src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Fri, 07 Sep 2012 12:04:16 -0400

author
coleenp
date
Fri, 07 Sep 2012 12:04:16 -0400
changeset 4047
aed758eda82a
parent 4037
da91efe96a93
child 4384
b735136e0d82
permissions
-rw-r--r--

7195833: NPG: Rename instanceClassLoaderKlass, instanceRefKlass and instanceMirrorKlass
Summary: Simple renaming to be consistent with instanceKlass->InstanceKlass renaming
Reviewed-by: stefank, jmasa

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
    30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
    31 #include "gc_implementation/shared/collectorCounters.hpp"
    32 #include "gc_implementation/shared/markSweep.hpp"
    33 #include "gc_implementation/shared/mutableSpace.hpp"
    34 #include "memory/sharedHeap.hpp"
    35 #include "oops/oop.hpp"
    37 class ParallelScavengeHeap;
    38 class PSAdaptiveSizePolicy;
    39 class PSYoungGen;
    40 class PSOldGen;
    41 class ParCompactionManager;
    42 class ParallelTaskTerminator;
    43 class PSParallelCompact;
    44 class GCTaskManager;
    45 class GCTaskQueue;
    46 class PreGCValues;
    47 class MoveAndUpdateClosure;
    48 class RefProcTaskExecutor;
    50 // The SplitInfo class holds the information needed to 'split' a source region
    51 // so that the live data can be copied to two destination *spaces*.  Normally,
    52 // all the live data in a region is copied to a single destination space (e.g.,
    53 // everything live in a region in eden is copied entirely into the old gen).
    54 // However, when the heap is nearly full, all the live data in eden may not fit
    55 // into the old gen.  Copying only some of the regions from eden to old gen
    56 // requires finding a region that does not contain a partial object (i.e., no
    57 // live object crosses the region boundary) somewhere near the last object that
    58 // does fit into the old gen.  Since it's not always possible to find such a
    59 // region, splitting is necessary for predictable behavior.
    60 //
    61 // A region is always split at the end of the partial object.  This avoids
    62 // additional tests when calculating the new location of a pointer, which is a
    63 // very hot code path.  The partial object and everything to its left will be
    64 // copied to another space (call it dest_space_1).  The live data to the right
    65 // of the partial object will be copied either within the space itself, or to a
    66 // different destination space (distinct from dest_space_1).
    67 //
    68 // Split points are identified during the summary phase, when region
    69 // destinations are computed:  data about the split, including the
    70 // partial_object_size, is recorded in a SplitInfo record and the
    71 // partial_object_size field in the summary data is set to zero.  The zeroing is
    72 // possible (and necessary) since the partial object will move to a different
    73 // destination space than anything to its right, thus the partial object should
    74 // not affect the locations of any objects to its right.
    75 //
    76 // The recorded data is used during the compaction phase, but only rarely:  when
    77 // the partial object on the split region will be copied across a destination
    78 // region boundary.  This test is made once each time a region is filled, and is
    79 // a simple address comparison, so the overhead is negligible (see
    80 // PSParallelCompact::first_src_addr()).
    81 //
    82 // Notes:
    83 //
    84 // Only regions with partial objects are split; a region without a partial
    85 // object does not need any extra bookkeeping.
    86 //
    87 // At most one region is split per space, so the amount of data required is
    88 // constant.
    89 //
    90 // A region is split only when the destination space would overflow.  Once that
    91 // happens, the destination space is abandoned and no other data (even from
    92 // other source spaces) is targeted to that destination space.  Abandoning the
    93 // destination space may leave a somewhat large unused area at the end, if a
    94 // large object caused the overflow.
    95 //
    96 // Future work:
    97 //
    98 // More bookkeeping would be required to continue to use the destination space.
    99 // The most general solution would allow data from regions in two different
   100 // source spaces to be "joined" in a single destination region.  At the very
   101 // least, additional code would be required in next_src_region() to detect the
   102 // join and skip to an out-of-order source region.  If the join region was also
   103 // the last destination region to which a split region was copied (the most
   104 // likely case), then additional work would be needed to get fill_region() to
   105 // stop iteration and switch to a new source region at the right point.  Basic
   106 // idea would be to use a fake value for the top of the source space.  It is
   107 // doable, if a bit tricky.
   108 //
   109 // A simpler (but less general) solution would fill the remainder of the
   110 // destination region with a dummy object and continue filling the next
   111 // destination region.
   113 class SplitInfo
   114 {
   115 public:
   116   // Return true if this split info is valid (i.e., if a split has been
   117   // recorded).  The very first region cannot have a partial object and thus is
   118   // never split, so 0 is the 'invalid' value.
   119   bool is_valid() const { return _src_region_idx > 0; }
   121   // Return true if this split holds data for the specified source region.
   122   inline bool is_split(size_t source_region) const;
   124   // The index of the split region, the size of the partial object on that
   125   // region and the destination of the partial object.
   126   size_t    src_region_idx() const   { return _src_region_idx; }
   127   size_t    partial_obj_size() const { return _partial_obj_size; }
   128   HeapWord* destination() const      { return _destination; }
   130   // The destination count of the partial object referenced by this split
   131   // (either 1 or 2).  This must be added to the destination count of the
   132   // remainder of the source region.
   133   unsigned int destination_count() const { return _destination_count; }
   135   // If a word within the partial object will be written to the first word of a
   136   // destination region, this is the address of the destination region;
   137   // otherwise this is NULL.
   138   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
   140   // If a word within the partial object will be written to the first word of a
   141   // destination region, this is the address of that word within the partial
   142   // object; otherwise this is NULL.
   143   HeapWord* first_src_addr() const       { return _first_src_addr; }
   145   // Record the data necessary to split the region src_region_idx.
   146   void record(size_t src_region_idx, size_t partial_obj_size,
   147               HeapWord* destination);
   149   void clear();
   151   DEBUG_ONLY(void verify_clear();)
   153 private:
   154   size_t       _src_region_idx;
   155   size_t       _partial_obj_size;
   156   HeapWord*    _destination;
   157   unsigned int _destination_count;
   158   HeapWord*    _dest_region_addr;
   159   HeapWord*    _first_src_addr;
   160 };
   162 inline bool SplitInfo::is_split(size_t region_idx) const
   163 {
   164   return _src_region_idx == region_idx && is_valid();
   165 }
   167 class SpaceInfo
   168 {
   169  public:
   170   MutableSpace* space() const { return _space; }
   172   // Where the free space will start after the collection.  Valid only after the
   173   // summary phase completes.
