src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Fri, 07 Sep 2012 12:04:16 -0400

author
coleenp
date
Fri, 07 Sep 2012 12:04:16 -0400
changeset 4047
aed758eda82a
parent 4037
da91efe96a93
child 4068
e861d44e0c9c
permissions
-rw-r--r--

7195833: NPG: Rename instanceClassLoaderKlass, instanceRefKlass and instanceMirrorKlass
Summary: Simple renaming to be consistent with instanceKlass->InstanceKlass renaming
Reviewed-by: stefank, jmasa

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
    35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
    40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    42 #include "gc_implementation/shared/isGCActiveMark.hpp"
    43 #include "gc_interface/gcCause.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/referenceProcessor.hpp"
    47 #include "oops/methodData.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "oops/oop.pcgc.inline.hpp"
    50 #include "runtime/fprofiler.hpp"
    51 #include "runtime/safepoint.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/management.hpp"
    54 #include "services/memoryService.hpp"
    55 #include "services/memTracker.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/stack.inline.hpp"
    59 #include <math.h>
    61 // All sizes are in HeapWords.
    62 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
    63 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    64 const size_t ParallelCompactData::RegionSizeBytes =
    65   RegionSize << LogHeapWordSize;
    66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    68 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
    70 const ParallelCompactData::RegionData::region_sz_t
    71 ParallelCompactData::RegionData::dc_shift = 27;
    73 const ParallelCompactData::RegionData::region_sz_t
    74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    76 const ParallelCompactData::RegionData::region_sz_t
    77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    79 const ParallelCompactData::RegionData::region_sz_t
    80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    82 const ParallelCompactData::RegionData::region_sz_t
    83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
    85 const ParallelCompactData::RegionData::region_sz_t
    86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
    88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    89 bool      PSParallelCompact::_print_phases = false;
    91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    92 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
    94 double PSParallelCompact::_dwl_mean;
    95 double PSParallelCompact::_dwl_std_dev;
    96 double PSParallelCompact::_dwl_first_term;
    97 double PSParallelCompact::_dwl_adjustment;
    98 #ifdef  ASSERT
    99 bool   PSParallelCompact::_dwl_initialized = false;
   100 #endif  // #ifdef ASSERT
   102 #ifdef VALIDATE_MARK_SWEEP
   103 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
   104 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
   105 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
   106 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
   107 size_t                  PSParallelCompact::_live_oops_index = 0;
   108 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
   109 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
   110 bool                    PSParallelCompact::_pointer_tracking = false;
   111 bool                    PSParallelCompact::_root_tracking = true;
   113 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
   114 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
   115 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
   116 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
   117 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
   118 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
   119 #endif
   121 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
   122                        HeapWord* destination)
   123 {
   124   assert(src_region_idx != 0, "invalid src_region_idx");
   125   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
   126   assert(destination != NULL, "invalid destination argument");
   128   _src_region_idx = src_region_idx;
   129   _partial_obj_size = partial_obj_size;
   130   _destination = destination;
   132   // These fields may not be updated below, so make sure they're clear.
   133   assert(_dest_region_addr == NULL, "should have been cleared");
   134   assert(_first_src_addr == NULL, "should have been cleared");
   136   // Determine the number of destination regions for the partial object.
   137   HeapWord* const last_word = destination + partial_obj_size - 1;
   138   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   139   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   140   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   142   if (beg_region_addr == end_region_addr) {
   143     // One destination region.
   144     _destination_count = 1;
   145     if (end_region_addr == destination) {
   146       // The destination falls on a region boundary, thus the first word of the
   147       // partial object will be the first word copied to the destination region.
   148       _dest_region_addr = end_region_addr;
   149       _first_src_addr = sd.region_to_addr(src_region_idx);
   150     }
   151   } else {
   152     // Two destination regions.  When copied, the partial object will cross a
   153     // destination region boundary, so a word somewhere within the partial
   154     // object will be the first word copied to the second destination region.
   155     _destination_count = 2;
   156     _dest_region_addr = end_region_addr;
   157     const size_t ofs = pointer_delta(end_region_addr, destination);
   158     assert(ofs < _partial_obj_size, "sanity");
   159     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   160   }
   161 }
   163 void SplitInfo::clear()
   164 {
   165   _src_region_idx = 0;
   166   _partial_obj_size = 0;
   167   _destination = NULL;
   168   _destination_count = 0;
   169   _dest_region_addr = NULL;
   170   _first_src_addr = NULL;
   171   assert(!is_valid(), "sanity");
   172 }
   174 #ifdef  ASSERT
   175 void SplitInfo::verify_clear()
   176 {
   177   assert(_src_region_idx == 0, "not clear");
   178   assert(_partial_obj_size == 0, "not clear");
   179   assert(_destination == NULL, "not clear");
   180   assert(_destination_count == 0, "not clear");
   181   assert(_dest_region_addr == NULL, "not clear");
   182   assert(_first_src_addr == NULL, "not clear");
   183 }
   184 #endif  // #ifdef ASSERT
   187 #ifndef PRODUCT
   188 const char* PSParallelCompact::space_names[] = {
   189   "old ", "eden", "from", "to  "
   190 };
   192 void PSParallelCompact::print_region_ranges()
   193 {
   194   tty->print_cr("space  bottom     top        end        new_top");
   195   tty->print_cr("------ ---------- ---------- ---------- ----------");
   197   for (unsigned int id = 0; id < last_space_id; ++id) {
   198     const MutableSpace* space = _space_info[id].space();
   199     tty->print_cr("%u %s "
   200                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   201                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   202                   id, space_names[id],
   203                   summary_data().addr_to_region_idx(space->bottom()),
   204                   summary_data().addr_to_region_idx(space->top()),
   205                   summary_data().addr_to_region_idx(space->end()),
   206                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   207   }
   208 }
   210 void
   211 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   212 {
   213 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   214 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   216   ParallelCompactData& sd = PSParallelCompact::summary_data();
   217   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   218   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   219                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   220                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   221                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   222                 i, c->data_location(), dci, c->destination(),
   223                 c->partial_obj_size(), c->live_obj_size(),
   224                 c->data_size(), c->source_region(), c->destination_count());
   226 #undef  REGION_IDX_FORMAT
   227 #undef  REGION_DATA_FORMAT
   228 }
   230 void
   231 print_generic_summary_data(ParallelCompactData& summary_data,
   232                            HeapWord* const beg_addr,
   233                            HeapWord* const end_addr)
   234 {
   235   size_t total_words = 0;
   236   size_t i = summary_data.addr_to_region_idx(beg_addr);
   237   const size_t last = summary_data.addr_to_region_idx(end_addr);
   238   HeapWord* pdest = 0;
   240   while (i <= last) {
   241     ParallelCompactData::RegionData* c = summary_data.region(i);
   242     if (c->data_size() != 0 || c->destination() != pdest) {
   243       print_generic_summary_region(i, c);
   244       total_words += c->data_size();
   245       pdest = c->destination();
   246     }
   247     ++i;
   248   }
   250   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   251 }
   253 void
   254 print_generic_summary_data(ParallelCompactData& summary_data,
   255                            SpaceInfo* space_info)
   256 {
   257   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   258     const MutableSpace* space = space_info[id].space();
   259     print_generic_summary_data(summary_data, space->bottom(),
   260                                MAX2(space->top(), space_info[id].new_top()));
   261   }
   262 }
   264 void
   265 print_initial_summary_region(size_t i,
   266                              const ParallelCompactData::RegionData* c,
   267                              bool newline = true)
   268 {
   269   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   270              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   271              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   272              i, c->destination(),
   273              c->partial_obj_size(), c->live_obj_size(),
   274              c->data_size(), c->source_region(), c->destination_count());
   275   if (newline) tty->cr();
   276 }
   278 void
   279 print_initial_summary_data(ParallelCompactData& summary_data,
   280                            const MutableSpace* space) {
   281   if (space->top() == space->bottom()) {
   282     return;
   283   }
   285   const size_t region_size = ParallelCompactData::RegionSize;
   286   typedef ParallelCompactData::RegionData RegionData;
   287   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   288   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   289   const RegionData* c = summary_data.region(end_region - 1);
   290   HeapWord* end_addr = c->destination() + c->data_size();
   291   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   293   // Print (and count) the full regions at the beginning of the space.
   294   size_t full_region_count = 0;
   295   size_t i = summary_data.addr_to_region_idx(space->bottom());
   296   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   297     print_initial_summary_region(i, summary_data.region(i));
   298     ++full_region_count;
   299     ++i;
   300   }
   302   size_t live_to_right = live_in_space - full_region_count * region_size;
   304   double max_reclaimed_ratio = 0.0;
   305   size_t max_reclaimed_ratio_region = 0;
   306   size_t max_dead_to_right = 0;
   307   size_t max_live_to_right = 0;
   309   // Print the 'reclaimed ratio' for regions while there is something live in
   310   // the region or to the right of it.  The remaining regions are empty (and
   311   // uninteresting), and computing the ratio will result in division by 0.
   312   while (i < end_region && live_to_right > 0) {
   313     c = summary_data.region(i);
   314     HeapWord* const region_addr = summary_data.region_to_addr(i);
   315     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   316     const size_t dead_to_right = used_to_right - live_to_right;
   317     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   319     if (reclaimed_ratio > max_reclaimed_ratio) {
   320             max_reclaimed_ratio = reclaimed_ratio;
   321             max_reclaimed_ratio_region = i;
   322             max_dead_to_right = dead_to_right;
   323             max_live_to_right = live_to_right;
   324     }
   326     print_initial_summary_region(i, c, false);
   327     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   328                   reclaimed_ratio, dead_to_right, live_to_right);
   330     live_to_right -= c->data_size();
   331     ++i;
   332   }
   334   // Any remaining regions are empty.  Print one more if there is one.
   335   if (i < end_region) {
   336     print_initial_summary_region(i, summary_data.region(i));
   337   }
   339   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   340                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   341                 max_reclaimed_ratio_region, max_dead_to_right,
   342                 max_live_to_right, max_reclaimed_ratio);
   343 }
   345 void
   346 print_initial_summary_data(ParallelCompactData& summary_data,
   347                            SpaceInfo* space_info) {
   348   unsigned int id = PSParallelCompact::old_space_id;
   349   const MutableSpace* space;
   350   do {
   351     space = space_info[id].space();
   352     print_initial_summary_data(summary_data, space);
   353   } while (++id < PSParallelCompact::eden_space_id);
   355   do {
   356     space = space_info[id].space();
   357     print_generic_summary_data(summary_data, space->bottom(), space->top());
   358   } while (++id < PSParallelCompact::last_space_id);
   359 }
   360 #endif  // #ifndef PRODUCT
   362 #ifdef  ASSERT
   363 size_t add_obj_count;
   364 size_t add_obj_size;
   365 size_t mark_bitmap_count;
   366 size_t mark_bitmap_size;
   367 #endif  // #ifdef ASSERT
   369 ParallelCompactData::ParallelCompactData()
   370 {
   371   _region_start = 0;
   373   _region_vspace = 0;
   374   _region_data = 0;
   375   _region_count = 0;
   376 }
   378 bool ParallelCompactData::initialize(MemRegion covered_region)
   379 {
   380   _region_start = covered_region.start();
   381   const size_t region_size = covered_region.word_size();
   382   DEBUG_ONLY(_region_end = _region_start + region_size;)
   384   assert(region_align_down(_region_start) == _region_start,
   385          "region start not aligned");
   386   assert((region_size & RegionSizeOffsetMask) == 0,
   387          "region size not a multiple of RegionSize");
   389   bool result = initialize_region_data(region_size);
   391   return result;
   392 }
   394 PSVirtualSpace*
   395 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   396 {
   397   const size_t raw_bytes = count * element_size;
   398   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   399   const size_t granularity = os::vm_allocation_granularity();
   400   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   402   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   403     MAX2(page_sz, granularity);
   404   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   405   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   406                        rs.size());
   408   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   410   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   411   if (vspace != 0) {
   412     if (vspace->expand_by(bytes)) {
   413       return vspace;
   414     }
   415     delete vspace;
   416     // Release memory reserved in the space.
   417     rs.release();
   418   }
   420   return 0;
   421 }
   423 bool ParallelCompactData::initialize_region_data(size_t region_size)
   424 {
   425   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   426   _region_vspace = create_vspace(count, sizeof(RegionData));
   427   if (_region_vspace != 0) {
   428     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   429     _region_count = count;
   430     return true;
   431   }
   432   return false;
   433 }
   435 void ParallelCompactData::clear()
   436 {
   437   memset(_region_data, 0, _region_vspace->committed_size());
   438 }
   440 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   441   assert(beg_region <= _region_count, "beg_region out of range");
   442   assert(end_region <= _region_count, "end_region out of range");
   444   const size_t region_cnt = end_region - beg_region;
   445   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   446 }
   448 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   449 {
   450   const RegionData* cur_cp = region(region_idx);
   451   const RegionData* const end_cp = region(region_count() - 1);
   453   HeapWord* result = region_to_addr(region_idx);
   454   if (cur_cp < end_cp) {
   455     do {
   456       result += cur_cp->partial_obj_size();
   457     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   458   }
   459   return result;
   460 }
   462 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   463 {
   464   const size_t obj_ofs = pointer_delta(addr, _region_start);
   465   const size_t beg_region = obj_ofs >> Log2RegionSize;
   466   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   468   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   469   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   471   if (beg_region == end_region) {
   472     // All in one region.
