end of last object must match end of space");
  1006 size_t TenuredSpace::allowed_dead_ratio() const {
  1007   return MarkSweepDeadRatio;

mercurial