   174   HeapWord* new_top() const { return _new_top; }
   176   // Allows new_top to be set.
   177   HeapWord** new_top_addr() { return &_new_top; }
   179   // Where the smallest allowable dense prefix ends (used only for perm gen).
   180   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
   182   // Where the dense prefix ends, or the compacted region begins.
   183   HeapWord* dense_prefix() const { return _dense_prefix; }
   185   // The start array for the (generation containing the) space, or NULL if there
   186   // is no start array.
   187   ObjectStartArray* start_array() const { return _start_array; }
   189   SplitInfo& split_info() { return _split_info; }
   191   void set_space(MutableSpace* s)           { _space = s; }
   192   void set_new_top(HeapWord* addr)          { _new_top = addr; }
   193   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
   194   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
   195   void set_start_array(ObjectStartArray* s) { _start_array = s; }
   197   void publish_new_top() const              { _space->set_top(_new_top); }
   199  private:
   200   MutableSpace*     _space;
   201   HeapWord*         _new_top;
   202   HeapWord*         _min_dense_prefix;
   203   HeapWord*         _dense_prefix;
   204   ObjectStartArray* _start_array;
   205   SplitInfo         _split_info;
   206 };
   208 class ParallelCompactData
   209 {
   210 public:
   211   // Sizes are in HeapWords, unless indicated otherwise.
   212   static const size_t Log2RegionSize;
   213   static const size_t RegionSize;
   214   static const size_t RegionSizeBytes;
   216   // Mask for the bits in a size_t to get an offset within a region.
   217   static const size_t RegionSizeOffsetMask;
   218   // Mask for the bits in a pointer to get an offset within a region.
   219   static const size_t RegionAddrOffsetMask;
   220   // Mask for the bits in a pointer to get the address of the start of a region.
   221   static const size_t RegionAddrMask;
   223   class RegionData
   224   {
   225   public:
   226     // Destination address of the region.
   227     HeapWord* destination() const { return _destination; }
   229     // The first region containing data destined for this region.
   230     size_t source_region() const { return _source_region; }
   232     // The object (if any) starting in this region and ending in a different
   233     // region that could not be updated during the main (parallel) compaction
   234     // phase.  This is different from _partial_obj_addr, which is an object that
   235     // extends onto a source region.  However, the two uses do not overlap in
   236     // time, so the same field is used to save space.
   237     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   239     // The starting address of the partial object extending onto the region.
   240     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   242     // Size of the partial object extending onto the region (words).
   243     size_t partial_obj_size() const { return _partial_obj_size; }
   245     // Size of live data that lies within this region due to objects that start
   246     // in this region (words).  This does not include the partial object
   247     // extending onto the region (if any), or the part of an object that extends
   248     // onto the next region (if any).
   249     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   251     // Total live data that lies within the region (words).
   252     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   254     // The destination_count is the number of other regions to which data from
   255     // this region will be copied.  At the end of the summary phase, the valid
   256     // values of destination_count are
   257     //
   258     // 0 - data from the region will be compacted completely into itself, or the
   259     //     region is empty.  The region can be claimed and then filled.
   260     // 1 - data from the region will be compacted into 1 other region; some
   261     //     data from the region may also be compacted into the region itself.
   262     // 2 - data from the region will be copied to 2 other regions.
   263     //
   264     // During compaction as regions are emptied, the destination_count is
   265     // decremented (atomically) and when it reaches 0, it can be claimed and
   266     // then filled.
   267     //
   268     // A region is claimed for processing by atomically changing the
   269     // destination_count to the claimed value (dc_claimed).  After a region has
   270     // been filled, the destination_count should be set to the completed value
   271     // (dc_completed).
   272     inline uint destination_count() const;
   273     inline uint destination_count_raw() const;
   275     // The location of the java heap data that corresponds to this region.
   276     inline HeapWord* data_location() const;
   278     // The highest address referenced by objects in this region.
   279     inline HeapWord* highest_ref() const;
   281     // Whether this region is available to be claimed, has been claimed, or has
   282     // been completed.
   283     //
   284     // Minor subtlety:  claimed() returns true if the region is marked
   285     // completed(), which is desirable since a region must be claimed before it
   286     // can be completed.
   287     bool available() const { return _dc_and_los < dc_one; }
   288     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   289     bool completed() const { return _dc_and_los >= dc_completed; }
   291     // These are not atomic.
   292     void set_destination(HeapWord* addr)       { _destination = addr; }
   293     void set_source_region(size_t region)      { _source_region = region; }
   294     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   295     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   296     void set_partial_obj_size(size_t words)    {
   297       _partial_obj_size = (region_sz_t) words;
   298     }
   300     inline void set_destination_count(uint count);
   301     inline void set_live_obj_size(size_t words);
   302     inline void set_data_location(HeapWord* addr);
   303     inline void set_completed();
   304     inline bool claim_unsafe();
   306     // These are atomic.
   307     inline void add_live_obj(size_t words);
   308     inline void set_highest_ref(HeapWord* addr);
   309     inline void decrement_destination_count();
   310     inline bool claim();
   312   private:
   313     // The type used to represent object sizes within a region.
   314     typedef uint region_sz_t;
   316     // Constants for manipulating the _dc_and_los field, which holds both the
   317     // destination count and live obj size.  The live obj size lives at the
   318     // least significant end so no masking is necessary when adding.
   319     static const region_sz_t dc_shift;           // Shift amount.
   320     static const region_sz_t dc_mask;            // Mask for destination count.
   321     static const region_sz_t dc_one;             // 1, shifted appropriately.
   322     static const region_sz_t dc_claimed;         // Region has been claimed.
   323     static const region_sz_t dc_completed;       // Region has been completed.
   324     static const region_sz_t los_mask;           // Mask for live obj size.
   326     HeapWord*            _destination;
   327     size_t               _source_region;
   328     HeapWord*            _partial_obj_addr;
   329     region_sz_t          _partial_obj_size;
   330     region_sz_t volatile _dc_and_los;
   331 #ifdef ASSERT
   332     // These enable optimizations that are only partially implemented.  Use
   333     // debug builds to prevent the code fragments from breaking.