   473     _region_data[beg_region].add_live_obj(len);
   474     return;
   475   }
   477   // First region.
   478   const size_t beg_ofs = region_offset(addr);
   479   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   481   Klass* klass = ((oop)addr)->klass();
   482   // Middle regions--completely spanned by this object.
   483   for (size_t region = beg_region + 1; region < end_region; ++region) {
   484     _region_data[region].set_partial_obj_size(RegionSize);
   485     _region_data[region].set_partial_obj_addr(addr);
   486   }
   488   // Last region.
   489   const size_t end_ofs = region_offset(addr + len - 1);
   490   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   491   _region_data[end_region].set_partial_obj_addr(addr);
   492 }
   494 void
   495 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   496 {
   497   assert(region_offset(beg) == 0, "not RegionSize aligned");
   498   assert(region_offset(end) == 0, "not RegionSize aligned");
   500   size_t cur_region = addr_to_region_idx(beg);
   501   const size_t end_region = addr_to_region_idx(end);
   502   HeapWord* addr = beg;
   503   while (cur_region < end_region) {
   504     _region_data[cur_region].set_destination(addr);
   505     _region_data[cur_region].set_destination_count(0);
   506     _region_data[cur_region].set_source_region(cur_region);
   507     _region_data[cur_region].set_data_location(addr);
   509     // Update live_obj_size so the region appears completely full.
   510     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   511     _region_data[cur_region].set_live_obj_size(live_size);
   513     ++cur_region;
   514     addr += RegionSize;
   515   }
   516 }
   518 // Find the point at which a space can be split and, if necessary, record the
   519 // split point.
   520 //
   521 // If the current src region (which overflowed the destination space) doesn't
   522 // have a partial object, the split point is at the beginning of the current src
   523 // region (an "easy" split, no extra bookkeeping required).
   524 //
   525 // If the current src region has a partial object, the split point is in the
   526 // region where that partial object starts (call it the split_region).  If
   527 // split_region has a partial object, then the split point is just after that
   528 // partial object (a "hard" split where we have to record the split data and
   529 // zero the partial_obj_size field).  With a "hard" split, we know that the
   530 // partial_obj ends within split_region because the partial object that caused
   531 // the overflow starts in split_region.  If split_region doesn't have a partial
   532 // obj, then the split is at the beginning of split_region (another "easy"
   533 // split).
   534 HeapWord*
   535 ParallelCompactData::summarize_split_space(size_t src_region,
   536                                            SplitInfo& split_info,
   537                                            HeapWord* destination,
   538                                            HeapWord* target_end,
   539                                            HeapWord** target_next)
   540 {
   541   assert(destination <= target_end, "sanity");
   542   assert(destination + _region_data[src_region].data_size() > target_end,
   543     "region should not fit into target space");
   544   assert(is_region_aligned(target_end), "sanity");
   546   size_t split_region = src_region;
   547   HeapWord* split_destination = destination;
   548   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   550   if (destination + partial_obj_size > target_end) {
   551     // The split point is just after the partial object (if any) in the
   552     // src_region that contains the start of the object that overflowed the
   553     // destination space.
   554     //
   555     // Find the start of the "overflow" object and set split_region to the
   556     // region containing it.
   557     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   558     split_region = addr_to_region_idx(overflow_obj);
   560     // Clear the source_region field of all destination regions whose first word
   561     // came from data after the split point (a non-null source_region field
   562     // implies a region must be filled).
   563     //
   564     // An alternative to the simple loop below:  clear during post_compact(),
   565     // which uses memcpy instead of individual stores, and is easy to
   566     // parallelize.  (The downside is that it clears the entire RegionData
   567     // object as opposed to just one field.)
   568     //
   569     // post_compact() would have to clear the summary data up to the highest
   570     // address that was written during the summary phase, which would be
   571     //
   572     //         max(top, max(new_top, clear_top))
   573     //
   574     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   575     // to target_end.
   576     const RegionData* const sr = region(split_region);
   577     const size_t beg_idx =
   578       addr_to_region_idx(region_align_up(sr->destination() +
   579                                          sr->partial_obj_size()));
   580     const size_t end_idx = addr_to_region_idx(target_end);
   582     if (TraceParallelOldGCSummaryPhase) {
   583         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   584                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   585                                beg_idx, end_idx);
   586     }
   587     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   588       _region_data[idx].set_source_region(0);
   589     }
   591     // Set split_destination and partial_obj_size to reflect the split region.
   592     split_destination = sr->destination();
   593     partial_obj_size = sr->partial_obj_size();
   594   }
   596   // The split is recorded only if a partial object extends onto the region.
   597   if (partial_obj_size != 0) {
   598     _region_data[split_region].set_partial_obj_size(0);
   599     split_info.record(split_region, partial_obj_size, split_destination);
   600   }
   602   // Setup the continuation addresses.
   603   *target_next = split_destination + partial_obj_size;
   604   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   606   if (TraceParallelOldGCSummaryPhase) {
   607     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   608     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   609                            " pos=" SIZE_FORMAT,
   610                            split_type, source_next, split_region,
   611                            partial_obj_size);
   612     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   613                            " tn=" PTR_FORMAT,
   614                            split_type, split_destination,
   615                            addr_to_region_idx(split_destination),
   616                            *target_next);
   618     if (partial_obj_size != 0) {
   619       HeapWord* const po_beg = split_info.destination();
   620       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   621       gclog_or_tty->print_cr("%s split:  "
   622                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   623                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   624                              split_type,
   625                              po_beg, addr_to_region_idx(po_beg),
   626                              po_end, addr_to_region_idx(po_end));
   627     }
   628   }
   630   return source_next;
   631 }
   633 bool ParallelCompactData::summarize(SplitInfo& split_info,
   634                                     HeapWord* source_beg, HeapWord* source_end,
   635                                     HeapWord** source_next,
   636                                     HeapWord* target_beg, HeapWord* target_end,
   637                                     HeapWord** target_next)
   638 {
   639   if (TraceParallelOldGCSummaryPhase) {
   640     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   641     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   642                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   643                   source_beg, source_end, source_next_val,
   644                   target_beg, target_end, *target_next);
   645   }
   647   size_t cur_region = addr_to_region_idx(source_beg);
   648   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   650   HeapWord *dest_addr = target_beg;
   651   while (cur_region < end_region) {
   652     // The destination must be set even if the region has no data.
   653     _region_data[cur_region].set_destination(dest_addr);
   655     size_t words = _region_data[cur_region].data_size();
   656     if (words > 0) {
   657       // If cur_region does not fit entirely into the target space, find a point
   658       // at which the source space can be 'split' so that part is copied to the
   659       // target space and the rest is copied elsewhere.
   660       if (dest_addr + words > target_end) {
   661         assert(source_next != NULL, "source_next is NULL when splitting");
   662         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   663                                              target_end, target_next);
   664         return false;
   665       }
   667       // Compute the destination_count for cur_region, and if necessary, update
   668       // source_region for a destination region.  The source_region field is
   669       // updated if cur_region is the first (left-most) region to be copied to a
   670       // destination region.
   671       //
   672       // The destination_count calculation is a bit subtle.  A region that has
   673       // data that compacts into itself does not count itself as a destination.
   674       // This maintains the invariant that a zero count means the region is
   675       // available and can be claimed and then filled.
   676       uint destination_count = 0;
   677       if (split_info.is_split(cur_region)) {
   678         // The current region has been split:  the partial object will be copied
   679         // to one destination space and the remaining data will be copied to
   680         // another destination space.  Adjust the initial destination_count and,
   681         // if necessary, set the source_region field if the partial object will
   682         // cross a destination region boundary.
   683         destination_count = split_info.destination_count();
   684         if (destination_count == 2) {
   685           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   686           _region_data[dest_idx].set_source_region(cur_region);
   687         }
   688       }
   690       HeapWord* const last_addr = dest_addr + words - 1;
   691       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   692       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   694       // Initially assume that the destination regions will be the same and
   695       // adjust the value below if necessary.  Under this assumption, if
   696       // cur_region == dest_region_2, then cur_region will be compacted
   697       // completely into itself.
   698       destination_count += cur_region == dest_region_2 ? 0 : 1;
   699       if (dest_region_1 != dest_region_2) {
   700         // Destination regions differ; adjust destination_count.
   701         destination_count += 1;
   702         // Data from cur_region will be copied to the start of dest_region_2.
   703         _region_data[dest_region_2].set_source_region(cur_region);
   704       } else if (region_offset(dest_addr) == 0) {
   705         // Data from cur_region will be copied to the start of the destination
   706         // region.
   707         _region_data[dest_region_1].set_source_region(cur_region);
   708       }
   710       _region_data[cur_region].set_destination_count(destination_count);
   711       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   712       dest_addr += words;
   713     }
   715     ++cur_region;
   716   }
   718   *target_next = dest_addr;
   719   return true;
   720 }
   722 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   723   assert(addr != NULL, "Should detect NULL oop earlier");
   724   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   725 #ifdef ASSERT
   726   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   727     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   728   }
   729 #endif
   730   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   732   // Region covering the object.
   733   size_t region_index = addr_to_region_idx(addr);
   734   const RegionData* const region_ptr = region(region_index);
   735   HeapWord* const region_addr = region_align_down(addr);
   737   assert(addr < region_addr + RegionSize, "Region does not cover object");
   738   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
   740   HeapWord* result = region_ptr->destination();
   742   // If all the data in the region is live, then the new location of the object
   743   // can be calculated from the destination of the region plus the offset of the
   744   // object in the region.
   745   if (region_ptr->data_size() == RegionSize) {
   746     result += pointer_delta(addr, region_addr);
   747     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   748     return result;
   749   }
   751   // The new location of the object is
   752   //    region destination +
   753   //    size of the partial object extending onto the region +
   754   //    sizes of the live objects in the Region that are to the left of addr
   755   const size_t partial_obj_size = region_ptr->partial_obj_size();
   756   HeapWord* const search_start = region_addr + partial_obj_size;
   758   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   759   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   761   result += partial_obj_size + live_to_left;
   762   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   763   return result;
   764 }
   766 #ifdef  ASSERT
   767 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   768 {
   769   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   770   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   771   for (const size_t* p = beg; p < end; ++p) {
   772     assert(*p == 0, "not zero");
   773   }
   774 }
   776 void ParallelCompactData::verify_clear()
   777 {
   778   verify_clear(_region_vspace);
   779 }
   780 #endif  // #ifdef ASSERT
   782 #ifdef NOT_PRODUCT
   783 ParallelCompactData::RegionData* debug_region(size_t region_index) {
   784   ParallelCompactData& sd = PSParallelCompact::summary_data();
   785   return sd.region(region_index);
   786 }
   787 #endif
   789 elapsedTimer        PSParallelCompact::_accumulated_time;
   790 unsigned int        PSParallelCompact::_total_invocations = 0;
   791 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   792 jlong               PSParallelCompact::_time_of_last_gc = 0;
   793 CollectorCounters*  PSParallelCompact::_counters = NULL;
   794 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   795 ParallelCompactData PSParallelCompact::_summary_data;
   797 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   799 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   800 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   802 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   803 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   805 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   806 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   807 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
   809 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   810 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   812 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
   814 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
   815   mark_and_push(_compaction_manager, p);
   816 }
   817 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   819 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
   820   klass->oops_do(_mark_and_push_closure);
   821 }
   822 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
   823   klass->oops_do(&PSParallelCompact::_adjust_root_pointer_closure);
   824 }
   826 void PSParallelCompact::post_initialize() {
   827   ParallelScavengeHeap* heap = gc_heap();
   828   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   830   MemRegion mr = heap->reserved_region();
   831   _ref_processor =
   832     new ReferenceProcessor(mr,            // span
   833                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   834                            (int) ParallelGCThreads, // mt processing degree
   835                            true,          // mt discovery
   836                            (int) ParallelGCThreads, // mt discovery degree
   837                            true,          // atomic_discovery
   838                            &_is_alive_closure, // non-header is alive closure
   839                            false);        // write barrier for next field updates
   840   _counters = new CollectorCounters("PSParallelCompact", 1);
   842   // Initialize static fields in ParCompactionManager.
   843   ParCompactionManager::initialize(mark_bitmap());
   844 }
   846 bool PSParallelCompact::initialize() {
   847   ParallelScavengeHeap* heap = gc_heap();
   848   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   849   MemRegion mr = heap->reserved_region();
   851   // Was the old gen get allocated successfully?
