src/share/vm/opto/subnode.cpp

Wed, 11 Jul 2012 14:50:30 -0700

author
kvn
date
Wed, 11 Jul 2012 14:50:30 -0700
changeset 3910
ae9241bbce4a
parent 3834
8f6ce6f1049b
child 4037
da91efe96a93
permissions
-rw-r--r--

7181658: CTW: assert(t->meet(t0) == t) failed: Not monotonic
Summary: Use uncast node equivalence checks in CmpUNode::sub.
Reviewed-by: kvn, twisti
Contributed-by: vladimir.x.ivanov@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/connode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/mulnode.hpp"
    35 #include "opto/opcodes.hpp"
    36 #include "opto/phaseX.hpp"
    37 #include "opto/subnode.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 // Portions of code courtesy of Clifford Click
    42 // Optimization - Graph Style
    44 #include "math.h"
    46 //=============================================================================
    47 //------------------------------Identity---------------------------------------
    48 // If right input is a constant 0, return the left input.
    49 Node *SubNode::Identity( PhaseTransform *phase ) {
    50   assert(in(1) != this, "Must already have called Value");
    51   assert(in(2) != this, "Must already have called Value");
    53   // Remove double negation
    54   const Type *zero = add_id();
    55   if( phase->type( in(1) )->higher_equal( zero ) &&
    56       in(2)->Opcode() == Opcode() &&
    57       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
    58     return in(2)->in(2);
    59   }
    61   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
    62   if( in(1)->Opcode() == Op_AddI ) {
    63     if( phase->eqv(in(1)->in(2),in(2)) )
    64       return in(1)->in(1);
    65     if (phase->eqv(in(1)->in(1),in(2)))
    66       return in(1)->in(2);
    68     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
    69     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
    70     // are originally used, although the optimizer sometimes jiggers things).
    71     // This folding through an O2 removes a loop-exit use of a loop-varying
    72     // value and generally lowers register pressure in and around the loop.
    73     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
    74         phase->eqv(in(1)->in(2)->in(1),in(2)) )
    75       return in(1)->in(1);
    76   }
    78   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
    79 }
    81 //------------------------------Value------------------------------------------
    82 // A subtract node differences it's two inputs.
    83 const Type *SubNode::Value( PhaseTransform *phase ) const {
    84   const Node* in1 = in(1);
    85   const Node* in2 = in(2);
    86   // Either input is TOP ==> the result is TOP
    87   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
    88   if( t1 == Type::TOP ) return Type::TOP;
    89   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
    90   if( t2 == Type::TOP ) return Type::TOP;
    92   // Not correct for SubFnode and AddFNode (must check for infinity)
    93   // Equal?  Subtract is zero
    94   if (in1->eqv_uncast(in2))  return add_id();
    96   // Either input is BOTTOM ==> the result is the local BOTTOM
    97   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    98     return bottom_type();
   100   return sub(t1,t2);            // Local flavor of type subtraction
   102 }
   104 //=============================================================================
   106 //------------------------------Helper function--------------------------------
   107 static bool ok_to_convert(Node* inc, Node* iv) {
   108     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
   109     // "-" is loop invariant and collapsing extends the live-range of "x"
   110     // to overlap with the "+", forcing another register to be used in
   111     // the loop.
   112     // This test will be clearer with '&&' (apply DeMorgan's rule)
   113     // but I like the early cutouts that happen here.
   114     const PhiNode *phi;
   115     if( ( !inc->in(1)->is_Phi() ||
   116           !(phi=inc->in(1)->as_Phi()) ||
   117           phi->is_copy() ||
   118           !phi->region()->is_CountedLoop() ||
   119           inc != phi->region()->as_CountedLoop()->incr() )
   120        &&
   121         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
   122         // because "x" maybe invariant.
   123         ( !iv->is_loop_iv() )
   124       ) {
   125       return true;
   126     } else {
   127       return false;
   128     }
   129 }
   130 //------------------------------Ideal------------------------------------------
   131 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
   132   Node *in1 = in(1);
   133   Node *in2 = in(2);
   134   uint op1 = in1->Opcode();
   135   uint op2 = in2->Opcode();
   137 #ifdef ASSERT
   138   // Check for dead loop
   139   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   140       ( op1 == Op_AddI || op1 == Op_SubI ) &&
   141       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   142         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
   143     assert(false, "dead loop in SubINode::Ideal");
   144 #endif
   146   const Type *t2 = phase->type( in2 );
   147   if( t2 == Type::TOP ) return NULL;
   148   // Convert "x-c0" into "x+ -c0".
   149   if( t2->base() == Type::Int ){        // Might be bottom or top...
   150     const TypeInt *i = t2->is_int();
   151     if( i->is_con() )
   152       return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
   153   }
   155   // Convert "(x+c0) - y" into (x-y) + c0"
   156   // Do not collapse (x+c0)-y if "+" is a loop increment or
   157   // if "y" is a loop induction variable.
   158   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
   159     const Type *tadd = phase->type( in1->in(2) );
   160     if( tadd->singleton() && tadd != Type::TOP ) {
   161       Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
   162       return new (phase->C, 3) AddINode( sub2, in1->in(2) );
   163     }
   164   }
   167   // Convert "x - (y+c0)" into "(x-y) - c0"
   168   // Need the same check as in above optimization but reversed.