   334     HeapWord*            _data_location;
   335     HeapWord*            _highest_ref;
   336 #endif  // #ifdef ASSERT
   338 #ifdef ASSERT
   339    public:
   340     uint            _pushed;   // 0 until region is pushed onto a worker's stack
   341    private:
   342 #endif
   343   };
   345 public:
   346   ParallelCompactData();
   347   bool initialize(MemRegion covered_region);
   349   size_t region_count() const { return _region_count; }
   351   // Convert region indices to/from RegionData pointers.
   352   inline RegionData* region(size_t region_idx) const;
   353   inline size_t     region(const RegionData* const region_ptr) const;
   355   // Returns true if the given address is contained within the region
   356   bool region_contains(size_t region_index, HeapWord* addr);
   358   void add_obj(HeapWord* addr, size_t len);
   359   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   361   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   362   // destination of region n is simply the start of region n.  The argument beg
   363   // must be region-aligned; end need not be.
   364   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   366   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
   367                                   HeapWord* destination, HeapWord* target_end,
   368                                   HeapWord** target_next);
   369   bool summarize(SplitInfo& split_info,
   370                  HeapWord* source_beg, HeapWord* source_end,
   371                  HeapWord** source_next,
   372                  HeapWord* target_beg, HeapWord* target_end,
   373                  HeapWord** target_next);
   375   void clear();
   376   void clear_range(size_t beg_region, size_t end_region);
   377   void clear_range(HeapWord* beg, HeapWord* end) {
   378     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   379   }
   381   // Return the number of words between addr and the start of the region
   382   // containing addr.
   383   inline size_t     region_offset(const HeapWord* addr) const;
   385   // Convert addresses to/from a region index or region pointer.
   386   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   387   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   388   inline HeapWord*  region_to_addr(size_t region) const;
   389   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   390   inline HeapWord*  region_to_addr(const RegionData* region) const;
   392   inline HeapWord*  region_align_down(HeapWord* addr) const;
   393   inline HeapWord*  region_align_up(HeapWord* addr) const;
   394   inline bool       is_region_aligned(HeapWord* addr) const;
   396   // Return the address one past the end of the partial object.
   397   HeapWord* partial_obj_end(size_t region_idx) const;
   399   // Return the new location of the object p after the
   400   // the compaction.
   401   HeapWord* calc_new_pointer(HeapWord* addr);
   403   HeapWord* calc_new_pointer(oop p) {
   404     return calc_new_pointer((HeapWord*) p);
   405   }
   407 #ifdef  ASSERT
   408   void verify_clear(const PSVirtualSpace* vspace);
   409   void verify_clear();
   410 #endif  // #ifdef ASSERT
   412 private:
   413   bool initialize_region_data(size_t region_size);
   414   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   416 private:
   417   HeapWord*       _region_start;
   418 #ifdef  ASSERT
   419   HeapWord*       _region_end;
   420 #endif  // #ifdef ASSERT
   422   PSVirtualSpace* _region_vspace;
   423   RegionData*     _region_data;
   424   size_t          _region_count;
   425 };
   427 inline uint
   428 ParallelCompactData::RegionData::destination_count_raw() const
   429 {
   430   return _dc_and_los & dc_mask;
   431 }
   433 inline uint
   434 ParallelCompactData::RegionData::destination_count() const
   435 {
   436   return destination_count_raw() >> dc_shift;
   437 }
   439 inline void
   440 ParallelCompactData::RegionData::set_destination_count(uint count)
   441 {
   442   assert(count <= (dc_completed >> dc_shift), "count too large");
   443   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   444   _dc_and_los = (count << dc_shift) | live_sz;
   445 }
   447 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   448 {
   449   assert(words <= los_mask, "would overflow");
   450   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   451 }
   453 inline void ParallelCompactData::RegionData::decrement_destination_count()
   454 {
   455   assert(_dc_and_los < dc_claimed, "already claimed");
   456   assert(_dc_and_los >= dc_one, "count would go negative");
   457   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   458 }
   460 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   461 {
   462   DEBUG_ONLY(return _data_location;)
   463   NOT_DEBUG(return NULL;)
   464 }
   466 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   467 {
   468   DEBUG_ONLY(return _highest_ref;)
   469   NOT_DEBUG(return NULL;)
   470 }
   472 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   473 {
   474   DEBUG_ONLY(_data_location = addr;)
   475 }
   477 inline void ParallelCompactData::RegionData::set_completed()
   478 {
   479   assert(claimed(), "must be claimed first");
   480   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   481 }
   483 // MT-unsafe claiming of a region.  Should only be used during single threaded
   484 // execution.
   485 inline bool ParallelCompactData::RegionData::claim_unsafe()
   486 {
   487   if (available()) {
   488     _dc_and_los |= dc_claimed;
   489     return true;
   490   }
   491   return false;
   492 }
   494 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   495 {
   496   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   497   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   498 }
   500 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   501 {
   502 #ifdef ASSERT
   503   HeapWord* tmp = _highest_ref;
   504   while (addr > tmp) {
   505     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   506   }
   507 #endif  // #ifdef ASSERT
   508 }
   510 inline bool ParallelCompactData::RegionData::claim()
   511 {
   512   const int los = (int) live_obj_size();
   513   const int old = Atomic::cmpxchg(dc_claimed | los,
   514                                   (volatile int*) &_dc_and_los, los);
   515   return old == los;
   516 }
   518 inline ParallelCompactData::RegionData*
   519 ParallelCompactData::region(size_t region_idx) const
   520 {
   521   assert(region_idx <= region_count(), "bad arg");
   522   return _region_data + region_idx;
   523 }
   525 inline size_t
   526 ParallelCompactData::region(const RegionData* const region_ptr) const
   527 {
   528   assert(region_ptr >= _region_data, "bad arg");
   529   assert(region_ptr <= _region_data + region_count(), "bad arg");
   530   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   531 }
   533 inline size_t
   534 ParallelCompactData::region_offset(const HeapWord* addr) const
   535 {
   536   assert(addr >= _region_start, "bad addr");
   537   assert(addr <= _region_end, "bad addr");
   538   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   539 }
   541 inline size_t
   542 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   543 {
   544   assert(addr >= _region_start, "bad addr");
   545   assert(addr <= _region_end, "bad addr");
   546   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   547 }
   549 inline ParallelCompactData::RegionData*
   550 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   551 {
   552   return region(addr_to_region_idx(addr));
   553 }
   555 inline HeapWord*
   556 ParallelCompactData::region_to_addr(size_t region) const
   557 {
   558   assert(region <= _region_count, "region out of range");
   559   return _region_start + (region << Log2RegionSize);
   560 }
   562 inline HeapWord*
   563 ParallelCompactData::region_to_addr(const RegionData* region) const
   564 {
   565   return region_to_addr(pointer_delta(region, _region_data,
   566                                       sizeof(RegionData)));
   567 }
   569 inline HeapWord*
   570 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   571 {
   572   assert(region <= _region_count, "region out of range");
   573   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   574   return region_to_addr(region) + offset;
   575 }
   577 inline HeapWord*
   578 ParallelCompactData::region_align_down(HeapWord* addr) const
   579 {
   580   assert(addr >= _region_start, "bad addr");
   581   assert(addr < _region_end + RegionSize, "bad addr");
   582   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   583 }
   585 inline HeapWord*
   586 ParallelCompactData::region_align_up(HeapWord* addr) const
   587 {
   588   assert(addr >= _region_start, "bad addr");
   589   assert(addr <= _region_end, "bad addr");
   590   return region_align_down(addr + RegionSizeOffsetMask);
   591 }
   593 inline bool
   594 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   595 {
   596   return region_offset(addr) == 0;
   597 }
   599 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   600 // do_addr() method.