   852   if (!heap->old_gen()->is_allocated()) {
   853     return false;
   854   }
   856   initialize_space_info();
   857   initialize_dead_wood_limiter();
   859   if (!_mark_bitmap.initialize(mr)) {
   860     vm_shutdown_during_initialization("Unable to allocate bit map for "
   861       "parallel garbage collection for the requested heap size.");
   862     return false;
   863   }
   865   if (!_summary_data.initialize(mr)) {
   866     vm_shutdown_during_initialization("Unable to allocate tables for "
   867       "parallel garbage collection for the requested heap size.");
   868     return false;
   869   }
   871   return true;
   872 }
   874 void PSParallelCompact::initialize_space_info()
   875 {
   876   memset(&_space_info, 0, sizeof(_space_info));
   878   ParallelScavengeHeap* heap = gc_heap();
   879   PSYoungGen* young_gen = heap->young_gen();
   881   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   882   _space_info[eden_space_id].set_space(young_gen->eden_space());
   883   _space_info[from_space_id].set_space(young_gen->from_space());
   884   _space_info[to_space_id].set_space(young_gen->to_space());
   886   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   887 }
   889 void PSParallelCompact::initialize_dead_wood_limiter()
   890 {
   891   const size_t max = 100;
   892   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   893   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   894   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   895   DEBUG_ONLY(_dwl_initialized = true;)
   896   _dwl_adjustment = normal_distribution(1.0);
   897 }
   899 // Simple class for storing info about the heap at the start of GC, to be used
   900 // after GC for comparison/printing.
   901 class PreGCValues {
   902 public:
   903   PreGCValues() { }
   904   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   906   void fill(ParallelScavengeHeap* heap) {
   907     _heap_used      = heap->used();
   908     _young_gen_used = heap->young_gen()->used_in_bytes();
   909     _old_gen_used   = heap->old_gen()->used_in_bytes();
   910     _metadata_used  = MetaspaceAux::used_in_bytes();
   911   };
   913   size_t heap_used() const      { return _heap_used; }
   914   size_t young_gen_used() const { return _young_gen_used; }
   915   size_t old_gen_used() const   { return _old_gen_used; }
   916   size_t metadata_used() const  { return _metadata_used; }
   918 private:
   919   size_t _heap_used;
   920   size_t _young_gen_used;
   921   size_t _old_gen_used;
   922   size_t _metadata_used;
   923 };
   925 void
   926 PSParallelCompact::clear_data_covering_space(SpaceId id)
   927 {
   928   // At this point, top is the value before GC, new_top() is the value that will
   929   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   930   // should be marked above top.  The summary data is cleared to the larger of
   931   // top & new_top.
   932   MutableSpace* const space = _space_info[id].space();
   933   HeapWord* const bot = space->bottom();
   934   HeapWord* const top = space->top();
   935   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   937   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   938   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   939   _mark_bitmap.clear_range(beg_bit, end_bit);
   941   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   942   const size_t end_region =
   943     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   944   _summary_data.clear_range(beg_region, end_region);
   946   // Clear the data used to 'split' regions.
   947   SplitInfo& split_info = _space_info[id].split_info();
   948   if (split_info.is_valid()) {
   949     split_info.clear();
   950   }
   951   DEBUG_ONLY(split_info.verify_clear();)
   952 }
   954 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   955 {
   956   // Update the from & to space pointers in space_info, since they are swapped
   957   // at each young gen gc.  Do the update unconditionally (even though a
   958   // promotion failure does not swap spaces) because an unknown number of minor
   959   // collections will have swapped the spaces an unknown number of times.
   960   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   961   ParallelScavengeHeap* heap = gc_heap();
   962   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   963   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   965   pre_gc_values->fill(heap);
   967   NOT_PRODUCT(_mark_bitmap.reset_counters());
   968   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   969   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   971   // Increment the invocation count
   972   heap->increment_total_collections(true);
   974   // We need to track unique mark sweep invocations as well.
   975   _total_invocations++;
   977   heap->print_heap_before_gc();
   979   // Fill in TLABs
   980   heap->accumulate_statistics_all_tlabs();
   981   heap->ensure_parsability(true);  // retire TLABs
   983   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   984     HandleMark hm;  // Discard invalid handles created during verification
   985     gclog_or_tty->print(" VerifyBeforeGC:");
   986     Universe::verify(true);
   987   }
   989   // Verify object start arrays
   990   if (VerifyObjectStartArray &&
   991       VerifyBeforeGC) {
   992     heap->old_gen()->verify_object_start_array();
   993   }
   995   DEBUG_ONLY(mark_bitmap()->verify_clear();)
   996   DEBUG_ONLY(summary_data().verify_clear();)
   998   // Have worker threads release resources the next time they run a task.
   999   gc_task_manager()->release_all_resources();
  1002 void PSParallelCompact::post_compact()
  1004   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
  1006   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1007     // Clear the marking bitmap, summary data and split info.
  1008     clear_data_covering_space(SpaceId(id));
  1009     // Update top().  Must be done after clearing the bitmap and summary data.
  1010     _space_info[id].publish_new_top();
  1013   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1014   MutableSpace* const from_space = _space_info[from_space_id].space();
  1015   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1017   ParallelScavengeHeap* heap = gc_heap();
  1018   bool eden_empty = eden_space->is_empty();
  1019   if (!eden_empty) {
  1020     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1021                                             heap->young_gen(), heap->old_gen());
  1024   // Update heap occupancy information which is used as input to the soft ref
  1025   // clearing policy at the next gc.
  1026   Universe::update_heap_info_at_gc();
  1028   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1029     to_space->is_empty();
  1031   BarrierSet* bs = heap->barrier_set();
  1032   if (bs->is_a(BarrierSet::ModRef)) {
  1033     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1034     MemRegion old_mr = heap->old_gen()->reserved();
  1036     if (young_gen_empty) {
  1037       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
  1038     } else {
  1039       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
  1043   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1044   ClassLoaderDataGraph::purge();
  1046   Threads::gc_epilogue();
  1047   CodeCache::gc_epilogue();
  1048   JvmtiExport::gc_epilogue();
  1050   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1052   ref_processor()->enqueue_discovered_references(NULL);
  1054   if (ZapUnusedHeapArea) {
  1055     heap->gen_mangle_unused_area();
  1058   // Update time of last GC
  1059   reset_millis_since_last_gc();
  1062 HeapWord*
  1063 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1064                                                     bool maximum_compaction)
  1066   const size_t region_size = ParallelCompactData::RegionSize;
  1067   const ParallelCompactData& sd = summary_data();
  1069   const MutableSpace* const space = _space_info[id].space();
  1070   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1071   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1072   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1074   // Skip full regions at the beginning of the space--they are necessarily part
  1075   // of the dense prefix.
  1076   size_t full_count = 0;
  1077   const RegionData* cp;
  1078   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1079     ++full_count;
  1082   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1083   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1084   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1085   if (maximum_compaction || cp == end_cp || interval_ended) {
  1086     _maximum_compaction_gc_num = total_invocations();
  1087     return sd.region_to_addr(cp);
  1090   HeapWord* const new_top = _space_info[id].new_top();
  1091   const size_t space_live = pointer_delta(new_top, space->bottom());
  1092   const size_t space_used = space->used_in_words();
  1093   const size_t space_capacity = space->capacity_in_words();
  1095   const double cur_density = double(space_live) / space_capacity;
  1096   const double deadwood_density =
  1097     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1098   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1100   if (TraceParallelOldGCDensePrefix) {
  1101     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1102                   cur_density, deadwood_density, deadwood_goal);
  1103     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1104                   "space_cap=" SIZE_FORMAT,
  1105                   space_live, space_used,
  1106                   space_capacity);
  1109   // XXX - Use binary search?
  1110   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1111   const RegionData* full_cp = cp;
  1112   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1113   while (cp < end_cp) {
  1114     HeapWord* region_destination = cp->destination();
  1115     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1116     if (TraceParallelOldGCDensePrefix && Verbose) {
  1117       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1118                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1119                     sd.region(cp), region_destination,
  1120                     dense_prefix, cur_deadwood);
  1123     if (cur_deadwood >= deadwood_goal) {
  1124       // Found the region that has the correct amount of deadwood to the left.
  1125       // This typically occurs after crossing a fairly sparse set of regions, so
  1126       // iterate backwards over those sparse regions, looking for the region
  1127       // that has the lowest density of live objects 'to the right.'
  1128       size_t space_to_left = sd.region(cp) * region_size;
  1129       size_t live_to_left = space_to_left - cur_deadwood;
  1130       size_t space_to_right = space_capacity - space_to_left;
  1131       size_t live_to_right = space_live - live_to_left;
  1132       double density_to_right = double(live_to_right) / space_to_right;
  1133       while (cp > full_cp) {
  1134         --cp;
  1135         const size_t prev_region_live_to_right = live_to_right -
  1136           cp->data_size();
  1137         const size_t prev_region_space_to_right = space_to_right + region_size;
  1138         double prev_region_density_to_right =
  1139           double(prev_region_live_to_right) / prev_region_space_to_right;
  1140         if (density_to_right <= prev_region_density_to_right) {
  1141           return dense_prefix;
  1143         if (TraceParallelOldGCDensePrefix && Verbose) {
  1144           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1145                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1146                         prev_region_density_to_right);
  1148         dense_prefix -= region_size;
  1149         live_to_right = prev_region_live_to_right;
  1150         space_to_right = prev_region_space_to_right;
  1151         density_to_right = prev_region_density_to_right;
  1153       return dense_prefix;
  1156     dense_prefix += region_size;
  1157     ++cp;
  1160   return dense_prefix;
  1163 #ifndef PRODUCT
  1164 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1165                                                  const SpaceId id,
  1166                                                  const bool maximum_compaction,
  1167                                                  HeapWord* const addr)
  1169   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1170   RegionData* const cp = summary_data().region(region_idx);
  1171   const MutableSpace* const space = _space_info[id].space();
  1172   HeapWord* const new_top = _space_info[id].new_top();
  1174   const size_t space_live = pointer_delta(new_top, space->bottom());
  1175   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1176   const size_t space_cap = space->capacity_in_words();
  1177   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1178   const size_t live_to_right = new_top - cp->destination();
  1179   const size_t dead_to_right = space->top() - addr - live_to_right;
  1181   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1182                 "spl=" SIZE_FORMAT " "
  1183                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1184                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1185                 " ratio=%10.8f",
  1186                 algorithm, addr, region_idx,
  1187                 space_live,
  1188                 dead_to_left, dead_to_left_pct,
  1189                 dead_to_right, live_to_right,
  1190                 double(dead_to_right) / live_to_right);
  1192 #endif  // #ifndef PRODUCT
  1194 // Return a fraction indicating how much of the generation can be treated as
  1195 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1196 // based on the density of live objects in the generation to determine a limit,
  1197 // which is then adjusted so the return value is min_percent when the density is
  1198 // 1.
  1199 //
  1200 // The following table shows some return values for a different values of the
  1201 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1202 // min_percent is 1.
  1203 //
  1204 //                          fraction allowed as dead wood
  1205 //         -----------------------------------------------------------------
  1206 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1207 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1208 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1209 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1210 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1211 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1212 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1213 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1214 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1215 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1216 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1217 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1218 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1219 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1220 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1221 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1222 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1223 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1224 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1225 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1226 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1227 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1228 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1230 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1232   assert(_dwl_initialized, "uninitialized");
  1234   // The raw limit is the value of the normal distribution at x = density.
  1235   const double raw_limit = normal_distribution(density);
  1237   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1238   //
  1239   // First subtract the adjustment value (which is simply the precomputed value
  1240   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1241   // Then add the minimum value, so the minimum is returned when the density is
  1242   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1243   const double min = double(min_percent) / 100.0;
  1244   const double limit = raw_limit - _dwl_adjustment + min;
  1245   return MAX2(limit, 0.0);
  1248 ParallelCompactData::RegionData*
  1249 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1250                                            const RegionData* end)
  1252   const size_t region_size = ParallelCompactData::RegionSize;
  1253   ParallelCompactData& sd = summary_data();
  1254   size_t left = sd.region(beg);
  1255   size_t right = end > beg ? sd.region(end) - 1 : left;
  1257   // Binary search.
  1258   while (left < right) {
  1259     // Equivalent to (left + right) / 2, but does not overflow.
  1260     const size_t middle = left + (right - left) / 2;
  1261     RegionData* const middle_ptr = sd.region(middle);
  1262     HeapWord* const dest = middle_ptr->destination();
  1263     HeapWord* const addr = sd.region_to_addr(middle);
  1264     assert(dest != NULL, "sanity");
  1265     assert(dest <= addr, "must move left");
  1267     if (middle > left && dest < addr) {
  1268       right = middle - 1;
  1269     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1270       left = middle + 1;
  1271     } else {
  1272       return middle_ptr;
  1275   return sd.region(left);
  1278 ParallelCompactData::RegionData*
  1279 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1280                                           const RegionData* end,
  1281                                           size_t dead_words)
  1283   ParallelCompactData& sd = summary_data();
  1284   size_t left = sd.region(beg);
  1285   size_t right = end > beg ? sd.region(end) - 1 : left;
  1287   // Binary search.