   169   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
   170     Node* in21 = in2->in(1);
   171     Node* in22 = in2->in(2);
   172     const TypeInt* tcon = phase->type(in22)->isa_int();
   173     if (tcon != NULL && tcon->is_con()) {
   174       Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
   175       Node* neg_c0 = phase->intcon(- tcon->get_con());
   176       return new (phase->C, 3) AddINode(sub2, neg_c0);
   177     }
   178   }
   180   const Type *t1 = phase->type( in1 );
   181   if( t1 == Type::TOP ) return NULL;
   183 #ifdef ASSERT
   184   // Check for dead loop
   185   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
   186       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   187         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   188     assert(false, "dead loop in SubINode::Ideal");
   189 #endif
   191   // Convert "x - (x+y)" into "-y"
   192   if( op2 == Op_AddI &&
   193       phase->eqv( in1, in2->in(1) ) )
   194     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
   195   // Convert "(x-y) - x" into "-y"
   196   if( op1 == Op_SubI &&
   197       phase->eqv( in1->in(1), in2 ) )
   198     return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
   199   // Convert "x - (y+x)" into "-y"
   200   if( op2 == Op_AddI &&
   201       phase->eqv( in1, in2->in(2) ) )
   202     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
   204   // Convert "0 - (x-y)" into "y-x"
   205   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
   206     return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
   208   // Convert "0 - (x+con)" into "-con-x"
   209   jint con;
   210   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
   211       (con = in2->in(2)->find_int_con(0)) != 0 )
   212     return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
   214   // Convert "(X+A) - (X+B)" into "A - B"
   215   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
   216     return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
   218   // Convert "(A+X) - (B+X)" into "A - B"
   219   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
   220     return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
   222   // Convert "(A+X) - (X+B)" into "A - B"
   223   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
   224     return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
   226   // Convert "(X+A) - (B+X)" into "A - B"
   227   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
   228     return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
   230   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
   231   // nicer to optimize than subtract.
   232   if( op2 == Op_SubI && in2->outcnt() == 1) {
   233     Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
   234     return new (phase->C, 3) SubINode( add1, in2->in(1) );
   235   }
   237   return NULL;
   238 }
   240 //------------------------------sub--------------------------------------------
   241 // A subtract node differences it's two inputs.
   242 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
   243   const TypeInt *r0 = t1->is_int(); // Handy access
   244   const TypeInt *r1 = t2->is_int();
   245   int32 lo = r0->_lo - r1->_hi;
   246   int32 hi = r0->_hi - r1->_lo;
   248   // We next check for 32-bit overflow.
   249   // If that happens, we just assume all integers are possible.
   250   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   251        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   252       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   253        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   254     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   255   else                          // Overflow; assume all integers
   256     return TypeInt::INT;
   257 }
   259 //=============================================================================
   260 //------------------------------Ideal------------------------------------------
   261 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   262   Node *in1 = in(1);
   263   Node *in2 = in(2);
   264   uint op1 = in1->Opcode();
   265   uint op2 = in2->Opcode();
   267 #ifdef ASSERT
   268   // Check for dead loop
   269   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   270       ( op1 == Op_AddL || op1 == Op_SubL ) &&
   271       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   272         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
   273     assert(false, "dead loop in SubLNode::Ideal");
   274 #endif
   276   if( phase->type( in2 ) == Type::TOP ) return NULL;
   277   const TypeLong *i = phase->type( in2 )->isa_long();
   278   // Convert "x-c0" into "x+ -c0".
   279   if( i &&                      // Might be bottom or top...
   280       i->is_con() )
   281     return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
   283   // Convert "(x+c0) - y" into (x-y) + c0"
   284   // Do not collapse (x+c0)-y if "+" is a loop increment or
   285   // if "y" is a loop induction variable.
   286   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
   287     Node *in11 = in1->in(1);
   288     const Type *tadd = phase->type( in1->in(2) );
   289     if( tadd->singleton() && tadd != Type::TOP ) {
   290       Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
   291       return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
   292     }
   293   }
   295   // Convert "x - (y+c0)" into "(x-y) - c0"
   296   // Need the same check as in above optimization but reversed.
   297   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
   298     Node* in21 = in2->in(1);
   299     Node* in22 = in2->in(2);
   300     const TypeLong* tcon = phase->type(in22)->isa_long();
   301     if (tcon != NULL && tcon->is_con()) {
   302       Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
   303       Node* neg_c0 = phase->longcon(- tcon->get_con());
   304       return new (phase->C, 3) AddLNode(sub2, neg_c0);
   305     }
   306   }
   308   const Type *t1 = phase->type( in1 );
   309   if( t1 == Type::TOP ) return NULL;
   311 #ifdef ASSERT
   312   // Check for dead loop
   313   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
   314       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   315         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   316     assert(false, "dead loop in SubLNode::Ideal");
   317 #endif
   319   // Convert "x - (x+y)" into "-y"
   320   if( op2 == Op_AddL &&
   321       phase->eqv( in1, in2->in(1) ) )
   322     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
   323   // Convert "x - (y+x)" into "-y"
   324   if( op2 == Op_AddL &&
   325       phase->eqv( in1, in2->in(2) ) )
   326     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
   328   // Convert "0 - (x-y)" into "y-x"
   329   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
   330     return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
   332   // Convert "(X+A) - (X+B)" into "A - B"
   333   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
   334     return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
   336   // Convert "(A+X) - (B+X)" into "A - B"
   337   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
   338     return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
   340   // Convert "A-(B-C)" into (A+C)-B"
   341   if( op2 == Op_SubL && in2->outcnt() == 1) {
   342     Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
   343     return new (phase->C, 3) SubLNode( add1, in2->in(1) );
   344   }
   346   return NULL;
   347 }
   349 //------------------------------sub--------------------------------------------
   350 // A subtract node differences it's two inputs.
   351 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
   352   const TypeLong *r0 = t1->is_long(); // Handy access
   353   const TypeLong *r1 = t2->is_long();
   354   jlong lo = r0->_lo - r1->_hi;
   355   jlong hi = r0->_hi - r1->_lo;
   357   // We next check for 32-bit overflow.
   358   // If that happens, we just assume all integers are possible.
   359   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   360        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   361       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   362        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   363     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   364   else                          // Overflow; assume all integers
   365     return TypeLong::LONG;
   366 }
   368 //=============================================================================
   369 //------------------------------Value------------------------------------------
   370 // A subtract node differences its two inputs.
   371 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
   372   const Node* in1 = in(1);
   373   const Node* in2 = in(2);
   374   // Either input is TOP ==> the result is TOP
   375   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   376   if( t1 == Type::TOP ) return Type::TOP;
   377   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   378   if( t2 == Type::TOP ) return Type::TOP;
   380   // if both operands are infinity of same sign, the result is NaN; do
   381   // not replace with zero
   382   if( (t1->is_finite() && t2->is_finite()) ) {
   383     if( phase->eqv(in1, in2) ) return add_id();
   384   }
   386   // Either input is BOTTOM ==> the result is the local BOTTOM
   387   const Type *bot = bottom_type();
   388   if( (t1 == bot) || (t2 == bot) ||
   389       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   390     return bot;
   392   return sub(t1,t2);            // Local flavor of type subtraction
   393 }
   396 //=============================================================================
   397 //------------------------------Ideal------------------------------------------
   398 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   399   const Type *t2 = phase->type( in(2) );
   400   // Convert "x-c0" into "x+ -c0".