   601 //
   602 // The closure is initialized with the number of heap words to process
   603 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   604 // methods in subclasses should update the total as words are processed.  Since
   605 // only one subclass actually uses this mechanism to terminate iteration, the
   606 // default initial value is > 0.  The implementation is here and not in the
   607 // single subclass that uses it to avoid making is_full() virtual, and thus
   608 // adding a virtual call per live object.
   610 class ParMarkBitMapClosure: public StackObj {
   611  public:
   612   typedef ParMarkBitMap::idx_t idx_t;
   613   typedef ParMarkBitMap::IterationStatus IterationStatus;
   615  public:
   616   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   617                               size_t words = max_uintx);
   619   inline ParCompactionManager* compaction_manager() const;
   620   inline ParMarkBitMap*        bitmap() const;
   621   inline size_t                words_remaining() const;
   622   inline bool                  is_full() const;
   623   inline HeapWord*             source() const;
   625   inline void                  set_source(HeapWord* addr);
   627   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   629  protected:
   630   inline void decrement_words_remaining(size_t words);
   632  private:
   633   ParMarkBitMap* const        _bitmap;
   634   ParCompactionManager* const _compaction_manager;
   635   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   636   size_t                      _words_remaining; // Words left to copy.
   638  protected:
   639   HeapWord*                   _source;          // Next addr that would be read.
   640 };
   642 inline
   643 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   644                                            ParCompactionManager* cm,
   645                                            size_t words):
   646   _bitmap(bitmap), _compaction_manager(cm)
   647 #ifdef  ASSERT
   648   , _initial_words_remaining(words)
   649 #endif
   650 {
   651   _words_remaining = words;
   652   _source = NULL;
   653 }
   655 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   656   return _compaction_manager;
   657 }
   659 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   660   return _bitmap;
   661 }
   663 inline size_t ParMarkBitMapClosure::words_remaining() const {
   664   return _words_remaining;
   665 }
   667 inline bool ParMarkBitMapClosure::is_full() const {
   668   return words_remaining() == 0;
   669 }
   671 inline HeapWord* ParMarkBitMapClosure::source() const {
   672   return _source;
   673 }
   675 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   676   _source = addr;
   677 }
   679 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   680   assert(_words_remaining >= words, "processed too many words");
   681   _words_remaining -= words;
   682 }
   684 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   685 // does parts of the collection using parallel threads.  The collection includes
   686 // the tenured generation and the young generation.  The permanent generation is
   687 // collected at the same time as the other two generations but the permanent
   688 // generation is collect by a single GC thread.  The permanent generation is
   689 // collected serially because of the requirement that during the processing of a
   690 // klass AAA, any objects reference by AAA must already have been processed.
   691 // This requirement is enforced by a left (lower address) to right (higher
   692 // address) sliding compaction.
   693 //
   694 // There are four phases of the collection.
   695 //
   696 //      - marking phase
   697 //      - summary phase
   698 //      - compacting phase
   699 //      - clean up phase
   700 //
   701 // Roughly speaking these phases correspond, respectively, to
   702 //      - mark all the live objects
   703 //      - calculate the destination of each object at the end of the collection
   704 //      - move the objects to their destination
   705 //      - update some references and reinitialize some variables
   706 //
   707 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   708 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   709 // complete marking of the heap.  The summary phase is implemented in
   710 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   711 // in PSParallelCompact::compact().
   712 //
   713 // A space that is being collected is divided into regions and with each region
   714 // is associated an object of type ParallelCompactData.  Each region is of a
   715 // fixed size and typically will contain more than 1 object and may have parts
   716 // of objects at the front and back of the region.
   717 //
   718 // region            -----+---------------------+----------
   719 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   720 //
   721 // The marking phase does a complete marking of all live objects in the heap.
   722 // The marking also compiles the size of the data for all live objects covered
   723 // by the region.  This size includes the part of any live object spanning onto
   724 // the region (part of AAA if it is live) from the front, all live objects
   725 // contained in the region (BBB and/or CCC if they are live), and the part of
   726 // any live objects covered by the region that extends off the region (part of
   727 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   728 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   729 // done atomically as is the accumulation of the size of the live objects
   730 // covered by a region.
   731 //
   732 // The summary phase calculates the total live data to the left of each region
   733 // XXX.  Based on that total and the bottom of the space, it can calculate the
   734 // starting location of the live data in XXX.  The summary phase calculates for
   735 // each region XXX quantites such as
   736 //
   737 //      - the amount of live data at the beginning of a region from an object
   738 //        entering the region.
   739 //      - the location of the first live data on the region
   740 //      - a count of the number of regions receiving live data from XXX.
