src/cpu/sparc/vm/templateTable_sparc.cpp

Tue, 09 Apr 2013 17:17:41 -0400

author
jiangli
date
Tue, 09 Apr 2013 17:17:41 -0400
changeset 4936
aeaca88565e6
parent 4643
f16e75e0cf11
child 4939
9500809ceead
permissions
-rw-r--r--

8010862: The Method counter fields used for profiling can be allocated lazily.
Summary: Allocate the method's profiling related metadata until they are needed.
Reviewed-by: coleenp, roland

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodData.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    37 #include "utilities/macros.hpp"
    39 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Misc helpers
    44 // Do an oop store like *(base + index + offset) = val
    45 // index can be noreg,
    46 static void do_oop_store(InterpreterMacroAssembler* _masm,
    47                          Register base,
    48                          Register index,
    49                          int offset,
    50                          Register val,
    51                          Register tmp,
    52                          BarrierSet::Name barrier,
    53                          bool precise) {
    54   assert(tmp != val && tmp != base && tmp != index, "register collision");
    55   assert(index == noreg || offset == 0, "only one offset");
    56   switch (barrier) {
    57 #if INCLUDE_ALL_GCS
    58     case BarrierSet::G1SATBCT:
    59     case BarrierSet::G1SATBCTLogging:
    60       {
    61         // Load and record the previous value.
    62         __ g1_write_barrier_pre(base, index, offset,
    63                                 noreg /* pre_val */,
    64                                 tmp, true /*preserve_o_regs*/);
    66         if (index == noreg ) {
    67           assert(Assembler::is_simm13(offset), "fix this code");
    68           __ store_heap_oop(val, base, offset);
    69         } else {
    70           __ store_heap_oop(val, base, index);
    71         }
    73         // No need for post barrier if storing NULL
    74         if (val != G0) {
    75           if (precise) {
    76             if (index == noreg) {
    77               __ add(base, offset, base);
    78             } else {
    79               __ add(base, index, base);
    80             }
    81           }
    82           __ g1_write_barrier_post(base, val, tmp);
    83         }
    84       }
    85       break;
    86 #endif // INCLUDE_ALL_GCS
    87     case BarrierSet::CardTableModRef:
    88     case BarrierSet::CardTableExtension:
    89       {
    90         if (index == noreg ) {
    91           assert(Assembler::is_simm13(offset), "fix this code");
    92           __ store_heap_oop(val, base, offset);
    93         } else {
    94           __ store_heap_oop(val, base, index);
    95         }
    96         // No need for post barrier if storing NULL
    97         if (val != G0) {
    98           if (precise) {
    99             if (index == noreg) {
   100               __ add(base, offset, base);
   101             } else {
   102               __ add(base, index, base);
   103             }
   104           }
   105           __ card_write_barrier_post(base, val, tmp);
   106         }
   107       }
   108       break;
   109     case BarrierSet::ModRef:
   110     case BarrierSet::Other:
   111       ShouldNotReachHere();
   112       break;
   113     default      :
   114       ShouldNotReachHere();
   116   }
   117 }
   120 //----------------------------------------------------------------------------------------------------
   121 // Platform-dependent initialization
   123 void TemplateTable::pd_initialize() {
   124   // (none)
   125 }
   128 //----------------------------------------------------------------------------------------------------
   129 // Condition conversion
   130 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   131   switch (cc) {
   132     case TemplateTable::equal        : return Assembler::notEqual;
   133     case TemplateTable::not_equal    : return Assembler::equal;
   134     case TemplateTable::less         : return Assembler::greaterEqual;
   135     case TemplateTable::less_equal   : return Assembler::greater;
   136     case TemplateTable::greater      : return Assembler::lessEqual;
   137     case TemplateTable::greater_equal: return Assembler::less;
   138   }
   139   ShouldNotReachHere();
   140   return Assembler::zero;
   141 }
   143 //----------------------------------------------------------------------------------------------------
   144 // Miscelaneous helper routines
   147 Address TemplateTable::at_bcp(int offset) {
   148   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   149   return Address(Lbcp, offset);
   150 }
   153 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   154                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   155                                    int byte_no) {
   156   // With sharing on, may need to test Method* flag.
   157   if (!RewriteBytecodes)  return;
   158   Label L_patch_done;
   160   switch (bc) {
   161   case Bytecodes::_fast_aputfield:
   162   case Bytecodes::_fast_bputfield:
   163   case Bytecodes::_fast_cputfield:
   164   case Bytecodes::_fast_dputfield:
   165   case Bytecodes::_fast_fputfield:
   166   case Bytecodes::_fast_iputfield:
   167   case Bytecodes::_fast_lputfield:
   168   case Bytecodes::_fast_sputfield:
   169     {
   170       // We skip bytecode quickening for putfield instructions when
   171       // the put_code written to the constant pool cache is zero.
   172       // This is required so that every execution of this instruction
   173       // calls out to InterpreterRuntime::resolve_get_put to do
   174       // additional, required work.
   175       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   176       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   177       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   178       __ set(bc, bc_reg);
   179       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
   180     }
   181     break;
   182   default:
   183     assert(byte_no == -1, "sanity");
   184     if (load_bc_into_bc_reg) {
   185       __ set(bc, bc_reg);
   186     }
   187   }
   189   if (JvmtiExport::can_post_breakpoint()) {
   190     Label L_fast_patch;
   191     __ ldub(at_bcp(0), temp_reg);
   192     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
   193     // perform the quickening, slowly, in the bowels of the breakpoint table
   194     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
   195     __ ba_short(L_patch_done);
   196     __ bind(L_fast_patch);
   197   }
   199 #ifdef ASSERT
   200   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   201   Label L_okay;
   202   __ ldub(at_bcp(0), temp_reg);
   203   __ cmp(temp_reg, orig_bytecode);
   204   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   205   __ delayed()->cmp(temp_reg, bc_reg);
   206   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   207   __ delayed()->nop();
   208   __ stop("patching the wrong bytecode");
   209   __ bind(L_okay);
   210 #endif
   212   // patch bytecode
   213   __ stb(bc_reg, at_bcp(0));
   214   __ bind(L_patch_done);
   215 }
   217 //----------------------------------------------------------------------------------------------------
   218 // Individual instructions
   220 void TemplateTable::nop() {
   221   transition(vtos, vtos);
   222   // nothing to do
   223 }
   225 void TemplateTable::shouldnotreachhere() {
   226   transition(vtos, vtos);
   227   __ stop("shouldnotreachhere bytecode");
   228 }
   230 void TemplateTable::aconst_null() {
   231   transition(vtos, atos);
   232   __ clr(Otos_i);
   233 }
   236 void TemplateTable::iconst(int value) {
   237   transition(vtos, itos);
   238   __ set(value, Otos_i);
   239 }
   242 void TemplateTable::lconst(int value) {
   243   transition(vtos, ltos);
   244   assert(value >= 0, "check this code");
   245 #ifdef _LP64
   246   __ set(value, Otos_l);
   247 #else
   248   __ set(value, Otos_l2);
   249   __ clr( Otos_l1);
   250 #endif
   251 }
   254 void TemplateTable::fconst(int value) {
   255   transition(vtos, ftos);
   256   static float zero = 0.0, one = 1.0, two = 2.0;
   257   float* p;
   258   switch( value ) {
   259    default: ShouldNotReachHere();
   260    case 0:  p = &zero;  break;
   261    case 1:  p = &one;   break;
   262    case 2:  p = &two;   break;
   263   }
   264   AddressLiteral a(p);
   265   __ sethi(a, G3_scratch);
   266   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   267 }
   270 void TemplateTable::dconst(int value) {
   271   transition(vtos, dtos);
   272   static double zero = 0.0, one = 1.0;
   273   double* p;
   274   switch( value ) {
   275    default: ShouldNotReachHere();
   276    case 0:  p = &zero;  break;
   277    case 1:  p = &one;   break;
   278   }
   279   AddressLiteral a(p);
   280   __ sethi(a, G3_scratch);
   281   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   282 }
   285 // %%%%% Should factore most snippet templates across platforms
   287 void TemplateTable::bipush() {
   288   transition(vtos, itos);
   289   __ ldsb( at_bcp(1), Otos_i );
   290 }
   292 void TemplateTable::sipush() {
   293   transition(vtos, itos);
   294   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   295 }
   297 void TemplateTable::ldc(bool wide) {
   298   transition(vtos, vtos);
   299   Label call_ldc, notInt, isString, notString, notClass, exit;
   301   if (wide) {
   302     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   303   } else {
   304     __ ldub(Lbcp, 1, O1);
   305   }
   306   __ get_cpool_and_tags(O0, O2);
   308   const int base_offset = ConstantPool::header_size() * wordSize;
   309   const int tags_offset = Array<u1>::base_offset_in_bytes();
   311   // get type from tags
   312   __ add(O2, tags_offset, O2);
   313   __ ldub(O2, O1, O2);
   315   // unresolved class? If so, must resolve
   316   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
   318   // unresolved class in error state
   319   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
   321   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   322   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   323   __ delayed()->add(O0, base_offset, O0);
   325   __ bind(call_ldc);
   326   __ set(wide, O1);
   327   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   328   __ push(atos);
   329   __ ba_short(exit);
   331   __ bind(notClass);
   332  // __ add(O0, base_offset, O0);
   333   __ sll(O1, LogBytesPerWord, O1);
   334   __ cmp(O2, JVM_CONSTANT_Integer);
   335   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   336   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   337   __ ld(O0, O1, Otos_i);
   338   __ push(itos);
   339   __ ba_short(exit);
   341   __ bind(notInt);
   342  // __ cmp(O2, JVM_CONSTANT_String);
   343   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   344   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   345   __ bind(isString);
   346   __ stop("string should be rewritten to fast_aldc");
   347   __ ba_short(exit);
   349   __ bind(notString);
   350  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   351   __ push(ftos);
   353   __ bind(exit);
   354 }
   356 // Fast path for caching oop constants.
   357 // %%% We should use this to handle Class and String constants also.
   358 // %%% It will simplify the ldc/primitive path considerably.
   359 void TemplateTable::fast_aldc(bool wide) {
   360   transition(vtos, atos);
   362   int index_size = wide ? sizeof(u2) : sizeof(u1);
   363   Label resolved;
   365   // We are resolved if the resolved reference cache entry contains a
   366   // non-null object (CallSite, etc.)
   367   assert_different_registers(Otos_i, G3_scratch);
   368   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
   369   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
   370   __ tst(Otos_i);
   371   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
   372   __ delayed()->set((int)bytecode(), O1);
   374   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   376   // first time invocation - must resolve first
   377   __ call_VM(Otos_i, entry, O1);
   378   __ bind(resolved);
   379   __ verify_oop(Otos_i);
   380 }
   383 void TemplateTable::ldc2_w() {
   384   transition(vtos, vtos);
   385   Label Long, exit;
   387   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   388   __ get_cpool_and_tags(O0, O2);
   390   const int base_offset = ConstantPool::header_size() * wordSize;
   391   const int tags_offset = Array<u1>::base_offset_in_bytes();
   392   // get type from tags
   393   __ add(O2, tags_offset, O2);
   394   __ ldub(O2, O1, O2);
   396   __ sll(O1, LogBytesPerWord, O1);
   397   __ add(O0, O1, G3_scratch);
   399   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
   400   // A double can be placed at word-aligned locations in the constant pool.
   401   // Check out Conversions.java for an example.
   402   // Also ConstantPool::header_size() is 20, which makes it very difficult
   403   // to double-align double on the constant pool.  SG, 11/7/97
   404 #ifdef _LP64
   405   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   406 #else
   407   FloatRegister f = Ftos_d;
   408   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   409   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   410          f->successor());
   411 #endif
   412   __ push(dtos);
   413   __ ba_short(exit);
   415   __ bind(Long);
   416 #ifdef _LP64
   417   __ ldx(G3_scratch, base_offset, Otos_l);
   418 #else
   419   __ ld(G3_scratch, base_offset, Otos_l);
   420   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   421 #endif
   422   __ push(ltos);
   424   __ bind(exit);
   425 }
   428 void TemplateTable::locals_index(Register reg, int offset) {
   429   __ ldub( at_bcp(offset), reg );
   430 }
   433 void TemplateTable::locals_index_wide(Register reg) {
   434   // offset is 2, not 1, because Lbcp points to wide prefix code
   435   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   436 }
   438 void TemplateTable::iload() {
   439   transition(vtos, itos);
   440   // Rewrite iload,iload  pair into fast_iload2
   441   //         iload,caload pair into fast_icaload
   442   if (RewriteFrequentPairs) {
   443     Label rewrite, done;
   445     // get next byte
   446     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   448     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   449     // last two iloads in a pair.  Comparing against fast_iload means that
   450     // the next bytecode is neither an iload or a caload, and therefore
   451     // an iload pair.