   401   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
   402     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
   403   }
   405   // Not associative because of boundary conditions (infinity)
   406   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   407     // Convert "x - (x+y)" into "-y"
   408     if( in(2)->is_Add() &&
   409         phase->eqv(in(1),in(2)->in(1) ) )
   410       return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
   411   }
   413   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
   414   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
   415   //if( phase->type(in(1)) == TypeF::ZERO )
   416   //return new (phase->C, 2) NegFNode(in(2));
   418   return NULL;
   419 }
   421 //------------------------------sub--------------------------------------------
   422 // A subtract node differences its two inputs.
   423 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
   424   // no folding if one of operands is infinity or NaN, do not do constant folding
   425   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
   426     return TypeF::make( t1->getf() - t2->getf() );
   427   }
   428   else if( g_isnan(t1->getf()) ) {
   429     return t1;
   430   }
   431   else if( g_isnan(t2->getf()) ) {
   432     return t2;
   433   }
   434   else {
   435     return Type::FLOAT;
   436   }
   437 }
   439 //=============================================================================
   440 //------------------------------Ideal------------------------------------------
   441 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   442   const Type *t2 = phase->type( in(2) );
   443   // Convert "x-c0" into "x+ -c0".
   444   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
   445     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
   446   }
   448   // Not associative because of boundary conditions (infinity)
   449   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   450     // Convert "x - (x+y)" into "-y"
   451     if( in(2)->is_Add() &&
   452         phase->eqv(in(1),in(2)->in(1) ) )
   453       return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
   454   }
   456   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
   457   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
   458   //if( phase->type(in(1)) == TypeD::ZERO )
   459   //return new (phase->C, 2) NegDNode(in(2));
   461   return NULL;
   462 }
   464 //------------------------------sub--------------------------------------------
   465 // A subtract node differences its two inputs.
   466 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
   467   // no folding if one of operands is infinity or NaN, do not do constant folding
   468   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
   469     return TypeD::make( t1->getd() - t2->getd() );
   470   }
   471   else if( g_isnan(t1->getd()) ) {
   472     return t1;
   473   }
   474   else if( g_isnan(t2->getd()) ) {
   475     return t2;
   476   }
   477   else {
   478     return Type::DOUBLE;
   479   }
   480 }
   482 //=============================================================================
   483 //------------------------------Idealize---------------------------------------
   484 // Unlike SubNodes, compare must still flatten return value to the
   485 // range -1, 0, 1.
   486 // And optimizations like those for (X + Y) - X fail if overflow happens.
   487 Node *CmpNode::Identity( PhaseTransform *phase ) {
   488   return this;
   489 }
   491 //=============================================================================
   492 //------------------------------cmp--------------------------------------------
   493 // Simplify a CmpI (compare 2 integers) node, based on local information.
   494 // If both inputs are constants, compare them.
   495 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
   496   const TypeInt *r0 = t1->is_int(); // Handy access
   497   const TypeInt *r1 = t2->is_int();
   499   if( r0->_hi < r1->_lo )       // Range is always low?
   500     return TypeInt::CC_LT;
   501   else if( r0->_lo > r1->_hi )  // Range is always high?
   502     return TypeInt::CC_GT;
   504   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   505     assert(r0->get_con() == r1->get_con(), "must be equal");
   506     return TypeInt::CC_EQ;      // Equal results.
   507   } else if( r0->_hi == r1->_lo ) // Range is never high?
   508     return TypeInt::CC_LE;
   509   else if( r0->_lo == r1->_hi ) // Range is never low?
   510     return TypeInt::CC_GE;
   511   return TypeInt::CC;           // else use worst case results
   512 }
   514 // Simplify a CmpU (compare 2 integers) node, based on local information.
   515 // If both inputs are constants, compare them.
   516 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
   517   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
   519   // comparing two unsigned ints
   520   const TypeInt *r0 = t1->is_int();   // Handy access
   521   const TypeInt *r1 = t2->is_int();
   523   // Current installed version
   524   // Compare ranges for non-overlap
   525   juint lo0 = r0->_lo;
   526   juint hi0 = r0->_hi;
   527   juint lo1 = r1->_lo;
   528   juint hi1 = r1->_hi;
   530   // If either one has both negative and positive values,
   531   // it therefore contains both 0 and -1, and since [0..-1] is the
   532   // full unsigned range, the type must act as an unsigned bottom.
   533   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
   534   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
   536   if (bot0 || bot1) {
   537     // All unsigned values are LE -1 and GE 0.
   538     if (lo0 == 0 && hi0 == 0) {
   539       return TypeInt::CC_LE;            //   0 <= bot
   540     } else if (lo1 == 0 && hi1 == 0) {
   541       return TypeInt::CC_GE;            // bot >= 0
   542     }
   543   } else {
   544     // We can use ranges of the form [lo..hi] if signs are the same.
   545     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
   546     // results are reversed, '-' > '+' for unsigned compare
   547     if (hi0 < lo1) {
   548       return TypeInt::CC_LT;            // smaller
   549     } else if (lo0 > hi1) {
   550       return TypeInt::CC_GT;            // greater
   551     } else if (hi0 == lo1 && lo0 == hi1) {
   552       return TypeInt::CC_EQ;            // Equal results
   553     } else if (lo0 >= hi1) {
   554       return TypeInt::CC_GE;
   555     } else if (hi0 <= lo1) {
   556       // Check for special case in Hashtable::get.  (See below.)
   557       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
   558         return TypeInt::CC_LT;
   559       return TypeInt::CC_LE;
   560     }
   561   }
   562   // Check for special case in Hashtable::get - the hash index is
   563   // mod'ed to the table size so the following range check is useless.
   564   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
   565   // to be positive.
   566   // (This is a gross hack, since the sub method never
   567   // looks at the structure of the node in any other case.)