   741 //
   742 // See ParallelCompactData for precise details.  The summary phase also
   743 // calculates the dense prefix for the compaction.  The dense prefix is a
   744 // portion at the beginning of the space that is not moved.  The objects in the
   745 // dense prefix do need to have their object references updated.  See method
   746 // summarize_dense_prefix().
   747 //
   748 // The summary phase is done using 1 GC thread.
   749 //
   750 // The compaction phase moves objects to their new location and updates all
   751 // references in the object.
   752 //
   753 // A current exception is that objects that cross a region boundary are moved
   754 // but do not have their references updated.  References are not updated because
   755 // it cannot easily be determined if the klass pointer KKK for the object AAA
   756 // has been updated.  KKK likely resides in a region to the left of the region
   757 // containing AAA.  These AAA's have there references updated at the end in a
   758 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   759 // An alternate strategy is being investigated for this deferral of updating.
   760 //
   761 // Compaction is done on a region basis.  A region that is ready to be filled is
   762 // put on a ready list and GC threads take region off the list and fill them.  A
   763 // region is ready to be filled if it empty of live objects.  Such a region may
   764 // have been initially empty (only contained dead objects) or may have had all
   765 // its live objects copied out already.  A region that compacts into itself is
   766 // also ready for filling.  The ready list is initially filled with empty
   767 // regions and regions compacting into themselves.  There is always at least 1
   768 // region that can be put on the ready list.  The regions are atomically added
   769 // and removed from the ready list.
   771 class PSParallelCompact : AllStatic {
   772  public:
   773   // Convenient access to type names.
   774   typedef ParMarkBitMap::idx_t idx_t;
   775   typedef ParallelCompactData::RegionData RegionData;
   777   typedef enum {
   778     old_space_id, eden_space_id,
   779     from_space_id, to_space_id, last_space_id
   780   } SpaceId;
   782  public:
   783   // Inline closure decls
   784   //
   785   class IsAliveClosure: public BoolObjectClosure {
   786    public:
   787     virtual void do_object(oop p);
   788     virtual bool do_object_b(oop p);
   789   };
   791   class KeepAliveClosure: public OopClosure {
   792    private:
   793     ParCompactionManager* _compaction_manager;
   794    protected:
   795     template <class T> inline void do_oop_work(T* p);
   796    public:
   797     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   798     virtual void do_oop(oop* p);
   799     virtual void do_oop(narrowOop* p);
   800   };
   802   // Current unused
   803   class FollowRootClosure: public OopsInGenClosure {
   804    private:
   805     ParCompactionManager* _compaction_manager;
   806    public:
   807     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   808     virtual void do_oop(oop* p);
   809     virtual void do_oop(narrowOop* p);
   810  };
   812   class FollowStackClosure: public VoidClosure {
   813    private:
   814     ParCompactionManager* _compaction_manager;
   815    public:
   816     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   817     virtual void do_void();
   818   };
   820   class AdjustPointerClosure: public OopClosure {
   821    private:
   822     bool _is_root;
   823    public:
   824     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
   825     virtual void do_oop(oop* p);
   826     virtual void do_oop(narrowOop* p);
   827     // do not walk from thread stacks to the code cache on this phase
   828     virtual void do_code_blob(CodeBlob* cb) const { }
   829   };
   831   class AdjustKlassClosure : public KlassClosure {
   832    public:
   833     void do_klass(Klass* klass);
   834   };
   836   friend class KeepAliveClosure;
   837   friend class FollowStackClosure;
   838   friend class AdjustPointerClosure;
   839   friend class AdjustKlassClosure;
   840   friend class FollowKlassClosure;
   841   friend class FollowRootClosure;
   842   friend class InstanceClassLoaderKlass;
   843   friend class RefProcTaskProxy;
   845  private:
   846   static elapsedTimer         _accumulated_time;
   847   static unsigned int         _total_invocations;
   848   static unsigned int         _maximum_compaction_gc_num;
   849   static jlong                _time_of_last_gc;   // ms
   850   static CollectorCounters*   _counters;
   851   static ParMarkBitMap        _mark_bitmap;
   852   static ParallelCompactData  _summary_data;
   853   static IsAliveClosure       _is_alive_closure;
   854   static SpaceInfo            _space_info[last_space_id];
   855   static bool                 _print_phases;
   856   static AdjustPointerClosure _adjust_root_pointer_closure;
   857   static AdjustPointerClosure _adjust_pointer_closure;
   858   static AdjustKlassClosure   _adjust_klass_closure;
   860   // Reference processing (used in ...follow_contents)
   861   static ReferenceProcessor*  _ref_processor;
   863   // Updated location of intArrayKlassObj.
   864   static Klass* _updated_int_array_klass_obj;
   866   // Values computed at initialization and used by dead_wood_limiter().
   867   static double _dwl_mean;
   868   static double _dwl_std_dev;
   869   static double _dwl_first_term;
   870   static double _dwl_adjustment;
   871 #ifdef  ASSERT
   872   static bool   _dwl_initialized;
   873 #endif  // #ifdef ASSERT
   875  private:
   877   static void initialize_space_info();
   879   // Return true if details about individual phases should be printed.
   880   static inline bool print_phases();
   882   // Clear the marking bitmap and summary data that cover the specified space.
   883   static void clear_data_covering_space(SpaceId id);
   885   static void pre_compact(PreGCValues* pre_gc_values);
   886   static void post_compact();
   888   // Mark live objects
   889   static void marking_phase(ParCompactionManager* cm,
   890                             bool maximum_heap_compaction);
   892   template <class T> static inline void adjust_pointer(T* p, bool is_root);
   893   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
   895   template <class T>
   896   static inline void follow_root(ParCompactionManager* cm, T* p);
   898   // Compute the dense prefix for the designated space.  This is an experimental
   899   // implementation currently not used in production.
   900   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
   901                                                     bool maximum_compaction);
   903   // Methods used to compute the dense prefix.
   905   // Compute the value of the normal distribution at x = density.  The mean and
   906   // standard deviation are values saved by initialize_dead_wood_limiter().
   907   static inline double normal_distribution(double density);
   909   // Initialize the static vars used by dead_wood_limiter().
   910   static void initialize_dead_wood_limiter();
   912   // Return the percentage of space that can be treated as "dead wood" (i.e.,
   913   // not reclaimed).