  1288   while (left < right) {
  1289     // Equivalent to (left + right) / 2, but does not overflow.
  1290     const size_t middle = left + (right - left) / 2;
  1291     RegionData* const middle_ptr = sd.region(middle);
  1292     HeapWord* const dest = middle_ptr->destination();
  1293     HeapWord* const addr = sd.region_to_addr(middle);
  1294     assert(dest != NULL, "sanity");
  1295     assert(dest <= addr, "must move left");
  1297     const size_t dead_to_left = pointer_delta(addr, dest);
  1298     if (middle > left && dead_to_left > dead_words) {
  1299       right = middle - 1;
  1300     } else if (middle < right && dead_to_left < dead_words) {
  1301       left = middle + 1;
  1302     } else {
  1303       return middle_ptr;
  1306   return sd.region(left);
  1309 // The result is valid during the summary phase, after the initial summarization
  1310 // of each space into itself, and before final summarization.
  1311 inline double
  1312 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1313                                    HeapWord* const bottom,
  1314                                    HeapWord* const top,
  1315                                    HeapWord* const new_top)
  1317   ParallelCompactData& sd = summary_data();
  1319   assert(cp != NULL, "sanity");
  1320   assert(bottom != NULL, "sanity");
  1321   assert(top != NULL, "sanity");
  1322   assert(new_top != NULL, "sanity");
  1323   assert(top >= new_top, "summary data problem?");
  1324   assert(new_top > bottom, "space is empty; should not be here");
  1325   assert(new_top >= cp->destination(), "sanity");
  1326   assert(top >= sd.region_to_addr(cp), "sanity");
  1328   HeapWord* const destination = cp->destination();
  1329   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1330   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1331   const size_t compacted_region_used = pointer_delta(top,
  1332                                                      sd.region_to_addr(cp));
  1333   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1335   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1336   return double(reclaimable) / divisor;
  1339 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1340 // compacted region.  The address is always on a region boundary.
  1341 //
  1342 // Completely full regions at the left are skipped, since no compaction can
  1343 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1344 // computed, based on the density (amount live / capacity) of the generation;
  1345 // the region with approximately that amount of dead space to the left is
  1346 // identified as the limit region.  Regions between the last completely full
  1347 // region and the limit region are scanned and the one that has the best
  1348 // (maximum) reclaimed_ratio() is selected.
  1349 HeapWord*
  1350 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1351                                         bool maximum_compaction)
  1353   if (ParallelOldGCSplitALot) {
  1354     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
  1355       // The value was chosen to provoke splitting a young gen space; use it.
  1356       return _space_info[id].dense_prefix();
  1360   const size_t region_size = ParallelCompactData::RegionSize;
  1361   const ParallelCompactData& sd = summary_data();
  1363   const MutableSpace* const space = _space_info[id].space();
  1364   HeapWord* const top = space->top();
  1365   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1366   HeapWord* const new_top = _space_info[id].new_top();
  1367   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1368   HeapWord* const bottom = space->bottom();
  1369   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1370   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1371   const RegionData* const new_top_cp =
  1372     sd.addr_to_region_ptr(new_top_aligned_up);
  1374   // Skip full regions at the beginning of the space--they are necessarily part
  1375   // of the dense prefix.
  1376   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1377   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1378          space->is_empty(), "no dead space allowed to the left");
  1379   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1380          "region must have dead space");
  1382   // The gc number is saved whenever a maximum compaction is done, and used to
  1383   // determine when the maximum compaction interval has expired.  This avoids
  1384   // successive max compactions for different reasons.
  1385   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1386   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1387   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1388     total_invocations() == HeapFirstMaximumCompactionCount;
  1389   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1390     _maximum_compaction_gc_num = total_invocations();
  1391     return sd.region_to_addr(full_cp);
  1394   const size_t space_live = pointer_delta(new_top, bottom);
  1395   const size_t space_used = space->used_in_words();
  1396   const size_t space_capacity = space->capacity_in_words();
  1398   const double density = double(space_live) / double(space_capacity);
  1399   const size_t min_percent_free = MarkSweepDeadRatio;
  1400   const double limiter = dead_wood_limiter(density, min_percent_free);
  1401   const size_t dead_wood_max = space_used - space_live;
  1402   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1403                                       dead_wood_max);
  1405   if (TraceParallelOldGCDensePrefix) {
  1406     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1407                   "space_cap=" SIZE_FORMAT,
  1408                   space_live, space_used,
  1409                   space_capacity);
  1410     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1411                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1412                   density, min_percent_free, limiter,
  1413                   dead_wood_max, dead_wood_limit);
  1416   // Locate the region with the desired amount of dead space to the left.
  1417   const RegionData* const limit_cp =
  1418     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1420   // Scan from the first region with dead space to the limit region and find the
  1421   // one with the best (largest) reclaimed ratio.
  1422   double best_ratio = 0.0;
  1423   const RegionData* best_cp = full_cp;
  1424   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1425     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1426     if (tmp_ratio > best_ratio) {
  1427       best_cp = cp;
  1428       best_ratio = tmp_ratio;
  1432 #if     0
  1433   // Something to consider:  if the region with the best ratio is 'close to' the
  1434   // first region w/free space, choose the first region with free space
  1435   // ("first-free").  The first-free region is usually near the start of the
  1436   // heap, which means we are copying most of the heap already, so copy a bit
  1437   // more to get complete compaction.
  1438   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1439     _maximum_compaction_gc_num = total_invocations();
  1440     best_cp = full_cp;
  1442 #endif  // #if 0
  1444   return sd.region_to_addr(best_cp);
  1447 #ifndef PRODUCT
  1448 void
  1449 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
  1450                                           size_t words)
  1452   if (TraceParallelOldGCSummaryPhase) {
  1453     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
  1454                   SIZE_FORMAT, start, start + words, words);
  1457   ObjectStartArray* const start_array = _space_info[id].start_array();
  1458   CollectedHeap::fill_with_objects(start, words);
  1459   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
  1460     _mark_bitmap.mark_obj(p, words);
  1461     _summary_data.add_obj(p, words);
  1462     start_array->allocate_block(p);
  1466 void
  1467 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
  1469   ParallelCompactData& sd = summary_data();
  1470   MutableSpace* space = _space_info[id].space();
  1472   // Find the source and destination start addresses.
  1473   HeapWord* const src_addr = sd.region_align_down(start);
  1474   HeapWord* dst_addr;
  1475   if (src_addr < start) {
  1476     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  1477   } else if (src_addr > space->bottom()) {
  1478     // The start (the original top() value) is aligned to a region boundary so
  1479     // the associated region does not have a destination.  Compute the
  1480     // destination from the previous region.
  1481     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
  1482     dst_addr = cp->destination() + cp->data_size();
  1483   } else {
  1484     // Filling the entire space.
  1485     dst_addr = space->bottom();
  1487   assert(dst_addr != NULL, "sanity");
  1489   // Update the summary data.
  1490   bool result = _summary_data.summarize(_space_info[id].split_info(),
  1491                                         src_addr, space->top(), NULL,
  1492                                         dst_addr, space->end(),
  1493                                         _space_info[id].new_top_addr());
  1494   assert(result, "should not fail:  bad filler object size");
  1497 void
  1498 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
  1500   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
  1501     return;
  1504   MutableSpace* const space = _space_info[id].space();
  1505   if (space->is_empty()) {
  1506     HeapWord* b = space->bottom();
  1507     HeapWord* t = b + space->capacity_in_words() / 2;
  1508     space->set_top(t);
  1509     if (ZapUnusedHeapArea) {
  1510       space->set_top_for_allocations();
  1513     size_t min_size = CollectedHeap::min_fill_size();
  1514     size_t obj_len = min_size;
  1515     while (b + obj_len <= t) {
  1516       CollectedHeap::fill_with_object(b, obj_len);
  1517       mark_bitmap()->mark_obj(b, obj_len);
  1518       summary_data().add_obj(b, obj_len);
  1519       b += obj_len;
  1520       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
  1522     if (b < t) {
  1523       // The loop didn't completely fill to t (top); adjust top downward.
  1524       space->set_top(b);
  1525       if (ZapUnusedHeapArea) {
  1526         space->set_top_for_allocations();
  1530     HeapWord** nta = _space_info[id].new_top_addr();
  1531     bool result = summary_data().summarize(_space_info[id].split_info(),
  1532                                            space->bottom(), space->top(), NULL,
  1533                                            space->bottom(), space->end(), nta);
  1534     assert(result, "space must fit into itself");
  1538 void
  1539 PSParallelCompact::provoke_split(bool & max_compaction)
  1541   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
  1542     return;
  1545   const size_t region_size = ParallelCompactData::RegionSize;
  1546   ParallelCompactData& sd = summary_data();
  1548   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1549   MutableSpace* const from_space = _space_info[from_space_id].space();
  1550   const size_t eden_live = pointer_delta(eden_space->top(),
  1551                                          _space_info[eden_space_id].new_top());
  1552   const size_t from_live = pointer_delta(from_space->top(),
  1553                                          _space_info[from_space_id].new_top());
  1555   const size_t min_fill_size = CollectedHeap::min_fill_size();
  1556   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  1557   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  1558   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  1559   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
  1561   // Choose the space to split; need at least 2 regions live (or fillable).
  1562   SpaceId id;
  1563   MutableSpace* space;
  1564   size_t live_words;
  1565   size_t fill_words;
  1566   if (eden_live + eden_fillable >= region_size * 2) {
  1567     id = eden_space_id;
  1568     space = eden_space;
  1569     live_words = eden_live;
  1570     fill_words = eden_fillable;
  1571   } else if (from_live + from_fillable >= region_size * 2) {
  1572     id = from_space_id;
  1573     space = from_space;
  1574     live_words = from_live;
  1575     fill_words = from_fillable;
  1576   } else {
  1577     return; // Give up.
  1579   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
  1581   if (live_words < region_size * 2) {
  1582     // Fill from top() to end() w/live objects of mixed sizes.
  1583     HeapWord* const fill_start = space->top();
  1584     live_words += fill_words;
  1586     space->set_top(fill_start + fill_words);
  1587     if (ZapUnusedHeapArea) {
  1588       space->set_top_for_allocations();
  1591     HeapWord* cur_addr = fill_start;
  1592     while (fill_words > 0) {
  1593       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
  1594       size_t cur_size = MIN2(align_object_size_(r), fill_words);
  1595       if (fill_words - cur_size < min_fill_size) {
  1596         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
  1599       CollectedHeap::fill_with_object(cur_addr, cur_size);
  1600       mark_bitmap()->mark_obj(cur_addr, cur_size);
  1601       sd.add_obj(cur_addr, cur_size);
  1603       cur_addr += cur_size;
  1604       fill_words -= cur_size;
  1607     summarize_new_objects(id, fill_start);
  1610   max_compaction = false;
  1612   // Manipulate the old gen so that it has room for about half of the live data
  1613   // in the target young gen space (live_words / 2).
  1614   id = old_space_id;
  1615   space = _space_info[id].space();
  1616   const size_t free_at_end = space->free_in_words();
  1617   const size_t free_target = align_object_size(live_words / 2);
  1618   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
  1620   if (free_at_end >= free_target + min_fill_size) {
  1621     // Fill space above top() and set the dense prefix so everything survives.
  1622     HeapWord* const fill_start = space->top();
  1623     const size_t fill_size = free_at_end - free_target;
  1624     space->set_top(space->top() + fill_size);
  1625     if (ZapUnusedHeapArea) {
  1626       space->set_top_for_allocations();
  1628     fill_with_live_objects(id, fill_start, fill_size);
  1629     summarize_new_objects(id, fill_start);
  1630     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  1631   } else if (dead + free_at_end > free_target) {
  1632     // Find a dense prefix that makes the right amount of space available.
  1633     HeapWord* cur = sd.region_align_down(space->top());
  1634     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1635     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
  1636     while (dead_to_right < free_target) {
  1637       cur -= region_size;
  1638       cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1639       dead_to_right = pointer_delta(space->end(), cur_destination);
  1641     _space_info[id].set_dense_prefix(cur);
  1644 #endif // #ifndef PRODUCT
  1646 void PSParallelCompact::summarize_spaces_quick()
  1648   for (unsigned int i = 0; i < last_space_id; ++i) {
  1649     const MutableSpace* space = _space_info[i].space();
  1650     HeapWord** nta = _space_info[i].new_top_addr();
  1651     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1652                                           space->bottom(), space->top(), NULL,
  1653                                           space->bottom(), space->end(), nta);
  1654     assert(result, "space must fit into itself");
  1655     _space_info[i].set_dense_prefix(space->bottom());
  1658 #ifndef PRODUCT
  1659   if (ParallelOldGCSplitALot) {
  1660     provoke_split_fill_survivor(to_space_id);
  1662 #endif // #ifndef PRODUCT
  1665 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1667   HeapWord* const dense_prefix_end = dense_prefix(id);
  1668   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1669   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1670   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1671     // Only enough dead space is filled so that any remaining dead space to the
  1672     // left is larger than the minimum filler object.  (The remainder is filled
  1673     // during the copy/update phase.)