   568   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
   569     return TypeInt::CC_LT;
   570   return TypeInt::CC;                   // else use worst case results
   571 }
   573 bool CmpUNode::is_index_range_check() const {
   574   // Check for the "(X ModI Y) CmpU Y" shape
   575   return (in(1)->Opcode() == Op_ModI &&
   576           in(1)->in(2)->eqv_uncast(in(2)));
   577 }
   579 //------------------------------Idealize---------------------------------------
   580 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   581   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
   582     switch (in(1)->Opcode()) {
   583     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
   584       return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
   585     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
   586       return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
   587     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
   588       return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
   589     //case Op_SubI:
   590       // If (x - y) cannot overflow, then ((x - y) <?> 0)
   591       // can be turned into (x <?> y).
   592       // This is handled (with more general cases) by Ideal_sub_algebra.
   593     }
   594   }
   595   return NULL;                  // No change
   596 }
   599 //=============================================================================
   600 // Simplify a CmpL (compare 2 longs ) node, based on local information.
   601 // If both inputs are constants, compare them.
   602 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
   603   const TypeLong *r0 = t1->is_long(); // Handy access
   604   const TypeLong *r1 = t2->is_long();
   606   if( r0->_hi < r1->_lo )       // Range is always low?
   607     return TypeInt::CC_LT;
   608   else if( r0->_lo > r1->_hi )  // Range is always high?
   609     return TypeInt::CC_GT;
   611   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   612     assert(r0->get_con() == r1->get_con(), "must be equal");
   613     return TypeInt::CC_EQ;      // Equal results.
   614   } else if( r0->_hi == r1->_lo ) // Range is never high?
   615     return TypeInt::CC_LE;
   616   else if( r0->_lo == r1->_hi ) // Range is never low?
   617     return TypeInt::CC_GE;
   618   return TypeInt::CC;           // else use worst case results
   619 }
   621 //=============================================================================
   622 //------------------------------sub--------------------------------------------
   623 // Simplify an CmpP (compare 2 pointers) node, based on local information.
   624 // If both inputs are constants, compare them.
   625 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
   626   const TypePtr *r0 = t1->is_ptr(); // Handy access
   627   const TypePtr *r1 = t2->is_ptr();
   629   // Undefined inputs makes for an undefined result
   630   if( TypePtr::above_centerline(r0->_ptr) ||
   631       TypePtr::above_centerline(r1->_ptr) )
   632     return Type::TOP;
   634   if (r0 == r1 && r0->singleton()) {
   635     // Equal pointer constants (klasses, nulls, etc.)
   636     return TypeInt::CC_EQ;
   637   }
   639   // See if it is 2 unrelated classes.
   640   const TypeOopPtr* p0 = r0->isa_oopptr();
   641   const TypeOopPtr* p1 = r1->isa_oopptr();
   642   if (p0 && p1) {
   643     Node* in1 = in(1)->uncast();
   644     Node* in2 = in(2)->uncast();
   645     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
   646     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
   647     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
   648       return TypeInt::CC_GT;  // different pointers
   649     }
   650     ciKlass* klass0 = p0->klass();
   651     bool    xklass0 = p0->klass_is_exact();
   652     ciKlass* klass1 = p1->klass();
   653     bool    xklass1 = p1->klass_is_exact();
   654     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   655     if (klass0 && klass1 &&
   656         kps != 1 &&             // both or neither are klass pointers
   657         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
   658         klass1->is_loaded() && !klass1->is_interface() &&
   659         (!klass0->is_obj_array_klass() ||
   660          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
   661         (!klass1->is_obj_array_klass() ||
   662          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
   663       bool unrelated_classes = false;
   664       // See if neither subclasses the other, or if the class on top
   665       // is precise.  In either of these cases, the compare is known
   666       // to fail if at least one of the pointers is provably not null.
   667       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
   668           !klass0->is_java_klass() ||   // types not part of Java language?
   669           !klass1->is_java_klass()) {   // types not part of Java language?
   670         // Do nothing; we know nothing for imprecise types
   671       } else if (klass0->is_subtype_of(klass1)) {
   672         // If klass1's type is PRECISE, then classes are unrelated.
   673         unrelated_classes = xklass1;
   674       } else if (klass1->is_subtype_of(klass0)) {
   675         // If klass0's type is PRECISE, then classes are unrelated.
   676         unrelated_classes = xklass0;
   677       } else {                  // Neither subtypes the other
   678         unrelated_classes = true;
   679       }
   680       if (unrelated_classes) {
   681         // The oops classes are known to be unrelated. If the joined PTRs of
   682         // two oops is not Null and not Bottom, then we are sure that one
   683         // of the two oops is non-null, and the comparison will always fail.
   684         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   685         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   686           return TypeInt::CC_GT;
   687         }
   688       }
   689     }
   690   }
   692   // Known constants can be compared exactly
   693   // Null can be distinguished from any NotNull pointers
   694   // Unknown inputs makes an unknown result
   695   if( r0->singleton() ) {
   696     intptr_t bits0 = r0->get_con();
   697     if( r1->singleton() )
   698       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   699     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   700   } else if( r1->singleton() ) {
   701     intptr_t bits1 = r1->get_con();
   702     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   703   } else
   704     return TypeInt::CC;
   705 }
   707 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
   708   // Return the klass node for
   709   //   LoadP(AddP(foo:Klass, #java_mirror))
   710   //   or NULL if not matching.
   711   if (n->Opcode() != Op_LoadP) return NULL;
   713   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
   714   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
   716   Node* adr = n->in(MemNode::Address);
   717   intptr_t off = 0;
   718   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
   719   if (k == NULL)  return NULL;
   720   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
   721   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
   723   // We've found the klass node of a Java mirror load.
   724   return k;
   725 }
   727 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
   728   // for ConP(Foo.class) return ConP(Foo.klass)
   729   // otherwise return NULL
   730   if (!n->is_Con()) return NULL;
   732   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
   733   if (!tp) return NULL;
   735   ciType* mirror_type = tp->java_mirror_type();
   736   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
   737   // time Class constants only.
   738   if (!mirror_type) return NULL;
   740   // x.getClass() == int.class can never be true (for all primitive types)
   741   // Return a ConP(NULL) node for this case.