   914   static double dead_wood_limiter(double density, size_t min_percent);
   916   // Find the first (left-most) region in the range [beg, end) that has at least
   917   // dead_words of dead space to the left.  The argument beg must be the first
   918   // region in the space that is not completely live.
   919   static RegionData* dead_wood_limit_region(const RegionData* beg,
   920                                             const RegionData* end,
   921                                             size_t dead_words);
   923   // Return a pointer to the first region in the range [beg, end) that is not
   924   // completely full.
   925   static RegionData* first_dead_space_region(const RegionData* beg,
   926                                              const RegionData* end);
   928   // Return a value indicating the benefit or 'yield' if the compacted region
   929   // were to start (or equivalently if the dense prefix were to end) at the
   930   // candidate region.  Higher values are better.
   931   //
   932   // The value is based on the amount of space reclaimed vs. the costs of (a)
   933   // updating references in the dense prefix plus (b) copying objects and
   934   // updating references in the compacted region.
   935   static inline double reclaimed_ratio(const RegionData* const candidate,
   936                                        HeapWord* const bottom,
   937                                        HeapWord* const top,
   938                                        HeapWord* const new_top);
   940   // Compute the dense prefix for the designated space.
   941   static HeapWord* compute_dense_prefix(const SpaceId id,
   942                                         bool maximum_compaction);
   944   // Return true if dead space crosses onto the specified Region; bit must be
   945   // the bit index corresponding to the first word of the Region.
   946   static inline bool dead_space_crosses_boundary(const RegionData* region,
   947                                                  idx_t bit);
   949   // Summary phase utility routine to fill dead space (if any) at the dense
   950   // prefix boundary.  Should only be called if the the dense prefix is
   951   // non-empty.
   952   static void fill_dense_prefix_end(SpaceId id);
   954   // Clear the summary data source_region field for the specified addresses.
   955   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
   957 #ifndef PRODUCT
   958   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
   960   // Fill the region [start, start + words) with live object(s).  Only usable
   961   // for the old and permanent generations.
   962   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
   963                                      size_t words);
   964   // Include the new objects in the summary data.
   965   static void summarize_new_objects(SpaceId id, HeapWord* start);
   967   // Add live objects to a survivor space since it's rare that both survivors
   968   // are non-empty.
   969   static void provoke_split_fill_survivor(SpaceId id);
   971   // Add live objects and/or choose the dense prefix to provoke splitting.
   972   static void provoke_split(bool & maximum_compaction);
   973 #endif
   975   static void summarize_spaces_quick();
   976   static void summarize_space(SpaceId id, bool maximum_compaction);
   977   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
   979   // Adjust addresses in roots.  Does not adjust addresses in heap.
   980   static void adjust_roots();
   982   // Move objects to new locations.
   983   static void compact_perm(ParCompactionManager* cm);
   984   static void compact();
   986   // Add available regions to the stack and draining tasks to the task queue.
   987   static void enqueue_region_draining_tasks(GCTaskQueue* q,
   988                                             uint parallel_gc_threads);
   990   // Add dense prefix update tasks to the task queue.
   991   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
   992                                          uint parallel_gc_threads);
   994   // Add region stealing tasks to the task queue.
   995   static void enqueue_region_stealing_tasks(
   996                                        GCTaskQueue* q,
   997                                        ParallelTaskTerminator* terminator_ptr,
   998                                        uint parallel_gc_threads);
  1000   // If objects are left in eden after a collection, try to move the boundary
  1001   // and absorb them into the old gen.  Returns true if eden was emptied.
  1002   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  1003                                          PSYoungGen* young_gen,
  1004                                          PSOldGen* old_gen);
  1006   // Reset time since last full gc
  1007   static void reset_millis_since_last_gc();
  1009  protected:
  1010 #ifdef VALIDATE_MARK_SWEEP
  1011   static GrowableArray<void*>*           _root_refs_stack;
  1012   static GrowableArray<oop> *            _live_oops;
  1013   static GrowableArray<oop> *            _live_oops_moved_to;
  1014   static GrowableArray<size_t>*          _live_oops_size;
  1015   static size_t                          _live_oops_index;
  1016   static size_t                          _live_oops_index_at_perm;
  1017   static GrowableArray<void*>*           _other_refs_stack;
  1018   static GrowableArray<void*>*           _adjusted_pointers;
  1019   static bool                            _pointer_tracking;
  1020   static bool                            _root_tracking;
  1022   // The following arrays are saved since the time of the last GC and
  1023   // assist in tracking down problems where someone has done an errant
  1024   // store into the heap, usually to an oop that wasn't properly
  1025   // handleized across a GC. If we crash or otherwise fail before the
  1026   // next GC, we can query these arrays to find out the object we had
  1027   // intended to do the store to (assuming it is still alive) and the
  1028   // offset within that object. Covered under RecordMarkSweepCompaction.
  1029   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
  1030   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
  1031   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
  1032   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
  1033   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
  1034   static GrowableArray<size_t>*          _last_gc_live_oops_size;
  1035 #endif
  1037  public:
  1038   class MarkAndPushClosure: public OopClosure {
  1039    private:
  1040     ParCompactionManager* _compaction_manager;
  1041    public:
  1042     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
  1043     virtual void do_oop(oop* p);
  1044     virtual void do_oop(narrowOop* p);
  1045   };
  1047   // The one and only place to start following the classes.
  1048   // Should only be applied to the ClassLoaderData klasses list.
  1049   class FollowKlassClosure : public KlassClosure {
  1050    private:
  1051     MarkAndPushClosure* _mark_and_push_closure;
  1052    public:
  1053     FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
  1054         _mark_and_push_closure(mark_and_push_closure) { }
  1055     void do_klass(Klass* klass);
  1056   };
  1058   PSParallelCompact();
  1060   // Convenient accessor for Universe::heap().
  1061   static ParallelScavengeHeap* gc_heap() {
  1062     return (ParallelScavengeHeap*)Universe::heap();
  1065   static void invoke(bool maximum_heap_compaction);
  1066   static bool invoke_no_policy(bool maximum_heap_compaction);
  1068   static void post_initialize();
  1069   // Perform initialization for PSParallelCompact that requires
  1070   // allocations.  This should be called during the VM initialization
  1071   // at a pointer where it would be appropriate to return a JNI_ENOMEM
  1072   // in the event of a failure.