  1674     //
  1675     // The size of the dead space to the right of the boundary is not a
  1676     // concern, since compaction will be able to use whatever space is
  1677     // available.
  1678     //
  1679     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1680     // surrounds the space to be filled with an object.
  1681     //
  1682     // In the 32-bit VM, each bit represents two 32-bit words:
  1683     //                              +---+
  1684     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1685     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1686     //                              +---+
  1687     //
  1688     // In the 64-bit VM, each bit represents one 64-bit word:
  1689     //                              +------------+
  1690     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1691     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1692     //                              +------------+
  1693     //                          +-------+
  1694     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1695     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1696     //                          +-------+
  1697     //                      +-----------+
  1698     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1699     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1700     //                      +-----------+
  1701     //                          +-------+
  1702     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1703     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1704     //                          +-------+
  1706     // Initially assume case a, c or e will apply.
  1707     size_t obj_len = CollectedHeap::min_fill_size();
  1708     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1710 #ifdef  _LP64
  1711     if (MinObjAlignment > 1) { // object alignment > heap word size
  1712       // Cases a, c or e.
  1713     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1714       // Case b above.
  1715       obj_beg = dense_prefix_end - 1;
  1716     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1717                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1718       // Case d above.
  1719       obj_beg = dense_prefix_end - 3;
  1720       obj_len = 3;
  1722 #endif  // #ifdef _LP64
  1724     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1725     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1726     _summary_data.add_obj(obj_beg, obj_len);
  1727     assert(start_array(id) != NULL, "sanity");
  1728     start_array(id)->allocate_block(obj_beg);
  1732 void
  1733 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1735   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1736   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1737   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1738   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1739     cur->set_source_region(0);
  1743 void
  1744 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1746   assert(id < last_space_id, "id out of range");
  1747   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
  1748          ParallelOldGCSplitALot && id == old_space_id,
  1749          "should have been reset in summarize_spaces_quick()");
  1751   const MutableSpace* space = _space_info[id].space();
  1752   if (_space_info[id].new_top() != space->bottom()) {
  1753     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1754     _space_info[id].set_dense_prefix(dense_prefix_end);
  1756 #ifndef PRODUCT
  1757     if (TraceParallelOldGCDensePrefix) {
  1758       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1759                                dense_prefix_end);
  1760       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1761       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1763 #endif  // #ifndef PRODUCT
  1765     // Recompute the summary data, taking into account the dense prefix.  If
  1766     // every last byte will be reclaimed, then the existing summary data which
  1767     // compacts everything can be left in place.
  1768     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1769       // If dead space crosses the dense prefix boundary, it is (at least
  1770       // partially) filled with a dummy object, marked live and added to the
  1771       // summary data.  This simplifies the copy/update phase and must be done
  1772       // before the final locations of objects are determined, to prevent
  1773       // leaving a fragment of dead space that is too small to fill.
  1774       fill_dense_prefix_end(id);
  1776       // Compute the destination of each Region, and thus each object.
  1777       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1778       _summary_data.summarize(_space_info[id].split_info(),
  1779                               dense_prefix_end, space->top(), NULL,
  1780                               dense_prefix_end, space->end(),
  1781                               _space_info[id].new_top_addr());
  1785   if (TraceParallelOldGCSummaryPhase) {
  1786     const size_t region_size = ParallelCompactData::RegionSize;
  1787     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1788     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1789     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1790     HeapWord* const new_top = _space_info[id].new_top();
  1791     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1792     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1793     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1794                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1795                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1796                   id, space->capacity_in_words(), dense_prefix_end,
  1797                   dp_region, dp_words / region_size,
  1798                   cr_words / region_size, new_top);
  1802 #ifndef PRODUCT
  1803 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1804                                           HeapWord* dst_beg, HeapWord* dst_end,
  1805                                           SpaceId src_space_id,
  1806                                           HeapWord* src_beg, HeapWord* src_end)
  1808   if (TraceParallelOldGCSummaryPhase) {
  1809     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1810                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1811                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1812                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1813                   SIZE_FORMAT "-" SIZE_FORMAT,
  1814                   src_space_id, space_names[src_space_id],
  1815                   dst_space_id, space_names[dst_space_id],
  1816                   src_beg, src_end,
  1817                   _summary_data.addr_to_region_idx(src_beg),
  1818                   _summary_data.addr_to_region_idx(src_end),
  1819                   dst_beg, dst_end,
  1820                   _summary_data.addr_to_region_idx(dst_beg),
  1821                   _summary_data.addr_to_region_idx(dst_end));
  1824 #endif  // #ifndef PRODUCT
  1826 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1827                                       bool maximum_compaction)
  1829   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1830   // trace("2");
  1832 #ifdef  ASSERT
  1833   if (TraceParallelOldGCMarkingPhase) {
  1834     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1835                   "add_obj_bytes=" SIZE_FORMAT,
  1836                   add_obj_count, add_obj_size * HeapWordSize);
  1837     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1838                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1839                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1841 #endif  // #ifdef ASSERT
  1843   // Quick summarization of each space into itself, to see how much is live.
  1844   summarize_spaces_quick();
  1846   if (TraceParallelOldGCSummaryPhase) {
  1847     tty->print_cr("summary_phase:  after summarizing each space to self");
  1848     Universe::print();
  1849     NOT_PRODUCT(print_region_ranges());
  1850     if (Verbose) {
  1851       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1855   // The amount of live data that will end up in old space (assuming it fits).
  1856   size_t old_space_total_live = 0;
  1857   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1858     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1859                                           _space_info[id].space()->bottom());
  1862   MutableSpace* const old_space = _space_info[old_space_id].space();
  1863   const size_t old_capacity = old_space->capacity_in_words();
  1864   if (old_space_total_live > old_capacity) {
  1865     // XXX - should also try to expand
  1866     maximum_compaction = true;
  1868 #ifndef PRODUCT
  1869   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
  1870     provoke_split(maximum_compaction);
  1872 #endif // #ifndef PRODUCT
  1874   // Old generations.
  1875   summarize_space(old_space_id, maximum_compaction);
  1877   // Summarize the remaining spaces in the young gen.  The initial target space
  1878   // is the old gen.  If a space does not fit entirely into the target, then the
  1879   // remainder is compacted into the space itself and that space becomes the new
  1880   // target.
  1881   SpaceId dst_space_id = old_space_id;
  1882   HeapWord* dst_space_end = old_space->end();
  1883   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1884   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1885     const MutableSpace* space = _space_info[id].space();
  1886     const size_t live = pointer_delta(_space_info[id].new_top(),
  1887                                       space->bottom());
  1888     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1890     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1891                                   SpaceId(id), space->bottom(), space->top());)
  1892     if (live > 0 && live <= available) {
  1893       // All the live data will fit.
  1894       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1895                                           space->bottom(), space->top(),
  1896                                           NULL,
  1897                                           *new_top_addr, dst_space_end,
  1898                                           new_top_addr);
  1899       assert(done, "space must fit into old gen");
  1901       // Reset the new_top value for the space.
  1902       _space_info[id].set_new_top(space->bottom());
  1903     } else if (live > 0) {
  1904       // Attempt to fit part of the source space into the target space.
  1905       HeapWord* next_src_addr = NULL;
  1906       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1907                                           space->bottom(), space->top(),
  1908                                           &next_src_addr,
  1909                                           *new_top_addr, dst_space_end,
  1910                                           new_top_addr);
  1911       assert(!done, "space should not fit into old gen");
  1912       assert(next_src_addr != NULL, "sanity");
  1914       // The source space becomes the new target, so the remainder is compacted
  1915       // within the space itself.
  1916       dst_space_id = SpaceId(id);
  1917       dst_space_end = space->end();
  1918       new_top_addr = _space_info[id].new_top_addr();
  1919       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1920                                     space->bottom(), dst_space_end,
  1921                                     SpaceId(id), next_src_addr, space->top());)
  1922       done = _summary_data.summarize(_space_info[id].split_info(),
  1923                                      next_src_addr, space->top(),
  1924                                      NULL,
  1925                                      space->bottom(), dst_space_end,
  1926                                      new_top_addr);
  1927       assert(done, "space must fit when compacted into itself");
  1928       assert(*new_top_addr <= space->top(), "usage should not grow");
  1932   if (TraceParallelOldGCSummaryPhase) {
  1933     tty->print_cr("summary_phase:  after final summarization");
  1934     Universe::print();
  1935     NOT_PRODUCT(print_region_ranges());
  1936     if (Verbose) {
  1937       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1942 // This method should contain all heap-specific policy for invoking a full
  1943 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1944 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1945 // before full gc, or any other specialized behavior, it needs to be added here.
  1946 //
  1947 // Note that this method should only be called from the vm_thread while at a
  1948 // safepoint.
  1949 //
  1950 // Note that the all_soft_refs_clear flag in the collector policy
  1951 // may be true because this method can be called without intervening
  1952 // activity.  For example when the heap space is tight and full measure
  1953 // are being taken to free space.
  1954 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1955   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1956   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1957          "should be in vm thread");
  1959   ParallelScavengeHeap* heap = gc_heap();
  1960   GCCause::Cause gc_cause = heap->gc_cause();
  1961   assert(!heap->is_gc_active(), "not reentrant");
  1963   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1964   IsGCActiveMark mark;
  1966   if (ScavengeBeforeFullGC) {
  1967     PSScavenge::invoke_no_policy();
  1970   const bool clear_all_soft_refs =
  1971     heap->collector_policy()->should_clear_all_soft_refs();
  1973   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
  1974                                       maximum_heap_compaction);
  1977 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  1978   size_t addr_region_index = addr_to_region_idx(addr);
  1979   return region_index == addr_region_index;
  1982 // This method contains no policy. You should probably
  1983 // be calling invoke() instead.
  1984 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1985   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1986   assert(ref_processor() != NULL, "Sanity");
  1988   if (GC_locker::check_active_before_gc()) {
  1989     return false;
  1992   TimeStamp marking_start;
  1993   TimeStamp compaction_start;
  1994   TimeStamp collection_exit;
  1996   ParallelScavengeHeap* heap = gc_heap();
  1997   GCCause::Cause gc_cause = heap->gc_cause();
  1998   PSYoungGen* young_gen = heap->young_gen();
  1999   PSOldGen* old_gen = heap->old_gen();
  2000   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  2002   // The scope of casr should end after code that can change
  2003   // CollectorPolicy::_should_clear_all_soft_refs.
  2004   ClearedAllSoftRefs casr(maximum_heap_compaction,
  2005                           heap->collector_policy());
  2007   if (ZapUnusedHeapArea) {
  2008     // Save information needed to minimize mangling
  2009     heap->record_gen_tops_before_GC();
  2012   heap->pre_full_gc_dump();
  2014   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  2016   // Make sure data structures are sane, make the heap parsable, and do other
  2017   // miscellaneous bookkeeping.
  2018   PreGCValues pre_gc_values;
  2019   pre_compact(&pre_gc_values);
  2021   // Get the compaction manager reserved for the VM thread.
  2022   ParCompactionManager* const vmthread_cm =
  2023     ParCompactionManager::manager_array(gc_task_manager()->workers());
  2025   // Place after pre_compact() where the number of invocations is incremented.
  2026   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  2029     ResourceMark rm;
  2030     HandleMark hm;
  2032     // Set the number of GC threads to be used in this collection
  2033     gc_task_manager()->set_active_gang();
  2034     gc_task_manager()->task_idle_workers();
  2035     heap->set_par_threads(gc_task_manager()->active_workers());
  2037     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2038     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2039     TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
  2040     TraceCollectorStats tcs(counters());
  2041     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
  2043     if (TraceGen1Time) accumulated_time()->start();
  2045     // Let the size policy know we're starting
  2046     size_policy->major_collection_begin();
  2048     CodeCache::gc_prologue();
  2049     Threads::gc_prologue();
  2051     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2053     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  2054     ref_processor()->setup_policy(maximum_heap_compaction);
  2056     bool marked_for_unloading = false;
  2058     marking_start.update();
  2059     marking_phase(vmthread_cm, maximum_heap_compaction);
  2061 #ifndef PRODUCT
  2062     if (TraceParallelOldGCMarkingPhase) {
  2063       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2064         "cas_by_another %d",
  2065         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2066         mark_bitmap()->cas_by_another());
  2068 #endif  // #ifndef PRODUCT
  2070     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
  2071       && gc_cause == GCCause::_java_lang_system_gc;
  2072     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2074     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2075     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2077     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2078     // needed by the compaction for filling holes in the dense prefix.