   742   if (mirror_type->is_classless()) {
   743     return phase->makecon(TypePtr::NULL_PTR);
   744   }
   746   // return the ConP(Foo.klass)
   747   assert(mirror_type->is_klass(), "mirror_type should represent a klassOop");
   748   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
   749 }
   751 //------------------------------Ideal------------------------------------------
   752 // Normalize comparisons between Java mirror loads to compare the klass instead.
   753 //
   754 // Also check for the case of comparing an unknown klass loaded from the primary
   755 // super-type array vs a known klass with no subtypes.  This amounts to
   756 // checking to see an unknown klass subtypes a known klass with no subtypes;
   757 // this only happens on an exact match.  We can shorten this test by 1 load.
   758 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   759   // Normalize comparisons between Java mirrors into comparisons of the low-
   760   // level klass, where a dependent load could be shortened.
   761   //
   762   // The new pattern has a nice effect of matching the same pattern used in the
   763   // fast path of instanceof/checkcast/Class.isInstance(), which allows
   764   // redundant exact type check be optimized away by GVN.
   765   // For example, in
   766   //   if (x.getClass() == Foo.class) {
   767   //     Foo foo = (Foo) x;
   768   //     // ... use a ...
   769   //   }
   770   // a CmpPNode could be shared between if_acmpne and checkcast
   771   {
   772     Node* k1 = isa_java_mirror_load(phase, in(1));
   773     Node* k2 = isa_java_mirror_load(phase, in(2));
   774     Node* conk2 = isa_const_java_mirror(phase, in(2));
   776     if (k1 && (k2 || conk2)) {
   777       Node* lhs = k1;
   778       Node* rhs = (k2 != NULL) ? k2 : conk2;
   779       this->set_req(1, lhs);
   780       this->set_req(2, rhs);
   781       return this;
   782     }
   783   }
   785   // Constant pointer on right?
   786   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
   787   if (t2 == NULL || !t2->klass_is_exact())
   788     return NULL;
   789   // Get the constant klass we are comparing to.
   790   ciKlass* superklass = t2->klass();
   792   // Now check for LoadKlass on left.
   793   Node* ldk1 = in(1);
   794   if (ldk1->is_DecodeN()) {
   795     ldk1 = ldk1->in(1);
   796     if (ldk1->Opcode() != Op_LoadNKlass )
   797       return NULL;
   798   } else if (ldk1->Opcode() != Op_LoadKlass )
   799     return NULL;
   800   // Take apart the address of the LoadKlass:
   801   Node* adr1 = ldk1->in(MemNode::Address);
   802   intptr_t con2 = 0;
   803   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
   804   if (ldk2 == NULL)
   805     return NULL;
   806   if (con2 == oopDesc::klass_offset_in_bytes()) {
   807     // We are inspecting an object's concrete class.
   808     // Short-circuit the check if the query is abstract.
   809     if (superklass->is_interface() ||
   810         superklass->is_abstract()) {
   811       // Make it come out always false:
   812       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
   813       return this;
   814     }
   815   }
   817   // Check for a LoadKlass from primary supertype array.
   818   // Any nested loadklass from loadklass+con must be from the p.s. array.
   819   if (ldk2->is_DecodeN()) {
   820     // Keep ldk2 as DecodeN since it could be used in CmpP below.
   821     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
   822       return NULL;
   823   } else if (ldk2->Opcode() != Op_LoadKlass)
   824     return NULL;
   826   // Verify that we understand the situation
   827   if (con2 != (intptr_t) superklass->super_check_offset())
   828     return NULL;                // Might be element-klass loading from array klass
   830   // If 'superklass' has no subklasses and is not an interface, then we are
   831   // assured that the only input which will pass the type check is
   832   // 'superklass' itself.
   833   //
   834   // We could be more liberal here, and allow the optimization on interfaces
   835   // which have a single implementor.  This would require us to increase the
   836   // expressiveness of the add_dependency() mechanism.
   837   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
   839   // Object arrays must have their base element have no subtypes
   840   while (superklass->is_obj_array_klass()) {
   841     ciType* elem = superklass->as_obj_array_klass()->element_type();
   842     superklass = elem->as_klass();
   843   }
   844   if (superklass->is_instance_klass()) {
   845     ciInstanceKlass* ik = superklass->as_instance_klass();
   846     if (ik->has_subklass() || ik->is_interface())  return NULL;
   847     // Add a dependency if there is a chance that a subclass will be added later.
   848     if (!ik->is_final()) {
   849       phase->C->dependencies()->assert_leaf_type(ik);
   850     }
   851   }
   853   // Bypass the dependent load, and compare directly
   854   this->set_req(1,ldk2);
   856   return this;
   857 }
   859 //=============================================================================
   860 //------------------------------sub--------------------------------------------
   861 // Simplify an CmpN (compare 2 pointers) node, based on local information.
   862 // If both inputs are constants, compare them.
   863 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
   864   const TypePtr *r0 = t1->make_ptr(); // Handy access
   865   const TypePtr *r1 = t2->make_ptr();
   867   // Undefined inputs makes for an undefined result
   868   if( TypePtr::above_centerline(r0->_ptr) ||
   869       TypePtr::above_centerline(r1->_ptr) )
   870     return Type::TOP;
   872   if (r0 == r1 && r0->singleton()) {
   873     // Equal pointer constants (klasses, nulls, etc.)
   874     return TypeInt::CC_EQ;
   875   }
   877   // See if it is 2 unrelated classes.
   878   const TypeOopPtr* p0 = r0->isa_oopptr();
   879   const TypeOopPtr* p1 = r1->isa_oopptr();
   880   if (p0 && p1) {
   881     ciKlass* klass0 = p0->klass();
   882     bool    xklass0 = p0->klass_is_exact();
   883     ciKlass* klass1 = p1->klass();
   884     bool    xklass1 = p1->klass_is_exact();
   885     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   886     if (klass0 && klass1 &&
   887         kps != 1 &&             // both or neither are klass pointers
   888         !klass0->is_interface() && // do not trust interfaces
   889         !klass1->is_interface()) {
   890       bool unrelated_classes = false;
   891       // See if neither subclasses the other, or if the class on top
   892       // is precise.  In either of these cases, the compare is known
   893       // to fail if at least one of the pointers is provably not null.
   894       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
   895           !klass0->is_java_klass() ||   // types not part of Java language?
   896           !klass1->is_java_klass()) {   // types not part of Java language?
   897         // Do nothing; we know nothing for imprecise types
   898       } else if (klass0->is_subtype_of(klass1)) {
   899         // If klass1's type is PRECISE, then classes are unrelated.
   900         unrelated_classes = xklass1;
   901       } else if (klass1->is_subtype_of(klass0)) {
   902         // If klass0's type is PRECISE, then classes are unrelated.
   903         unrelated_classes = xklass0;
   904       } else {                  // Neither subtypes the other
   905         unrelated_classes = true;
   906       }
   907       if (unrelated_classes) {
   908         // The oops classes are known to be unrelated. If the joined PTRs of
   909         // two oops is not Null and not Bottom, then we are sure that one
   910         // of the two oops is non-null, and the comparison will always fail.
   911         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   912         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   913           return TypeInt::CC_GT;
   914         }
   915       }
   916     }
   917   }
   919   // Known constants can be compared exactly
   920   // Null can be distinguished from any NotNull pointers
   921   // Unknown inputs makes an unknown result
   922   if( r0->singleton() ) {
   923     intptr_t bits0 = r0->get_con();
   924     if( r1->singleton() )
   925       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   926     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   927   } else if( r1->singleton() ) {
   928     intptr_t bits1 = r1->get_con();
   929     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   930   } else
   931     return TypeInt::CC;
   932 }
   934 //------------------------------Ideal------------------------------------------
   935 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   936   return NULL;
   937 }
   939 //=============================================================================
   940 //------------------------------Value------------------------------------------
   941 // Simplify an CmpF (compare 2 floats ) node, based on local information.
   942 // If both inputs are constants, compare them.
   943 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
   944   const Node* in1 = in(1);
   945   const Node* in2 = in(2);
   946   // Either input is TOP ==> the result is TOP
   947   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   948   if( t1 == Type::TOP ) return Type::TOP;
   949   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   950   if( t2 == Type::TOP ) return Type::TOP;
   952   // Not constants?  Don't know squat - even if they are the same
   953   // value!  If they are NaN's they compare to LT instead of EQ.
   954   const TypeF *tf1 = t1->isa_float_constant();
   955   const TypeF *tf2 = t2->isa_float_constant();
   956   if( !tf1 || !tf2 ) return TypeInt::CC;
   958   // This implements the Java bytecode fcmpl, so unordered returns -1.
   959   if( tf1->is_nan() || tf2->is_nan() )
   960     return TypeInt::CC_LT;
   962   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
   963   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
   964   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
   965   return TypeInt::CC_EQ;
   966 }
   969 //=============================================================================
   970 //------------------------------Value------------------------------------------
   971 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
   972 // If both inputs are constants, compare them.
   973 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
   974   const Node* in1 = in(1);
   975   const Node* in2 = in(2);
   976   // Either input is TOP ==> the result is TOP
   977   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   978   if( t1 == Type::TOP ) return Type::TOP;
   979   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   980   if( t2 == Type::TOP ) return Type::TOP;
   982   // Not constants?  Don't know squat - even if they are the same
   983   // value!  If they are NaN's they compare to LT instead of EQ.
   984   const TypeD *td1 = t1->isa_double_constant();
   985   const TypeD *td2 = t2->isa_double_constant();
   986   if( !td1 || !td2 ) return TypeInt::CC;
   988   // This implements the Java bytecode dcmpl, so unordered returns -1.
   989   if( td1->is_nan() || td2->is_nan() )
   990     return TypeInt::CC_LT;
   992   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
   993   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
   994   assert( td1->_d == td2->_d, "do not understand FP behavior" );
   995   return TypeInt::CC_EQ;
   996 }
   998 //------------------------------Ideal------------------------------------------
   999 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1000   // Check if we can change this to a CmpF and remove a ConvD2F operation.
  1001   // Change  (CMPD (F2D (float)) (ConD value))
  1002   // To      (CMPF      (float)  (ConF value))
  1003   // Valid when 'value' does not lose precision as a float.
  1004   // Benefits: eliminates conversion, does not require 24-bit mode
  1006   // NaNs prevent commuting operands.  This transform works regardless of the
  1007   // order of ConD and ConvF2D inputs by preserving the original order.
  1008   int idx_f2d = 1;              // ConvF2D on left side?