  1073   static bool initialize();
  1075   // Closure accessors
  1076   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
  1077   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
  1078   static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
  1079   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
  1081   // Public accessors
  1082   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  1083   static unsigned int total_invocations() { return _total_invocations; }
  1084   static CollectorCounters* counters()    { return _counters; }
  1086   // Used to add tasks
  1087   static GCTaskManager* const gc_task_manager();
  1088   static Klass* updated_int_array_klass_obj() {
  1089     return _updated_int_array_klass_obj;
  1092   // Marking support
  1093   static inline bool mark_obj(oop obj);
  1094   static inline bool is_marked(oop obj);
  1095   // Check mark and maybe push on marking stack
  1096   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
  1097                                                       T* p);
  1099   static void follow_klass(ParCompactionManager* cm, Klass* klass);
  1100   static void adjust_klass(ParCompactionManager* cm, Klass* klass);
  1102   static void follow_class_loader(ParCompactionManager* cm,
  1103                                   ClassLoaderData* klass);
  1104   static void adjust_class_loader(ParCompactionManager* cm,
  1105                                   ClassLoaderData* klass);
  1107   // Compaction support.
  1108   // Return true if p is in the range [beg_addr, end_addr).
  1109   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  1110   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
  1112   // Convenience wrappers for per-space data kept in _space_info.
  1113   static inline MutableSpace*     space(SpaceId space_id);
  1114   static inline HeapWord*         new_top(SpaceId space_id);
  1115   static inline HeapWord*         dense_prefix(SpaceId space_id);
  1116   static inline ObjectStartArray* start_array(SpaceId space_id);
  1118   // Move and update the live objects in the specified space.
  1119   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
  1121   // Process the end of the given region range in the dense prefix.
  1122   // This includes saving any object not updated.
  1123   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
  1124                                             size_t region_start_index,
  1125                                             size_t region_end_index,
  1126                                             idx_t exiting_object_offset,
  1127                                             idx_t region_offset_start,
  1128                                             idx_t region_offset_end);
  1130   // Update a region in the dense prefix.  For each live object
  1131   // in the region, update it's interior references.  For each
  1132   // dead object, fill it with deadwood. Dead space at the end
  1133   // of a region range will be filled to the start of the next
  1134   // live object regardless of the region_index_end.  None of the
  1135   // objects in the dense prefix move and dead space is dead
  1136   // (holds only dead objects that don't need any processing), so
  1137   // dead space can be filled in any order.
  1138   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  1139                                                   SpaceId space_id,
  1140                                                   size_t region_index_start,
  1141                                                   size_t region_index_end);
  1143   // Return the address of the count + 1st live word in the range [beg, end).
  1144   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
  1146   // Return the address of the word to be copied to dest_addr, which must be
  1147   // aligned to a region boundary.
  1148   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1149                                   SpaceId src_space_id,
  1150                                   size_t src_region_idx);
  1152   // Determine the next source region, set closure.source() to the start of the
  1153   // new region return the region index.  Parameter end_addr is the address one
  1154   // beyond the end of source range just processed.  If necessary, switch to a
  1155   // new source space and set src_space_id (in-out parameter) and src_space_top
  1156   // (out parameter) accordingly.
  1157   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1158                                 SpaceId& src_space_id,
  1159                                 HeapWord*& src_space_top,
  1160                                 HeapWord* end_addr);
  1162   // Decrement the destination count for each non-empty source region in the
  1163   // range [beg_region, region(region_align_up(end_addr))).  If the destination
  1164   // count for a region goes to 0 and it needs to be filled, enqueue it.
  1165   static void decrement_destination_counts(ParCompactionManager* cm,
  1166                                            SpaceId src_space_id,
  1167                                            size_t beg_region,
  1168                                            HeapWord* end_addr);
  1170   // Fill a region, copying objects from one or more source regions.
  1171   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1172   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1173     fill_region(cm, region);
  1176   // Update the deferred objects in the space.
  1177   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1179   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1180   static ParallelCompactData& summary_data() { return _summary_data; }
  1182   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
  1183   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
  1185   // Reference Processing
  1186   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1188   // Return the SpaceId for the given address.
  1189   static SpaceId space_id(HeapWord* addr);
  1191   // Time since last full gc (in milliseconds).
  1192   static jlong millis_since_last_gc();
  1194 #ifdef VALIDATE_MARK_SWEEP
  1195   static void track_adjusted_pointer(void* p, bool isroot);
  1196   static void check_adjust_pointer(void* p);
  1197   static void track_interior_pointers(oop obj);
  1198   static void check_interior_pointers();
  1200   static void reset_live_oop_tracking();
  1201   static void register_live_oop(oop p, size_t size);
  1202   static void validate_live_oop(oop p, size_t size);
  1203   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
  1204   static void compaction_complete();
  1206   // Querying operation of RecordMarkSweepCompaction results.
  1207   // Finds and prints the current base oop and offset for a word
  1208   // within an oop that was live during the last GC. Helpful for
  1209   // tracking down heap stomps.
  1210   static void print_new_location_of_heap_address(HeapWord* q);
  1211 #endif  // #ifdef VALIDATE_MARK_SWEEP
  1213 #ifndef PRODUCT
  1214   // Debugging support.
  1215   static const char* space_names[last_space_id];
  1216   static void print_region_ranges();
  1217   static void print_dense_prefix_stats(const char* const algorithm,
  1218                                        const SpaceId id,
  1219                                        const bool maximum_compaction,
  1220                                        HeapWord* const addr);
  1221   static void summary_phase_msg(SpaceId dst_space_id,
  1222                                 HeapWord* dst_beg, HeapWord* dst_end,
  1223                                 SpaceId src_space_id,
  1224                                 HeapWord* src_beg, HeapWord* src_end);
  1225 #endif  // #ifndef PRODUCT
  1227 #ifdef  ASSERT
  1228   // Sanity check the new location of a word in the heap.
  1229   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  1230   // Verify that all the regions have been emptied.