   452     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
   454     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   455     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   456     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   458     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   459     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   460     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   462     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   463     // rewrite
   464     // G4_scratch: fast bytecode
   465     __ bind(rewrite);
   466     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   467     __ bind(done);
   468   }
   470   // Get the local value into tos
   471   locals_index(G3_scratch);
   472   __ access_local_int( G3_scratch, Otos_i );
   473 }
   475 void TemplateTable::fast_iload2() {
   476   transition(vtos, itos);
   477   locals_index(G3_scratch);
   478   __ access_local_int( G3_scratch, Otos_i );
   479   __ push_i();
   480   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   481   __ access_local_int( G3_scratch, Otos_i );
   482 }
   484 void TemplateTable::fast_iload() {
   485   transition(vtos, itos);
   486   locals_index(G3_scratch);
   487   __ access_local_int( G3_scratch, Otos_i );
   488 }
   490 void TemplateTable::lload() {
   491   transition(vtos, ltos);
   492   locals_index(G3_scratch);
   493   __ access_local_long( G3_scratch, Otos_l );
   494 }
   497 void TemplateTable::fload() {
   498   transition(vtos, ftos);
   499   locals_index(G3_scratch);
   500   __ access_local_float( G3_scratch, Ftos_f );
   501 }
   504 void TemplateTable::dload() {
   505   transition(vtos, dtos);
   506   locals_index(G3_scratch);
   507   __ access_local_double( G3_scratch, Ftos_d );
   508 }
   511 void TemplateTable::aload() {
   512   transition(vtos, atos);
   513   locals_index(G3_scratch);
   514   __ access_local_ptr( G3_scratch, Otos_i);
   515 }
   518 void TemplateTable::wide_iload() {
   519   transition(vtos, itos);
   520   locals_index_wide(G3_scratch);
   521   __ access_local_int( G3_scratch, Otos_i );
   522 }
   525 void TemplateTable::wide_lload() {
   526   transition(vtos, ltos);
   527   locals_index_wide(G3_scratch);
   528   __ access_local_long( G3_scratch, Otos_l );
   529 }
   532 void TemplateTable::wide_fload() {
   533   transition(vtos, ftos);
   534   locals_index_wide(G3_scratch);
   535   __ access_local_float( G3_scratch, Ftos_f );
   536 }
   539 void TemplateTable::wide_dload() {
   540   transition(vtos, dtos);
   541   locals_index_wide(G3_scratch);
   542   __ access_local_double( G3_scratch, Ftos_d );
   543 }
   546 void TemplateTable::wide_aload() {
   547   transition(vtos, atos);
   548   locals_index_wide(G3_scratch);
   549   __ access_local_ptr( G3_scratch, Otos_i );
   550   __ verify_oop(Otos_i);
   551 }
   554 void TemplateTable::iaload() {
   555   transition(itos, itos);
   556   // Otos_i: index
   557   // tos: array
   558   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   559   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   560 }
   563 void TemplateTable::laload() {
   564   transition(itos, ltos);
   565   // Otos_i: index
   566   // O2: array
   567   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   568   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   569 }
   572 void TemplateTable::faload() {
   573   transition(itos, ftos);
   574   // Otos_i: index
   575   // O2: array
   576   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   577   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   578 }
   581 void TemplateTable::daload() {
   582   transition(itos, dtos);
   583   // Otos_i: index
   584   // O2: array
   585   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   586   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   587 }
   590 void TemplateTable::aaload() {
   591   transition(itos, atos);
   592   // Otos_i: index
   593   // tos: array
   594   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   595   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   596   __ verify_oop(Otos_i);
   597 }
   600 void TemplateTable::baload() {
   601   transition(itos, itos);
   602   // Otos_i: index
   603   // tos: array
   604   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   605   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   606 }
   609 void TemplateTable::caload() {
   610   transition(itos, itos);
   611   // Otos_i: index
   612   // tos: array
   613   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   614   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   615 }
   617 void TemplateTable::fast_icaload() {
   618   transition(vtos, itos);
   619   // Otos_i: index
   620   // tos: array
   621   locals_index(G3_scratch);
   622   __ access_local_int( G3_scratch, Otos_i );
   623   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   624   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   625 }
   628 void TemplateTable::saload() {
   629   transition(itos, itos);
   630   // Otos_i: index
   631   // tos: array
   632   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   633   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   634 }
   637 void TemplateTable::iload(int n) {
   638   transition(vtos, itos);
   639   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   640 }
   643 void TemplateTable::lload(int n) {
   644   transition(vtos, ltos);
   645   assert(n+1 < Argument::n_register_parameters, "would need more code");
   646   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   647 }
   650 void TemplateTable::fload(int n) {
   651   transition(vtos, ftos);
   652   assert(n < Argument::n_register_parameters, "would need more code");
   653   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   654 }
   657 void TemplateTable::dload(int n) {
   658   transition(vtos, dtos);
   659   FloatRegister dst = Ftos_d;
   660   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   661 }
   664 void TemplateTable::aload(int n) {
   665   transition(vtos, atos);
   666   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   667 }
   670 void TemplateTable::aload_0() {
   671   transition(vtos, atos);
   673   // According to bytecode histograms, the pairs:
   674   //
   675   // _aload_0, _fast_igetfield (itos)
   676   // _aload_0, _fast_agetfield (atos)
   677   // _aload_0, _fast_fgetfield (ftos)
   678   //
   679   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   680   // bytecode checks the next bytecode and then rewrites the current
   681   // bytecode into a pair bytecode; otherwise it rewrites the current
   682   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   683   //
   684   if (RewriteFrequentPairs) {
   685     Label rewrite, done;
   687     // get next byte
   688     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   690     // do actual aload_0
   691     aload(0);
   693     // if _getfield then wait with rewrite
   694     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
   696     // if _igetfield then rewrite to _fast_iaccess_0
   697     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   698     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   699     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   700     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   702     // if _agetfield then rewrite to _fast_aaccess_0
   703     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   704     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   705     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   706     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   708     // if _fgetfield then rewrite to _fast_faccess_0
   709     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   710     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   711     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   712     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   714     // else rewrite to _fast_aload0
   715     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   716     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   718     // rewrite
   719     // G4_scratch: fast bytecode
   720     __ bind(rewrite);
   721     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   722     __ bind(done);
   723   } else {
   724     aload(0);
   725   }
   726 }
   729 void TemplateTable::istore() {
   730   transition(itos, vtos);
   731   locals_index(G3_scratch);
   732   __ store_local_int( G3_scratch, Otos_i );
   733 }
   736 void TemplateTable::lstore() {
   737   transition(ltos, vtos);
   738   locals_index(G3_scratch);
   739   __ store_local_long( G3_scratch, Otos_l );
   740 }
   743 void TemplateTable::fstore() {
   744   transition(ftos, vtos);
   745   locals_index(G3_scratch);
   746   __ store_local_float( G3_scratch, Ftos_f );
   747 }
   750 void TemplateTable::dstore() {
   751   transition(dtos, vtos);
   752   locals_index(G3_scratch);
   753   __ store_local_double( G3_scratch, Ftos_d );
   754 }
   757 void TemplateTable::astore() {
   758   transition(vtos, vtos);
   759   __ load_ptr(0, Otos_i);
   760   __ inc(Lesp, Interpreter::stackElementSize);
   761   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   762   locals_index(G3_scratch);
   763   __ store_local_ptr(G3_scratch, Otos_i);
   764 }
   767 void TemplateTable::wide_istore() {
   768   transition(vtos, vtos);
   769   __ pop_i();
   770   locals_index_wide(G3_scratch);
   771   __ store_local_int( G3_scratch, Otos_i );
   772 }
   775 void TemplateTable::wide_lstore() {
   776   transition(vtos, vtos);
   777   __ pop_l();
   778   locals_index_wide(G3_scratch);
   779   __ store_local_long( G3_scratch, Otos_l );
   780 }
   783 void TemplateTable::wide_fstore() {
   784   transition(vtos, vtos);
   785   __ pop_f();
   786   locals_index_wide(G3_scratch);
   787   __ store_local_float( G3_scratch, Ftos_f );
   788 }
   791 void TemplateTable::wide_dstore() {
   792   transition(vtos, vtos);
   793   __ pop_d();
   794   locals_index_wide(G3_scratch);
   795   __ store_local_double( G3_scratch, Ftos_d );
   796 }
   799 void TemplateTable::wide_astore() {
   800   transition(vtos, vtos);
   801   __ load_ptr(0, Otos_i);
   802   __ inc(Lesp, Interpreter::stackElementSize);
   803   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   804   locals_index_wide(G3_scratch);
   805   __ store_local_ptr(G3_scratch, Otos_i);
   806 }
   809 void TemplateTable::iastore() {
   810   transition(itos, vtos);
   811   __ pop_i(O2); // index
   812   // Otos_i: val
   813   // O3: array
   814   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   815   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   816 }
   819 void TemplateTable::lastore() {
   820   transition(ltos, vtos);
   821   __ pop_i(O2); // index
   822   // Otos_l: val
   823   // O3: array
   824   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   825   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   826 }
   829 void TemplateTable::fastore() {
   830   transition(ftos, vtos);
   831   __ pop_i(O2); // index
   832   // Ftos_f: val
   833   // O3: array
   834   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   835   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   836 }
   839 void TemplateTable::dastore() {
   840   transition(dtos, vtos);
   841   __ pop_i(O2); // index
   842   // Fos_d: val
   843   // O3: array
   844   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   845   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   846 }
   849 void TemplateTable::aastore() {
   850   Label store_ok, is_null, done;
   851   transition(vtos, vtos);
   852   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   853   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   854   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   855   // Otos_i: val
   856   // O2: index
   857   // O3: array
   858   __ verify_oop(Otos_i);
   859   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   861   // do array store check - check for NULL value first
   862   __ br_null_short( Otos_i, Assembler::pn, is_null );
   864   __ load_klass(O3, O4); // get array klass
   865   __ load_klass(Otos_i, O5); // get value klass
   867   // do fast instanceof cache test
   869   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
   871   assert(Otos_i == O0, "just checking");
   873   // Otos_i:    value
   874   // O1:        addr - offset
   875   // O2:        index
   876   // O3:        array
   877   // O4:        array element klass
   878   // O5:        value klass
   880   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   882   // Generate a fast subtype check.  Branch to store_ok if no
   883   // failure.  Throw if failure.
   884   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   886   // Not a subtype; so must throw exception
   887   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   889   // Store is OK.
   890   __ bind(store_ok);
   891   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   893   __ ba(done);
   894   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   896   __ bind(is_null);
   897   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   899   __ profile_null_seen(G3_scratch);
   900   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   901   __ bind(done);
   902 }
   905 void TemplateTable::bastore() {
   906   transition(itos, vtos);
   907   __ pop_i(O2); // index
   908   // Otos_i: val
   909   // O3: array
   910   __ index_check(O3, O2, 0, G3_scratch, O2);
   911   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   912 }
   915 void TemplateTable::castore() {
   916   transition(itos, vtos);
   917   __ pop_i(O2); // index
   918   // Otos_i: val
   919   // O3: array
   920   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   921   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   922 }
   925 void TemplateTable::sastore() {
   926   // %%%%% Factor across platform
   927   castore();
   928 }
   931 void TemplateTable::istore(int n) {
   932   transition(itos, vtos);
   933   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   934 }
   937 void TemplateTable::lstore(int n) {
   938   transition(ltos, vtos);
   939   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   940   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   942 }
   945 void TemplateTable::fstore(int n) {
   946   transition(ftos, vtos);
   947   assert(n < Argument::n_register_parameters, "only handle register cases");
   948   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   949 }
   952 void TemplateTable::dstore(int n) {
   953   transition(dtos, vtos);
   954   FloatRegister src = Ftos_d;
   955   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   956 }
   959 void TemplateTable::astore(int n) {
   960   transition(vtos, vtos);
   961   __ load_ptr(0, Otos_i);
   962   __ inc(Lesp, Interpreter::stackElementSize);
   963   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   964   __ store_local_ptr(n, Otos_i);
   965 }
   968 void TemplateTable::pop() {
   969   transition(vtos, vtos);
   970   __ inc(Lesp, Interpreter::stackElementSize);
   971 }
   974 void TemplateTable::pop2() {
   975   transition(vtos, vtos);
   976   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   977 }
   980 void TemplateTable::dup() {
   981   transition(vtos, vtos);
   982   // stack: ..., a
   983   // load a and tag
   984   __ load_ptr(0, Otos_i);
   985   __ push_ptr(Otos_i);
   986   // stack: ..., a, a
   987 }
   990 void TemplateTable::dup_x1() {
   991   transition(vtos, vtos);
   992   // stack: ..., a, b
   993   __ load_ptr( 1, G3_scratch);  // get a
   994   __ load_ptr( 0, Otos_l1);     // get b
   995   __ store_ptr(1, Otos_l1);     // put b
   996   __ store_ptr(0, G3_scratch);  // put a - like swap
   997   __ push_ptr(Otos_l1);         // push b
   998   // stack: ..., b, a, b
   999 }
  1002 void TemplateTable::dup_x2() {
  1003   transition(vtos, vtos);
  1004   // stack: ..., a, b, c
  1005   // get c and push on stack, reuse registers
  1006   __ load_ptr( 0, G3_scratch);  // get c
  1007   __ push_ptr(G3_scratch);      // push c with tag
  1008   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  1009   // (stack offsets n+1 now)
  1010   __ load_ptr( 3, Otos_l1);     // get a
  1011   __ store_ptr(3, G3_scratch);  // put c at 3
  1012   // stack: ..., c, b, c, c  (a in reg)
  1013   __ load_ptr( 2, G3_scratch);  // get b
  1014   __ store_ptr(2, Otos_l1);     // put a at 2
  1015   // stack: ..., c, a, c, c  (b in reg)
  1016   __ store_ptr(1, G3_scratch);  // put b at 1
  1017   // stack: ..., c, a, b, c
  1021 void TemplateTable::dup2() {
  1022   transition(vtos, vtos);
  1023   __ load_ptr(1, G3_scratch);  // get a
  1024   __ load_ptr(0, Otos_l1);     // get b
  1025   __ push_ptr(G3_scratch);     // push a
  1026   __ push_ptr(Otos_l1);        // push b
  1027   // stack: ..., a, b, a, b
  1031 void TemplateTable::dup2_x1() {
  1032   transition(vtos, vtos);
  1033   // stack: ..., a, b, c
  1034   __ load_ptr( 1, Lscratch);    // get b
  1035   __ load_ptr( 2, Otos_l1);     // get a
  1036   __ store_ptr(2, Lscratch);    // put b at a
  1037   // stack: ..., b, b, c
  1038   __ load_ptr( 0, G3_scratch);  // get c
  1039   __ store_ptr(1, G3_scratch);  // put c at b
  1040   // stack: ..., b, c, c
  1041   __ store_ptr(0, Otos_l1);     // put a at c
  1042   // stack: ..., b, c, a
  1043   __ push_ptr(Lscratch);        // push b
  1044   __ push_ptr(G3_scratch);      // push c
  1045   // stack: ..., b, c, a, b, c
  1049 // The spec says that these types can be a mixture of category 1 (1 word)
  1050 // types and/or category 2 types (long and doubles)
  1051 void TemplateTable::dup2_x2() {
  1052   transition(vtos, vtos);
  1053   // stack: ..., a, b, c, d
  1054   __ load_ptr( 1, Lscratch);    // get c
  1055   __ load_ptr( 3, Otos_l1);     // get a
  1056   __ store_ptr(3, Lscratch);    // put c at 3
  1057   __ store_ptr(1, Otos_l1);     // put a at 1
  1058   // stack: ..., c, b, a, d
  1059   __ load_ptr( 2, G3_scratch);  // get b
  1060   __ load_ptr( 0, Otos_l1);     // get d
  1061   __ store_ptr(0, G3_scratch);  // put b at 0
  1062   __ store_ptr(2, Otos_l1);     // put d at 2
  1063   // stack: ..., c, d, a, b
  1064   __ push_ptr(Lscratch);        // push c
  1065   __ push_ptr(Otos_l1);         // push d
  1066   // stack: ..., c, d, a, b, c, d
  1070 void TemplateTable::swap() {
  1071   transition(vtos, vtos);
  1072   // stack: ..., a, b
  1073   __ load_ptr( 1, G3_scratch);  // get a
  1074   __ load_ptr( 0, Otos_l1);     // get b
  1075   __ store_ptr(0, G3_scratch);  // put b
  1076   __ store_ptr(1, Otos_l1);     // put a
  1077   // stack: ..., b, a
  1081 void TemplateTable::iop2(Operation op) {
  1082   transition(itos, itos);
  1083   __ pop_i(O1);
  1084   switch (op) {
  1085    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1086    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1087      // %%%%% Mul may not exist: better to call .mul?
  1088    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1089    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1090    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1091    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1092    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1093    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1094    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1095    default: ShouldNotReachHere();
  1100 void TemplateTable::lop2(Operation op) {
  1101   transition(ltos, ltos);
  1102   __ pop_l(O2);
  1103   switch (op) {
  1104 #ifdef _LP64
  1105    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1106    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1107    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1108    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1109    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1110 #else
  1111    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1112    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1113    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1114    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1115    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1116 #endif
  1117    default: ShouldNotReachHere();
  1122 void TemplateTable::idiv() {
  1123   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1124   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1126   transition(itos, itos);
  1127   __ pop_i(O1); // get 1st op
  1129   // Y contains upper 32 bits of result, set it to 0 or all ones
  1130   __ wry(G0);
  1131   __ mov(~0, G3_scratch);
  1133   __ tst(O1);
  1134      Label neg;
  1135   __ br(Assembler::negative, true, Assembler::pn, neg);
  1136   __ delayed()->wry(G3_scratch);
  1137   __ bind(neg);
  1139      Label ok;
  1140   __ tst(Otos_i);
  1141   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1143   const int min_int = 0x80000000;
  1144   Label regular;
  1145   __ cmp(Otos_i, -1);
  1146   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1147 #ifdef _LP64
  1148   // Don't put set in delay slot
  1149   // Set will turn into multiple instructions in 64 bit mode
  1150   __ delayed()->nop();
  1151   __ set(min_int, G4_scratch);
  1152 #else
  1153   __ delayed()->set(min_int, G4_scratch);
  1154 #endif
  1155   Label done;
  1156   __ cmp(O1, G4_scratch);
  1157   __ br(Assembler::equal, true, Assembler::pt, done);
  1158   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1160   __ bind(regular);
  1161   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1162   __ bind(done);
  1166 void TemplateTable::irem() {
  1167   transition(itos, itos);
  1168   __ mov(Otos_i, O2); // save divisor
  1169   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1170   __ smul(Otos_i, O2, Otos_i);
  1171   __ sub(O1, Otos_i, Otos_i);
  1175 void TemplateTable::lmul() {
  1176   transition(ltos, ltos);
  1177   __ pop_l(O2);
  1178 #ifdef _LP64
  1179   __ mulx(Otos_l, O2, Otos_l);
  1180 #else
  1181   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1182 #endif
  1187 void TemplateTable::ldiv() {
  1188   transition(ltos, ltos);
  1190   // check for zero
  1191   __ pop_l(O2);
  1192 #ifdef _LP64
  1193   __ tst(Otos_l);
  1194   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1195   __ sdivx(O2, Otos_l, Otos_l);
  1196 #else
  1197   __ orcc(Otos_l1, Otos_l2, G0);
  1198   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1199   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1200 #endif
  1204 void TemplateTable::lrem() {
  1205   transition(ltos, ltos);
  1207   // check for zero
  1208   __ pop_l(O2);
  1209 #ifdef _LP64
  1210   __ tst(Otos_l);
  1211   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1212   __ sdivx(O2, Otos_l, Otos_l2);
  1213   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1214   __ sub  (O2, Otos_l2, Otos_l);
  1215 #else
  1216   __ orcc(Otos_l1, Otos_l2, G0);
  1217   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1218   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1219 #endif
  1223 void TemplateTable::lshl() {
  1224   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1226   __ pop_l(O2);                          // shift value in O2, O3
  1227 #ifdef _LP64
  1228   __ sllx(O2, Otos_i, Otos_l);
  1229 #else
  1230   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1231 #endif
  1235 void TemplateTable::lshr() {
  1236   transition(itos, ltos); // %%%% see lshl comment
  1238   __ pop_l(O2);                          // shift value in O2, O3
  1239 #ifdef _LP64
  1240   __ srax(O2, Otos_i, Otos_l);
  1241 #else
  1242   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1243 #endif
  1248 void TemplateTable::lushr() {
  1249   transition(itos, ltos); // %%%% see lshl comment
  1251   __ pop_l(O2);                          // shift value in O2, O3
  1252 #ifdef _LP64
  1253   __ srlx(O2, Otos_i, Otos_l);
  1254 #else
  1255   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1256 #endif
  1260 void TemplateTable::fop2(Operation op) {
  1261   transition(ftos, ftos);
  1262   switch (op) {
  1263    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1264    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1265    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1266    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1267    case  rem:
  1268      assert(Ftos_f == F0, "just checking");
  1269 #ifdef _LP64
  1270      // LP64 calling conventions use F1, F3 for passing 2 floats
  1271      __ pop_f(F1);
  1272      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1273 #else
  1274      __ pop_i(O0);
  1275      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1276      __ ld( __ d_tmp, O1 );
  1277 #endif
  1278      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1279      assert( Ftos_f == F0, "fix this code" );
  1280      break;
  1282    default: ShouldNotReachHere();
  1287 void TemplateTable::dop2(Operation op) {
  1288   transition(dtos, dtos);
  1289   switch (op) {
  1290    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1291    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1292    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1293    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1294    case  rem:
  1295 #ifdef _LP64
  1296      // Pass arguments in D0, D2
  1297      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1298      __ pop_d( F0 );
  1299 #else
  1300      // Pass arguments in O0O1, O2O3
  1301      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1302      __ ldd( __ d_tmp, O2 );
  1303      __ pop_d(Ftos_f);
  1304      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1305      __ ldd( __ d_tmp, O0 );
  1306 #endif
  1307      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1308      assert( Ftos_d == F0, "fix this code" );
  1309      break;
  1311    default: ShouldNotReachHere();
  1316 void TemplateTable::ineg() {
  1317   transition(itos, itos);
  1318   __ neg(Otos_i);
  1322 void TemplateTable::lneg() {
  1323   transition(ltos, ltos);
  1324 #ifdef _LP64
  1325   __ sub(G0, Otos_l, Otos_l);
  1326 #else
  1327   __ lneg(Otos_l1, Otos_l2);
  1328 #endif
  1332 void TemplateTable::fneg() {
  1333   transition(ftos, ftos);
  1334   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1338 void TemplateTable::dneg() {
  1339   transition(dtos, dtos);
  1340   // v8 has fnegd if source and dest are the same
  1341   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1345 void TemplateTable::iinc() {
  1346   transition(vtos, vtos);
  1347   locals_index(G3_scratch);
  1348   __ ldsb(Lbcp, 2, O2);  // load constant
  1349   __ access_local_int(G3_scratch, Otos_i);
  1350   __ add(Otos_i, O2, Otos_i);
  1351   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1355 void TemplateTable::wide_iinc() {
  1356   transition(vtos, vtos);
  1357   locals_index_wide(G3_scratch);
  1358   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1359   __ access_local_int(G3_scratch, Otos_i);
  1360   __ add(Otos_i, O3, Otos_i);
  1361   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1365 void TemplateTable::convert() {
  1366 // %%%%% Factor this first part accross platforms
  1367   #ifdef ASSERT
  1368     TosState tos_in  = ilgl;
  1369     TosState tos_out = ilgl;
  1370     switch (bytecode()) {
  1371       case Bytecodes::_i2l: // fall through
  1372       case Bytecodes::_i2f: // fall through
  1373       case Bytecodes::_i2d: // fall through
  1374       case Bytecodes::_i2b: // fall through
  1375       case Bytecodes::_i2c: // fall through
  1376       case Bytecodes::_i2s: tos_in = itos; break;
  1377       case Bytecodes::_l2i: // fall through
  1378       case Bytecodes::_l2f: // fall through
  1379       case Bytecodes::_l2d: tos_in = ltos; break;
  1380       case Bytecodes::_f2i: // fall through
  1381       case Bytecodes::_f2l: // fall through
  1382       case Bytecodes::_f2d: tos_in = ftos; break;
  1383       case Bytecodes::_d2i: // fall through
  1384       case Bytecodes::_d2l: // fall through
  1385       case Bytecodes::_d2f: tos_in = dtos; break;
  1386       default             : ShouldNotReachHere();
  1388     switch (bytecode()) {
  1389       case Bytecodes::_l2i: // fall through
  1390       case Bytecodes::_f2i: // fall through
  1391       case Bytecodes::_d2i: // fall through
  1392       case Bytecodes::_i2b: // fall through
  1393       case Bytecodes::_i2c: // fall through
  1394       case Bytecodes::_i2s: tos_out = itos; break;
  1395       case Bytecodes::_i2l: // fall through
  1396       case Bytecodes::_f2l: // fall through
  1397       case Bytecodes::_d2l: tos_out = ltos; break;
  1398       case Bytecodes::_i2f: // fall through
  1399       case Bytecodes::_l2f: // fall through
  1400       case Bytecodes::_d2f: tos_out = ftos; break;
  1401       case Bytecodes::_i2d: // fall through
  1402       case Bytecodes::_l2d: // fall through
  1403       case Bytecodes::_f2d: tos_out = dtos; break;
  1404       default             : ShouldNotReachHere();
  1406     transition(tos_in, tos_out);
  1407   #endif
  1410   // Conversion
  1411   Label done;
  1412   switch (bytecode()) {
  1413    case Bytecodes::_i2l:
  1414 #ifdef _LP64
  1415     // Sign extend the 32 bits
  1416     __ sra ( Otos_i, 0, Otos_l );
  1417 #else
  1418     __ addcc(Otos_i, 0, Otos_l2);
  1419     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1420     __ delayed()->clr(Otos_l1);
  1421     __ set(~0, Otos_l1);
  1422 #endif
  1423     break;
  1425    case Bytecodes::_i2f:
  1426     __ st(Otos_i, __ d_tmp );
  1427     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1428     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1429     break;
  1431    case Bytecodes::_i2d:
  1432     __ st(Otos_i, __ d_tmp);
  1433     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1434     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1435     break;
  1437    case Bytecodes::_i2b:
  1438     __ sll(Otos_i, 24, Otos_i);
  1439     __ sra(Otos_i, 24, Otos_i);
  1440     break;
  1442    case Bytecodes::_i2c:
  1443     __ sll(Otos_i, 16, Otos_i);
  1444     __ srl(Otos_i, 16, Otos_i);
  1445     break;
  1447    case Bytecodes::_i2s:
  1448     __ sll(Otos_i, 16, Otos_i);
  1449     __ sra(Otos_i, 16, Otos_i);
  1450     break;
  1452    case Bytecodes::_l2i:
  1453 #ifndef _LP64
  1454     __ mov(Otos_l2, Otos_i);
  1455 #else
  1456     // Sign-extend into the high 32 bits
  1457     __ sra(Otos_l, 0, Otos_i);
  1458 #endif
  1459     break;
  1461    case Bytecodes::_l2f:
  1462    case Bytecodes::_l2d:
  1463     __ st_long(Otos_l, __ d_tmp);
  1464     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1466     if (VM_Version::v9_instructions_work()) {
  1467       if (bytecode() == Bytecodes::_l2f) {
  1468         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1469       } else {
  1470         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1472     } else {
  1473       __ call_VM_leaf(
  1474         Lscratch,
  1475         bytecode() == Bytecodes::_l2f
  1476           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1477           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1478       );
  1480     break;
  1482   case Bytecodes::_f2i:  {
  1483       Label isNaN;
  1484       // result must be 0 if value is NaN; test by comparing value to itself
  1485       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1486       // According to the v8 manual, you have to have a non-fp instruction
  1487       // between fcmp and fb.
  1488       if (!VM_Version::v9_instructions_work()) {
  1489         __ nop();
  1491       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1492       __ delayed()->clr(Otos_i);                                     // NaN
  1493       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1494       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1495       __ ld(__ d_tmp, Otos_i);
  1496       __ bind(isNaN);
  1498     break;
  1500    case Bytecodes::_f2l:
  1501     // must uncache tos
  1502     __ push_f();
  1503 #ifdef _LP64
  1504     __ pop_f(F1);
  1505 #else
  1506     __ pop_i(O0);
  1507 #endif
  1508     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1509     break;
  1511    case Bytecodes::_f2d:
  1512     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1513     break;
  1515    case Bytecodes::_d2i:
  1516    case Bytecodes::_d2l:
  1517     // must uncache tos
  1518     __ push_d();
  1519 #ifdef _LP64
  1520     // LP64 calling conventions pass first double arg in D0
  1521     __ pop_d( Ftos_d );
  1522 #else
  1523     __ pop_i( O0 );
  1524     __ pop_i( O1 );
  1525 #endif
  1526     __ call_VM_leaf(Lscratch,
  1527         bytecode() == Bytecodes::_d2i
  1528           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1529           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1530     break;
  1532     case Bytecodes::_d2f:
  1533     if (VM_Version::v9_instructions_work()) {
  1534       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1536     else {
  1537       // must uncache tos
  1538       __ push_d();
  1539       __ pop_i(O0);
  1540       __ pop_i(O1);
  1541       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1543     break;
  1545     default: ShouldNotReachHere();
  1547   __ bind(done);
  1551 void TemplateTable::lcmp() {
  1552   transition(ltos, itos);
  1554 #ifdef _LP64
  1555   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1556   __ lcmp( O1, Otos_l, Otos_i );
  1557 #else
  1558   __ pop_l(O2); // cmp O2,3 to O0,1
  1559   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1560 #endif
  1564 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1566   if (is_float) __ pop_f(F2);
  1567   else          __ pop_d(F2);
  1569   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1571   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1574 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1575   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1576   __ verify_thread();
  1578   const Register O2_bumped_count = O2;
  1579   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1581   // get (wide) offset to O1_disp
  1582   const Register O1_disp = O1;
  1583   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1584   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1586   // Handle all the JSR stuff here, then exit.
  1587   // It's much shorter and cleaner than intermingling with the
  1588   // non-JSR normal-branch stuff occurring below.
  1589   if( is_jsr ) {
  1590     // compute return address as bci in Otos_i
  1591     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1592     __ sub(Lbcp, G3_scratch, G3_scratch);
  1593     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1595     // Bump Lbcp to target of JSR
  1596     __ add(Lbcp, O1_disp, Lbcp);
  1597     // Push returnAddress for "ret" on stack
  1598     __ push_ptr(Otos_i);
  1599     // And away we go!
  1600     __ dispatch_next(vtos);
  1601     return;
  1604   // Normal (non-jsr) branch handling
  1606   // Save the current Lbcp
  1607   const Register l_cur_bcp = Lscratch;
  1608   __ mov( Lbcp, l_cur_bcp );
  1610   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1611   if ( increment_invocation_counter_for_backward_branches ) {
  1612     Label Lforward;
  1613     // check branch direction
  1614     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1615     // Bump bytecode pointer by displacement (take the branch)
  1616     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1618     const Register Rcounters = G3_scratch;
  1619     __ get_method_counters(Lmethod, Rcounters, Lforward);
  1621     if (TieredCompilation) {
  1622       Label Lno_mdo, Loverflow;
  1623       int increment = InvocationCounter::count_increment;
  1624       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1625       if (ProfileInterpreter) {
  1626         // If no method data exists, go to profile_continue.
  1627         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
  1628         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
  1630         // Increment backedge counter in the MDO
  1631         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
  1632                                                  in_bytes(InvocationCounter::counter_offset()));
  1633         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
  1634                                    Assembler::notZero, &Lforward);
  1635         __ ba_short(Loverflow);
  1638       // If there's no MDO, increment counter in MethodCounters*
  1639       __ bind(Lno_mdo);
  1640       Address backedge_counter(Rcounters,
  1641               in_bytes(MethodCounters::backedge_counter_offset()) +
  1642               in_bytes(InvocationCounter::counter_offset()));
  1643       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
  1644                                  Assembler::notZero, &Lforward);
  1645       __ bind(Loverflow);
  1647       // notify point for loop, pass branch bytecode
  1648       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
  1650       // Was an OSR adapter generated?
  1651       // O0 = osr nmethod
  1652       __ br_null_short(O0, Assembler::pn, Lforward);
  1654       // Has the nmethod been invalidated already?
  1655       __ ld(O0, nmethod::entry_bci_offset(), O2);
  1656       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
  1658       // migrate the interpreter frame off of the stack
  1660       __ mov(G2_thread, L7);
  1661       // save nmethod
  1662       __ mov(O0, L6);
  1663       __ set_last_Java_frame(SP, noreg);
  1664       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  1665       __ reset_last_Java_frame();
  1666       __ mov(L7, G2_thread);
  1668       // move OSR nmethod to I1
  1669       __ mov(L6, I1);
  1671       // OSR buffer to I0
  1672       __ mov(O0, I0);
  1674       // remove the interpreter frame
  1675       __ restore(I5_savedSP, 0, SP);
  1677       // Jump to the osr code.
  1678       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  1679       __ jmp(O2, G0);
  1680       __ delayed()->nop();
  1682     } else {
  1683       // Update Backedge branch separately from invocations
  1684       const Register G4_invoke_ctr = G4;
  1685       __ increment_backedge_counter(Rcounters, G4_invoke_ctr, G1_scratch);
  1686       if (ProfileInterpreter) {
  1687         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
  1688         if (UseOnStackReplacement) {
  1689           __ test_backedge_count_for_osr(O2_bumped_count, l_cur_bcp, G3_scratch);
  1691       } else {
  1692         if (UseOnStackReplacement) {
  1693           __ test_backedge_count_for_osr(G4_invoke_ctr, l_cur_bcp, G3_scratch);
  1698     __ bind(Lforward);
  1699   } else
  1700     // Bump bytecode pointer by displacement (take the branch)
  1701     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1703   // continue with bytecode @ target
  1704   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1705   // %%%%% and changing dispatch_next to dispatch_only
  1706   __ dispatch_next(vtos);
  1710 // Note Condition in argument is TemplateTable::Condition
  1711 // arg scope is within class scope
  1713 void TemplateTable::if_0cmp(Condition cc) {
  1714   // no pointers, integer only!
  1715   transition(itos, vtos);
  1716   // assume branch is more often taken than not (loops use backward branches)
  1717   __ cmp( Otos_i, 0);
  1718   __ if_cmp(ccNot(cc), false);
  1722 void TemplateTable::if_icmp(Condition cc) {
  1723   transition(itos, vtos);
  1724   __ pop_i(O1);
  1725   __ cmp(O1, Otos_i);
  1726   __ if_cmp(ccNot(cc), false);
  1730 void TemplateTable::if_nullcmp(Condition cc) {
  1731   transition(atos, vtos);
  1732   __ tst(Otos_i);
  1733   __ if_cmp(ccNot(cc), true);
  1737 void TemplateTable::if_acmp(Condition cc) {
  1738   transition(atos, vtos);
  1739   __ pop_ptr(O1);
  1740   __ verify_oop(O1);
  1741   __ verify_oop(Otos_i);
  1742   __ cmp(O1, Otos_i);
  1743   __ if_cmp(ccNot(cc), true);
  1748 void TemplateTable::ret() {
  1749   transition(vtos, vtos);
  1750   locals_index(G3_scratch);
  1751   __ access_local_returnAddress(G3_scratch, Otos_i);
  1752   // Otos_i contains the bci, compute the bcp from that
  1754 #ifdef _LP64
  1755 #ifdef ASSERT
  1756   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1757   // the result.  The return address (really a BCI) was stored with an
  1758   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1759   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1760   // loaded value.
  1761   { Label zzz ;
  1762      __ set (65536, G3_scratch) ;
  1763      __ cmp (Otos_i, G3_scratch) ;
  1764      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1765      __ delayed()->nop();
  1766      __ stop("BCI is in the wrong register half?");
  1767      __ bind (zzz) ;
  1769 #endif
  1770 #endif
  1772   __ profile_ret(vtos, Otos_i, G4_scratch);
  1774   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1775   __ add(G3_scratch, Otos_i, G3_scratch);
  1776   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1777   __ dispatch_next(vtos);
  1781 void TemplateTable::wide_ret() {
  1782   transition(vtos, vtos);
  1783   locals_index_wide(G3_scratch);
  1784   __ access_local_returnAddress(G3_scratch, Otos_i);
  1785   // Otos_i contains the bci, compute the bcp from that
  1787   __ profile_ret(vtos, Otos_i, G4_scratch);
  1789   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1790   __ add(G3_scratch, Otos_i, G3_scratch);
  1791   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1792   __ dispatch_next(vtos);
  1796 void TemplateTable::tableswitch() {
  1797   transition(itos, vtos);
  1798   Label default_case, continue_execution;
  1800   // align bcp
  1801   __ add(Lbcp, BytesPerInt, O1);
  1802   __ and3(O1, -BytesPerInt, O1);
  1803   // load lo, hi
  1804   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1805   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1806 #ifdef _LP64
  1807   // Sign extend the 32 bits
  1808   __ sra ( Otos_i, 0, Otos_i );
  1809 #endif /* _LP64 */
  1811   // check against lo & hi
  1812   __ cmp( Otos_i, O2);
  1813   __ br( Assembler::less, false, Assembler::pn, default_case);
  1814   __ delayed()->cmp( Otos_i, O3 );
  1815   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1816   // lookup dispatch offset
  1817   __ delayed()->sub(Otos_i, O2, O2);
  1818   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1819   __ sll(O2, LogBytesPerInt, O2);
  1820   __ add(O2, 3 * BytesPerInt, O2);
  1821   __ ba(continue_execution);
  1822   __ delayed()->ld(O1, O2, O2);
  1823   // handle default
  1824   __ bind(default_case);
  1825   __ profile_switch_default(O3);
  1826   __ ld(O1, 0, O2); // get default offset
  1827   // continue execution
  1828   __ bind(continue_execution);
  1829   __ add(Lbcp, O2, Lbcp);
  1830   __ dispatch_next(vtos);
  1834 void TemplateTable::lookupswitch() {
  1835   transition(itos, itos);
  1836   __ stop("lookupswitch bytecode should have been rewritten");
  1839 void TemplateTable::fast_linearswitch() {
  1840   transition(itos, vtos);
  1841     Label loop_entry, loop, found, continue_execution;
  1842   // align bcp
  1843   __ add(Lbcp, BytesPerInt, O1);
  1844   __ and3(O1, -BytesPerInt, O1);
  1845  // set counter
  1846   __ ld(O1, BytesPerInt, O2);
  1847   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1848   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1849   __ ba(loop_entry);
  1850   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1852   // table search
  1853   __ bind(loop);
  1854   __ cmp(O4, Otos_i);
  1855   __ br(Assembler::equal, true, Assembler::pn, found);
  1856   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1857   __ inc(O3, 2 * BytesPerInt);
  1859   __ bind(loop_entry);
  1860   __ cmp(O2, O3);
  1861   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1862   __ delayed()->ld(O3, 0, O4);
  1864   // default case
  1865   __ ld(O1, 0, O4); // get default offset
  1866   if (ProfileInterpreter) {
  1867     __ profile_switch_default(O3);
  1868     __ ba_short(continue_execution);
  1871   // entry found -> get offset
  1872   __ bind(found);
  1873   if (ProfileInterpreter) {
  1874     __ sub(O3, O1, O3);
  1875     __ sub(O3, 2*BytesPerInt, O3);
  1876     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1877     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1879     __ bind(continue_execution);
  1881   __ add(Lbcp, O4, Lbcp);
  1882   __ dispatch_next(vtos);
  1886 void TemplateTable::fast_binaryswitch() {
  1887   transition(itos, vtos);
  1888   // Implementation using the following core algorithm: (copied from Intel)
  1889   //
  1890   // int binary_search(int key, LookupswitchPair* array, int n) {
  1891   //   // Binary search according to "Methodik des Programmierens" by
  1892   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1893   //   int i = 0;
  1894   //   int j = n;
  1895   //   while (i+1 < j) {
  1896   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1897   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1898   //     // where a stands for the array and assuming that the (inexisting)
  1899   //     // element a[n] is infinitely big.
  1900   //     int h = (i + j) >> 1;
  1901   //     // i < h < j
  1902   //     if (key < array[h].fast_match()) {
  1903   //       j = h;
  1904   //     } else {
  1905   //       i = h;
  1906   //     }
  1907   //   }
  1908   //   // R: a[i] <= key < a[i+1] or Q
  1909   //   // (i.e., if key is within array, i is the correct index)
  1910   //   return i;
  1911   // }
  1913   // register allocation
  1914   assert(Otos_i == O0, "alias checking");
  1915   const Register Rkey     = Otos_i;                    // already set (tosca)
  1916   const Register Rarray   = O1;
  1917   const Register Ri       = O2;
  1918   const Register Rj       = O3;
  1919   const Register Rh       = O4;
  1920   const Register Rscratch = O5;
  1922   const int log_entry_size = 3;
  1923   const int entry_size = 1 << log_entry_size;
  1925   Label found;
  1926   // Find Array start
  1927   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1928   __ and3(Rarray, -BytesPerInt, Rarray);
  1929   // initialize i & j (in delay slot)
  1930   __ clr( Ri );
  1932   // and start
  1933   Label entry;
  1934   __ ba(entry);
  1935   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1936   // (Rj is already in the native byte-ordering.)
  1938   // binary search loop
  1939   { Label loop;
  1940     __ bind( loop );
  1941     // int h = (i + j) >> 1;
  1942     __ sra( Rh, 1, Rh );
  1943     // if (key < array[h].fast_match()) {
  1944     //   j = h;
  1945     // } else {
  1946     //   i = h;
  1947     // }
  1948     __ sll( Rh, log_entry_size, Rscratch );
  1949     __ ld( Rarray, Rscratch, Rscratch );
  1950     // (Rscratch is already in the native byte-ordering.)
  1951     __ cmp( Rkey, Rscratch );
  1952     if ( VM_Version::v9_instructions_work() ) {
  1953       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1954       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1956     else {
  1957       Label end_of_if;
  1958       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1959       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1960       __ mov( Rh, Ri );            // else i = h
  1961       __ bind(end_of_if);          // }
  1964     // while (i+1 < j)
  1965     __ bind( entry );
  1966     __ add( Ri, 1, Rscratch );
  1967     __ cmp(Rscratch, Rj);
  1968     __ br( Assembler::less, true, Assembler::pt, loop );
  1969     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1972   // end of binary search, result index is i (must check again!)
  1973   Label default_case;
  1974   Label continue_execution;
  1975   if (ProfileInterpreter) {
  1976     __ mov( Ri, Rh );              // Save index in i for profiling
  1978   __ sll( Ri, log_entry_size, Ri );
  1979   __ ld( Rarray, Ri, Rscratch );
  1980   // (Rscratch is already in the native byte-ordering.)
  1981   __ cmp( Rkey, Rscratch );
  1982   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1983   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1985   // entry found -> j = offset
  1986   __ inc( Ri, BytesPerInt );
  1987   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1988   __ ld( Rarray, Ri, Rj );
  1989   // (Rj is already in the native byte-ordering.)
  1991   if (ProfileInterpreter) {
  1992     __ ba_short(continue_execution);
  1995   __ bind(default_case); // fall through (if not profiling)
  1996   __ profile_switch_default(Ri);
  1998   __ bind(continue_execution);
  1999   __ add( Lbcp, Rj, Lbcp );
  2000   __ dispatch_next( vtos );
  2004 void TemplateTable::_return(TosState state) {
  2005   transition(state, state);
  2006   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  2008   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2009     assert(state == vtos, "only valid state");
  2010     __ mov(G0, G3_scratch);
  2011     __ access_local_ptr(G3_scratch, Otos_i);
  2012     __ load_klass(Otos_i, O2);
  2013     __ set(JVM_ACC_HAS_FINALIZER, G3);
  2014     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
  2015     __ andcc(G3, O2, G0);
  2016     Label skip_register_finalizer;
  2017     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  2018     __ delayed()->nop();
  2020     // Call out to do finalizer registration
  2021     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  2023     __ bind(skip_register_finalizer);
  2026   __ remove_activation(state, /* throw_monitor_exception */ true);
  2028   // The caller's SP was adjusted upon method entry to accomodate
  2029   // the callee's non-argument locals. Undo that adjustment.
  2030   __ ret();                             // return to caller
  2031   __ delayed()->restore(I5_savedSP, G0, SP);
  2035 // ----------------------------------------------------------------------------
  2036 // Volatile variables demand their effects be made known to all CPU's in
  2037 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2038 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2039 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2040 // reorder volatile references, the hardware also must not reorder them).
  2041 //
  2042 // According to the new Java Memory Model (JMM):
  2043 // (1) All volatiles are serialized wrt to each other.
  2044 // ALSO reads & writes act as aquire & release, so:
  2045 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2046 // the read float up to before the read.  It's OK for non-volatile memory refs
  2047 // that happen before the volatile read to float down below it.
  2048 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2049 // that happen BEFORE the write float down to after the write.  It's OK for
  2050 // non-volatile memory refs that happen after the volatile write to float up
  2051 // before it.
  2052 //
  2053 // We only put in barriers around volatile refs (they are expensive), not
  2054 // _between_ memory refs (that would require us to track the flavor of the
  2055 // previous memory refs).  Requirements (2) and (3) require some barriers
  2056 // before volatile stores and after volatile loads.  These nearly cover
  2057 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2058 // case is placed after volatile-stores although it could just as well go
  2059 // before volatile-loads.
  2060 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  2061   // Helper function to insert a is-volatile test and memory barrier
  2062   // All current sparc implementations run in TSO, needing only StoreLoad
  2063   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  2064   __ membar( order_constraint );
  2067 // ----------------------------------------------------------------------------
  2068 void TemplateTable::resolve_cache_and_index(int byte_no,
  2069                                             Register Rcache,
  2070                                             Register index,
  2071                                             size_t index_size) {
  2072   // Depends on cpCacheOop layout!
  2073   Label resolved;
  2075     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2076     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
  2077     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
  2078     __ br(Assembler::equal, false, Assembler::pt, resolved);
  2079     __ delayed()->set((int)bytecode(), O1);
  2081   address entry;
  2082   switch (bytecode()) {
  2083     case Bytecodes::_getstatic      : // fall through
  2084     case Bytecodes::_putstatic      : // fall through
  2085     case Bytecodes::_getfield       : // fall through
  2086     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2087     case Bytecodes::_invokevirtual  : // fall through
  2088     case Bytecodes::_invokespecial  : // fall through
  2089     case Bytecodes::_invokestatic   : // fall through
  2090     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2091     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
  2092     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2093     default:
  2094       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2095       break;
  2097   // first time invocation - must resolve first
  2098   __ call_VM(noreg, entry, O1);
  2099   // Update registers with resolved info
  2100   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2101   __ bind(resolved);
  2104 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2105                                                Register method,
  2106                                                Register itable_index,
  2107                                                Register flags,
  2108                                                bool is_invokevirtual,
  2109                                                bool is_invokevfinal,
  2110                                                bool is_invokedynamic) {
  2111   // Uses both G3_scratch and G4_scratch
  2112   Register cache = G3_scratch;
  2113   Register index = G4_scratch;
  2114   assert_different_registers(cache, method, itable_index);
  2116   // determine constant pool cache field offsets
  2117   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2118   const int method_offset = in_bytes(
  2119       ConstantPoolCache::base_offset() +
  2120       ((byte_no == f2_byte)
  2121        ? ConstantPoolCacheEntry::f2_offset()
  2122        : ConstantPoolCacheEntry::f1_offset()
  2124     );
  2125   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2126                                     ConstantPoolCacheEntry::flags_offset());
  2127   // access constant pool cache fields
  2128   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2129                                     ConstantPoolCacheEntry::f2_offset());
  2131   if (is_invokevfinal) {
  2132     __ get_cache_and_index_at_bcp(cache, index, 1);
  2133     __ ld_ptr(Address(cache, method_offset), method);
  2134   } else {
  2135     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2136     resolve_cache_and_index(byte_no, cache, index, index_size);
  2137     __ ld_ptr(Address(cache, method_offset), method);
  2140   if (itable_index != noreg) {
  2141     // pick up itable or appendix index from f2 also:
  2142     __ ld_ptr(Address(cache, index_offset), itable_index);
  2144   __ ld_ptr(Address(cache, flags_offset), flags);
  2147 // The Rcache register must be set before call
  2148 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2149                                               Register Rcache,
  2150                                               Register index,
  2151                                               Register Roffset,
  2152                                               Register Rflags,
  2153                                               bool is_static) {
  2154   assert_different_registers(Rcache, Rflags, Roffset);
  2156   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2158   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2159   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2160   if (is_static) {
  2161     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2162     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2163     __ ld_ptr( Robj, mirror_offset, Robj);
  2167 // The registers Rcache and index expected to be set before call.
  2168 // Correct values of the Rcache and index registers are preserved.
  2169 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2170                                             Register index,
  2171                                             bool is_static,
  2172                                             bool has_tos) {
  2173   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2175   if (JvmtiExport::can_post_field_access()) {
  2176     // Check to see if a field access watch has been set before we take
  2177     // the time to call into the VM.
  2178     Label Label1;
  2179     assert_different_registers(Rcache, index, G1_scratch);
  2180     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2181     __ load_contents(get_field_access_count_addr, G1_scratch);
  2182     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
  2184     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2186     if (is_static) {
  2187       __ clr(Otos_i);
  2188     } else {
  2189       if (has_tos) {
  2190       // save object pointer before call_VM() clobbers it
  2191         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2192       } else {
  2193         // Load top of stack (do not pop the value off the stack);
  2194         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2196       __ verify_oop(Otos_i);
  2198     // Otos_i: object pointer or NULL if static
  2199     // Rcache: cache entry pointer
  2200     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2201                Otos_i, Rcache);
  2202     if (!is_static && has_tos) {
  2203       __ pop_ptr(Otos_i);  // restore object pointer
  2204       __ verify_oop(Otos_i);
  2206     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2207     __ bind(Label1);
  2211 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2212   transition(vtos, vtos);
  2214   Register Rcache = G3_scratch;
  2215   Register index  = G4_scratch;
  2216   Register Rclass = Rcache;
  2217   Register Roffset= G4_scratch;
  2218   Register Rflags = G1_scratch;
  2219   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2221   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2222   jvmti_post_field_access(Rcache, index, is_static, false);
  2223   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2225   if (!is_static) {
  2226     pop_and_check_object(Rclass);
  2227   } else {
  2228     __ verify_oop(Rclass);
  2231   Label exit;
  2233   Assembler::Membar_mask_bits membar_bits =
  2234     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2236   if (__ membar_has_effect(membar_bits)) {
  2237     // Get volatile flag
  2238     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2239     __ and3(Rflags, Lscratch, Lscratch);
  2242   Label checkVolatile;
  2244   // compute field type
  2245   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2246   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2247   // Make sure we don't need to mask Rflags after the above shift
  2248   ConstantPoolCacheEntry::verify_tos_state_shift();
  2250   // Check atos before itos for getstatic, more likely (in Queens at least)
  2251   __ cmp(Rflags, atos);
  2252   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2253   __ delayed() ->cmp(Rflags, itos);
  2255   // atos
  2256   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2257   __ verify_oop(Otos_i);
  2258   __ push(atos);
  2259   if (!is_static) {
  2260     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2262   __ ba(checkVolatile);
  2263   __ delayed()->tst(Lscratch);
  2265   __ bind(notObj);
  2267   // cmp(Rflags, itos);
  2268   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2269   __ delayed() ->cmp(Rflags, ltos);
  2271   // itos
  2272   __ ld(Rclass, Roffset, Otos_i);
  2273   __ push(itos);
  2274   if (!is_static) {
  2275     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2277   __ ba(checkVolatile);
  2278   __ delayed()->tst(Lscratch);
  2280   __ bind(notInt);
  2282   // cmp(Rflags, ltos);
  2283   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2284   __ delayed() ->cmp(Rflags, btos);
  2286   // ltos
  2287   // load must be atomic
  2288   __ ld_long(Rclass, Roffset, Otos_l);
  2289   __ push(ltos);
  2290   if (!is_static) {
  2291     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2293   __ ba(checkVolatile);
  2294   __ delayed()->tst(Lscratch);
  2296   __ bind(notLong);
  2298   // cmp(Rflags, btos);
  2299   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2300   __ delayed() ->cmp(Rflags, ctos);
  2302   // btos
  2303   __ ldsb(Rclass, Roffset, Otos_i);
  2304   __ push(itos);
  2305   if (!is_static) {
  2306     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2308   __ ba(checkVolatile);
  2309   __ delayed()->tst(Lscratch);
  2311   __ bind(notByte);
  2313   // cmp(Rflags, ctos);
  2314   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2315   __ delayed() ->cmp(Rflags, stos);
  2317   // ctos
  2318   __ lduh(Rclass, Roffset, Otos_i);
  2319   __ push(itos);
  2320   if (!is_static) {
  2321     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2323   __ ba(checkVolatile);
  2324   __ delayed()->tst(Lscratch);
  2326   __ bind(notChar);
  2328   // cmp(Rflags, stos);
  2329   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2330   __ delayed() ->cmp(Rflags, ftos);
  2332   // stos
  2333   __ ldsh(Rclass, Roffset, Otos_i);
  2334   __ push(itos);
  2335   if (!is_static) {
  2336     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2338   __ ba(checkVolatile);
  2339   __ delayed()->tst(Lscratch);
  2341   __ bind(notShort);
  2344   // cmp(Rflags, ftos);
  2345   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2346   __ delayed() ->tst(Lscratch);
  2348   // ftos
  2349   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2350   __ push(ftos);
  2351   if (!is_static) {
  2352     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2354   __ ba(checkVolatile);
  2355   __ delayed()->tst(Lscratch);
  2357   __ bind(notFloat);
  2360   // dtos
  2361   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2362   __ push(dtos);
  2363   if (!is_static) {
  2364     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2367   __ bind(checkVolatile);
  2368   if (__ membar_has_effect(membar_bits)) {
  2369     // __ tst(Lscratch); executed in delay slot
  2370     __ br(Assembler::zero, false, Assembler::pt, exit);
  2371     __ delayed()->nop();
  2372     volatile_barrier(membar_bits);
  2375   __ bind(exit);
  2379 void TemplateTable::getfield(int byte_no) {
  2380   getfield_or_static(byte_no, false);
  2383 void TemplateTable::getstatic(int byte_no) {
  2384   getfield_or_static(byte_no, true);
  2388 void TemplateTable::fast_accessfield(TosState state) {
  2389   transition(atos, state);
  2390   Register Rcache  = G3_scratch;
  2391   Register index   = G4_scratch;
  2392   Register Roffset = G4_scratch;
  2393   Register Rflags  = Rcache;
  2394   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2396   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2397   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2399   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2401   __ null_check(Otos_i);
  2402   __ verify_oop(Otos_i);
  2404   Label exit;
  2406   Assembler::Membar_mask_bits membar_bits =
  2407     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2408   if (__ membar_has_effect(membar_bits)) {
  2409     // Get volatile flag
  2410     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2411     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2414   switch (bytecode()) {
  2415     case Bytecodes::_fast_bgetfield:
  2416       __ ldsb(Otos_i, Roffset, Otos_i);
  2417       break;
  2418     case Bytecodes::_fast_cgetfield:
  2419       __ lduh(Otos_i, Roffset, Otos_i);
  2420       break;
  2421     case Bytecodes::_fast_sgetfield:
  2422       __ ldsh(Otos_i, Roffset, Otos_i);
  2423       break;
  2424     case Bytecodes::_fast_igetfield:
  2425       __ ld(Otos_i, Roffset, Otos_i);
  2426       break;
  2427     case Bytecodes::_fast_lgetfield:
  2428       __ ld_long(Otos_i, Roffset, Otos_l);
  2429       break;
  2430     case Bytecodes::_fast_fgetfield:
  2431       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2432       break;
  2433     case Bytecodes::_fast_dgetfield:
  2434       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2435       break;
  2436     case Bytecodes::_fast_agetfield:
  2437       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2438       break;
  2439     default:
  2440       ShouldNotReachHere();
  2443   if (__ membar_has_effect(membar_bits)) {
  2444     __ btst(Lscratch, Rflags);
  2445     __ br(Assembler::zero, false, Assembler::pt, exit);
  2446     __ delayed()->nop();
  2447     volatile_barrier(membar_bits);
  2448     __ bind(exit);
  2451   if (state == atos) {
  2452     __ verify_oop(Otos_i);    // does not blow flags!
  2456 void TemplateTable::jvmti_post_fast_field_mod() {
  2457   if (JvmtiExport::can_post_field_modification()) {
  2458     // Check to see if a field modification watch has been set before we take
  2459     // the time to call into the VM.
  2460     Label done;
  2461     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2462     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2463     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
  2464     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2465     __ verify_oop(G4_scratch);
  2466     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2467     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2468     // Save tos values before call_VM() clobbers them. Since we have
  2469     // to do it for every data type, we use the saved values as the
  2470     // jvalue object.
  2471     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2472     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2473     case Bytecodes::_fast_bputfield: // fall through
  2474     case Bytecodes::_fast_sputfield: // fall through
  2475     case Bytecodes::_fast_cputfield: // fall through
  2476     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2477     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2478     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2479     // get words in right order for use as jvalue object
  2480     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2482     // setup pointer to jvalue object
  2483     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2484     // G4_scratch:  object pointer
  2485     // G1_scratch: cache entry pointer
  2486     // G3_scratch: jvalue object on the stack
  2487     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2488     switch (bytecode()) {             // restore tos values
  2489     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2490     case Bytecodes::_fast_bputfield: // fall through
  2491     case Bytecodes::_fast_sputfield: // fall through
  2492     case Bytecodes::_fast_cputfield: // fall through
  2493     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2494     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2495     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2496     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2498     __ bind(done);
  2502 // The registers Rcache and index expected to be set before call.
  2503 // The function may destroy various registers, just not the Rcache and index registers.
  2504 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2505   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2507   if (JvmtiExport::can_post_field_modification()) {
  2508     // Check to see if a field modification watch has been set before we take
  2509     // the time to call into the VM.
  2510     Label Label1;
  2511     assert_different_registers(Rcache, index, G1_scratch);
  2512     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2513     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2514     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
  2516     // The Rcache and index registers have been already set.
  2517     // This allows to eliminate this call but the Rcache and index
  2518     // registers must be correspondingly used after this line.
  2519     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2521     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2522     if (is_static) {
  2523       // Life is simple.  Null out the object pointer.
  2524       __ clr(G4_scratch);
  2525     } else {
  2526       Register Rflags = G1_scratch;
  2527       // Life is harder. The stack holds the value on top, followed by the
  2528       // object.  We don't know the size of the value, though; it could be
  2529       // one or two words depending on its type. As a result, we must find
  2530       // the type to determine where the object is.
  2532       Label two_word, valsizeknown;
  2533       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2534       __ mov(Lesp, G4_scratch);
  2535       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2536       // Make sure we don't need to mask Rflags after the above shift
  2537       ConstantPoolCacheEntry::verify_tos_state_shift();
  2538       __ cmp(Rflags, ltos);
  2539       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2540       __ delayed()->cmp(Rflags, dtos);
  2541       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2542       __ delayed()->nop();
  2543       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2544       __ ba_short(valsizeknown);
  2545       __ bind(two_word);
  2547       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2549       __ bind(valsizeknown);
  2550       // setup object pointer
  2551       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2552       __ verify_oop(G4_scratch);
  2554     // setup pointer to jvalue object
  2555     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2556     // G4_scratch:  object pointer or NULL if static
  2557     // G3_scratch: cache entry pointer
  2558     // G1_scratch: jvalue object on the stack
  2559     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2560                G4_scratch, G3_scratch, G1_scratch);
  2561     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2562     __ bind(Label1);
  2566 void TemplateTable::pop_and_check_object(Register r) {
  2567   __ pop_ptr(r);
  2568   __ null_check(r);  // for field access must check obj.
  2569   __ verify_oop(r);
  2572 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2573   transition(vtos, vtos);
  2574   Register Rcache = G3_scratch;
  2575   Register index  = G4_scratch;
  2576   Register Rclass = Rcache;
  2577   Register Roffset= G4_scratch;
  2578   Register Rflags = G1_scratch;
  2579   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2581   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2582   jvmti_post_field_mod(Rcache, index, is_static);
  2583   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2585   Assembler::Membar_mask_bits read_bits =
  2586     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2587   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2589   Label notVolatile, checkVolatile, exit;
  2590   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2591     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2592     __ and3(Rflags, Lscratch, Lscratch);
  2594     if (__ membar_has_effect(read_bits)) {
  2595       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2596       volatile_barrier(read_bits);
  2597       __ bind(notVolatile);
  2601   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2602   // Make sure we don't need to mask Rflags after the above shift
  2603   ConstantPoolCacheEntry::verify_tos_state_shift();
  2605   // compute field type
  2606   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2608   if (is_static) {
  2609     // putstatic with object type most likely, check that first
  2610     __ cmp(Rflags, atos);
  2611     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2612     __ delayed()->cmp(Rflags, itos);
  2614     // atos
  2616       __ pop_ptr();
  2617       __ verify_oop(Otos_i);
  2618       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2619       __ ba(checkVolatile);
  2620       __ delayed()->tst(Lscratch);
  2623     __ bind(notObj);
  2624     // cmp(Rflags, itos);
  2625     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2626     __ delayed()->cmp(Rflags, btos);
  2628     // itos
  2630       __ pop_i();
  2631       __ st(Otos_i, Rclass, Roffset);
  2632       __ ba(checkVolatile);
  2633       __ delayed()->tst(Lscratch);
  2636     __ bind(notInt);
  2637   } else {
  2638     // putfield with int type most likely, check that first
  2639     __ cmp(Rflags, itos);
  2640     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2641     __ delayed()->cmp(Rflags, atos);
  2643     // itos
  2645       __ pop_i();
  2646       pop_and_check_object(Rclass);
  2647       __ st(Otos_i, Rclass, Roffset);
  2648       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
  2649       __ ba(checkVolatile);
  2650       __ delayed()->tst(Lscratch);
  2653     __ bind(notInt);
  2654     // cmp(Rflags, atos);
  2655     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2656     __ delayed()->cmp(Rflags, btos);
  2658     // atos
  2660       __ pop_ptr();
  2661       pop_and_check_object(Rclass);
  2662       __ verify_oop(Otos_i);
  2663       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2664       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
  2665       __ ba(checkVolatile);
  2666       __ delayed()->tst(Lscratch);
  2669     __ bind(notObj);
  2672   // cmp(Rflags, btos);
  2673   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2674   __ delayed()->cmp(Rflags, ltos);
  2676   // btos
  2678     __ pop_i();
  2679     if (!is_static) pop_and_check_object(Rclass);
  2680     __ stb(Otos_i, Rclass, Roffset);
  2681     if (!is_static) {
  2682       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
  2684     __ ba(checkVolatile);
  2685     __ delayed()->tst(Lscratch);
  2688   __ bind(notByte);
  2689   // cmp(Rflags, ltos);
  2690   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2691   __ delayed()->cmp(Rflags, ctos);
  2693   // ltos
  2695     __ pop_l();
  2696     if (!is_static) pop_and_check_object(Rclass);
  2697     __ st_long(Otos_l, Rclass, Roffset);
  2698     if (!is_static) {
  2699       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
  2701     __ ba(checkVolatile);
  2702     __ delayed()->tst(Lscratch);
  2705   __ bind(notLong);
  2706   // cmp(Rflags, ctos);
  2707   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2708   __ delayed()->cmp(Rflags, stos);
  2710   // ctos (char)
  2712     __ pop_i();
  2713     if (!is_static) pop_and_check_object(Rclass);
  2714     __ sth(Otos_i, Rclass, Roffset);
  2715     if (!is_static) {
  2716       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
  2718     __ ba(checkVolatile);
  2719     __ delayed()->tst(Lscratch);
  2722   __ bind(notChar);
  2723   // cmp(Rflags, stos);
  2724   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2725   __ delayed()->cmp(Rflags, ftos);
  2727   // stos (short)
  2729     __ pop_i();
  2730     if (!is_static) pop_and_check_object(Rclass);
  2731     __ sth(Otos_i, Rclass, Roffset);
  2732     if (!is_static) {
  2733       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
  2735     __ ba(checkVolatile);
  2736     __ delayed()->tst(Lscratch);
  2739   __ bind(notShort);
  2740   // cmp(Rflags, ftos);
  2741   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2742   __ delayed()->nop();
  2744   // ftos
  2746     __ pop_f();
  2747     if (!is_static) pop_and_check_object(Rclass);
  2748     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2749     if (!is_static) {
  2750       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
  2752     __ ba(checkVolatile);
  2753     __ delayed()->tst(Lscratch);
  2756   __ bind(notFloat);
  2758   // dtos
  2760     __ pop_d();
  2761     if (!is_static) pop_and_check_object(Rclass);
  2762     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2763     if (!is_static) {
  2764       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
  2768   __ bind(checkVolatile);
  2769   __ tst(Lscratch);
  2771   if (__ membar_has_effect(write_bits)) {
  2772     // __ tst(Lscratch); in delay slot
  2773     __ br(Assembler::zero, false, Assembler::pt, exit);
  2774     __ delayed()->nop();
  2775     volatile_barrier(Assembler::StoreLoad);
  2776     __ bind(exit);
  2780 void TemplateTable::fast_storefield(TosState state) {
  2781   transition(state, vtos);
  2782   Register Rcache = G3_scratch;
  2783   Register Rclass = Rcache;
  2784   Register Roffset= G4_scratch;
  2785   Register Rflags = G1_scratch;
  2786   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2788   jvmti_post_fast_field_mod();
  2790   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2792   Assembler::Membar_mask_bits read_bits =
  2793     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2794   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2796   Label notVolatile, checkVolatile, exit;
  2797   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2798     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2799     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2800     __ and3(Rflags, Lscratch, Lscratch);
  2801     if (__ membar_has_effect(read_bits)) {
  2802       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2803       volatile_barrier(read_bits);
  2804       __ bind(notVolatile);
  2808   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2809   pop_and_check_object(Rclass);
  2811   switch (bytecode()) {
  2812     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2813     case Bytecodes::_fast_cputfield: /* fall through */
  2814     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2815     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2816     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2817     case Bytecodes::_fast_fputfield:
  2818       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2819       break;
  2820     case Bytecodes::_fast_dputfield:
  2821       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2822       break;
  2823     case Bytecodes::_fast_aputfield:
  2824       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2825       break;
  2826     default:
  2827       ShouldNotReachHere();
  2830   if (__ membar_has_effect(write_bits)) {
  2831     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
  2832     volatile_barrier(Assembler::StoreLoad);
  2833     __ bind(exit);
  2838 void TemplateTable::putfield(int byte_no) {
  2839   putfield_or_static(byte_no, false);
  2842 void TemplateTable::putstatic(int byte_no) {
  2843   putfield_or_static(byte_no, true);
  2847 void TemplateTable::fast_xaccess(TosState state) {
  2848   transition(vtos, state);
  2849   Register Rcache = G3_scratch;
  2850   Register Roffset = G4_scratch;
  2851   Register Rflags  = G4_scratch;
  2852   Register Rreceiver = Lscratch;
  2854   __ ld_ptr(Llocals, 0, Rreceiver);
  2856   // access constant pool cache  (is resolved)
  2857   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2858   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2859   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2861   __ verify_oop(Rreceiver);
  2862   __ null_check(Rreceiver);
  2863   if (state == atos) {
  2864     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2865   } else if (state == itos) {
  2866     __ ld (Rreceiver, Roffset, Otos_i) ;
  2867   } else if (state == ftos) {
  2868     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2869   } else {
  2870     ShouldNotReachHere();
  2873   Assembler::Membar_mask_bits membar_bits =
  2874     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2875   if (__ membar_has_effect(membar_bits)) {
  2877     // Get is_volatile value in Rflags and check if membar is needed
  2878     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2880     // Test volatile
  2881     Label notVolatile;
  2882     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2883     __ btst(Rflags, Lscratch);
  2884     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2885     __ delayed()->nop();
  2886     volatile_barrier(membar_bits);
  2887     __ bind(notVolatile);
  2890   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2891   __ sub(Lbcp, 1, Lbcp);
  2894 //----------------------------------------------------------------------------------------------------
  2895 // Calls
  2897 void TemplateTable::count_calls(Register method, Register temp) {
  2898   // implemented elsewhere
  2899   ShouldNotReachHere();
  2902 void TemplateTable::prepare_invoke(int byte_no,
  2903                                    Register method,  // linked method (or i-klass)
  2904                                    Register ra,      // return address
  2905                                    Register index,   // itable index, MethodType, etc.
  2906                                    Register recv,    // if caller wants to see it
  2907                                    Register flags    // if caller wants to test it
  2908                                    ) {
  2909   // determine flags
  2910   const Bytecodes::Code code = bytecode();
  2911   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2912   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2913   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2914   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2915   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2916   const bool load_receiver       = (recv != noreg);
  2917   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2918   assert(recv  == noreg || recv  == O0, "");
  2919   assert(flags == noreg || flags == O1, "");
  2921   // setup registers & access constant pool cache
  2922   if (recv  == noreg)  recv  = O0;
  2923   if (flags == noreg)  flags = O1;
  2924   const Register temp = O2;
  2925   assert_different_registers(method, ra, index, recv, flags, temp);
  2927   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2929   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  2931   // maybe push appendix to arguments
  2932   if (is_invokedynamic || is_invokehandle) {
  2933     Label L_no_push;
  2934     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
  2935     __ btst(flags, temp);
  2936     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
  2937     __ delayed()->nop();
  2938     // Push the appendix as a trailing parameter.
  2939     // This must be done before we get the receiver,
  2940     // since the parameter_size includes it.
  2941     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2942     __ load_resolved_reference_at_index(temp, index);
  2943     __ verify_oop(temp);
  2944     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
  2945     __ bind(L_no_push);
  2948   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2949   if (load_receiver) {
  2950     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
  2951     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
  2952     __ verify_oop(recv);
  2955   // compute return type
  2956   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
  2957   // Make sure we don't need to mask flags after the above shift
  2958   ConstantPoolCacheEntry::verify_tos_state_shift();
  2959   // load return address
  2961     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2962         (address)Interpreter::return_5_addrs_by_index_table() :
  2963         (address)Interpreter::return_3_addrs_by_index_table();
  2964     AddressLiteral table(table_addr);
  2965     __ set(table, temp);
  2966     __ sll(ra, LogBytesPerWord, ra);
  2967     __ ld_ptr(Address(temp, ra), ra);
  2972 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2973   Register Rtemp = G4_scratch;
  2974   Register Rcall = Rindex;
  2975   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2977   // get target Method* & entry point
  2978   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
  2979   __ call_from_interpreter(Rcall, Gargs, Rret);
  2982 void TemplateTable::invokevirtual(int byte_no) {
  2983   transition(vtos, vtos);
  2984   assert(byte_no == f2_byte, "use this argument");
  2986   Register Rscratch = G3_scratch;
  2987   Register Rtemp    = G4_scratch;
  2988   Register Rret     = Lscratch;
  2989   Register O0_recv  = O0;
  2990   Label notFinal;
  2992   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  2993   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2995   // Check for vfinal
  2996   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
  2997   __ btst(Rret, G4_scratch);
  2998   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2999   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  3001   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  3003   invokevfinal_helper(Rscratch, Rret);
  3005   __ bind(notFinal);
  3007   __ mov(G5_method, Rscratch);  // better scratch register
  3008   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
  3009   // receiver is in O0_recv
  3010   __ verify_oop(O0_recv);
  3012   // get return address
  3013   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3014   __ set(table, Rtemp);
  3015   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3016   // Make sure we don't need to mask Rret after the above shift
  3017   ConstantPoolCacheEntry::verify_tos_state_shift();
  3018   __ sll(Rret,  LogBytesPerWord, Rret);
  3019   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3021   // get receiver klass
  3022   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3023   __ load_klass(O0_recv, O0_recv);
  3024   __ verify_klass_ptr(O0_recv);
  3026   __ profile_virtual_call(O0_recv, O4);
  3028   generate_vtable_call(O0_recv, Rscratch, Rret);
  3031 void TemplateTable::fast_invokevfinal(int byte_no) {
  3032   transition(vtos, vtos);
  3033   assert(byte_no == f2_byte, "use this argument");
  3035   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  3036                              /*is_invokevfinal*/true, false);
  3037   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3038   invokevfinal_helper(G3_scratch, Lscratch);
  3041 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  3042   Register Rtemp = G4_scratch;
  3044   // Load receiver from stack slot
  3045   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
  3046   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
  3047   __ load_receiver(G4_scratch, O0);
  3049   // receiver NULL check
  3050   __ null_check(O0);
  3052   __ profile_final_call(O4);
  3054   // get return address
  3055   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3056   __ set(table, Rtemp);
  3057   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3058   // Make sure we don't need to mask Rret after the above shift
  3059   ConstantPoolCacheEntry::verify_tos_state_shift();
  3060   __ sll(Rret,  LogBytesPerWord, Rret);
  3061   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3064   // do the call
  3065   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3069 void TemplateTable::invokespecial(int byte_no) {
  3070   transition(vtos, vtos);
  3071   assert(byte_no == f1_byte, "use this argument");
  3073   const Register Rret     = Lscratch;
  3074   const Register O0_recv  = O0;
  3075   const Register Rscratch = G3_scratch;
  3077   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
  3078   __ null_check(O0_recv);
  3080   // do the call
  3081   __ profile_call(O4);
  3082   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3086 void TemplateTable::invokestatic(int byte_no) {
  3087   transition(vtos, vtos);
  3088   assert(byte_no == f1_byte, "use this argument");
  3090   const Register Rret     = Lscratch;
  3091   const Register Rscratch = G3_scratch;
  3093   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
  3095   // do the call
  3096   __ profile_call(O4);
  3097   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3100 void TemplateTable::invokeinterface_object_method(Register RKlass,
  3101                                                   Register Rcall,
  3102                                                   Register Rret,
  3103                                                   Register Rflags) {
  3104   Register Rscratch = G4_scratch;
  3105   Register Rindex = Lscratch;
  3107   assert_different_registers(Rscratch, Rindex, Rret);
  3109   Label notFinal;
  3111   // Check for vfinal
  3112   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
  3113   __ btst(Rflags, Rscratch);
  3114   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3115   __ delayed()->nop();
  3117   __ profile_final_call(O4);
  3119   // do the call - the index (f2) contains the Method*
  3120   assert_different_registers(G5_method, Gargs, Rcall);
  3121   __ mov(Rindex, G5_method);
  3122   __ call_from_interpreter(Rcall, Gargs, Rret);
  3123   __ bind(notFinal);
  3125   __ profile_virtual_call(RKlass, O4);
  3126   generate_vtable_call(RKlass, Rindex, Rret);
  3130 void TemplateTable::invokeinterface(int byte_no) {
  3131   transition(vtos, vtos);
  3132   assert(byte_no == f1_byte, "use this argument");
  3134   const Register Rinterface  = G1_scratch;
  3135   const Register Rret        = G3_scratch;
  3136   const Register Rindex      = Lscratch;
  3137   const Register O0_recv     = O0;
  3138   const Register O1_flags    = O1;
  3139   const Register O2_Klass    = O2;
  3140   const Register Rscratch    = G4_scratch;
  3141   assert_different_registers(Rscratch, G5_method);
  3143   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
  3145   // get receiver klass
  3146   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3147   __ load_klass(O0_recv, O2_Klass);
  3149   // Special case of invokeinterface called for virtual method of
  3150   // java.lang.Object.  See cpCacheOop.cpp for details.
  3151   // This code isn't produced by javac, but could be produced by
  3152   // another compliant java compiler.
  3153   Label notMethod;
  3154   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
  3155   __ btst(O1_flags, Rscratch);
  3156   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3157   __ delayed()->nop();
  3159   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
  3161   __ bind(notMethod);
  3163   __ profile_virtual_call(O2_Klass, O4);
  3165   //
  3166   // find entry point to call
  3167   //
  3169   // compute start of first itableOffsetEntry (which is at end of vtable)
  3170   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  3171   Label search;
  3172   Register Rtemp = O1_flags;
  3174   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3175   if (align_object_offset(1) > 1) {
  3176     __ round_to(Rtemp, align_object_offset(1));
  3178   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3179   if (Assembler::is_simm13(base)) {
  3180     __ add(Rtemp, base, Rtemp);
  3181   } else {
  3182     __ set(base, Rscratch);
  3183     __ add(Rscratch, Rtemp, Rtemp);
  3185   __ add(O2_Klass, Rtemp, Rscratch);
  3187   __ bind(search);
  3189   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3191     Label ok;
  3193     // Check that entry is non-null.  Null entries are probably a bytecode
  3194     // problem.  If the interface isn't implemented by the receiver class,
  3195     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3196     // this too but that's only if the entry isn't already resolved, so we
  3197     // need to check again.
  3198     __ br_notnull_short( Rtemp, Assembler::pt, ok);
  3199     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3200     __ should_not_reach_here();
  3201     __ bind(ok);
  3204   __ cmp(Rinterface, Rtemp);
  3205   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3206   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3208   // entry found and Rscratch points to it
  3209   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3211   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3212   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3213   __ add(Rscratch, Rindex, Rscratch);
  3214   __ ld_ptr(O2_Klass, Rscratch, G5_method);
  3216   // Check for abstract method error.
  3218     Label ok;
  3219     __ br_notnull_short(G5_method, Assembler::pt, ok);
  3220     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3221     __ should_not_reach_here();
  3222     __ bind(ok);
  3225   Register Rcall = Rinterface;
  3226   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3228   __ call_from_interpreter(Rcall, Gargs, Rret);
  3231 void TemplateTable::invokehandle(int byte_no) {
  3232   transition(vtos, vtos);
  3233   assert(byte_no == f1_byte, "use this argument");
  3235   if (!EnableInvokeDynamic) {
  3236     // rewriter does not generate this bytecode
  3237     __ should_not_reach_here();
  3238     return;
  3241   const Register Rret       = Lscratch;
  3242   const Register G4_mtype   = G4_scratch;
  3243   const Register O0_recv    = O0;
  3244   const Register Rscratch   = G3_scratch;
  3246   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
  3247   __ null_check(O0_recv);
  3249   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
  3250   // G5: MH.invokeExact_MT method (from f2)
  3252   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
  3254   // do the call
  3255   __ verify_oop(G4_mtype);
  3256   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
  3257   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3261 void TemplateTable::invokedynamic(int byte_no) {
  3262   transition(vtos, vtos);
  3263   assert(byte_no == f1_byte, "use this argument");
  3265   if (!EnableInvokeDynamic) {
  3266     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3267     // The verifier will stop it.  However, if we get past the verifier,
  3268     // this will stop the thread in a reasonable way, without crashing the JVM.
  3269     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3270                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3271     // the call_VM checks for exception, so we should never return here.
  3272     __ should_not_reach_here();
  3273     return;
  3276   const Register Rret        = Lscratch;
  3277   const Register G4_callsite = G4_scratch;
  3278   const Register Rscratch    = G3_scratch;
  3280   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
  3282   // G4: CallSite object (from cpool->resolved_references[f1])
  3283   // G5: MH.linkToCallSite method (from f2)
  3285   // Note:  G4_callsite is already pushed by prepare_invoke
  3287   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3288   // profile this call
  3289   __ profile_call(O4);
  3291   // do the call
  3292   __ verify_oop(G4_callsite);
  3293   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3297 //----------------------------------------------------------------------------------------------------
  3298 // Allocation
  3300 void TemplateTable::_new() {
  3301   transition(vtos, atos);
  3303   Label slow_case;
  3304   Label done;
  3305   Label initialize_header;
  3306   Label initialize_object;  // including clearing the fields
  3308   Register RallocatedObject = Otos_i;
  3309   Register RinstanceKlass = O1;
  3310   Register Roffset = O3;
  3311   Register Rscratch = O4;
  3313   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3314   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3315   // make sure the class we're about to instantiate has been resolved
  3316   // This is done before loading InstanceKlass to be consistent with the order
  3317   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3318   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3319   __ ldub(G3_scratch, Roffset, G3_scratch);
  3320   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3321   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3322   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3323   // get InstanceKlass
  3324   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3325   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3326   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3328   // make sure klass is fully initialized:
  3329   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
  3330   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
  3331   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3332   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3334   // get instance_size in InstanceKlass (already aligned)
  3335   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3337   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3338   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3339   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3340   __ delayed()->nop();
  3342   // allocate the instance
  3343   // 1) Try to allocate in the TLAB
  3344   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3345   // 3) if the above fails (or is not applicable), go to a slow case
  3346   // (creates a new TLAB, etc.)
  3348   const bool allow_shared_alloc =
  3349     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3351   if(UseTLAB) {
  3352     Register RoldTopValue = RallocatedObject;
  3353     Register RtlabWasteLimitValue = G3_scratch;
  3354     Register RnewTopValue = G1_scratch;
  3355     Register RendValue = Rscratch;
  3356     Register RfreeValue = RnewTopValue;
  3358     // check if we can allocate in the TLAB
  3359     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3360     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3361     __ add(RoldTopValue, Roffset, RnewTopValue);
  3363     // if there is enough space, we do not CAS and do not clear
  3364     __ cmp(RnewTopValue, RendValue);
  3365     if(ZeroTLAB) {
  3366       // the fields have already been cleared
  3367       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3368     } else {
  3369       // initialize both the header and fields
  3370       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3372     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3374     if (allow_shared_alloc) {
  3375       // Check if tlab should be discarded (refill_waste_limit >= free)
  3376       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3377       __ sub(RendValue, RoldTopValue, RfreeValue);
  3378 #ifdef _LP64
  3379       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3380 #else
  3381       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3382 #endif
  3383       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
  3385       // increment waste limit to prevent getting stuck on this slow path
  3386       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3387       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3388     } else {
  3389       // No allocation in the shared eden.
  3390       __ ba_short(slow_case);
  3394   // Allocation in the shared Eden
  3395   if (allow_shared_alloc) {
  3396     Register RoldTopValue = G1_scratch;
  3397     Register RtopAddr = G3_scratch;
  3398     Register RnewTopValue = RallocatedObject;
  3399     Register RendValue = Rscratch;
  3401     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3403     Label retry;
  3404     __ bind(retry);
  3405     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3406     __ ld_ptr(RendValue, 0, RendValue);
  3407     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3408     __ add(RoldTopValue, Roffset, RnewTopValue);
  3410     // RnewTopValue contains the top address after the new object
  3411     // has been allocated.
  3412     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
  3414     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3415       VM_Version::v9_instructions_work() ? NULL :
  3416       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3418     // if someone beat us on the allocation, try again, otherwise continue
  3419     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
  3421     // bump total bytes allocated by this thread
  3422     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
  3423     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
  3426   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3427     // clear object fields
  3428     __ bind(initialize_object);
  3429     __ deccc(Roffset, sizeof(oopDesc));
  3430     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3431     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3433     // initialize remaining object fields
  3434     if (UseBlockZeroing) {
  3435       // Use BIS for zeroing
  3436       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
  3437     } else {
  3438       Label loop;
  3439       __ subcc(Roffset, wordSize, Roffset);
  3440       __ bind(loop);
  3441       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3442       __ st_ptr(G0, G3_scratch, Roffset);
  3443       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3444       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3446     __ ba_short(initialize_header);
  3449   // slow case
  3450   __ bind(slow_case);
  3451   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3452   __ get_constant_pool(O1);
  3454   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3456   __ ba_short(done);
  3458   // Initialize the header: mark, klass
  3459   __ bind(initialize_header);
  3461   if (UseBiasedLocking) {
  3462     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
  3463   } else {
  3464     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3466   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3467   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3468   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3471     SkipIfEqual skip_if(
  3472       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3473     // Trigger dtrace event
  3474     __ push(atos);
  3475     __ call_VM_leaf(noreg,
  3476        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3477     __ pop(atos);
  3480   // continue
  3481   __ bind(done);
  3486 void TemplateTable::newarray() {
  3487   transition(itos, atos);
  3488   __ ldub(Lbcp, 1, O1);
  3489      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3493 void TemplateTable::anewarray() {
  3494   transition(itos, atos);
  3495   __ get_constant_pool(O1);
  3496   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3497      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3501 void TemplateTable::arraylength() {
  3502   transition(atos, itos);
  3503   Label ok;
  3504   __ verify_oop(Otos_i);
  3505   __ tst(Otos_i);
  3506   __ throw_if_not_1_x( Assembler::notZero, ok );
  3507   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3508   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3512 void TemplateTable::checkcast() {
  3513   transition(atos, atos);
  3514   Label done, is_null, quicked, cast_ok, resolved;
  3515   Register Roffset = G1_scratch;
  3516   Register RobjKlass = O5;
  3517   Register RspecifiedKlass = O4;
  3519   // Check for casting a NULL
  3520   __ br_null_short(Otos_i, Assembler::pn, is_null);
  3522   // Get value klass in RobjKlass
  3523   __ load_klass(Otos_i, RobjKlass); // get value klass
  3525   // Get constant pool tag
  3526   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3528   // See if the checkcast has been quickened
  3529   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3530   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3531   __ ldub(G3_scratch, Roffset, G3_scratch);
  3532   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3533   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3534   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3536   __ push_ptr(); // save receiver for result, and for GC
  3537   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3538   __ get_vm_result_2(RspecifiedKlass);
  3539   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3541   __ ba_short(resolved);
  3543   // Extract target class from constant pool
  3544   __ bind(quicked);
  3545   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3546   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3547   __ bind(resolved);
  3548   __ load_klass(Otos_i, RobjKlass); // get value klass
  3550   // Generate a fast subtype check.  Branch to cast_ok if no
  3551   // failure.  Throw exception if failure.
  3552   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3554   // Not a subtype; so must throw exception
  3555   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3557   __ bind(cast_ok);
  3559   if (ProfileInterpreter) {
  3560     __ ba_short(done);
  3562   __ bind(is_null);
  3563   __ profile_null_seen(G3_scratch);
  3564   __ bind(done);
  3568 void TemplateTable::instanceof() {
  3569   Label done, is_null, quicked, resolved;
  3570   transition(atos, itos);
  3571   Register Roffset = G1_scratch;
  3572   Register RobjKlass = O5;
  3573   Register RspecifiedKlass = O4;
  3575   // Check for casting a NULL
  3576   __ br_null_short(Otos_i, Assembler::pt, is_null);
  3578   // Get value klass in RobjKlass
  3579   __ load_klass(Otos_i, RobjKlass); // get value klass
  3581   // Get constant pool tag
  3582   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3584   // See if the checkcast has been quickened
  3585   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3586   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3587   __ ldub(G3_scratch, Roffset, G3_scratch);
  3588   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3589   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3590   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3592   __ push_ptr(); // save receiver for result, and for GC
  3593   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3594   __ get_vm_result_2(RspecifiedKlass);
  3595   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3597   __ ba_short(resolved);
  3599   // Extract target class from constant pool
  3600   __ bind(quicked);
  3601   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3602   __ get_constant_pool(Lscratch);
  3603   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3604   __ bind(resolved);
  3605   __ load_klass(Otos_i, RobjKlass); // get value klass
  3607   // Generate a fast subtype check.  Branch to cast_ok if no
  3608   // failure.  Return 0 if failure.
  3609   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3610   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3611   // Not a subtype; return 0;
  3612   __ clr( Otos_i );
  3614   if (ProfileInterpreter) {
  3615     __ ba_short(done);
  3617   __ bind(is_null);
  3618   __ profile_null_seen(G3_scratch);
  3619   __ bind(done);
  3622 void TemplateTable::_breakpoint() {
  3624    // Note: We get here even if we are single stepping..
  3625    // jbug inists on setting breakpoints at every bytecode
  3626    // even if we are in single step mode.
  3628    transition(vtos, vtos);
  3629    // get the unpatched byte code
  3630    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3631    __ mov(O0, Lbyte_code);
  3633    // post the breakpoint event
  3634    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3636    // complete the execution of original bytecode
  3637    __ dispatch_normal(vtos);
  3641 //----------------------------------------------------------------------------------------------------
  3642 // Exceptions
  3644 void TemplateTable::athrow() {
  3645   transition(atos, vtos);
  3647   // This works because exception is cached in Otos_i which is same as O0,
  3648   // which is same as what throw_exception_entry_expects
  3649   assert(Otos_i == Oexception, "see explanation above");
  3651   __ verify_oop(Otos_i);
  3652   __ null_check(Otos_i);
  3653   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3657 //----------------------------------------------------------------------------------------------------
  3658 // Synchronization
  3661 // See frame_sparc.hpp for monitor block layout.
  3662 // Monitor elements are dynamically allocated by growing stack as needed.
  3664 void TemplateTable::monitorenter() {
  3665   transition(atos, vtos);
  3666   __ verify_oop(Otos_i);
  3667   // Try to acquire a lock on the object
  3668   // Repeat until succeeded (i.e., until
  3669   // monitorenter returns true).
  3671   {   Label ok;
  3672     __ tst(Otos_i);
  3673     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3674     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3675     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3678   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3680   // find a free slot in the monitor block
  3683   // initialize entry pointer
  3684   __ clr(O1); // points to free slot or NULL
  3687     Label entry, loop, exit;
  3688     __ add( __ top_most_monitor(), O2 ); // last one to check
  3689     __ ba( entry );
  3690     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3693     __ bind( loop );
  3695     __ verify_oop(O4);          // verify each monitor's oop
  3696     __ tst(O4); // is this entry unused?
  3697     if (VM_Version::v9_instructions_work())
  3698       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3699     else {
  3700       Label L;
  3701       __ br( Assembler::zero, true, Assembler::pn, L );
  3702       __ delayed()->mov(O3, O1); // rememeber this one if match
  3703       __ bind(L);
  3706     __ cmp(O4, O0); // check if current entry is for same object
  3707     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3708     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3710     __ bind( entry );
  3712     __ cmp( O3, O2 );
  3713     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3714     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3716     __ bind( exit );
  3719   { Label allocated;
  3721     // found free slot?
  3722     __ br_notnull_short(O1, Assembler::pn, allocated);
  3724     __ add_monitor_to_stack( false, O2, O3 );
  3725     __ mov(Lmonitors, O1);
  3727     __ bind(allocated);
  3730   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3731   // The object has already been poped from the stack, so the expression stack looks correct.
  3732   __ inc(Lbcp);
  3734   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3735   __ lock_object(O1, O0);
  3737   // check if there's enough space on the stack for the monitors after locking
  3738   __ generate_stack_overflow_check(0);
  3740   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3741   __ dispatch_next(vtos);
  3745 void TemplateTable::monitorexit() {
  3746   transition(atos, vtos);
  3747   __ verify_oop(Otos_i);
  3748   __ tst(Otos_i);
  3749   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3751   assert(O0 == Otos_i, "just checking");
  3753   { Label entry, loop, found;
  3754     __ add( __ top_most_monitor(), O2 ); // last one to check
  3755     __ ba(entry);
  3756     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3757     // By using a local it survives the call to the C routine.
  3758     __ delayed()->mov( Lmonitors, Lscratch );
  3760     __ bind( loop );
  3762     __ verify_oop(O4);          // verify each monitor's oop
  3763     __ cmp(O4, O0); // check if current entry is for desired object
  3764     __ brx( Assembler::equal, true, Assembler::pt, found );
  3765     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3767     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3769     __ bind( entry );
  3771     __ cmp( Lscratch, O2 );
  3772     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3773     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3775     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3776     __ should_not_reach_here();
  3778     __ bind(found);
  3780   __ unlock_object(O1);
  3784 //----------------------------------------------------------------------------------------------------
  3785 // Wide instructions
  3787 void TemplateTable::wide() {
  3788   transition(vtos, vtos);
  3789   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3790   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3791   AddressLiteral ep(Interpreter::_wentry_point);
  3792   __ set(ep, G4_scratch);
  3793   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3794   __ jmp(G3_scratch, G0);
  3795   __ delayed()->nop();
  3796   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3800 //----------------------------------------------------------------------------------------------------
  3801 // Multi arrays
  3803 void TemplateTable::multianewarray() {
  3804   transition(vtos, atos);
  3805      // put ndims * wordSize into Lscratch
  3806   __ ldub( Lbcp,     3,               Lscratch);
  3807   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3808      // Lesp points past last_dim, so set to O1 to first_dim address
  3809   __ add(  Lesp,     Lscratch,        O1);
  3810      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3811   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3813 #endif /* !CC_INTERP */

mercurial