  2079     adjust_roots();
  2081     compaction_start.update();
  2082     compact();
  2084     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2085     // done before resizing.
  2086     post_compact();
  2088     // Let the size policy know we're done
  2089     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2091     if (UseAdaptiveSizePolicy) {
  2092       if (PrintAdaptiveSizePolicy) {
  2093         gclog_or_tty->print("AdaptiveSizeStart: ");
  2094         gclog_or_tty->stamp();
  2095         gclog_or_tty->print_cr(" collection: %d ",
  2096                        heap->total_collections());
  2097         if (Verbose) {
  2098           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
  2099             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
  2103       // Don't check if the size_policy is ready here.  Let
  2104       // the size_policy check that internally.
  2105       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2106           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2107             UseAdaptiveSizePolicyWithSystemGC)) {
  2108         // Calculate optimal free space amounts
  2109         assert(young_gen->max_size() >
  2110           young_gen->from_space()->capacity_in_bytes() +
  2111           young_gen->to_space()->capacity_in_bytes(),
  2112           "Sizes of space in young gen are out-of-bounds");
  2113         size_t max_eden_size = young_gen->max_size() -
  2114           young_gen->from_space()->capacity_in_bytes() -
  2115           young_gen->to_space()->capacity_in_bytes();
  2116         size_policy->compute_generation_free_space(
  2117                               young_gen->used_in_bytes(),
  2118                               young_gen->eden_space()->used_in_bytes(),
  2119                               old_gen->used_in_bytes(),
  2120                               young_gen->eden_space()->capacity_in_bytes(),
  2121                               old_gen->max_gen_size(),
  2122                               max_eden_size,
  2123                               true /* full gc*/,
  2124                               gc_cause,
  2125                               heap->collector_policy());
  2127         heap->resize_old_gen(
  2128           size_policy->calculated_old_free_size_in_bytes());
  2130         // Don't resize the young generation at an major collection.  A
  2131         // desired young generation size may have been calculated but
  2132         // resizing the young generation complicates the code because the
  2133         // resizing of the old generation may have moved the boundary
  2134         // between the young generation and the old generation.  Let the
  2135         // young generation resizing happen at the minor collections.
  2137       if (PrintAdaptiveSizePolicy) {
  2138         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2139                        heap->total_collections());
  2143     if (UsePerfData) {
  2144       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2145       counters->update_counters();
  2146       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2147       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2150     heap->resize_all_tlabs();
  2152     // Resize the metaspace capactiy after a collection
  2153     MetaspaceGC::compute_new_size();
  2155     if (TraceGen1Time) accumulated_time()->stop();
  2157     if (PrintGC) {
  2158       if (PrintGCDetails) {
  2159         // No GC timestamp here.  This is after GC so it would be confusing.
  2160         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2161         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2162         heap->print_heap_change(pre_gc_values.heap_used());
  2163         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
  2164       } else {
  2165         heap->print_heap_change(pre_gc_values.heap_used());
  2169     // Track memory usage and detect low memory
  2170     MemoryService::track_memory_usage();
  2171     heap->update_counters();
  2172     gc_task_manager()->release_idle_workers();
  2175 #ifdef ASSERT
  2176   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
  2177     ParCompactionManager* const cm =
  2178       ParCompactionManager::manager_array(int(i));
  2179     assert(cm->marking_stack()->is_empty(),       "should be empty");
  2180     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
  2182 #endif // ASSERT
  2184   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2185     HandleMark hm;  // Discard invalid handles created during verification
  2186     gclog_or_tty->print(" VerifyAfterGC:");
  2187     Universe::verify(false);
  2190   // Re-verify object start arrays
  2191   if (VerifyObjectStartArray &&
  2192       VerifyAfterGC) {
  2193     old_gen->verify_object_start_array();
  2196   if (ZapUnusedHeapArea) {
  2197     old_gen->object_space()->check_mangled_unused_area_complete();
  2200   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2202   collection_exit.update();
  2204   heap->print_heap_after_gc();
  2205   if (PrintGCTaskTimeStamps) {
  2206     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2207                            INT64_FORMAT,
  2208                            marking_start.ticks(), compaction_start.ticks(),
  2209                            collection_exit.ticks());
  2210     gc_task_manager()->print_task_time_stamps();
  2213   heap->post_full_gc_dump();
  2215 #ifdef TRACESPINNING
  2216   ParallelTaskTerminator::print_termination_counts();
  2217 #endif
  2219   return true;
  2222 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2223                                              PSYoungGen* young_gen,
  2224                                              PSOldGen* old_gen) {
  2225   MutableSpace* const eden_space = young_gen->eden_space();
  2226   assert(!eden_space->is_empty(), "eden must be non-empty");
  2227   assert(young_gen->virtual_space()->alignment() ==
  2228          old_gen->virtual_space()->alignment(), "alignments do not match");
  2230   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2231     return false;
  2234   // Both generations must be completely committed.
  2235   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2236     return false;
  2238   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2239     return false;
  2242   // Figure out how much to take from eden.  Include the average amount promoted
  2243   // in the total; otherwise the next young gen GC will simply bail out to a
  2244   // full GC.
  2245   const size_t alignment = old_gen->virtual_space()->alignment();
  2246   const size_t eden_used = eden_space->used_in_bytes();
  2247   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2248   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2249   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2251   if (absorb_size >= eden_capacity) {
  2252     return false; // Must leave some space in eden.
  2255   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2256   if (new_young_size < young_gen->min_gen_size()) {
  2257     return false; // Respect young gen minimum size.
  2260   if (TraceAdaptiveGCBoundary && Verbose) {
  2261     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2262                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2263                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2264                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2265                         absorb_size / K,
  2266                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2267                         young_gen->from_space()->used_in_bytes() / K,
  2268                         young_gen->to_space()->used_in_bytes() / K,
  2269                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2272   // Fill the unused part of the old gen.
  2273   MutableSpace* const old_space = old_gen->object_space();
  2274   HeapWord* const unused_start = old_space->top();
  2275   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2277   if (unused_words > 0) {
  2278     if (unused_words < CollectedHeap::min_fill_size()) {
  2279       return false;  // If the old gen cannot be filled, must give up.
  2281     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2284   // Take the live data from eden and set both top and end in the old gen to
  2285   // eden top.  (Need to set end because reset_after_change() mangles the region
  2286   // from end to virtual_space->high() in debug builds).
  2287   HeapWord* const new_top = eden_space->top();
  2288   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2289                                         absorb_size);
  2290   young_gen->reset_after_change();
  2291   old_space->set_top(new_top);
  2292   old_space->set_end(new_top);
  2293   old_gen->reset_after_change();
  2295   // Update the object start array for the filler object and the data from eden.
  2296   ObjectStartArray* const start_array = old_gen->start_array();
  2297   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2298     start_array->allocate_block(p);
  2301   // Could update the promoted average here, but it is not typically updated at
  2302   // full GCs and the value to use is unclear.  Something like
  2303   //
  2304   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2306   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2307   return true;
  2310 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2311   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2312     "shouldn't return NULL");
  2313   return ParallelScavengeHeap::gc_task_manager();
  2316 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2317                                       bool maximum_heap_compaction) {
  2318   // Recursively traverse all live objects and mark them
  2319   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2321   ParallelScavengeHeap* heap = gc_heap();
  2322   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2323   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2324   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2325   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2327   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2328   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2330   // Need new claim bits before marking starts.
  2331   ClassLoaderDataGraph::clear_claimed_marks();
  2334     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2335     ParallelScavengeHeap::ParStrongRootsScope psrs;
  2337     GCTaskQueue* q = GCTaskQueue::create();
  2339     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2340     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2341     // We scan the thread roots in parallel
  2342     Threads::create_thread_roots_marking_tasks(q);
  2343     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2344     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2345     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2346     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2347     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2348     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
  2350     if (active_gc_threads > 1) {
  2351       for (uint j = 0; j < active_gc_threads; j++) {
  2352         q->enqueue(new StealMarkingTask(&terminator));
  2356     gc_task_manager()->execute_and_wait(q);
  2359   // Process reference objects found during marking
  2361     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2362     if (ref_processor()->processing_is_mt()) {
  2363       RefProcTaskExecutor task_executor;
  2364       ref_processor()->process_discovered_references(
  2365         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2366         &task_executor);
  2367     } else {
  2368       ref_processor()->process_discovered_references(
  2369         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
  2373   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2374   // Follow system dictionary roots and unload classes.
  2375   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2377   // Follow code cache roots.
  2378   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  2379                           purged_class);
  2380   cm->follow_marking_stacks(); // Flush marking stack.
  2382   // Update subklass/sibling/implementor links of live klasses
  2383   Klass::clean_weak_klass_links(is_alive_closure());
  2385   // Visit interned string tables and delete unmarked oops
  2386   StringTable::unlink(is_alive_closure());
  2387   // Clean up unreferenced symbols in symbol table.
  2388   SymbolTable::unlink();
  2390   assert(cm->marking_stacks_empty(), "marking stacks should be empty");
  2393 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  2394   ClassLoaderData* cld = klass->class_loader_data();
  2395   assert(cld->has_defined(klass), "inconsistency!");
  2397   // The actual processing of the klass is done when we
  2398   // traverse the list of Klasses in the class loader data.
  2399   PSParallelCompact::follow_class_loader(cm, cld);
  2402 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
  2403   ClassLoaderData* cld = klass->class_loader_data();
  2404   assert(cld->has_defined(klass), "inconsistency!");
  2406   // The actual processing of the klass is done when we
  2407   // traverse the list of Klasses in the class loader data.
  2408   PSParallelCompact::adjust_class_loader(cm, cld);
  2411 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
  2412                                             ClassLoaderData* cld) {
  2413   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2414   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
  2416   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
  2419 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
  2420                                             ClassLoaderData* cld) {
  2421   cld->oops_do(PSParallelCompact::adjust_root_pointer_closure(),
  2422                PSParallelCompact::adjust_klass_closure(),
  2423                true);
  2426 // This should be moved to the shared markSweep code!
  2427 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2428 public:
  2429   void do_object(oop p) { ShouldNotReachHere(); }
  2430   bool do_object_b(oop p) { return true; }
  2431 };
  2432 static PSAlwaysTrueClosure always_true;
  2434 void PSParallelCompact::adjust_roots() {
  2435   // Adjust the pointers to reflect the new locations
  2436   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2438   // Need new claim bits when tracing through and adjusting pointers.
  2439   ClassLoaderDataGraph::clear_claimed_marks();
  2441   // General strong roots.
  2442   Universe::oops_do(adjust_root_pointer_closure());
  2443   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2444   Threads::oops_do(adjust_root_pointer_closure(), NULL);
  2445   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2446   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2447   Management::oops_do(adjust_root_pointer_closure());
  2448   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2449   // SO_AllClasses
  2450   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2451   ClassLoaderDataGraph::oops_do(adjust_root_pointer_closure(), adjust_klass_closure(), true);
  2453   // Now adjust pointers in remaining weak roots.  (All of which should
  2454   // have been cleared if they pointed to non-surviving objects.)
  2455   // Global (weak) JNI handles
  2456   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2458   CodeCache::oops_do(adjust_pointer_closure());
  2459   StringTable::oops_do(adjust_root_pointer_closure());
  2460   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2461   // Roots were visited so references into the young gen in roots
  2462   // may have been scanned.  Process them also.
  2463   // Should the reference processor have a span that excludes
  2464   // young gen objects?
  2465   PSScavenge::reference_processor()->weak_oops_do(
  2466                                               adjust_root_pointer_closure());
  2469 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2470                                                       uint parallel_gc_threads)
  2472   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2474   // Find the threads that are active
  2475   unsigned int which = 0;
  2477   const uint task_count = MAX2(parallel_gc_threads, 1U);
  2478   for (uint j = 0; j < task_count; j++) {
  2479     q->enqueue(new DrainStacksCompactionTask(j));
  2480     ParCompactionManager::verify_region_list_empty(j);
  2481     // Set the region stacks variables to "no" region stack values
  2482     // so that they will be recognized and needing a region stack
  2483     // in the stealing tasks if they do not get one by executing
  2484     // a draining stack.
  2485     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
  2486     cm->set_region_stack(NULL);
  2487     cm->set_region_stack_index((uint)max_uintx);
  2489   ParCompactionManager::reset_recycled_stack_index();
  2491   // Find all regions that are available (can be filled immediately) and
  2492   // distribute them to the thread stacks.  The iteration is done in reverse
  2493   // order (high to low) so the regions will be removed in ascending order.
  2495   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2497   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2498   // A region index which corresponds to the tasks created above.
  2499   // "which" must be 0 <= which < task_count
  2501   which = 0;
  2502   // id + 1 is used to test termination so unsigned  can
  2503   // be used with an old_space_id == 0.
  2504   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
  2505     SpaceInfo* const space_info = _space_info + id;
  2506     MutableSpace* const space = space_info->space();
  2507     HeapWord* const new_top = space_info->new_top();
  2509     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2510     const size_t end_region =
  2511       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2513     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
  2514       if (sd.region(cur)->claim_unsafe()) {
  2515         ParCompactionManager::region_list_push(which, cur);
  2517         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2518           const size_t count_mod_8 = fillable_regions & 7;
  2519           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2520           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2521           if (count_mod_8 == 7) gclog_or_tty->cr();
  2524         NOT_PRODUCT(++fillable_regions;)
  2526         // Assign regions to tasks in round-robin fashion.
  2527         if (++which == task_count) {
  2528           assert(which <= parallel_gc_threads,
  2529             "Inconsistent number of workers");
  2530           which = 0;
  2536   if (TraceParallelOldGCCompactionPhase) {
  2537     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2538     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2542 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2544 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2545                                                     uint parallel_gc_threads) {
  2546   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2548   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2550   // Iterate over all the spaces adding tasks for updating
  2551   // regions in the dense prefix.  Assume that 1 gc thread
  2552   // will work on opening the gaps and the remaining gc threads
  2553   // will work on the dense prefix.
  2554   unsigned int space_id;
  2555   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2556     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2557     const MutableSpace* const space = _space_info[space_id].space();
  2559     if (dense_prefix_end == space->bottom()) {
  2560       // There is no dense prefix for this space.
  2561       continue;
  2564     // The dense prefix is before this region.
  2565     size_t region_index_end_dense_prefix =
  2566         sd.addr_to_region_idx(dense_prefix_end);
  2567     RegionData* const dense_prefix_cp =
  2568       sd.region(region_index_end_dense_prefix);
  2569     assert(dense_prefix_end == space->end() ||
  2570            dense_prefix_cp->available() ||
  2571            dense_prefix_cp->claimed(),
  2572            "The region after the dense prefix should always be ready to fill");
  2574     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2576     // Is there dense prefix work?
  2577     size_t total_dense_prefix_regions =
  2578       region_index_end_dense_prefix - region_index_start;
  2579     // How many regions of the dense prefix should be given to
  2580     // each thread?
  2581     if (total_dense_prefix_regions > 0) {
  2582       uint tasks_for_dense_prefix = 1;
  2583       if (total_dense_prefix_regions <=
  2584           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2585         // Don't over partition.  This assumes that
  2586         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2587         // so there are not many regions to process.
  2588         tasks_for_dense_prefix = parallel_gc_threads;
  2589       } else {
  2590         // Over partition
  2591         tasks_for_dense_prefix = parallel_gc_threads *
  2592           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2594       size_t regions_per_thread = total_dense_prefix_regions /
  2595         tasks_for_dense_prefix;
  2596       // Give each thread at least 1 region.
  2597       if (regions_per_thread == 0) {
  2598         regions_per_thread = 1;
  2601       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2602         if (region_index_start >= region_index_end_dense_prefix) {
  2603           break;
  2605         // region_index_end is not processed
  2606         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2607                                        region_index_end_dense_prefix);
  2608         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2609                                              region_index_start,
  2610                                              region_index_end));
  2611         region_index_start = region_index_end;
  2614     // This gets any part of the dense prefix that did not
  2615     // fit evenly.
  2616     if (region_index_start < region_index_end_dense_prefix) {
  2617       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2618                                            region_index_start,
  2619                                            region_index_end_dense_prefix));
  2624 void PSParallelCompact::enqueue_region_stealing_tasks(
  2625                                      GCTaskQueue* q,
  2626                                      ParallelTaskTerminator* terminator_ptr,
  2627                                      uint parallel_gc_threads) {
  2628   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2630   // Once a thread has drained it's stack, it should try to steal regions from
  2631   // other threads.
  2632   if (parallel_gc_threads > 1) {
  2633     for (uint j = 0; j < parallel_gc_threads; j++) {
  2634       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2639 void PSParallelCompact::compact() {
  2640   // trace("5");
  2641   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2643   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2644   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2645   PSOldGen* old_gen = heap->old_gen();
  2646   old_gen->start_array()->reset();
  2647   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2648   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2649   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2650   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2652   GCTaskQueue* q = GCTaskQueue::create();
  2653   enqueue_region_draining_tasks(q, active_gc_threads);
  2654   enqueue_dense_prefix_tasks(q, active_gc_threads);
  2655   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
  2658     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2660     gc_task_manager()->execute_and_wait(q);
  2662 #ifdef  ASSERT
  2663     // Verify that all regions have been processed before the deferred updates.
  2664     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2665       verify_complete(SpaceId(id));
  2667 #endif
  2671     // Update the deferred objects, if any.  Any compaction manager can be used.
  2672     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2673     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2674     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2675       update_deferred_objects(cm, SpaceId(id));
  2680 #ifdef  ASSERT
  2681 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2682   // All Regions between space bottom() to new_top() should be marked as filled
  2683   // and all Regions between new_top() and top() should be available (i.e.,
  2684   // should have been emptied).
  2685   ParallelCompactData& sd = summary_data();
  2686   SpaceInfo si = _space_info[space_id];
  2687   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2688   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2689   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2690   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2691   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2693   bool issued_a_warning = false;
  2695   size_t cur_region;
  2696   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2697     const RegionData* const c = sd.region(cur_region);
  2698     if (!c->completed()) {
  2699       warning("region " SIZE_FORMAT " not filled:  "
  2700               "destination_count=" SIZE_FORMAT,
  2701               cur_region, c->destination_count());
  2702       issued_a_warning = true;
  2706   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2707     const RegionData* const c = sd.region(cur_region);
  2708     if (!c->available()) {
  2709       warning("region " SIZE_FORMAT " not empty:   "
  2710               "destination_count=" SIZE_FORMAT,
  2711               cur_region, c->destination_count());
  2712       issued_a_warning = true;
  2716   if (issued_a_warning) {
  2717     print_region_ranges();
  2720 #endif  // #ifdef ASSERT
  2723 #ifdef VALIDATE_MARK_SWEEP
  2725 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
  2726   if (!ValidateMarkSweep)
  2727     return;
  2729   if (!isroot) {
  2730     if (_pointer_tracking) {
  2731       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2732       _adjusted_pointers->remove(p);
  2734   } else {
  2735     ptrdiff_t index = _root_refs_stack->find(p);
  2736     if (index != -1) {
  2737       int l = _root_refs_stack->length();
  2738       if (l > 0 && l - 1 != index) {
  2739         void* last = _root_refs_stack->pop();
  2740         assert(last != p, "should be different");
  2741         _root_refs_stack->at_put(index, last);
  2742       } else {
  2743         _root_refs_stack->remove(p);
  2750 void PSParallelCompact::check_adjust_pointer(void* p) {
  2751   _adjusted_pointers->push(p);
  2755 class AdjusterTracker: public OopClosure {
  2756  public:
  2757   AdjusterTracker() {};
  2758   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  2759   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2760 };
  2763 void PSParallelCompact::track_interior_pointers(oop obj) {
  2764   if (ValidateMarkSweep) {
  2765     _adjusted_pointers->clear();
  2766     _pointer_tracking = true;
  2768     AdjusterTracker checker;
  2769     obj->oop_iterate_no_header(&checker);
  2774 void PSParallelCompact::check_interior_pointers() {
  2775   if (ValidateMarkSweep) {
  2776     _pointer_tracking = false;
  2777     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2782 void PSParallelCompact::reset_live_oop_tracking() {
  2783   if (ValidateMarkSweep) {
  2784     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2785     _live_oops_index = 0;
  2790 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2791   if (ValidateMarkSweep) {
  2792     _live_oops->push(p);
  2793     _live_oops_size->push(size);
  2794     _live_oops_index++;
  2798 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2799   if (ValidateMarkSweep) {
  2800     oop obj = _live_oops->at((int)_live_oops_index);
  2801     guarantee(obj == p, "should be the same object");
  2802     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2803     _live_oops_index++;
  2807 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2808                                   HeapWord* compaction_top) {
  2809   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2810          "should be moved to forwarded location");
  2811   if (ValidateMarkSweep) {
  2812     PSParallelCompact::validate_live_oop(oop(q), size);
  2813     _live_oops_moved_to->push(oop(compaction_top));
  2815   if (RecordMarkSweepCompaction) {
  2816     _cur_gc_live_oops->push(q);
  2817     _cur_gc_live_oops_moved_to->push(compaction_top);
  2818     _cur_gc_live_oops_size->push(size);
  2823 void PSParallelCompact::compaction_complete() {
  2824   if (RecordMarkSweepCompaction) {
  2825     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2826     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2827     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2829     _cur_gc_live_oops           = _last_gc_live_oops;
  2830     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2831     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2832     _last_gc_live_oops          = _tmp_live_oops;
  2833     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2834     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2839 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2840   if (!RecordMarkSweepCompaction) {
  2841     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2842     return;
  2845   if (_last_gc_live_oops == NULL) {
  2846     tty->print_cr("No compaction information gathered yet");
  2847     return;
  2850   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2851     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2852     size_t    sz      = _last_gc_live_oops_size->at(i);
  2853     if (old_oop <= q && q < (old_oop + sz)) {
  2854       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2855       size_t offset = (q - old_oop);
  2856       tty->print_cr("Address " PTR_FORMAT, q);
  2857       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2858       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2859       return;
  2863   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2865 #endif //VALIDATE_MARK_SWEEP
  2867 // Update interior oops in the ranges of regions [beg_region, end_region).
  2868 void
  2869 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2870                                                        SpaceId space_id,
  2871                                                        size_t beg_region,
  2872                                                        size_t end_region) {
  2873   ParallelCompactData& sd = summary_data();
  2874   ParMarkBitMap* const mbm = mark_bitmap();
  2876   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2877   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2878   assert(beg_region <= end_region, "bad region range");
  2879   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2881 #ifdef  ASSERT
  2882   // Claim the regions to avoid triggering an assert when they are marked as
  2883   // filled.
  2884   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2885     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2887 #endif  // #ifdef ASSERT
  2889   if (beg_addr != space(space_id)->bottom()) {
  2890     // Find the first live object or block of dead space that *starts* in this
  2891     // range of regions.  If a partial object crosses onto the region, skip it;
  2892     // it will be marked for 'deferred update' when the object head is
  2893     // processed.  If dead space crosses onto the region, it is also skipped; it
  2894     // will be filled when the prior region is processed.  If neither of those
  2895     // apply, the first word in the region is the start of a live object or dead
  2896     // space.
  2897     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2898     const RegionData* const cp = sd.region(beg_region);
  2899     if (cp->partial_obj_size() != 0) {
  2900       beg_addr = sd.partial_obj_end(beg_region);
  2901     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2902       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2906   if (beg_addr < end_addr) {
  2907     // A live object or block of dead space starts in this range of Regions.
  2908      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2910     // Create closures and iterate.
  2911     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2912     FillClosure fill_closure(cm, space_id);
  2913     ParMarkBitMap::IterationStatus status;
  2914     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2915                           dense_prefix_end);
  2916     if (status == ParMarkBitMap::incomplete) {
  2917       update_closure.do_addr(update_closure.source());
  2921   // Mark the regions as filled.
  2922   RegionData* const beg_cp = sd.region(beg_region);
  2923   RegionData* const end_cp = sd.region(end_region);
  2924   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2925     cp->set_completed();
  2929 // Return the SpaceId for the space containing addr.  If addr is not in the
  2930 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2931 // in the heap and asserts such.
  2932 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2933   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2935   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2936     if (_space_info[id].space()->contains(addr)) {
  2937       return SpaceId(id);
  2941   assert(false, "no space contains the addr");
  2942   return last_space_id;
  2945 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2946                                                 SpaceId id) {
  2947   assert(id < last_space_id, "bad space id");
  2949   ParallelCompactData& sd = summary_data();
  2950   const SpaceInfo* const space_info = _space_info + id;
  2951   ObjectStartArray* const start_array = space_info->start_array();
  2953   const MutableSpace* const space = space_info->space();
  2954   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2955   HeapWord* const beg_addr = space_info->dense_prefix();
  2956   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2958   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2959   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2960   const RegionData* cur_region;
  2961   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2962     HeapWord* const addr = cur_region->deferred_obj_addr();
  2963     if (addr != NULL) {
  2964       if (start_array != NULL) {
  2965         start_array->allocate_block(addr);
  2967       oop(addr)->update_contents(cm);
  2968       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2973 // Skip over count live words starting from beg, and return the address of the
  2974 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2975 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2976 // an object, or account for those live words in some other way.  Callers must
  2977 // also ensure that there are enough live words in the range [beg, end) to skip.
  2978 HeapWord*
  2979 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2981   assert(count > 0, "sanity");
  2983   ParMarkBitMap* m = mark_bitmap();
  2984   idx_t bits_to_skip = m->words_to_bits(count);
  2985   idx_t cur_beg = m->addr_to_bit(beg);
  2986   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2988   do {
  2989     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2990     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2991     const size_t obj_bits = cur_end - cur_beg + 1;
  2992     if (obj_bits > bits_to_skip) {
  2993       return m->bit_to_addr(cur_beg + bits_to_skip);
  2995     bits_to_skip -= obj_bits;
  2996     cur_beg = cur_end + 1;
  2997   } while (bits_to_skip > 0);
  2999   // Skipping the desired number of words landed just past the end of an object.
  3000   // Find the start of the next object.
  3001   cur_beg = m->find_obj_beg(cur_beg, search_end);
  3002   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  3003   return m->bit_to_addr(cur_beg);
  3006 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  3007                                             SpaceId src_space_id,
  3008                                             size_t src_region_idx)
  3010   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  3012   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  3013   if (split_info.dest_region_addr() == dest_addr) {
  3014     // The partial object ending at the split point contains the first word to
  3015     // be copied to dest_addr.
  3016     return split_info.first_src_addr();
  3019   const ParallelCompactData& sd = summary_data();
  3020   ParMarkBitMap* const bitmap = mark_bitmap();
  3021   const size_t RegionSize = ParallelCompactData::RegionSize;
  3023   assert(sd.is_region_aligned(dest_addr), "not aligned");
  3024   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  3025   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  3026   HeapWord* const src_region_destination = src_region_ptr->destination();
  3028   assert(dest_addr >= src_region_destination, "wrong src region");
  3029   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  3031   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  3032   HeapWord* const src_region_end = src_region_beg + RegionSize;
  3034   HeapWord* addr = src_region_beg;
  3035   if (dest_addr == src_region_destination) {
  3036     // Return the first live word in the source region.
  3037     if (partial_obj_size == 0) {
  3038       addr = bitmap->find_obj_beg(addr, src_region_end);
  3039       assert(addr < src_region_end, "no objects start in src region");
  3041     return addr;
  3044   // Must skip some live data.
  3045   size_t words_to_skip = dest_addr - src_region_destination;
  3046   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  3048   if (partial_obj_size >= words_to_skip) {
  3049     // All the live words to skip are part of the partial object.
  3050     addr += words_to_skip;
  3051     if (partial_obj_size == words_to_skip) {
  3052       // Find the first live word past the partial object.
  3053       addr = bitmap->find_obj_beg(addr, src_region_end);
  3054       assert(addr < src_region_end, "wrong src region");
  3056     return addr;
  3059   // Skip over the partial object (if any).
  3060   if (partial_obj_size != 0) {
  3061     words_to_skip -= partial_obj_size;
  3062     addr += partial_obj_size;
  3065   // Skip over live words due to objects that start in the region.
  3066   addr = skip_live_words(addr, src_region_end, words_to_skip);
  3067   assert(addr < src_region_end, "wrong src region");
  3068   return addr;
  3071 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  3072                                                      SpaceId src_space_id,
  3073                                                      size_t beg_region,
  3074                                                      HeapWord* end_addr)
  3076   ParallelCompactData& sd = summary_data();
  3078 #ifdef ASSERT
  3079   MutableSpace* const src_space = _space_info[src_space_id].space();
  3080   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  3081   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
  3082          "src_space_id does not match beg_addr");
  3083   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
  3084          "src_space_id does not match end_addr");
  3085 #endif // #ifdef ASSERT
  3087   RegionData* const beg = sd.region(beg_region);
  3088   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
  3090   // Regions up to new_top() are enqueued if they become available.
  3091   HeapWord* const new_top = _space_info[src_space_id].new_top();
  3092   RegionData* const enqueue_end =
  3093     sd.addr_to_region_ptr(sd.region_align_up(new_top));
  3095   for (RegionData* cur = beg; cur < end; ++cur) {
  3096     assert(cur->data_size() > 0, "region must have live data");
  3097     cur->decrement_destination_count();
  3098     if (cur < enqueue_end && cur->available() && cur->claim()) {
  3099       cm->push_region(sd.region(cur));
  3104 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  3105                                           SpaceId& src_space_id,
  3106                                           HeapWord*& src_space_top,
  3107                                           HeapWord* end_addr)
  3109   typedef ParallelCompactData::RegionData RegionData;
  3111   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3112   const size_t region_size = ParallelCompactData::RegionSize;
  3114   size_t src_region_idx = 0;
  3116   // Skip empty regions (if any) up to the top of the space.
  3117   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  3118   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  3119   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  3120   const RegionData* const top_region_ptr =
  3121     sd.addr_to_region_ptr(top_aligned_up);
  3122   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  3123     ++src_region_ptr;
  3126   if (src_region_ptr < top_region_ptr) {
  3127     // The next source region is in the current space.  Update src_region_idx
  3128     // and the source address to match src_region_ptr.
  3129     src_region_idx = sd.region(src_region_ptr);
  3130     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  3131     if (src_region_addr > closure.source()) {
  3132       closure.set_source(src_region_addr);
  3134     return src_region_idx;
  3137   // Switch to a new source space and find the first non-empty region.
  3138   unsigned int space_id = src_space_id + 1;
  3139   assert(space_id < last_space_id, "not enough spaces");
  3141   HeapWord* const destination = closure.destination();
  3143   do {
  3144     MutableSpace* space = _space_info[space_id].space();
  3145     HeapWord* const bottom = space->bottom();
  3146     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  3148     // Iterate over the spaces that do not compact into themselves.
  3149     if (bottom_cp->destination() != bottom) {
  3150       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  3151       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  3153       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3154         if (src_cp->live_obj_size() > 0) {
  3155           // Found it.
  3156           assert(src_cp->destination() == destination,
  3157                  "first live obj in the space must match the destination");
  3158           assert(src_cp->partial_obj_size() == 0,
  3159                  "a space cannot begin with a partial obj");
  3161           src_space_id = SpaceId(space_id);
  3162           src_space_top = space->top();
  3163           const size_t src_region_idx = sd.region(src_cp);
  3164           closure.set_source(sd.region_to_addr(src_region_idx));
  3165           return src_region_idx;
  3166         } else {
  3167           assert(src_cp->data_size() == 0, "sanity");
  3171   } while (++space_id < last_space_id);
  3173   assert(false, "no source region was found");
  3174   return 0;
  3177 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  3179   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3180   const size_t RegionSize = ParallelCompactData::RegionSize;
  3181   ParMarkBitMap* const bitmap = mark_bitmap();
  3182   ParallelCompactData& sd = summary_data();
  3183   RegionData* const region_ptr = sd.region(region_idx);
  3185   // Get the items needed to construct the closure.
  3186   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  3187   SpaceId dest_space_id = space_id(dest_addr);
  3188   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3189   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3190   assert(dest_addr < new_top, "sanity");
  3191   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  3193   // Get the source region and related info.
  3194   size_t src_region_idx = region_ptr->source_region();
  3195   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  3196   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3198   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3199   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  3201   // Adjust src_region_idx to prepare for decrementing destination counts (the
  3202   // destination count is not decremented when a region is copied to itself).
  3203   if (src_region_idx == region_idx) {
  3204     src_region_idx += 1;
  3207   if (bitmap->is_unmarked(closure.source())) {
  3208     // The first source word is in the middle of an object; copy the remainder
  3209     // of the object or as much as will fit.  The fact that pointer updates were
  3210     // deferred will be noted when the object header is processed.
  3211     HeapWord* const old_src_addr = closure.source();
  3212     closure.copy_partial_obj();
  3213     if (closure.is_full()) {
  3214       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3215                                    closure.source());
  3216       region_ptr->set_deferred_obj_addr(NULL);
  3217       region_ptr->set_completed();
  3218       return;
  3221     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3222     if (sd.region_align_down(old_src_addr) != end_addr) {
  3223       // The partial object was copied from more than one source region.
  3224       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3226       // Move to the next source region, possibly switching spaces as well.  All
  3227       // args except end_addr may be modified.
  3228       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3229                                        end_addr);
  3233   do {
  3234     HeapWord* const cur_addr = closure.source();
  3235     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3236                                     src_space_top);
  3237     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3239     if (status == ParMarkBitMap::incomplete) {
  3240       // The last obj that starts in the source region does not end in the
  3241       // region.
  3242       assert(closure.source() < end_addr, "sanity");
  3243       HeapWord* const obj_beg = closure.source();
  3244       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3245                                        src_space_top);
  3246       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3247       if (obj_end < range_end) {
  3248         // The end was found; the entire object will fit.
  3249         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3250         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3251       } else {
  3252         // The end was not found; the object will not fit.
  3253         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3254         status = ParMarkBitMap::would_overflow;
  3258     if (status == ParMarkBitMap::would_overflow) {
  3259       // The last object did not fit.  Note that interior oop updates were
  3260       // deferred, then copy enough of the object to fill the region.
  3261       region_ptr->set_deferred_obj_addr(closure.destination());
  3262       status = closure.copy_until_full(); // copies from closure.source()
  3264       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3265                                    closure.source());
  3266       region_ptr->set_completed();
  3267       return;
  3270     if (status == ParMarkBitMap::full) {
  3271       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3272                                    closure.source());
  3273       region_ptr->set_deferred_obj_addr(NULL);
  3274       region_ptr->set_completed();
  3275       return;
  3278     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3280     // Move to the next source region, possibly switching spaces as well.  All
  3281     // args except end_addr may be modified.
  3282     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3283                                      end_addr);
  3284   } while (true);
  3287 void
  3288 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3289   const MutableSpace* sp = space(space_id);
  3290   if (sp->is_empty()) {
  3291     return;
  3294   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3295   ParMarkBitMap* const bitmap = mark_bitmap();
  3296   HeapWord* const dp_addr = dense_prefix(space_id);
  3297   HeapWord* beg_addr = sp->bottom();
  3298   HeapWord* end_addr = sp->top();
  3300   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3302   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3303   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3304   if (beg_region < dp_region) {
  3305     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3308   // The destination of the first live object that starts in the region is one
  3309   // past the end of the partial object entering the region (if any).
  3310   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3311   HeapWord* const new_top = _space_info[space_id].new_top();
  3312   assert(new_top >= dest_addr, "bad new_top value");
  3313   const size_t words = pointer_delta(new_top, dest_addr);
  3315   if (words > 0) {
  3316     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3317     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3319     ParMarkBitMap::IterationStatus status;
  3320     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3321     assert(status == ParMarkBitMap::full, "iteration not complete");
  3322     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3323            "live objects skipped because closure is full");
  3327 jlong PSParallelCompact::millis_since_last_gc() {
  3328   // We need a monotonically non-deccreasing time in ms but
  3329   // os::javaTimeMillis() does not guarantee monotonicity.
  3330   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3331   jlong ret_val = now - _time_of_last_gc;
  3332   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3333   if (ret_val < 0) {
  3334     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
  3335     return 0;
  3337   return ret_val;
  3340 void PSParallelCompact::reset_millis_since_last_gc() {
  3341   // We need a monotonically non-deccreasing time in ms but
  3342   // os::javaTimeMillis() does not guarantee monotonicity.
  3343   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3346 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3348   if (source() != destination()) {
  3349     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3350     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3352   update_state(words_remaining());
  3353   assert(is_full(), "sanity");
  3354   return ParMarkBitMap::full;
  3357 void MoveAndUpdateClosure::copy_partial_obj()
  3359   size_t words = words_remaining();
  3361   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3362   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3363   if (end_addr < range_end) {
  3364     words = bitmap()->obj_size(source(), end_addr);
  3367   // This test is necessary; if omitted, the pointer updates to a partial object
  3368   // that crosses the dense prefix boundary could be overwritten.
  3369   if (source() != destination()) {
  3370     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3371     Copy::aligned_conjoint_words(source(), destination(), words);
  3373   update_state(words);
  3376 ParMarkBitMapClosure::IterationStatus
  3377 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3378   assert(destination() != NULL, "sanity");
  3379   assert(bitmap()->obj_size(addr) == words, "bad size");
  3381   _source = addr;
  3382   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3383          destination(), "wrong destination");
  3385   if (words > words_remaining()) {
  3386     return ParMarkBitMap::would_overflow;
  3389   // The start_array must be updated even if the object is not moving.
  3390   if (_start_array != NULL) {
  3391     _start_array->allocate_block(destination());
  3394   if (destination() != source()) {
  3395     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3396     Copy::aligned_conjoint_words(source(), destination(), words);
  3399   oop moved_oop = (oop) destination();
  3400   moved_oop->update_contents(compaction_manager());
  3401   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3403   update_state(words);
  3404   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3405   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3408 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3409                                      ParCompactionManager* cm,
  3410                                      PSParallelCompact::SpaceId space_id) :
  3411   ParMarkBitMapClosure(mbm, cm),
  3412   _space_id(space_id),
  3413   _start_array(PSParallelCompact::start_array(space_id))
  3417 // Updates the references in the object to their new values.
  3418 ParMarkBitMapClosure::IterationStatus
  3419 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3420   do_addr(addr);
  3421   return ParMarkBitMap::incomplete;

mercurial