  1009   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
  1010     idx_f2d = 2;                // No, swap to check for reversed args
  1011   int idx_con = 3-idx_f2d;      // Check for the constant on other input
  1013   if( ConvertCmpD2CmpF &&
  1014       in(idx_f2d)->Opcode() == Op_ConvF2D &&
  1015       in(idx_con)->Opcode() == Op_ConD ) {
  1016     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
  1017     double t2_value_as_double = t2->_d;
  1018     float  t2_value_as_float  = (float)t2_value_as_double;
  1019     if( t2_value_as_double == (double)t2_value_as_float ) {
  1020       // Test value can be represented as a float
  1021       // Eliminate the conversion to double and create new comparison
  1022       Node *new_in1 = in(idx_f2d)->in(1);
  1023       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
  1024       if( idx_f2d != 1 ) {      // Must flip args to match original order
  1025         Node *tmp = new_in1;
  1026         new_in1 = new_in2;
  1027         new_in2 = tmp;
  1029       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
  1030         ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
  1031         : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
  1032       return new_cmp;           // Changed to CmpFNode
  1034     // Testing value required the precision of a double
  1036   return NULL;                  // No change
  1040 //=============================================================================
  1041 //------------------------------cc2logical-------------------------------------
  1042 // Convert a condition code type to a logical type
  1043 const Type *BoolTest::cc2logical( const Type *CC ) const {
  1044   if( CC == Type::TOP ) return Type::TOP;
  1045   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
  1046   const TypeInt *ti = CC->is_int();
  1047   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
  1048     // Match low order 2 bits
  1049     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
  1050     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
  1051     return TypeInt::make(tmp);       // Boolean result
  1054   if( CC == TypeInt::CC_GE ) {
  1055     if( _test == ge ) return TypeInt::ONE;
  1056     if( _test == lt ) return TypeInt::ZERO;
  1058   if( CC == TypeInt::CC_LE ) {
  1059     if( _test == le ) return TypeInt::ONE;
  1060     if( _test == gt ) return TypeInt::ZERO;
  1063   return TypeInt::BOOL;
  1066 //------------------------------dump_spec-------------------------------------
  1067 // Print special per-node info
  1068 #ifndef PRODUCT
  1069 void BoolTest::dump_on(outputStream *st) const {
  1070   const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
  1071   st->print(msg[_test]);
  1073 #endif
  1075 //=============================================================================
  1076 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
  1077 uint BoolNode::size_of() const { return sizeof(BoolNode); }
  1079 //------------------------------operator==-------------------------------------
  1080 uint BoolNode::cmp( const Node &n ) const {
  1081   const BoolNode *b = (const BoolNode *)&n; // Cast up
  1082   return (_test._test == b->_test._test);
  1085 //------------------------------clone_cmp--------------------------------------
  1086 // Clone a compare/bool tree
  1087 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
  1088   Node *ncmp = cmp->clone();
  1089   ncmp->set_req(1,cmp1);
  1090   ncmp->set_req(2,cmp2);
  1091   ncmp = gvn->transform( ncmp );
  1092   return new (gvn->C, 2) BoolNode( ncmp, test );
  1095 //-------------------------------make_predicate--------------------------------
  1096 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
  1097   if (test_value->is_Con())   return test_value;
  1098   if (test_value->is_Bool())  return test_value;
  1099   Compile* C = phase->C;
  1100   if (test_value->is_CMove() &&
  1101       test_value->in(CMoveNode::Condition)->is_Bool()) {
  1102     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
  1103     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
  1104     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
  1105     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
  1106       return bol;
  1107     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
  1108       return phase->transform( bol->negate(phase) );
  1110     // Else fall through.  The CMove gets in the way of the test.
  1111     // It should be the case that make_predicate(bol->as_int_value()) == bol.
  1113   Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
  1114   cmp = phase->transform(cmp);
  1115   Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
  1116   return phase->transform(bol);
  1119 //--------------------------------as_int_value---------------------------------
  1120 Node* BoolNode::as_int_value(PhaseGVN* phase) {
  1121   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
  1122   Node* cmov = CMoveNode::make(phase->C, NULL, this,
  1123                                phase->intcon(0), phase->intcon(1),
  1124                                TypeInt::BOOL);
  1125   return phase->transform(cmov);
  1128 //----------------------------------negate-------------------------------------
  1129 BoolNode* BoolNode::negate(PhaseGVN* phase) {
  1130   Compile* C = phase->C;
  1131   return new (C, 2) BoolNode(in(1), _test.negate());
  1135 //------------------------------Ideal------------------------------------------
  1136 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1137   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
  1138   // This moves the constant to the right.  Helps value-numbering.
  1139   Node *cmp = in(1);
  1140   if( !cmp->is_Sub() ) return NULL;
  1141   int cop = cmp->Opcode();
  1142   if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
  1143   Node *cmp1 = cmp->in(1);
  1144   Node *cmp2 = cmp->in(2);
  1145   if( !cmp1 ) return NULL;
  1147   // Constant on left?
  1148   Node *con = cmp1;
  1149   uint op2 = cmp2->Opcode();
  1150   // Move constants to the right of compare's to canonicalize.
  1151   // Do not muck with Opaque1 nodes, as this indicates a loop
  1152   // guard that cannot change shape.
  1153   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
  1154       // Because of NaN's, CmpD and CmpF are not commutative
  1155       cop != Op_CmpD && cop != Op_CmpF &&
  1156       // Protect against swapping inputs to a compare when it is used by a
  1157       // counted loop exit, which requires maintaining the loop-limit as in(2)
  1158       !is_counted_loop_exit_test() ) {
  1159     // Ok, commute the constant to the right of the cmp node.
  1160     // Clone the Node, getting a new Node of the same class
  1161     cmp = cmp->clone();
  1162     // Swap inputs to the clone
  1163     cmp->swap_edges(1, 2);
  1164     cmp = phase->transform( cmp );
  1165     return new (phase->C, 2) BoolNode( cmp, _test.commute() );
  1168   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
  1169   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
  1170   // test instead.
  1171   int cmp1_op = cmp1->Opcode();
  1172   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
  1173   if (cmp2_type == NULL)  return NULL;
  1174   Node* j_xor = cmp1;
  1175   if( cmp2_type == TypeInt::ZERO &&
  1176       cmp1_op == Op_XorI &&
  1177       j_xor->in(1) != j_xor &&          // An xor of itself is dead
  1178       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
  1179       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
  1180       (_test._test == BoolTest::eq ||
  1181        _test._test == BoolTest::ne) ) {
  1182     Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
  1183     return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
  1186   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
  1187   // This is a standard idiom for branching on a boolean value.
  1188   Node *c2b = cmp1;
  1189   if( cmp2_type == TypeInt::ZERO &&
  1190       cmp1_op == Op_Conv2B &&
  1191       (_test._test == BoolTest::eq ||
  1192        _test._test == BoolTest::ne) ) {
  1193     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
  1194        ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
  1195        : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
  1196     );
  1197     return new (phase->C, 2) BoolNode( ncmp, _test._test );
  1200   // Comparing a SubI against a zero is equal to comparing the SubI
  1201   // arguments directly.  This only works for eq and ne comparisons
  1202   // due to possible integer overflow.
  1203   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
  1204         (cop == Op_CmpI) &&
  1205         (cmp1->Opcode() == Op_SubI) &&
  1206         ( cmp2_type == TypeInt::ZERO ) ) {
  1207     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
  1208     return new (phase->C, 2) BoolNode( ncmp, _test._test );
  1211   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
  1212   // most general case because negating 0x80000000 does nothing.  Needed for
  1213   // the CmpF3/SubI/CmpI idiom.
  1214   if( cop == Op_CmpI &&
  1215       cmp1->Opcode() == Op_SubI &&
  1216       cmp2_type == TypeInt::ZERO &&
  1217       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
  1218       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
  1219     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
  1220     return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
  1223   //  The transformation below is not valid for either signed or unsigned
  1224   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
  1225   //  This transformation can be resurrected when we are able to
  1226   //  make inferences about the range of values being subtracted from
  1227   //  (or added to) relative to the wraparound point.
  1228   //
  1229   //    // Remove +/-1's if possible.
  1230   //    // "X <= Y-1" becomes "X <  Y"
  1231   //    // "X+1 <= Y" becomes "X <  Y"
  1232   //    // "X <  Y+1" becomes "X <= Y"
  1233   //    // "X-1 <  Y" becomes "X <= Y"
  1234   //    // Do not this to compares off of the counted-loop-end.  These guys are
  1235   //    // checking the trip counter and they want to use the post-incremented
  1236   //    // counter.  If they use the PRE-incremented counter, then the counter has
  1237   //    // to be incremented in a private block on a loop backedge.
  1238   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
  1239   //      return NULL;
  1240   //  #ifndef PRODUCT
  1241   //    // Do not do this in a wash GVN pass during verification.
  1242   //    // Gets triggered by too many simple optimizations to be bothered with
  1243   //    // re-trying it again and again.
  1244   //    if( !phase->allow_progress() ) return NULL;
  1245   //  #endif
  1246   //    // Not valid for unsigned compare because of corner cases in involving zero.
  1247   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
  1248   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
  1249   //    // "0 <=u Y" is always true).
  1250   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
  1251   //    int cmp2_op = cmp2->Opcode();
  1252   //    if( _test._test == BoolTest::le ) {
  1253   //      if( cmp1_op == Op_AddI &&
  1254   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
  1255   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
  1256   //      else if( cmp2_op == Op_AddI &&
  1257   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
  1258   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
  1259   //    } else if( _test._test == BoolTest::lt ) {
  1260   //      if( cmp1_op == Op_AddI &&
  1261   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
  1262   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
  1263   //      else if( cmp2_op == Op_AddI &&
  1264   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
  1265   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
  1266   //    }
  1268   return NULL;
  1271 //------------------------------Value------------------------------------------
  1272 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
  1273 // based on local information.   If the input is constant, do it.
  1274 const Type *BoolNode::Value( PhaseTransform *phase ) const {
  1275   return _test.cc2logical( phase->type( in(1) ) );
  1278 //------------------------------dump_spec--------------------------------------
  1279 // Dump special per-node info
  1280 #ifndef PRODUCT
  1281 void BoolNode::dump_spec(outputStream *st) const {
  1282   st->print("[");
  1283   _test.dump_on(st);
  1284   st->print("]");
  1286 #endif
  1288 //------------------------------is_counted_loop_exit_test--------------------------------------
  1289 // Returns true if node is used by a counted loop node.
  1290 bool BoolNode::is_counted_loop_exit_test() {
  1291   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  1292     Node* use = fast_out(i);
  1293     if (use->is_CountedLoopEnd()) {
  1294       return true;
  1297   return false;
  1300 //=============================================================================
  1301 //------------------------------Value------------------------------------------
  1302 // Compute sqrt
  1303 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
  1304   const Type *t1 = phase->type( in(1) );
  1305   if( t1 == Type::TOP ) return Type::TOP;
  1306   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1307   double d = t1->getd();
  1308   if( d < 0.0 ) return Type::DOUBLE;
  1309   return TypeD::make( sqrt( d ) );
  1312 //=============================================================================
  1313 //------------------------------Value------------------------------------------
  1314 // Compute cos
  1315 const Type *CosDNode::Value( PhaseTransform *phase ) const {
  1316   const Type *t1 = phase->type( in(1) );
  1317   if( t1 == Type::TOP ) return Type::TOP;
  1318   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1319   double d = t1->getd();
  1320   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
  1323 //=============================================================================
  1324 //------------------------------Value------------------------------------------
  1325 // Compute sin
  1326 const Type *SinDNode::Value( PhaseTransform *phase ) const {
  1327   const Type *t1 = phase->type( in(1) );
  1328   if( t1 == Type::TOP ) return Type::TOP;
  1329   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1330   double d = t1->getd();
  1331   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
  1334 //=============================================================================
  1335 //------------------------------Value------------------------------------------
  1336 // Compute tan
  1337 const Type *TanDNode::Value( PhaseTransform *phase ) const {
  1338   const Type *t1 = phase->type( in(1) );
  1339   if( t1 == Type::TOP ) return Type::TOP;
  1340   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1341   double d = t1->getd();
  1342   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
  1345 //=============================================================================
  1346 //------------------------------Value------------------------------------------
  1347 // Compute log
  1348 const Type *LogDNode::Value( PhaseTransform *phase ) const {
  1349   const Type *t1 = phase->type( in(1) );
  1350   if( t1 == Type::TOP ) return Type::TOP;
  1351   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1352   double d = t1->getd();
  1353   return TypeD::make( StubRoutines::intrinsic_log( d ) );
  1356 //=============================================================================
  1357 //------------------------------Value------------------------------------------
  1358 // Compute log10
  1359 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
  1360   const Type *t1 = phase->type( in(1) );
  1361   if( t1 == Type::TOP ) return Type::TOP;
  1362   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1363   double d = t1->getd();
  1364   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
  1367 //=============================================================================
  1368 //------------------------------Value------------------------------------------
  1369 // Compute exp
  1370 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
  1371   const Type *t1 = phase->type( in(1) );
  1372   if( t1 == Type::TOP ) return Type::TOP;
  1373   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1374   double d = t1->getd();
  1375   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
  1379 //=============================================================================
  1380 //------------------------------Value------------------------------------------
  1381 // Compute pow
  1382 const Type *PowDNode::Value( PhaseTransform *phase ) const {
  1383   const Type *t1 = phase->type( in(1) );
  1384   if( t1 == Type::TOP ) return Type::TOP;
  1385   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1386   const Type *t2 = phase->type( in(2) );
  1387   if( t2 == Type::TOP ) return Type::TOP;
  1388   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
  1389   double d1 = t1->getd();
  1390   double d2 = t2->getd();
  1391   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );

mercurial