  1231   static void verify_complete(SpaceId space_id);
  1232 #endif  // #ifdef ASSERT
  1233 };
  1235 inline bool PSParallelCompact::mark_obj(oop obj) {
  1236   const int obj_size = obj->size();
  1237   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1238     _summary_data.add_obj(obj, obj_size);
  1239     return true;
  1240   } else {
  1241     return false;
  1245 inline bool PSParallelCompact::is_marked(oop obj) {
  1246   return mark_bitmap()->is_marked(obj);
  1249 template <class T>
  1250 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1251   assert(!Universe::heap()->is_in_reserved(p),
  1252          "roots shouldn't be things within the heap");
  1253 #ifdef VALIDATE_MARK_SWEEP
  1254   if (ValidateMarkSweep) {
  1255     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
  1256     _root_refs_stack->push(p);
  1258 #endif
  1259   T heap_oop = oopDesc::load_heap_oop(p);
  1260   if (!oopDesc::is_null(heap_oop)) {
  1261     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1262     if (mark_bitmap()->is_unmarked(obj)) {
  1263       if (mark_obj(obj)) {
  1264         obj->follow_contents(cm);
  1268   cm->follow_marking_stacks();
  1271 template <class T>
  1272 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1273   T heap_oop = oopDesc::load_heap_oop(p);
  1274   if (!oopDesc::is_null(heap_oop)) {
  1275     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1276     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
  1277       cm->push(obj);
  1282 template <class T>
  1283 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
  1284   T heap_oop = oopDesc::load_heap_oop(p);
  1285   if (!oopDesc::is_null(heap_oop)) {
  1286     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1287     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1288     assert(new_obj != NULL,                    // is forwarding ptr?
  1289            "should be forwarded");
  1290     // Just always do the update unconditionally?
  1291     if (new_obj != NULL) {
  1292       assert(Universe::heap()->is_in_reserved(new_obj),
  1293              "should be in object space");
  1294       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1297   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
  1300 template <class T>
  1301 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1302 #ifdef VALIDATE_MARK_SWEEP
  1303   if (ValidateMarkSweep) {
  1304     if (!Universe::heap()->is_in_reserved(p)) {
  1305       _root_refs_stack->push(p);
  1306     } else {
  1307       _other_refs_stack->push(p);
  1310 #endif
  1311   mark_and_push(_compaction_manager, p);
  1314 inline bool PSParallelCompact::print_phases() {
  1315   return _print_phases;
  1318 inline double PSParallelCompact::normal_distribution(double density) {
  1319   assert(_dwl_initialized, "uninitialized");
  1320   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1321   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1324 inline bool
  1325 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1326                                                idx_t bit)
  1328   assert(bit > 0, "cannot call this for the first bit/region");
  1329   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1330          "sanity check");
  1332   // Dead space crosses the boundary if (1) a partial object does not extend
  1333   // onto the region, (2) an object does not start at the beginning of the
  1334   // region, and (3) an object does not end at the end of the prior region.
  1335   return region->partial_obj_size() == 0 &&
  1336     !_mark_bitmap.is_obj_beg(bit) &&
  1337     !_mark_bitmap.is_obj_end(bit - 1);
  1340 inline bool
  1341 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1342   return p >= beg_addr && p < end_addr;
  1345 inline bool
  1346 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1347   return is_in((HeapWord*)p, beg_addr, end_addr);
  1350 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1351   assert(id < last_space_id, "id out of range");
  1352   return _space_info[id].space();
  1355 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1356   assert(id < last_space_id, "id out of range");
  1357   return _space_info[id].new_top();
  1360 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1361   assert(id < last_space_id, "id out of range");
  1362   return _space_info[id].dense_prefix();
  1365 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1366   assert(id < last_space_id, "id out of range");
  1367   return _space_info[id].start_array();
  1370 #ifdef ASSERT
  1371 inline void
  1372 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
  1374   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
  1375          "must move left or to a different space");
  1376   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
  1377          "checking alignment");
  1379 #endif // ASSERT
  1381 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1382  public:
  1383   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1384                               ObjectStartArray* start_array,
  1385                               HeapWord* destination, size_t words);
  1387   // Accessors.
  1388   HeapWord* destination() const         { return _destination; }
  1390   // If the object will fit (size <= words_remaining()), copy it to the current
  1391   // destination, update the interior oops and the start array and return either
  1392   // full (if the closure is full) or incomplete.  If the object will not fit,
  1393   // return would_overflow.
  1394   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1396   // Copy enough words to fill this closure, starting at source().  Interior
  1397   // oops and the start array are not updated.  Return full.
  1398   IterationStatus copy_until_full();
  1400   // Copy enough words to fill this closure or to the end of an object,
  1401   // whichever is smaller, starting at source().  Interior oops and the start
  1402   // array are not updated.
  1403   void copy_partial_obj();
  1405  protected:
  1406   // Update variables to indicate that word_count words were processed.
  1407   inline void update_state(size_t word_count);
  1409  protected:
  1410   ObjectStartArray* const _start_array;
  1411   HeapWord*               _destination;         // Next addr to be written.
  1412 };
  1414 inline
  1415 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1416                                            ParCompactionManager* cm,
  1417                                            ObjectStartArray* start_array,
  1418                                            HeapWord* destination,
  1419                                            size_t words) :
  1420   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1422   _destination = destination;
  1425 inline void MoveAndUpdateClosure::update_state(size_t words)
  1427   decrement_words_remaining(words);
  1428   _source += words;
  1429   _destination += words;
  1432 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1433  private:
  1434   const PSParallelCompact::SpaceId _space_id;
  1435   ObjectStartArray* const          _start_array;
  1437  public:
  1438   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1439                     ParCompactionManager* cm,
  1440                     PSParallelCompact::SpaceId space_id);
  1442   // Update the object.
  1443   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1445   inline void do_addr(HeapWord* addr);
  1446 };
  1448 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1450   _start_array->allocate_block(addr);
  1451   oop(addr)->update_contents(compaction_manager());
  1454 class FillClosure: public ParMarkBitMapClosure
  1456 public:
  1457   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1458     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1459     _start_array(PSParallelCompact::start_array(space_id))
  1461     assert(space_id == PSParallelCompact::old_space_id,
  1462            "cannot use FillClosure in the young gen");
  1465   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1466     CollectedHeap::fill_with_objects(addr, size);
  1467     HeapWord* const end = addr + size;
  1468     do {
  1469       _start_array->allocate_block(addr);
  1470       addr += oop(addr)->size();
  1471     } while (addr < end);
  1472     return ParMarkBitMap::incomplete;
  1475 private:
  1476   ObjectStartArray* const _start_array;
  1477 };
  1479 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial