src/share/vm/opto/type.cpp

Thu, 21 Jan 2010 10:07:59 -0800

author
kvn
date
Thu, 21 Jan 2010 10:07:59 -0800
changeset 1770
ae4032fb0a5b
parent 1444
03b336640699
child 1774
09ac706c2623
permissions
-rw-r--r--

6894807: No ClassCastException for HashAttributeSet constructors if run with -Xcomp
Summary: Return interface klass type if it is exact.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_type.cpp.incl"
    32 // Dictionary of types shared among compilations.
    33 Dict* Type::_shared_type_dict = NULL;
    35 // Array which maps compiler types to Basic Types
    36 const BasicType Type::_basic_type[Type::lastype] = {
    37   T_ILLEGAL,    // Bad
    38   T_ILLEGAL,    // Control
    39   T_VOID,       // Top
    40   T_INT,        // Int
    41   T_LONG,       // Long
    42   T_VOID,       // Half
    43   T_NARROWOOP,  // NarrowOop
    45   T_ILLEGAL,    // Tuple
    46   T_ARRAY,      // Array
    48   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    49   T_ADDRESS,    // RawPtr
    50   T_OBJECT,     // OopPtr
    51   T_OBJECT,     // InstPtr
    52   T_OBJECT,     // AryPtr
    53   T_OBJECT,     // KlassPtr
    55   T_OBJECT,     // Function
    56   T_ILLEGAL,    // Abio
    57   T_ADDRESS,    // Return_Address
    58   T_ILLEGAL,    // Memory
    59   T_FLOAT,      // FloatTop
    60   T_FLOAT,      // FloatCon
    61   T_FLOAT,      // FloatBot
    62   T_DOUBLE,     // DoubleTop
    63   T_DOUBLE,     // DoubleCon
    64   T_DOUBLE,     // DoubleBot
    65   T_ILLEGAL,    // Bottom
    66 };
    68 // Map ideal registers (machine types) to ideal types
    69 const Type *Type::mreg2type[_last_machine_leaf];
    71 // Map basic types to canonical Type* pointers.
    72 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    74 // Map basic types to constant-zero Types.
    75 const Type* Type::            _zero_type[T_CONFLICT+1];
    77 // Map basic types to array-body alias types.
    78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
    80 //=============================================================================
    81 // Convenience common pre-built types.
    82 const Type *Type::ABIO;         // State-of-machine only
    83 const Type *Type::BOTTOM;       // All values
    84 const Type *Type::CONTROL;      // Control only
    85 const Type *Type::DOUBLE;       // All doubles
    86 const Type *Type::FLOAT;        // All floats
    87 const Type *Type::HALF;         // Placeholder half of doublewide type
    88 const Type *Type::MEMORY;       // Abstract store only
    89 const Type *Type::RETURN_ADDRESS;
    90 const Type *Type::TOP;          // No values in set
    92 //------------------------------get_const_type---------------------------
    93 const Type* Type::get_const_type(ciType* type) {
    94   if (type == NULL) {
    95     return NULL;
    96   } else if (type->is_primitive_type()) {
    97     return get_const_basic_type(type->basic_type());
    98   } else {
    99     return TypeOopPtr::make_from_klass(type->as_klass());
   100   }
   101 }
   103 //---------------------------array_element_basic_type---------------------------------
   104 // Mapping to the array element's basic type.
   105 BasicType Type::array_element_basic_type() const {
   106   BasicType bt = basic_type();
   107   if (bt == T_INT) {
   108     if (this == TypeInt::INT)   return T_INT;
   109     if (this == TypeInt::CHAR)  return T_CHAR;
   110     if (this == TypeInt::BYTE)  return T_BYTE;
   111     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   112     if (this == TypeInt::SHORT) return T_SHORT;
   113     return T_VOID;
   114   }
   115   return bt;
   116 }
   118 //---------------------------get_typeflow_type---------------------------------
   119 // Import a type produced by ciTypeFlow.
   120 const Type* Type::get_typeflow_type(ciType* type) {
   121   switch (type->basic_type()) {
   123   case ciTypeFlow::StateVector::T_BOTTOM:
   124     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   125     return Type::BOTTOM;
   127   case ciTypeFlow::StateVector::T_TOP:
   128     assert(type == ciTypeFlow::StateVector::top_type(), "");
   129     return Type::TOP;
   131   case ciTypeFlow::StateVector::T_NULL:
   132     assert(type == ciTypeFlow::StateVector::null_type(), "");
   133     return TypePtr::NULL_PTR;
   135   case ciTypeFlow::StateVector::T_LONG2:
   136     // The ciTypeFlow pass pushes a long, then the half.
   137     // We do the same.
   138     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   139     return TypeInt::TOP;
   141   case ciTypeFlow::StateVector::T_DOUBLE2:
   142     // The ciTypeFlow pass pushes double, then the half.
   143     // Our convention is the same.
   144     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   145     return Type::TOP;
   147   case T_ADDRESS:
   148     assert(type->is_return_address(), "");
   149     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   151   default:
   152     // make sure we did not mix up the cases:
   153     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   154     assert(type != ciTypeFlow::StateVector::top_type(), "");
   155     assert(type != ciTypeFlow::StateVector::null_type(), "");
   156     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   157     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   158     assert(!type->is_return_address(), "");
   160     return Type::get_const_type(type);
   161   }
   162 }
   165 //------------------------------make-------------------------------------------
   166 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   167 // and look for an existing copy in the type dictionary.
   168 const Type *Type::make( enum TYPES t ) {
   169   return (new Type(t))->hashcons();
   170 }
   172 //------------------------------cmp--------------------------------------------
   173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   174   if( t1->_base != t2->_base )
   175     return 1;                   // Missed badly
   176   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   177   return !t1->eq(t2);           // Return ZERO if equal
   178 }
   180 //------------------------------hash-------------------------------------------
   181 int Type::uhash( const Type *const t ) {
   182   return t->hash();
   183 }
   185 //--------------------------Initialize_shared----------------------------------
   186 void Type::Initialize_shared(Compile* current) {
   187   // This method does not need to be locked because the first system
   188   // compilations (stub compilations) occur serially.  If they are
   189   // changed to proceed in parallel, then this section will need
   190   // locking.
   192   Arena* save = current->type_arena();
   193   Arena* shared_type_arena = new Arena();
   195   current->set_type_arena(shared_type_arena);
   196   _shared_type_dict =
   197     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   198                                   shared_type_arena, 128 );
   199   current->set_type_dict(_shared_type_dict);
   201   // Make shared pre-built types.
   202   CONTROL = make(Control);      // Control only
   203   TOP     = make(Top);          // No values in set
   204   MEMORY  = make(Memory);       // Abstract store only
   205   ABIO    = make(Abio);         // State-of-machine only
   206   RETURN_ADDRESS=make(Return_Address);
   207   FLOAT   = make(FloatBot);     // All floats
   208   DOUBLE  = make(DoubleBot);    // All doubles
   209   BOTTOM  = make(Bottom);       // Everything
   210   HALF    = make(Half);         // Placeholder half of doublewide type
   212   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   213   TypeF::ONE  = TypeF::make(1.0); // Float 1
   215   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   216   TypeD::ONE  = TypeD::make(1.0); // Double 1
   218   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   219   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   220   TypeInt::ONE     = TypeInt::make( 1);  //  1
   221   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   222   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   223   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   224   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   225   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   226   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   227   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   228   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   229   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   230   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   231   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   232   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   233   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   234   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   235   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   236   // CmpL is overloaded both as the bytecode computation returning
   237   // a trinary (-1,0,+1) integer result AND as an efficient long
   238   // compare returning optimizer ideal-type flags.
   239   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   240   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   241   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   242   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   244   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   245   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   246   TypeLong::ONE     = TypeLong::make( 1);        //  1
   247   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   248   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   249   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   250   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   252   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   253   fboth[0] = Type::CONTROL;
   254   fboth[1] = Type::CONTROL;
   255   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   257   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   258   ffalse[0] = Type::CONTROL;
   259   ffalse[1] = Type::TOP;
   260   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   262   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   263   fneither[0] = Type::TOP;
   264   fneither[1] = Type::TOP;
   265   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   267   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   268   ftrue[0] = Type::TOP;
   269   ftrue[1] = Type::CONTROL;
   270   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   272   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   273   floop[0] = Type::CONTROL;
   274   floop[1] = TypeInt::INT;
   275   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   277   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   278   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   279   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   281   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   282   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   284   const Type **fmembar = TypeTuple::fields(0);
   285   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   287   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   288   fsc[0] = TypeInt::CC;
   289   fsc[1] = Type::MEMORY;
   290   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   292   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   293   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   294   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   295   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   296                                            false, 0, oopDesc::mark_offset_in_bytes());
   297   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   298                                            false, 0, oopDesc::klass_offset_in_bytes());
   299   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   301   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   302   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   304   mreg2type[Op_Node] = Type::BOTTOM;
   305   mreg2type[Op_Set ] = 0;
   306   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   307   mreg2type[Op_RegI] = TypeInt::INT;
   308   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   309   mreg2type[Op_RegF] = Type::FLOAT;
   310   mreg2type[Op_RegD] = Type::DOUBLE;
   311   mreg2type[Op_RegL] = TypeLong::LONG;
   312   mreg2type[Op_RegFlags] = TypeInt::CC;
   314   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
   316   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   318 #ifdef _LP64
   319   if (UseCompressedOops) {
   320     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   321   } else
   322 #endif
   323   {
   324     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   325     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   326   }
   327   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   328   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   329   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   330   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   331   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   332   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   333   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   335   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   336   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   337   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   338   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   339   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   340   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   341   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   342   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   343   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   344   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   345   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   346   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   348   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   349   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   351   const Type **fi2c = TypeTuple::fields(2);
   352   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   353   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   354   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   356   const Type **intpair = TypeTuple::fields(2);
   357   intpair[0] = TypeInt::INT;
   358   intpair[1] = TypeInt::INT;
   359   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   361   const Type **longpair = TypeTuple::fields(2);
   362   longpair[0] = TypeLong::LONG;
   363   longpair[1] = TypeLong::LONG;
   364   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   366   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
   367   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   368   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   369   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   370   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   371   _const_basic_type[T_INT]     = TypeInt::INT;
   372   _const_basic_type[T_LONG]    = TypeLong::LONG;
   373   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   374   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   375   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   376   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   377   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   378   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   379   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   381   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
   382   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   383   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   384   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   385   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   386   _zero_type[T_INT]     = TypeInt::ZERO;
   387   _zero_type[T_LONG]    = TypeLong::ZERO;
   388   _zero_type[T_FLOAT]   = TypeF::ZERO;
   389   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   390   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   391   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   392   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   393   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   395   // get_zero_type() should not happen for T_CONFLICT
   396   _zero_type[T_CONFLICT]= NULL;
   398   // Restore working type arena.
   399   current->set_type_arena(save);
   400   current->set_type_dict(NULL);
   401 }
   403 //------------------------------Initialize-------------------------------------
   404 void Type::Initialize(Compile* current) {
   405   assert(current->type_arena() != NULL, "must have created type arena");
   407   if (_shared_type_dict == NULL) {
   408     Initialize_shared(current);
   409   }
   411   Arena* type_arena = current->type_arena();
   413   // Create the hash-cons'ing dictionary with top-level storage allocation
   414   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   415   current->set_type_dict(tdic);
   417   // Transfer the shared types.
   418   DictI i(_shared_type_dict);
   419   for( ; i.test(); ++i ) {
   420     Type* t = (Type*)i._value;
   421     tdic->Insert(t,t);  // New Type, insert into Type table
   422   }
   424 #ifdef ASSERT
   425   verify_lastype();
   426 #endif
   427 }
   429 //------------------------------hashcons---------------------------------------
   430 // Do the hash-cons trick.  If the Type already exists in the type table,
   431 // delete the current Type and return the existing Type.  Otherwise stick the
   432 // current Type in the Type table.
   433 const Type *Type::hashcons(void) {
   434   debug_only(base());           // Check the assertion in Type::base().
   435   // Look up the Type in the Type dictionary
   436   Dict *tdic = type_dict();
   437   Type* old = (Type*)(tdic->Insert(this, this, false));
   438   if( old ) {                   // Pre-existing Type?
   439     if( old != this )           // Yes, this guy is not the pre-existing?
   440       delete this;              // Yes, Nuke this guy
   441     assert( old->_dual, "" );
   442     return old;                 // Return pre-existing
   443   }
   445   // Every type has a dual (to make my lattice symmetric).
   446   // Since we just discovered a new Type, compute its dual right now.
   447   assert( !_dual, "" );         // No dual yet
   448   _dual = xdual();              // Compute the dual
   449   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   450     _dual = this;
   451     return this;
   452   }
   453   assert( !_dual->_dual, "" );  // No reverse dual yet
   454   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   455   // New Type, insert into Type table
   456   tdic->Insert((void*)_dual,(void*)_dual);
   457   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   458 #ifdef ASSERT
   459   Type *dual_dual = (Type*)_dual->xdual();
   460   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   461   delete dual_dual;
   462 #endif
   463   return this;                  // Return new Type
   464 }
   466 //------------------------------eq---------------------------------------------
   467 // Structural equality check for Type representations
   468 bool Type::eq( const Type * ) const {
   469   return true;                  // Nothing else can go wrong
   470 }
   472 //------------------------------hash-------------------------------------------
   473 // Type-specific hashing function.
   474 int Type::hash(void) const {
   475   return _base;
   476 }
   478 //------------------------------is_finite--------------------------------------
   479 // Has a finite value
   480 bool Type::is_finite() const {
   481   return false;
   482 }
   484 //------------------------------is_nan-----------------------------------------
   485 // Is not a number (NaN)
   486 bool Type::is_nan()    const {
   487   return false;
   488 }
   490 //----------------------interface_vs_oop---------------------------------------
   491 #ifdef ASSERT
   492 bool Type::interface_vs_oop(const Type *t) const {
   493   bool result = false;
   495   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   496   const TypePtr*    t_ptr =    t->make_ptr();
   497   if( this_ptr == NULL || t_ptr == NULL )
   498     return result;
   500   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   501   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   502   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   503     bool this_interface = this_inst->klass()->is_interface();
   504     bool    t_interface =    t_inst->klass()->is_interface();
   505     result = this_interface ^ t_interface;
   506   }
   508   return result;
   509 }
   510 #endif
   512 //------------------------------meet-------------------------------------------
   513 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   514 // commutative and the lattice is symmetric.
   515 const Type *Type::meet( const Type *t ) const {
   516   if (isa_narrowoop() && t->isa_narrowoop()) {
   517     const Type* result = make_ptr()->meet(t->make_ptr());
   518     return result->make_narrowoop();
   519   }
   521   const Type *mt = xmeet(t);
   522   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   523 #ifdef ASSERT
   524   assert( mt == t->xmeet(this), "meet not commutative" );
   525   const Type* dual_join = mt->_dual;
   526   const Type *t2t    = dual_join->xmeet(t->_dual);
   527   const Type *t2this = dual_join->xmeet(   _dual);
   529   // Interface meet Oop is Not Symmetric:
   530   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   531   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   533   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   534     tty->print_cr("=== Meet Not Symmetric ===");
   535     tty->print("t   =                   ");         t->dump(); tty->cr();
   536     tty->print("this=                   ");            dump(); tty->cr();
   537     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   539     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   540     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   541     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   543     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   544     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   546     fatal("meet not symmetric" );
   547   }
   548 #endif
   549   return mt;
   550 }
   552 //------------------------------xmeet------------------------------------------
   553 // Compute the MEET of two types.  It returns a new Type object.
   554 const Type *Type::xmeet( const Type *t ) const {
   555   // Perform a fast test for common case; meeting the same types together.
   556   if( this == t ) return this;  // Meeting same type-rep?
   558   // Meeting TOP with anything?
   559   if( _base == Top ) return t;
   561   // Meeting BOTTOM with anything?
   562   if( _base == Bottom ) return BOTTOM;
   564   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   565   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   566   switch (t->base()) {  // Switch on original type
   568   // Cut in half the number of cases I must handle.  Only need cases for when
   569   // the given enum "t->type" is less than or equal to the local enum "type".
   570   case FloatCon:
   571   case DoubleCon:
   572   case Int:
   573   case Long:
   574     return t->xmeet(this);
   576   case OopPtr:
   577     return t->xmeet(this);
   579   case InstPtr:
   580     return t->xmeet(this);
   582   case KlassPtr:
   583     return t->xmeet(this);
   585   case AryPtr:
   586     return t->xmeet(this);
   588   case NarrowOop:
   589     return t->xmeet(this);
   591   case Bad:                     // Type check
   592   default:                      // Bogus type not in lattice
   593     typerr(t);
   594     return Type::BOTTOM;
   596   case Bottom:                  // Ye Olde Default
   597     return t;
   599   case FloatTop:
   600     if( _base == FloatTop ) return this;
   601   case FloatBot:                // Float
   602     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   603     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   604     typerr(t);
   605     return Type::BOTTOM;
   607   case DoubleTop:
   608     if( _base == DoubleTop ) return this;
   609   case DoubleBot:               // Double
   610     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   611     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   612     typerr(t);
   613     return Type::BOTTOM;
   615   // These next few cases must match exactly or it is a compile-time error.
   616   case Control:                 // Control of code
   617   case Abio:                    // State of world outside of program
   618   case Memory:
   619     if( _base == t->_base )  return this;
   620     typerr(t);
   621     return Type::BOTTOM;
   623   case Top:                     // Top of the lattice
   624     return this;
   625   }
   627   // The type is unchanged
   628   return this;
   629 }
   631 //-----------------------------filter------------------------------------------
   632 const Type *Type::filter( const Type *kills ) const {
   633   const Type* ft = join(kills);
   634   if (ft->empty())
   635     return Type::TOP;           // Canonical empty value
   636   return ft;
   637 }
   639 //------------------------------xdual------------------------------------------
   640 // Compute dual right now.
   641 const Type::TYPES Type::dual_type[Type::lastype] = {
   642   Bad,          // Bad
   643   Control,      // Control
   644   Bottom,       // Top
   645   Bad,          // Int - handled in v-call
   646   Bad,          // Long - handled in v-call
   647   Half,         // Half
   648   Bad,          // NarrowOop - handled in v-call
   650   Bad,          // Tuple - handled in v-call
   651   Bad,          // Array - handled in v-call
   653   Bad,          // AnyPtr - handled in v-call
   654   Bad,          // RawPtr - handled in v-call
   655   Bad,          // OopPtr - handled in v-call
   656   Bad,          // InstPtr - handled in v-call
   657   Bad,          // AryPtr - handled in v-call
   658   Bad,          // KlassPtr - handled in v-call
   660   Bad,          // Function - handled in v-call
   661   Abio,         // Abio
   662   Return_Address,// Return_Address
   663   Memory,       // Memory
   664   FloatBot,     // FloatTop
   665   FloatCon,     // FloatCon
   666   FloatTop,     // FloatBot
   667   DoubleBot,    // DoubleTop
   668   DoubleCon,    // DoubleCon
   669   DoubleTop,    // DoubleBot
   670   Top           // Bottom
   671 };
   673 const Type *Type::xdual() const {
   674   // Note: the base() accessor asserts the sanity of _base.
   675   assert(dual_type[base()] != Bad, "implement with v-call");
   676   return new Type(dual_type[_base]);
   677 }
   679 //------------------------------has_memory-------------------------------------
   680 bool Type::has_memory() const {
   681   Type::TYPES tx = base();
   682   if (tx == Memory) return true;
   683   if (tx == Tuple) {
   684     const TypeTuple *t = is_tuple();
   685     for (uint i=0; i < t->cnt(); i++) {
   686       tx = t->field_at(i)->base();
   687       if (tx == Memory)  return true;
   688     }
   689   }
   690   return false;
   691 }
   693 #ifndef PRODUCT
   694 //------------------------------dump2------------------------------------------
   695 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   696   st->print(msg[_base]);
   697 }
   699 //------------------------------dump-------------------------------------------
   700 void Type::dump_on(outputStream *st) const {
   701   ResourceMark rm;
   702   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   703   dump2(d,1, st);
   704   if (is_ptr_to_narrowoop()) {
   705     st->print(" [narrow]");
   706   }
   707 }
   709 //------------------------------data-------------------------------------------
   710 const char * const Type::msg[Type::lastype] = {
   711   "bad","control","top","int:","long:","half", "narrowoop:",
   712   "tuple:", "aryptr",
   713   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
   714   "func", "abIO", "return_address", "memory",
   715   "float_top", "ftcon:", "float",
   716   "double_top", "dblcon:", "double",
   717   "bottom"
   718 };
   719 #endif
   721 //------------------------------singleton--------------------------------------
   722 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   723 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   724 bool Type::singleton(void) const {
   725   return _base == Top || _base == Half;
   726 }
   728 //------------------------------empty------------------------------------------
   729 // TRUE if Type is a type with no values, FALSE otherwise.
   730 bool Type::empty(void) const {
   731   switch (_base) {
   732   case DoubleTop:
   733   case FloatTop:
   734   case Top:
   735     return true;
   737   case Half:
   738   case Abio:
   739   case Return_Address:
   740   case Memory:
   741   case Bottom:
   742   case FloatBot:
   743   case DoubleBot:
   744     return false;  // never a singleton, therefore never empty
   745   }
   747   ShouldNotReachHere();
   748   return false;
   749 }
   751 //------------------------------dump_stats-------------------------------------
   752 // Dump collected statistics to stderr
   753 #ifndef PRODUCT
   754 void Type::dump_stats() {
   755   tty->print("Types made: %d\n", type_dict()->Size());
   756 }
   757 #endif
   759 //------------------------------typerr-----------------------------------------
   760 void Type::typerr( const Type *t ) const {
   761 #ifndef PRODUCT
   762   tty->print("\nError mixing types: ");
   763   dump();
   764   tty->print(" and ");
   765   t->dump();
   766   tty->print("\n");
   767 #endif
   768   ShouldNotReachHere();
   769 }
   771 //------------------------------isa_oop_ptr------------------------------------
   772 // Return true if type is an oop pointer type.  False for raw pointers.
   773 static char isa_oop_ptr_tbl[Type::lastype] = {
   774   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
   775   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   776   0/*func*/,0,0/*return_address*/,0,
   777   /*floats*/0,0,0, /*doubles*/0,0,0,
   778   0
   779 };
   780 bool Type::isa_oop_ptr() const {
   781   return isa_oop_ptr_tbl[_base] != 0;
   782 }
   784 //------------------------------dump_stats-------------------------------------
   785 // // Check that arrays match type enum
   786 #ifndef PRODUCT
   787 void Type::verify_lastype() {
   788   // Check that arrays match enumeration
   789   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   790   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   791   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   792   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   793   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   794 }
   795 #endif
   797 //=============================================================================
   798 // Convenience common pre-built types.
   799 const TypeF *TypeF::ZERO;       // Floating point zero
   800 const TypeF *TypeF::ONE;        // Floating point one
   802 //------------------------------make-------------------------------------------
   803 // Create a float constant
   804 const TypeF *TypeF::make(float f) {
   805   return (TypeF*)(new TypeF(f))->hashcons();
   806 }
   808 //------------------------------meet-------------------------------------------
   809 // Compute the MEET of two types.  It returns a new Type object.
   810 const Type *TypeF::xmeet( const Type *t ) const {
   811   // Perform a fast test for common case; meeting the same types together.
   812   if( this == t ) return this;  // Meeting same type-rep?
   814   // Current "this->_base" is FloatCon
   815   switch (t->base()) {          // Switch on original type
   816   case AnyPtr:                  // Mixing with oops happens when javac
   817   case RawPtr:                  // reuses local variables
   818   case OopPtr:
   819   case InstPtr:
   820   case KlassPtr:
   821   case AryPtr:
   822   case NarrowOop:
   823   case Int:
   824   case Long:
   825   case DoubleTop:
   826   case DoubleCon:
   827   case DoubleBot:
   828   case Bottom:                  // Ye Olde Default
   829     return Type::BOTTOM;
   831   case FloatBot:
   832     return t;
   834   default:                      // All else is a mistake
   835     typerr(t);
   837   case FloatCon:                // Float-constant vs Float-constant?
   838     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   839                                 // must compare bitwise as positive zero, negative zero and NaN have
   840                                 // all the same representation in C++
   841       return FLOAT;             // Return generic float
   842                                 // Equal constants
   843   case Top:
   844   case FloatTop:
   845     break;                      // Return the float constant
   846   }
   847   return this;                  // Return the float constant
   848 }
   850 //------------------------------xdual------------------------------------------
   851 // Dual: symmetric
   852 const Type *TypeF::xdual() const {
   853   return this;
   854 }
   856 //------------------------------eq---------------------------------------------
   857 // Structural equality check for Type representations
   858 bool TypeF::eq( const Type *t ) const {
   859   if( g_isnan(_f) ||
   860       g_isnan(t->getf()) ) {
   861     // One or both are NANs.  If both are NANs return true, else false.
   862     return (g_isnan(_f) && g_isnan(t->getf()));
   863   }
   864   if (_f == t->getf()) {
   865     // (NaN is impossible at this point, since it is not equal even to itself)
   866     if (_f == 0.0) {
   867       // difference between positive and negative zero
   868       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   869     }
   870     return true;
   871   }
   872   return false;
   873 }
   875 //------------------------------hash-------------------------------------------
   876 // Type-specific hashing function.
   877 int TypeF::hash(void) const {
   878   return *(int*)(&_f);
   879 }
   881 //------------------------------is_finite--------------------------------------
   882 // Has a finite value
   883 bool TypeF::is_finite() const {
   884   return g_isfinite(getf()) != 0;
   885 }
   887 //------------------------------is_nan-----------------------------------------
   888 // Is not a number (NaN)
   889 bool TypeF::is_nan()    const {
   890   return g_isnan(getf()) != 0;
   891 }
   893 //------------------------------dump2------------------------------------------
   894 // Dump float constant Type
   895 #ifndef PRODUCT
   896 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   897   Type::dump2(d,depth, st);
   898   st->print("%f", _f);
   899 }
   900 #endif
   902 //------------------------------singleton--------------------------------------
   903 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   904 // constants (Ldi nodes).  Singletons are integer, float or double constants
   905 // or a single symbol.
   906 bool TypeF::singleton(void) const {
   907   return true;                  // Always a singleton
   908 }
   910 bool TypeF::empty(void) const {
   911   return false;                 // always exactly a singleton
   912 }
   914 //=============================================================================
   915 // Convenience common pre-built types.
   916 const TypeD *TypeD::ZERO;       // Floating point zero
   917 const TypeD *TypeD::ONE;        // Floating point one
   919 //------------------------------make-------------------------------------------
   920 const TypeD *TypeD::make(double d) {
   921   return (TypeD*)(new TypeD(d))->hashcons();
   922 }
   924 //------------------------------meet-------------------------------------------
   925 // Compute the MEET of two types.  It returns a new Type object.
   926 const Type *TypeD::xmeet( const Type *t ) const {
   927   // Perform a fast test for common case; meeting the same types together.
   928   if( this == t ) return this;  // Meeting same type-rep?
   930   // Current "this->_base" is DoubleCon
   931   switch (t->base()) {          // Switch on original type
   932   case AnyPtr:                  // Mixing with oops happens when javac
   933   case RawPtr:                  // reuses local variables
   934   case OopPtr:
   935   case InstPtr:
   936   case KlassPtr:
   937   case AryPtr:
   938   case NarrowOop:
   939   case Int:
   940   case Long:
   941   case FloatTop:
   942   case FloatCon:
   943   case FloatBot:
   944   case Bottom:                  // Ye Olde Default
   945     return Type::BOTTOM;
   947   case DoubleBot:
   948     return t;
   950   default:                      // All else is a mistake
   951     typerr(t);
   953   case DoubleCon:               // Double-constant vs Double-constant?
   954     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   955       return DOUBLE;            // Return generic double
   956   case Top:
   957   case DoubleTop:
   958     break;
   959   }
   960   return this;                  // Return the double constant
   961 }
   963 //------------------------------xdual------------------------------------------
   964 // Dual: symmetric
   965 const Type *TypeD::xdual() const {
   966   return this;
   967 }
   969 //------------------------------eq---------------------------------------------
   970 // Structural equality check for Type representations
   971 bool TypeD::eq( const Type *t ) const {
   972   if( g_isnan(_d) ||
   973       g_isnan(t->getd()) ) {
   974     // One or both are NANs.  If both are NANs return true, else false.
   975     return (g_isnan(_d) && g_isnan(t->getd()));
   976   }
   977   if (_d == t->getd()) {
   978     // (NaN is impossible at this point, since it is not equal even to itself)
   979     if (_d == 0.0) {
   980       // difference between positive and negative zero
   981       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
   982     }
   983     return true;
   984   }
   985   return false;
   986 }
   988 //------------------------------hash-------------------------------------------
   989 // Type-specific hashing function.
   990 int TypeD::hash(void) const {
   991   return *(int*)(&_d);
   992 }
   994 //------------------------------is_finite--------------------------------------
   995 // Has a finite value
   996 bool TypeD::is_finite() const {
   997   return g_isfinite(getd()) != 0;
   998 }
  1000 //------------------------------is_nan-----------------------------------------
  1001 // Is not a number (NaN)
  1002 bool TypeD::is_nan()    const {
  1003   return g_isnan(getd()) != 0;
  1006 //------------------------------dump2------------------------------------------
  1007 // Dump double constant Type
  1008 #ifndef PRODUCT
  1009 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1010   Type::dump2(d,depth,st);
  1011   st->print("%f", _d);
  1013 #endif
  1015 //------------------------------singleton--------------------------------------
  1016 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1017 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1018 // or a single symbol.
  1019 bool TypeD::singleton(void) const {
  1020   return true;                  // Always a singleton
  1023 bool TypeD::empty(void) const {
  1024   return false;                 // always exactly a singleton
  1027 //=============================================================================
  1028 // Convience common pre-built types.
  1029 const TypeInt *TypeInt::MINUS_1;// -1
  1030 const TypeInt *TypeInt::ZERO;   // 0
  1031 const TypeInt *TypeInt::ONE;    // 1
  1032 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1033 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1034 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1035 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1036 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1037 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1038 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1039 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1040 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1041 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1042 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1043 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1044 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1045 const TypeInt *TypeInt::INT;    // 32-bit integers
  1046 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1048 //------------------------------TypeInt----------------------------------------
  1049 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1052 //------------------------------make-------------------------------------------
  1053 const TypeInt *TypeInt::make( jint lo ) {
  1054   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1057 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
  1059 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1060   // Certain normalizations keep us sane when comparing types.
  1061   // The 'SMALLINT' covers constants and also CC and its relatives.
  1062   assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
  1063   if (lo <= hi) {
  1064     if ((juint)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1065     if ((juint)(hi - lo) >= max_juint)  w = Type::WidenMax; // plain int
  1067   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1070 //------------------------------meet-------------------------------------------
  1071 // Compute the MEET of two types.  It returns a new Type representation object
  1072 // with reference count equal to the number of Types pointing at it.
  1073 // Caller should wrap a Types around it.
  1074 const Type *TypeInt::xmeet( const Type *t ) const {
  1075   // Perform a fast test for common case; meeting the same types together.
  1076   if( this == t ) return this;  // Meeting same type?
  1078   // Currently "this->_base" is a TypeInt
  1079   switch (t->base()) {          // Switch on original type
  1080   case AnyPtr:                  // Mixing with oops happens when javac
  1081   case RawPtr:                  // reuses local variables
  1082   case OopPtr:
  1083   case InstPtr:
  1084   case KlassPtr:
  1085   case AryPtr:
  1086   case NarrowOop:
  1087   case Long:
  1088   case FloatTop:
  1089   case FloatCon:
  1090   case FloatBot:
  1091   case DoubleTop:
  1092   case DoubleCon:
  1093   case DoubleBot:
  1094   case Bottom:                  // Ye Olde Default
  1095     return Type::BOTTOM;
  1096   default:                      // All else is a mistake
  1097     typerr(t);
  1098   case Top:                     // No change
  1099     return this;
  1100   case Int:                     // Int vs Int?
  1101     break;
  1104   // Expand covered set
  1105   const TypeInt *r = t->is_int();
  1106   // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
  1107   return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1110 //------------------------------xdual------------------------------------------
  1111 // Dual: reverse hi & lo; flip widen
  1112 const Type *TypeInt::xdual() const {
  1113   return new TypeInt(_hi,_lo,WidenMax-_widen);
  1116 //------------------------------widen------------------------------------------
  1117 // Only happens for optimistic top-down optimizations.
  1118 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1119   // Coming from TOP or such; no widening
  1120   if( old->base() != Int ) return this;
  1121   const TypeInt *ot = old->is_int();
  1123   // If new guy is equal to old guy, no widening
  1124   if( _lo == ot->_lo && _hi == ot->_hi )
  1125     return old;
  1127   // If new guy contains old, then we widened
  1128   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1129     // New contains old
  1130     // If new guy is already wider than old, no widening
  1131     if( _widen > ot->_widen ) return this;
  1132     // If old guy was a constant, do not bother
  1133     if (ot->_lo == ot->_hi)  return this;
  1134     // Now widen new guy.
  1135     // Check for widening too far
  1136     if (_widen == WidenMax) {
  1137       int max = max_jint;
  1138       int min = min_jint;
  1139       if (limit->isa_int()) {
  1140         max = limit->is_int()->_hi;
  1141         min = limit->is_int()->_lo;
  1143       if (min < _lo && _hi < max) {
  1144         // If neither endpoint is extremal yet, push out the endpoint
  1145         // which is closer to its respective limit.
  1146         if (_lo >= 0 ||                 // easy common case
  1147             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1148           // Try to widen to an unsigned range type of 31 bits:
  1149           return make(_lo, max, WidenMax);
  1150         } else {
  1151           return make(min, _hi, WidenMax);
  1154       return TypeInt::INT;
  1156     // Returned widened new guy
  1157     return make(_lo,_hi,_widen+1);
  1160   // If old guy contains new, then we probably widened too far & dropped to
  1161   // bottom.  Return the wider fellow.
  1162   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1163     return old;
  1165   //fatal("Integer value range is not subset");
  1166   //return this;
  1167   return TypeInt::INT;
  1170 //------------------------------narrow---------------------------------------
  1171 // Only happens for pessimistic optimizations.
  1172 const Type *TypeInt::narrow( const Type *old ) const {
  1173   if (_lo >= _hi)  return this;   // already narrow enough
  1174   if (old == NULL)  return this;
  1175   const TypeInt* ot = old->isa_int();
  1176   if (ot == NULL)  return this;
  1177   jint olo = ot->_lo;
  1178   jint ohi = ot->_hi;
  1180   // If new guy is equal to old guy, no narrowing
  1181   if (_lo == olo && _hi == ohi)  return old;
  1183   // If old guy was maximum range, allow the narrowing
  1184   if (olo == min_jint && ohi == max_jint)  return this;
  1186   if (_lo < olo || _hi > ohi)
  1187     return this;                // doesn't narrow; pretty wierd
  1189   // The new type narrows the old type, so look for a "death march".
  1190   // See comments on PhaseTransform::saturate.
  1191   juint nrange = _hi - _lo;
  1192   juint orange = ohi - olo;
  1193   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1194     // Use the new type only if the range shrinks a lot.
  1195     // We do not want the optimizer computing 2^31 point by point.
  1196     return old;
  1199   return this;
  1202 //-----------------------------filter------------------------------------------
  1203 const Type *TypeInt::filter( const Type *kills ) const {
  1204   const TypeInt* ft = join(kills)->isa_int();
  1205   if (ft == NULL || ft->_lo > ft->_hi)
  1206     return Type::TOP;           // Canonical empty value
  1207   if (ft->_widen < this->_widen) {
  1208     // Do not allow the value of kill->_widen to affect the outcome.
  1209     // The widen bits must be allowed to run freely through the graph.
  1210     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1212   return ft;
  1215 //------------------------------eq---------------------------------------------
  1216 // Structural equality check for Type representations
  1217 bool TypeInt::eq( const Type *t ) const {
  1218   const TypeInt *r = t->is_int(); // Handy access
  1219   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1222 //------------------------------hash-------------------------------------------
  1223 // Type-specific hashing function.
  1224 int TypeInt::hash(void) const {
  1225   return _lo+_hi+_widen+(int)Type::Int;
  1228 //------------------------------is_finite--------------------------------------
  1229 // Has a finite value
  1230 bool TypeInt::is_finite() const {
  1231   return true;
  1234 //------------------------------dump2------------------------------------------
  1235 // Dump TypeInt
  1236 #ifndef PRODUCT
  1237 static const char* intname(char* buf, jint n) {
  1238   if (n == min_jint)
  1239     return "min";
  1240   else if (n < min_jint + 10000)
  1241     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1242   else if (n == max_jint)
  1243     return "max";
  1244   else if (n > max_jint - 10000)
  1245     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1246   else
  1247     sprintf(buf, INT32_FORMAT, n);
  1248   return buf;
  1251 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1252   char buf[40], buf2[40];
  1253   if (_lo == min_jint && _hi == max_jint)
  1254     st->print("int");
  1255   else if (is_con())
  1256     st->print("int:%s", intname(buf, get_con()));
  1257   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1258     st->print("bool");
  1259   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1260     st->print("byte");
  1261   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1262     st->print("char");
  1263   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1264     st->print("short");
  1265   else if (_hi == max_jint)
  1266     st->print("int:>=%s", intname(buf, _lo));
  1267   else if (_lo == min_jint)
  1268     st->print("int:<=%s", intname(buf, _hi));
  1269   else
  1270     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1272   if (_widen != 0 && this != TypeInt::INT)
  1273     st->print(":%.*s", _widen, "wwww");
  1275 #endif
  1277 //------------------------------singleton--------------------------------------
  1278 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1279 // constants.
  1280 bool TypeInt::singleton(void) const {
  1281   return _lo >= _hi;
  1284 bool TypeInt::empty(void) const {
  1285   return _lo > _hi;
  1288 //=============================================================================
  1289 // Convenience common pre-built types.
  1290 const TypeLong *TypeLong::MINUS_1;// -1
  1291 const TypeLong *TypeLong::ZERO; // 0
  1292 const TypeLong *TypeLong::ONE;  // 1
  1293 const TypeLong *TypeLong::POS;  // >=0
  1294 const TypeLong *TypeLong::LONG; // 64-bit integers
  1295 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1296 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1298 //------------------------------TypeLong---------------------------------------
  1299 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1302 //------------------------------make-------------------------------------------
  1303 const TypeLong *TypeLong::make( jlong lo ) {
  1304   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1307 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1308   // Certain normalizations keep us sane when comparing types.
  1309   // The '1' covers constants.
  1310   if (lo <= hi) {
  1311     if ((julong)(hi - lo) <= SMALLINT)    w = Type::WidenMin;
  1312     if ((julong)(hi - lo) >= max_julong)  w = Type::WidenMax; // plain long
  1314   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1318 //------------------------------meet-------------------------------------------
  1319 // Compute the MEET of two types.  It returns a new Type representation object
  1320 // with reference count equal to the number of Types pointing at it.
  1321 // Caller should wrap a Types around it.
  1322 const Type *TypeLong::xmeet( const Type *t ) const {
  1323   // Perform a fast test for common case; meeting the same types together.
  1324   if( this == t ) return this;  // Meeting same type?
  1326   // Currently "this->_base" is a TypeLong
  1327   switch (t->base()) {          // Switch on original type
  1328   case AnyPtr:                  // Mixing with oops happens when javac
  1329   case RawPtr:                  // reuses local variables
  1330   case OopPtr:
  1331   case InstPtr:
  1332   case KlassPtr:
  1333   case AryPtr:
  1334   case NarrowOop:
  1335   case Int:
  1336   case FloatTop:
  1337   case FloatCon:
  1338   case FloatBot:
  1339   case DoubleTop:
  1340   case DoubleCon:
  1341   case DoubleBot:
  1342   case Bottom:                  // Ye Olde Default
  1343     return Type::BOTTOM;
  1344   default:                      // All else is a mistake
  1345     typerr(t);
  1346   case Top:                     // No change
  1347     return this;
  1348   case Long:                    // Long vs Long?
  1349     break;
  1352   // Expand covered set
  1353   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1354   // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
  1355   return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1358 //------------------------------xdual------------------------------------------
  1359 // Dual: reverse hi & lo; flip widen
  1360 const Type *TypeLong::xdual() const {
  1361   return new TypeLong(_hi,_lo,WidenMax-_widen);
  1364 //------------------------------widen------------------------------------------
  1365 // Only happens for optimistic top-down optimizations.
  1366 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1367   // Coming from TOP or such; no widening
  1368   if( old->base() != Long ) return this;
  1369   const TypeLong *ot = old->is_long();
  1371   // If new guy is equal to old guy, no widening
  1372   if( _lo == ot->_lo && _hi == ot->_hi )
  1373     return old;
  1375   // If new guy contains old, then we widened
  1376   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1377     // New contains old
  1378     // If new guy is already wider than old, no widening
  1379     if( _widen > ot->_widen ) return this;
  1380     // If old guy was a constant, do not bother
  1381     if (ot->_lo == ot->_hi)  return this;
  1382     // Now widen new guy.
  1383     // Check for widening too far
  1384     if (_widen == WidenMax) {
  1385       jlong max = max_jlong;
  1386       jlong min = min_jlong;
  1387       if (limit->isa_long()) {
  1388         max = limit->is_long()->_hi;
  1389         min = limit->is_long()->_lo;
  1391       if (min < _lo && _hi < max) {
  1392         // If neither endpoint is extremal yet, push out the endpoint
  1393         // which is closer to its respective limit.
  1394         if (_lo >= 0 ||                 // easy common case
  1395             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1396           // Try to widen to an unsigned range type of 32/63 bits:
  1397           if (max >= max_juint && _hi < max_juint)
  1398             return make(_lo, max_juint, WidenMax);
  1399           else
  1400             return make(_lo, max, WidenMax);
  1401         } else {
  1402           return make(min, _hi, WidenMax);
  1405       return TypeLong::LONG;
  1407     // Returned widened new guy
  1408     return make(_lo,_hi,_widen+1);
  1411   // If old guy contains new, then we probably widened too far & dropped to
  1412   // bottom.  Return the wider fellow.
  1413   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1414     return old;
  1416   //  fatal("Long value range is not subset");
  1417   // return this;
  1418   return TypeLong::LONG;
  1421 //------------------------------narrow----------------------------------------
  1422 // Only happens for pessimistic optimizations.
  1423 const Type *TypeLong::narrow( const Type *old ) const {
  1424   if (_lo >= _hi)  return this;   // already narrow enough
  1425   if (old == NULL)  return this;
  1426   const TypeLong* ot = old->isa_long();
  1427   if (ot == NULL)  return this;
  1428   jlong olo = ot->_lo;
  1429   jlong ohi = ot->_hi;
  1431   // If new guy is equal to old guy, no narrowing
  1432   if (_lo == olo && _hi == ohi)  return old;
  1434   // If old guy was maximum range, allow the narrowing
  1435   if (olo == min_jlong && ohi == max_jlong)  return this;
  1437   if (_lo < olo || _hi > ohi)
  1438     return this;                // doesn't narrow; pretty wierd
  1440   // The new type narrows the old type, so look for a "death march".
  1441   // See comments on PhaseTransform::saturate.
  1442   julong nrange = _hi - _lo;
  1443   julong orange = ohi - olo;
  1444   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1445     // Use the new type only if the range shrinks a lot.
  1446     // We do not want the optimizer computing 2^31 point by point.
  1447     return old;
  1450   return this;
  1453 //-----------------------------filter------------------------------------------
  1454 const Type *TypeLong::filter( const Type *kills ) const {
  1455   const TypeLong* ft = join(kills)->isa_long();
  1456   if (ft == NULL || ft->_lo > ft->_hi)
  1457     return Type::TOP;           // Canonical empty value
  1458   if (ft->_widen < this->_widen) {
  1459     // Do not allow the value of kill->_widen to affect the outcome.
  1460     // The widen bits must be allowed to run freely through the graph.
  1461     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1463   return ft;
  1466 //------------------------------eq---------------------------------------------
  1467 // Structural equality check for Type representations
  1468 bool TypeLong::eq( const Type *t ) const {
  1469   const TypeLong *r = t->is_long(); // Handy access
  1470   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1473 //------------------------------hash-------------------------------------------
  1474 // Type-specific hashing function.
  1475 int TypeLong::hash(void) const {
  1476   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1479 //------------------------------is_finite--------------------------------------
  1480 // Has a finite value
  1481 bool TypeLong::is_finite() const {
  1482   return true;
  1485 //------------------------------dump2------------------------------------------
  1486 // Dump TypeLong
  1487 #ifndef PRODUCT
  1488 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1489   if (n > x) {
  1490     if (n >= x + 10000)  return NULL;
  1491     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1492   } else if (n < x) {
  1493     if (n <= x - 10000)  return NULL;
  1494     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1495   } else {
  1496     return xname;
  1498   return buf;
  1501 static const char* longname(char* buf, jlong n) {
  1502   const char* str;
  1503   if (n == min_jlong)
  1504     return "min";
  1505   else if (n < min_jlong + 10000)
  1506     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1507   else if (n == max_jlong)
  1508     return "max";
  1509   else if (n > max_jlong - 10000)
  1510     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1511   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1512     return str;
  1513   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1514     return str;
  1515   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1516     return str;
  1517   else
  1518     sprintf(buf, INT64_FORMAT, n);
  1519   return buf;
  1522 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1523   char buf[80], buf2[80];
  1524   if (_lo == min_jlong && _hi == max_jlong)
  1525     st->print("long");
  1526   else if (is_con())
  1527     st->print("long:%s", longname(buf, get_con()));
  1528   else if (_hi == max_jlong)
  1529     st->print("long:>=%s", longname(buf, _lo));
  1530   else if (_lo == min_jlong)
  1531     st->print("long:<=%s", longname(buf, _hi));
  1532   else
  1533     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1535   if (_widen != 0 && this != TypeLong::LONG)
  1536     st->print(":%.*s", _widen, "wwww");
  1538 #endif
  1540 //------------------------------singleton--------------------------------------
  1541 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1542 // constants
  1543 bool TypeLong::singleton(void) const {
  1544   return _lo >= _hi;
  1547 bool TypeLong::empty(void) const {
  1548   return _lo > _hi;
  1551 //=============================================================================
  1552 // Convenience common pre-built types.
  1553 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1554 const TypeTuple *TypeTuple::IFFALSE;
  1555 const TypeTuple *TypeTuple::IFTRUE;
  1556 const TypeTuple *TypeTuple::IFNEITHER;
  1557 const TypeTuple *TypeTuple::LOOPBODY;
  1558 const TypeTuple *TypeTuple::MEMBAR;
  1559 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1560 const TypeTuple *TypeTuple::START_I2C;
  1561 const TypeTuple *TypeTuple::INT_PAIR;
  1562 const TypeTuple *TypeTuple::LONG_PAIR;
  1565 //------------------------------make-------------------------------------------
  1566 // Make a TypeTuple from the range of a method signature
  1567 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1568   ciType* return_type = sig->return_type();
  1569   uint total_fields = TypeFunc::Parms + return_type->size();
  1570   const Type **field_array = fields(total_fields);
  1571   switch (return_type->basic_type()) {
  1572   case T_LONG:
  1573     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1574     field_array[TypeFunc::Parms+1] = Type::HALF;
  1575     break;
  1576   case T_DOUBLE:
  1577     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1578     field_array[TypeFunc::Parms+1] = Type::HALF;
  1579     break;
  1580   case T_OBJECT:
  1581   case T_ARRAY:
  1582   case T_BOOLEAN:
  1583   case T_CHAR:
  1584   case T_FLOAT:
  1585   case T_BYTE:
  1586   case T_SHORT:
  1587   case T_INT:
  1588     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1589     break;
  1590   case T_VOID:
  1591     break;
  1592   default:
  1593     ShouldNotReachHere();
  1595   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1598 // Make a TypeTuple from the domain of a method signature
  1599 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1600   uint total_fields = TypeFunc::Parms + sig->size();
  1602   uint pos = TypeFunc::Parms;
  1603   const Type **field_array;
  1604   if (recv != NULL) {
  1605     total_fields++;
  1606     field_array = fields(total_fields);
  1607     // Use get_const_type here because it respects UseUniqueSubclasses:
  1608     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1609   } else {
  1610     field_array = fields(total_fields);
  1613   int i = 0;
  1614   while (pos < total_fields) {
  1615     ciType* type = sig->type_at(i);
  1617     switch (type->basic_type()) {
  1618     case T_LONG:
  1619       field_array[pos++] = TypeLong::LONG;
  1620       field_array[pos++] = Type::HALF;
  1621       break;
  1622     case T_DOUBLE:
  1623       field_array[pos++] = Type::DOUBLE;
  1624       field_array[pos++] = Type::HALF;
  1625       break;
  1626     case T_OBJECT:
  1627     case T_ARRAY:
  1628     case T_BOOLEAN:
  1629     case T_CHAR:
  1630     case T_FLOAT:
  1631     case T_BYTE:
  1632     case T_SHORT:
  1633     case T_INT:
  1634       field_array[pos++] = get_const_type(type);
  1635       break;
  1636     default:
  1637       ShouldNotReachHere();
  1639     i++;
  1641   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1644 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1645   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1648 //------------------------------fields-----------------------------------------
  1649 // Subroutine call type with space allocated for argument types
  1650 const Type **TypeTuple::fields( uint arg_cnt ) {
  1651   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1652   flds[TypeFunc::Control  ] = Type::CONTROL;
  1653   flds[TypeFunc::I_O      ] = Type::ABIO;
  1654   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1655   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1656   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1658   return flds;
  1661 //------------------------------meet-------------------------------------------
  1662 // Compute the MEET of two types.  It returns a new Type object.
  1663 const Type *TypeTuple::xmeet( const Type *t ) const {
  1664   // Perform a fast test for common case; meeting the same types together.
  1665   if( this == t ) return this;  // Meeting same type-rep?
  1667   // Current "this->_base" is Tuple
  1668   switch (t->base()) {          // switch on original type
  1670   case Bottom:                  // Ye Olde Default
  1671     return t;
  1673   default:                      // All else is a mistake
  1674     typerr(t);
  1676   case Tuple: {                 // Meeting 2 signatures?
  1677     const TypeTuple *x = t->is_tuple();
  1678     assert( _cnt == x->_cnt, "" );
  1679     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1680     for( uint i=0; i<_cnt; i++ )
  1681       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1682     return TypeTuple::make(_cnt,fields);
  1684   case Top:
  1685     break;
  1687   return this;                  // Return the double constant
  1690 //------------------------------xdual------------------------------------------
  1691 // Dual: compute field-by-field dual
  1692 const Type *TypeTuple::xdual() const {
  1693   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1694   for( uint i=0; i<_cnt; i++ )
  1695     fields[i] = _fields[i]->dual();
  1696   return new TypeTuple(_cnt,fields);
  1699 //------------------------------eq---------------------------------------------
  1700 // Structural equality check for Type representations
  1701 bool TypeTuple::eq( const Type *t ) const {
  1702   const TypeTuple *s = (const TypeTuple *)t;
  1703   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1704   for (uint i = 0; i < _cnt; i++)
  1705     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1706       return false;             // Missed
  1707   return true;
  1710 //------------------------------hash-------------------------------------------
  1711 // Type-specific hashing function.
  1712 int TypeTuple::hash(void) const {
  1713   intptr_t sum = _cnt;
  1714   for( uint i=0; i<_cnt; i++ )
  1715     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1716   return sum;
  1719 //------------------------------dump2------------------------------------------
  1720 // Dump signature Type
  1721 #ifndef PRODUCT
  1722 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1723   st->print("{");
  1724   if( !depth || d[this] ) {     // Check for recursive print
  1725     st->print("...}");
  1726     return;
  1728   d.Insert((void*)this, (void*)this);   // Stop recursion
  1729   if( _cnt ) {
  1730     uint i;
  1731     for( i=0; i<_cnt-1; i++ ) {
  1732       st->print("%d:", i);
  1733       _fields[i]->dump2(d, depth-1, st);
  1734       st->print(", ");
  1736     st->print("%d:", i);
  1737     _fields[i]->dump2(d, depth-1, st);
  1739   st->print("}");
  1741 #endif
  1743 //------------------------------singleton--------------------------------------
  1744 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1745 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1746 // or a single symbol.
  1747 bool TypeTuple::singleton(void) const {
  1748   return false;                 // Never a singleton
  1751 bool TypeTuple::empty(void) const {
  1752   for( uint i=0; i<_cnt; i++ ) {
  1753     if (_fields[i]->empty())  return true;
  1755   return false;
  1758 //=============================================================================
  1759 // Convenience common pre-built types.
  1761 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1762   // Certain normalizations keep us sane when comparing types.
  1763   // We do not want arrayOop variables to differ only by the wideness
  1764   // of their index types.  Pick minimum wideness, since that is the
  1765   // forced wideness of small ranges anyway.
  1766   if (size->_widen != Type::WidenMin)
  1767     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1768   else
  1769     return size;
  1772 //------------------------------make-------------------------------------------
  1773 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1774   if (UseCompressedOops && elem->isa_oopptr()) {
  1775     elem = elem->make_narrowoop();
  1777   size = normalize_array_size(size);
  1778   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1781 //------------------------------meet-------------------------------------------
  1782 // Compute the MEET of two types.  It returns a new Type object.
  1783 const Type *TypeAry::xmeet( const Type *t ) const {
  1784   // Perform a fast test for common case; meeting the same types together.
  1785   if( this == t ) return this;  // Meeting same type-rep?
  1787   // Current "this->_base" is Ary
  1788   switch (t->base()) {          // switch on original type
  1790   case Bottom:                  // Ye Olde Default
  1791     return t;
  1793   default:                      // All else is a mistake
  1794     typerr(t);
  1796   case Array: {                 // Meeting 2 arrays?
  1797     const TypeAry *a = t->is_ary();
  1798     return TypeAry::make(_elem->meet(a->_elem),
  1799                          _size->xmeet(a->_size)->is_int());
  1801   case Top:
  1802     break;
  1804   return this;                  // Return the double constant
  1807 //------------------------------xdual------------------------------------------
  1808 // Dual: compute field-by-field dual
  1809 const Type *TypeAry::xdual() const {
  1810   const TypeInt* size_dual = _size->dual()->is_int();
  1811   size_dual = normalize_array_size(size_dual);
  1812   return new TypeAry( _elem->dual(), size_dual);
  1815 //------------------------------eq---------------------------------------------
  1816 // Structural equality check for Type representations
  1817 bool TypeAry::eq( const Type *t ) const {
  1818   const TypeAry *a = (const TypeAry*)t;
  1819   return _elem == a->_elem &&
  1820     _size == a->_size;
  1823 //------------------------------hash-------------------------------------------
  1824 // Type-specific hashing function.
  1825 int TypeAry::hash(void) const {
  1826   return (intptr_t)_elem + (intptr_t)_size;
  1829 //----------------------interface_vs_oop---------------------------------------
  1830 #ifdef ASSERT
  1831 bool TypeAry::interface_vs_oop(const Type *t) const {
  1832   const TypeAry* t_ary = t->is_ary();
  1833   if (t_ary) {
  1834     return _elem->interface_vs_oop(t_ary->_elem);
  1836   return false;
  1838 #endif
  1840 //------------------------------dump2------------------------------------------
  1841 #ifndef PRODUCT
  1842 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1843   _elem->dump2(d, depth, st);
  1844   st->print("[");
  1845   _size->dump2(d, depth, st);
  1846   st->print("]");
  1848 #endif
  1850 //------------------------------singleton--------------------------------------
  1851 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1852 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1853 // or a single symbol.
  1854 bool TypeAry::singleton(void) const {
  1855   return false;                 // Never a singleton
  1858 bool TypeAry::empty(void) const {
  1859   return _elem->empty() || _size->empty();
  1862 //--------------------------ary_must_be_exact----------------------------------
  1863 bool TypeAry::ary_must_be_exact() const {
  1864   if (!UseExactTypes)       return false;
  1865   // This logic looks at the element type of an array, and returns true
  1866   // if the element type is either a primitive or a final instance class.
  1867   // In such cases, an array built on this ary must have no subclasses.
  1868   if (_elem == BOTTOM)      return false;  // general array not exact
  1869   if (_elem == TOP   )      return false;  // inverted general array not exact
  1870   const TypeOopPtr*  toop = NULL;
  1871   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1872     toop = _elem->make_ptr()->isa_oopptr();
  1873   } else {
  1874     toop = _elem->isa_oopptr();
  1876   if (!toop)                return true;   // a primitive type, like int
  1877   ciKlass* tklass = toop->klass();
  1878   if (tklass == NULL)       return false;  // unloaded class
  1879   if (!tklass->is_loaded()) return false;  // unloaded class
  1880   const TypeInstPtr* tinst;
  1881   if (_elem->isa_narrowoop())
  1882     tinst = _elem->make_ptr()->isa_instptr();
  1883   else
  1884     tinst = _elem->isa_instptr();
  1885   if (tinst)
  1886     return tklass->as_instance_klass()->is_final();
  1887   const TypeAryPtr*  tap;
  1888   if (_elem->isa_narrowoop())
  1889     tap = _elem->make_ptr()->isa_aryptr();
  1890   else
  1891     tap = _elem->isa_aryptr();
  1892   if (tap)
  1893     return tap->ary()->ary_must_be_exact();
  1894   return false;
  1897 //=============================================================================
  1898 // Convenience common pre-built types.
  1899 const TypePtr *TypePtr::NULL_PTR;
  1900 const TypePtr *TypePtr::NOTNULL;
  1901 const TypePtr *TypePtr::BOTTOM;
  1903 //------------------------------meet-------------------------------------------
  1904 // Meet over the PTR enum
  1905 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  1906   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  1907   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  1908   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  1909   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  1910   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  1911   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  1912   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  1913 };
  1915 //------------------------------make-------------------------------------------
  1916 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  1917   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  1920 //------------------------------cast_to_ptr_type-------------------------------
  1921 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  1922   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  1923   if( ptr == _ptr ) return this;
  1924   return make(_base, ptr, _offset);
  1927 //------------------------------get_con----------------------------------------
  1928 intptr_t TypePtr::get_con() const {
  1929   assert( _ptr == Null, "" );
  1930   return _offset;
  1933 //------------------------------meet-------------------------------------------
  1934 // Compute the MEET of two types.  It returns a new Type object.
  1935 const Type *TypePtr::xmeet( const Type *t ) const {
  1936   // Perform a fast test for common case; meeting the same types together.
  1937   if( this == t ) return this;  // Meeting same type-rep?
  1939   // Current "this->_base" is AnyPtr
  1940   switch (t->base()) {          // switch on original type
  1941   case Int:                     // Mixing ints & oops happens when javac
  1942   case Long:                    // reuses local variables
  1943   case FloatTop:
  1944   case FloatCon:
  1945   case FloatBot:
  1946   case DoubleTop:
  1947   case DoubleCon:
  1948   case DoubleBot:
  1949   case NarrowOop:
  1950   case Bottom:                  // Ye Olde Default
  1951     return Type::BOTTOM;
  1952   case Top:
  1953     return this;
  1955   case AnyPtr: {                // Meeting to AnyPtrs
  1956     const TypePtr *tp = t->is_ptr();
  1957     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  1959   case RawPtr:                  // For these, flip the call around to cut down
  1960   case OopPtr:
  1961   case InstPtr:                 // on the cases I have to handle.
  1962   case KlassPtr:
  1963   case AryPtr:
  1964     return t->xmeet(this);      // Call in reverse direction
  1965   default:                      // All else is a mistake
  1966     typerr(t);
  1969   return this;
  1972 //------------------------------meet_offset------------------------------------
  1973 int TypePtr::meet_offset( int offset ) const {
  1974   // Either is 'TOP' offset?  Return the other offset!
  1975   if( _offset == OffsetTop ) return offset;
  1976   if( offset == OffsetTop ) return _offset;
  1977   // If either is different, return 'BOTTOM' offset
  1978   if( _offset != offset ) return OffsetBot;
  1979   return _offset;
  1982 //------------------------------dual_offset------------------------------------
  1983 int TypePtr::dual_offset( ) const {
  1984   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  1985   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  1986   return _offset;               // Map everything else into self
  1989 //------------------------------xdual------------------------------------------
  1990 // Dual: compute field-by-field dual
  1991 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  1992   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  1993 };
  1994 const Type *TypePtr::xdual() const {
  1995   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  1998 //------------------------------xadd_offset------------------------------------
  1999 int TypePtr::xadd_offset( intptr_t offset ) const {
  2000   // Adding to 'TOP' offset?  Return 'TOP'!
  2001   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2002   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2003   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2004   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2005   offset += (intptr_t)_offset;
  2006   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2008   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2009   // It is possible to construct a negative offset during PhaseCCP
  2011   return (int)offset;        // Sum valid offsets
  2014 //------------------------------add_offset-------------------------------------
  2015 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2016   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2019 //------------------------------eq---------------------------------------------
  2020 // Structural equality check for Type representations
  2021 bool TypePtr::eq( const Type *t ) const {
  2022   const TypePtr *a = (const TypePtr*)t;
  2023   return _ptr == a->ptr() && _offset == a->offset();
  2026 //------------------------------hash-------------------------------------------
  2027 // Type-specific hashing function.
  2028 int TypePtr::hash(void) const {
  2029   return _ptr + _offset;
  2032 //------------------------------dump2------------------------------------------
  2033 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2034   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2035 };
  2037 #ifndef PRODUCT
  2038 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2039   if( _ptr == Null ) st->print("NULL");
  2040   else st->print("%s *", ptr_msg[_ptr]);
  2041   if( _offset == OffsetTop ) st->print("+top");
  2042   else if( _offset == OffsetBot ) st->print("+bot");
  2043   else if( _offset ) st->print("+%d", _offset);
  2045 #endif
  2047 //------------------------------singleton--------------------------------------
  2048 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2049 // constants
  2050 bool TypePtr::singleton(void) const {
  2051   // TopPTR, Null, AnyNull, Constant are all singletons
  2052   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2055 bool TypePtr::empty(void) const {
  2056   return (_offset == OffsetTop) || above_centerline(_ptr);
  2059 //=============================================================================
  2060 // Convenience common pre-built types.
  2061 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2062 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2064 //------------------------------make-------------------------------------------
  2065 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2066   assert( ptr != Constant, "what is the constant?" );
  2067   assert( ptr != Null, "Use TypePtr for NULL" );
  2068   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2071 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2072   assert( bits, "Use TypePtr for NULL" );
  2073   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2076 //------------------------------cast_to_ptr_type-------------------------------
  2077 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2078   assert( ptr != Constant, "what is the constant?" );
  2079   assert( ptr != Null, "Use TypePtr for NULL" );
  2080   assert( _bits==0, "Why cast a constant address?");
  2081   if( ptr == _ptr ) return this;
  2082   return make(ptr);
  2085 //------------------------------get_con----------------------------------------
  2086 intptr_t TypeRawPtr::get_con() const {
  2087   assert( _ptr == Null || _ptr == Constant, "" );
  2088   return (intptr_t)_bits;
  2091 //------------------------------meet-------------------------------------------
  2092 // Compute the MEET of two types.  It returns a new Type object.
  2093 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2094   // Perform a fast test for common case; meeting the same types together.
  2095   if( this == t ) return this;  // Meeting same type-rep?
  2097   // Current "this->_base" is RawPtr
  2098   switch( t->base() ) {         // switch on original type
  2099   case Bottom:                  // Ye Olde Default
  2100     return t;
  2101   case Top:
  2102     return this;
  2103   case AnyPtr:                  // Meeting to AnyPtrs
  2104     break;
  2105   case RawPtr: {                // might be top, bot, any/not or constant
  2106     enum PTR tptr = t->is_ptr()->ptr();
  2107     enum PTR ptr = meet_ptr( tptr );
  2108     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2109       if( tptr == Constant && _ptr != Constant)  return t;
  2110       if( _ptr == Constant && tptr != Constant)  return this;
  2111       ptr = NotNull;            // Fall down in lattice
  2113     return make( ptr );
  2116   case OopPtr:
  2117   case InstPtr:
  2118   case KlassPtr:
  2119   case AryPtr:
  2120     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2121   default:                      // All else is a mistake
  2122     typerr(t);
  2125   // Found an AnyPtr type vs self-RawPtr type
  2126   const TypePtr *tp = t->is_ptr();
  2127   switch (tp->ptr()) {
  2128   case TypePtr::TopPTR:  return this;
  2129   case TypePtr::BotPTR:  return t;
  2130   case TypePtr::Null:
  2131     if( _ptr == TypePtr::TopPTR ) return t;
  2132     return TypeRawPtr::BOTTOM;
  2133   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2134   case TypePtr::AnyNull:
  2135     if( _ptr == TypePtr::Constant) return this;
  2136     return make( meet_ptr(TypePtr::AnyNull) );
  2137   default: ShouldNotReachHere();
  2139   return this;
  2142 //------------------------------xdual------------------------------------------
  2143 // Dual: compute field-by-field dual
  2144 const Type *TypeRawPtr::xdual() const {
  2145   return new TypeRawPtr( dual_ptr(), _bits );
  2148 //------------------------------add_offset-------------------------------------
  2149 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2150   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2151   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2152   if( offset == 0 ) return this; // No change
  2153   switch (_ptr) {
  2154   case TypePtr::TopPTR:
  2155   case TypePtr::BotPTR:
  2156   case TypePtr::NotNull:
  2157     return this;
  2158   case TypePtr::Null:
  2159   case TypePtr::Constant:
  2160     return make( _bits+offset );
  2161   default:  ShouldNotReachHere();
  2163   return NULL;                  // Lint noise
  2166 //------------------------------eq---------------------------------------------
  2167 // Structural equality check for Type representations
  2168 bool TypeRawPtr::eq( const Type *t ) const {
  2169   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2170   return _bits == a->_bits && TypePtr::eq(t);
  2173 //------------------------------hash-------------------------------------------
  2174 // Type-specific hashing function.
  2175 int TypeRawPtr::hash(void) const {
  2176   return (intptr_t)_bits + TypePtr::hash();
  2179 //------------------------------dump2------------------------------------------
  2180 #ifndef PRODUCT
  2181 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2182   if( _ptr == Constant )
  2183     st->print(INTPTR_FORMAT, _bits);
  2184   else
  2185     st->print("rawptr:%s", ptr_msg[_ptr]);
  2187 #endif
  2189 //=============================================================================
  2190 // Convenience common pre-built type.
  2191 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2193 //------------------------------TypeOopPtr-------------------------------------
  2194 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2195   : TypePtr(t, ptr, offset),
  2196     _const_oop(o), _klass(k),
  2197     _klass_is_exact(xk),
  2198     _is_ptr_to_narrowoop(false),
  2199     _instance_id(instance_id) {
  2200 #ifdef _LP64
  2201   if (UseCompressedOops && _offset != 0) {
  2202     if (klass() == NULL) {
  2203       assert(this->isa_aryptr(), "only arrays without klass");
  2204       _is_ptr_to_narrowoop = true;
  2205     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
  2206       _is_ptr_to_narrowoop = true;
  2207     } else if (this->isa_aryptr()) {
  2208       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
  2209                              _offset != arrayOopDesc::length_offset_in_bytes());
  2210     } else if (klass() == ciEnv::current()->Class_klass() &&
  2211                (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2212                 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2213       // Special hidden fields from the Class.
  2214       assert(this->isa_instptr(), "must be an instance ptr.");
  2215       _is_ptr_to_narrowoop = true;
  2216     } else if (klass()->is_instance_klass()) {
  2217       ciInstanceKlass* ik = klass()->as_instance_klass();
  2218       ciField* field = NULL;
  2219       if (this->isa_klassptr()) {
  2220         // Perm objects don't use compressed references, except for
  2221         // static fields which are currently compressed.
  2222         field = ik->get_field_by_offset(_offset, true);
  2223         if (field != NULL) {
  2224           BasicType basic_elem_type = field->layout_type();
  2225           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2226                                   basic_elem_type == T_ARRAY);
  2228       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2229         // unsafe access
  2230         _is_ptr_to_narrowoop = true;
  2231       } else { // exclude unsafe ops
  2232         assert(this->isa_instptr(), "must be an instance ptr.");
  2233         // Field which contains a compressed oop references.
  2234         field = ik->get_field_by_offset(_offset, false);
  2235         if (field != NULL) {
  2236           BasicType basic_elem_type = field->layout_type();
  2237           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2238                                   basic_elem_type == T_ARRAY);
  2239         } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2240           // Compile::find_alias_type() cast exactness on all types to verify
  2241           // that it does not affect alias type.
  2242           _is_ptr_to_narrowoop = true;
  2243         } else {
  2244           // Type for the copy start in LibraryCallKit::inline_native_clone().
  2245           assert(!klass_is_exact(), "only non-exact klass");
  2246           _is_ptr_to_narrowoop = true;
  2251 #endif
  2254 //------------------------------make-------------------------------------------
  2255 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2256                                    int offset, int instance_id) {
  2257   assert(ptr != Constant, "no constant generic pointers");
  2258   ciKlass*  k = ciKlassKlass::make();
  2259   bool      xk = false;
  2260   ciObject* o = NULL;
  2261   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2265 //------------------------------cast_to_ptr_type-------------------------------
  2266 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2267   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2268   if( ptr == _ptr ) return this;
  2269   return make(ptr, _offset, _instance_id);
  2272 //-----------------------------cast_to_instance_id----------------------------
  2273 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2274   // There are no instances of a general oop.
  2275   // Return self unchanged.
  2276   return this;
  2279 //-----------------------------cast_to_exactness-------------------------------
  2280 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2281   // There is no such thing as an exact general oop.
  2282   // Return self unchanged.
  2283   return this;
  2287 //------------------------------as_klass_type----------------------------------
  2288 // Return the klass type corresponding to this instance or array type.
  2289 // It is the type that is loaded from an object of this type.
  2290 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2291   ciKlass* k = klass();
  2292   bool    xk = klass_is_exact();
  2293   if (k == NULL || !k->is_java_klass())
  2294     return TypeKlassPtr::OBJECT;
  2295   else
  2296     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2300 //------------------------------meet-------------------------------------------
  2301 // Compute the MEET of two types.  It returns a new Type object.
  2302 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2303   // Perform a fast test for common case; meeting the same types together.
  2304   if( this == t ) return this;  // Meeting same type-rep?
  2306   // Current "this->_base" is OopPtr
  2307   switch (t->base()) {          // switch on original type
  2309   case Int:                     // Mixing ints & oops happens when javac
  2310   case Long:                    // reuses local variables
  2311   case FloatTop:
  2312   case FloatCon:
  2313   case FloatBot:
  2314   case DoubleTop:
  2315   case DoubleCon:
  2316   case DoubleBot:
  2317   case NarrowOop:
  2318   case Bottom:                  // Ye Olde Default
  2319     return Type::BOTTOM;
  2320   case Top:
  2321     return this;
  2323   default:                      // All else is a mistake
  2324     typerr(t);
  2326   case RawPtr:
  2327     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2329   case AnyPtr: {
  2330     // Found an AnyPtr type vs self-OopPtr type
  2331     const TypePtr *tp = t->is_ptr();
  2332     int offset = meet_offset(tp->offset());
  2333     PTR ptr = meet_ptr(tp->ptr());
  2334     switch (tp->ptr()) {
  2335     case Null:
  2336       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2337       // else fall through:
  2338     case TopPTR:
  2339     case AnyNull: {
  2340       int instance_id = meet_instance_id(InstanceTop);
  2341       return make(ptr, offset, instance_id);
  2343     case BotPTR:
  2344     case NotNull:
  2345       return TypePtr::make(AnyPtr, ptr, offset);
  2346     default: typerr(t);
  2350   case OopPtr: {                 // Meeting to other OopPtrs
  2351     const TypeOopPtr *tp = t->is_oopptr();
  2352     int instance_id = meet_instance_id(tp->instance_id());
  2353     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2356   case InstPtr:                  // For these, flip the call around to cut down
  2357   case KlassPtr:                 // on the cases I have to handle.
  2358   case AryPtr:
  2359     return t->xmeet(this);      // Call in reverse direction
  2361   } // End of switch
  2362   return this;                  // Return the double constant
  2366 //------------------------------xdual------------------------------------------
  2367 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2368 const Type *TypeOopPtr::xdual() const {
  2369   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2370   assert(const_oop() == NULL,             "no constants here");
  2371   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2374 //--------------------------make_from_klass_common-----------------------------
  2375 // Computes the element-type given a klass.
  2376 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2377   assert(klass->is_java_klass(), "must be java language klass");
  2378   if (klass->is_instance_klass()) {
  2379     Compile* C = Compile::current();
  2380     Dependencies* deps = C->dependencies();
  2381     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2382     // Element is an instance
  2383     bool klass_is_exact = false;
  2384     if (klass->is_loaded()) {
  2385       // Try to set klass_is_exact.
  2386       ciInstanceKlass* ik = klass->as_instance_klass();
  2387       klass_is_exact = ik->is_final();
  2388       if (!klass_is_exact && klass_change
  2389           && deps != NULL && UseUniqueSubclasses) {
  2390         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2391         if (sub != NULL) {
  2392           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2393           klass = ik = sub;
  2394           klass_is_exact = sub->is_final();
  2397       if (!klass_is_exact && try_for_exact
  2398           && deps != NULL && UseExactTypes) {
  2399         if (!ik->is_interface() && !ik->has_subklass()) {
  2400           // Add a dependence; if concrete subclass added we need to recompile
  2401           deps->assert_leaf_type(ik);
  2402           klass_is_exact = true;
  2406     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2407   } else if (klass->is_obj_array_klass()) {
  2408     // Element is an object array. Recursively call ourself.
  2409     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2410     bool xk = etype->klass_is_exact();
  2411     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2412     // We used to pass NotNull in here, asserting that the sub-arrays
  2413     // are all not-null.  This is not true in generally, as code can
  2414     // slam NULLs down in the subarrays.
  2415     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2416     return arr;
  2417   } else if (klass->is_type_array_klass()) {
  2418     // Element is an typeArray
  2419     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2420     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2421     // We used to pass NotNull in here, asserting that the array pointer
  2422     // is not-null. That was not true in general.
  2423     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2424     return arr;
  2425   } else {
  2426     ShouldNotReachHere();
  2427     return NULL;
  2431 //------------------------------make_from_constant-----------------------------
  2432 // Make a java pointer from an oop constant
  2433 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
  2434   if (o->is_method_data() || o->is_method()) {
  2435     // Treat much like a typeArray of bytes, like below, but fake the type...
  2436     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
  2437     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2438     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
  2439     assert(o->can_be_constant(), "method data oops should be tenured");
  2440     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2441     return arr;
  2442   } else {
  2443     assert(o->is_java_object(), "must be java language object");
  2444     assert(!o->is_null_object(), "null object not yet handled here.");
  2445     ciKlass *klass = o->klass();
  2446     if (klass->is_instance_klass()) {
  2447       // Element is an instance
  2448       if (require_constant) {
  2449         if (!o->can_be_constant())  return NULL;
  2450       } else if (!o->should_be_constant()) {
  2451         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2453       return TypeInstPtr::make(o);
  2454     } else if (klass->is_obj_array_klass()) {
  2455       // Element is an object array. Recursively call ourself.
  2456       const Type *etype =
  2457         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2458       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2459       // We used to pass NotNull in here, asserting that the sub-arrays
  2460       // are all not-null.  This is not true in generally, as code can
  2461       // slam NULLs down in the subarrays.
  2462       if (require_constant) {
  2463         if (!o->can_be_constant())  return NULL;
  2464       } else if (!o->should_be_constant()) {
  2465         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2467       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2468       return arr;
  2469     } else if (klass->is_type_array_klass()) {
  2470       // Element is an typeArray
  2471       const Type* etype =
  2472         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2473       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2474       // We used to pass NotNull in here, asserting that the array pointer
  2475       // is not-null. That was not true in general.
  2476       if (require_constant) {
  2477         if (!o->can_be_constant())  return NULL;
  2478       } else if (!o->should_be_constant()) {
  2479         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2481       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2482       return arr;
  2486   ShouldNotReachHere();
  2487   return NULL;
  2490 //------------------------------get_con----------------------------------------
  2491 intptr_t TypeOopPtr::get_con() const {
  2492   assert( _ptr == Null || _ptr == Constant, "" );
  2493   assert( _offset >= 0, "" );
  2495   if (_offset != 0) {
  2496     // After being ported to the compiler interface, the compiler no longer
  2497     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2498     // to a handle at compile time.  This handle is embedded in the generated
  2499     // code and dereferenced at the time the nmethod is made.  Until that time,
  2500     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2501     // have access to the addresses!).  This does not seem to currently happen,
  2502     // but this assertion here is to help prevent its occurence.
  2503     tty->print_cr("Found oop constant with non-zero offset");
  2504     ShouldNotReachHere();
  2507   return (intptr_t)const_oop()->constant_encoding();
  2511 //-----------------------------filter------------------------------------------
  2512 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2513 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2515   const Type* ft = join(kills);
  2516   const TypeInstPtr* ftip = ft->isa_instptr();
  2517   const TypeInstPtr* ktip = kills->isa_instptr();
  2518   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2519   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2521   if (ft->empty()) {
  2522     // Check for evil case of 'this' being a class and 'kills' expecting an
  2523     // interface.  This can happen because the bytecodes do not contain
  2524     // enough type info to distinguish a Java-level interface variable
  2525     // from a Java-level object variable.  If we meet 2 classes which
  2526     // both implement interface I, but their meet is at 'j/l/O' which
  2527     // doesn't implement I, we have no way to tell if the result should
  2528     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2529     // into a Phi which "knows" it's an Interface type we'll have to
  2530     // uplift the type.
  2531     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2532       return kills;             // Uplift to interface
  2533     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2534       return kills;             // Uplift to interface
  2536     return Type::TOP;           // Canonical empty value
  2539   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2540   // the join should report back the class.  However, if we have a J/L/Object
  2541   // class-typed Phi and an interface flows in, it's possible that the meet &
  2542   // join report an interface back out.  This isn't possible but happens
  2543   // because the type system doesn't interact well with interfaces.
  2544   if (ftip != NULL && ktip != NULL &&
  2545       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2546       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2547     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2548     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2549     return ktip->cast_to_ptr_type(ftip->ptr());
  2551   // Interface klass type could be exact in opposite to interface type,
  2552   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2553   if (ftkp != NULL && ktkp != NULL &&
  2554       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2555       !ftkp->klass_is_exact() && // Keep exact interface klass
  2556       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2557     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2560   return ft;
  2563 //------------------------------eq---------------------------------------------
  2564 // Structural equality check for Type representations
  2565 bool TypeOopPtr::eq( const Type *t ) const {
  2566   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2567   if (_klass_is_exact != a->_klass_is_exact ||
  2568       _instance_id != a->_instance_id)  return false;
  2569   ciObject* one = const_oop();
  2570   ciObject* two = a->const_oop();
  2571   if (one == NULL || two == NULL) {
  2572     return (one == two) && TypePtr::eq(t);
  2573   } else {
  2574     return one->equals(two) && TypePtr::eq(t);
  2578 //------------------------------hash-------------------------------------------
  2579 // Type-specific hashing function.
  2580 int TypeOopPtr::hash(void) const {
  2581   return
  2582     (const_oop() ? const_oop()->hash() : 0) +
  2583     _klass_is_exact +
  2584     _instance_id +
  2585     TypePtr::hash();
  2588 //------------------------------dump2------------------------------------------
  2589 #ifndef PRODUCT
  2590 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2591   st->print("oopptr:%s", ptr_msg[_ptr]);
  2592   if( _klass_is_exact ) st->print(":exact");
  2593   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2594   switch( _offset ) {
  2595   case OffsetTop: st->print("+top"); break;
  2596   case OffsetBot: st->print("+any"); break;
  2597   case         0: break;
  2598   default:        st->print("+%d",_offset); break;
  2600   if (_instance_id == InstanceTop)
  2601     st->print(",iid=top");
  2602   else if (_instance_id != InstanceBot)
  2603     st->print(",iid=%d",_instance_id);
  2605 #endif
  2607 //------------------------------singleton--------------------------------------
  2608 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2609 // constants
  2610 bool TypeOopPtr::singleton(void) const {
  2611   // detune optimizer to not generate constant oop + constant offset as a constant!
  2612   // TopPTR, Null, AnyNull, Constant are all singletons
  2613   return (_offset == 0) && !below_centerline(_ptr);
  2616 //------------------------------add_offset-------------------------------------
  2617 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2618   return make( _ptr, xadd_offset(offset), _instance_id);
  2621 //------------------------------meet_instance_id--------------------------------
  2622 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2623   // Either is 'TOP' instance?  Return the other instance!
  2624   if( _instance_id == InstanceTop ) return  instance_id;
  2625   if(  instance_id == InstanceTop ) return _instance_id;
  2626   // If either is different, return 'BOTTOM' instance
  2627   if( _instance_id != instance_id ) return InstanceBot;
  2628   return _instance_id;
  2631 //------------------------------dual_instance_id--------------------------------
  2632 int TypeOopPtr::dual_instance_id( ) const {
  2633   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2634   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2635   return _instance_id;              // Map everything else into self
  2639 //=============================================================================
  2640 // Convenience common pre-built types.
  2641 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2642 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2643 const TypeInstPtr *TypeInstPtr::MIRROR;
  2644 const TypeInstPtr *TypeInstPtr::MARK;
  2645 const TypeInstPtr *TypeInstPtr::KLASS;
  2647 //------------------------------TypeInstPtr-------------------------------------
  2648 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2649  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2650    assert(k != NULL &&
  2651           (k->is_loaded() || o == NULL),
  2652           "cannot have constants with non-loaded klass");
  2653 };
  2655 //------------------------------make-------------------------------------------
  2656 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2657                                      ciKlass* k,
  2658                                      bool xk,
  2659                                      ciObject* o,
  2660                                      int offset,
  2661                                      int instance_id) {
  2662   assert( !k->is_loaded() || k->is_instance_klass() ||
  2663           k->is_method_klass(), "Must be for instance or method");
  2664   // Either const_oop() is NULL or else ptr is Constant
  2665   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2666           "constant pointers must have a value supplied" );
  2667   // Ptr is never Null
  2668   assert( ptr != Null, "NULL pointers are not typed" );
  2670   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2671   if (!UseExactTypes)  xk = false;
  2672   if (ptr == Constant) {
  2673     // Note:  This case includes meta-object constants, such as methods.
  2674     xk = true;
  2675   } else if (k->is_loaded()) {
  2676     ciInstanceKlass* ik = k->as_instance_klass();
  2677     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2678     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2681   // Now hash this baby
  2682   TypeInstPtr *result =
  2683     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2685   return result;
  2689 //------------------------------cast_to_ptr_type-------------------------------
  2690 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2691   if( ptr == _ptr ) return this;
  2692   // Reconstruct _sig info here since not a problem with later lazy
  2693   // construction, _sig will show up on demand.
  2694   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2698 //-----------------------------cast_to_exactness-------------------------------
  2699 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2700   if( klass_is_exact == _klass_is_exact ) return this;
  2701   if (!UseExactTypes)  return this;
  2702   if (!_klass->is_loaded())  return this;
  2703   ciInstanceKlass* ik = _klass->as_instance_klass();
  2704   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2705   if( ik->is_interface() )              return this;  // cannot set xk
  2706   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2709 //-----------------------------cast_to_instance_id----------------------------
  2710 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2711   if( instance_id == _instance_id ) return this;
  2712   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2715 //------------------------------xmeet_unloaded---------------------------------
  2716 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2717 // Assume classes are different since called after check for same name/class-loader
  2718 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2719     int off = meet_offset(tinst->offset());
  2720     PTR ptr = meet_ptr(tinst->ptr());
  2721     int instance_id = meet_instance_id(tinst->instance_id());
  2723     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2724     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2725     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2726       //
  2727       // Meet unloaded class with java/lang/Object
  2728       //
  2729       // Meet
  2730       //          |                     Unloaded Class
  2731       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2732       //  ===================================================================
  2733       //   TOP    | ..........................Unloaded......................|
  2734       //  AnyNull |  U-AN    |................Unloaded......................|
  2735       // Constant | ... O-NN .................................. |   O-BOT   |
  2736       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2737       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2738       //
  2739       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2740       //
  2741       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2742       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2743       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2744       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2745         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2746         else                                      { return TypeInstPtr::NOTNULL; }
  2748       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2750       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2753     // Both are unloaded, not the same class, not Object
  2754     // Or meet unloaded with a different loaded class, not java/lang/Object
  2755     if( ptr != TypePtr::BotPTR ) {
  2756       return TypeInstPtr::NOTNULL;
  2758     return TypeInstPtr::BOTTOM;
  2762 //------------------------------meet-------------------------------------------
  2763 // Compute the MEET of two types.  It returns a new Type object.
  2764 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2765   // Perform a fast test for common case; meeting the same types together.
  2766   if( this == t ) return this;  // Meeting same type-rep?
  2768   // Current "this->_base" is Pointer
  2769   switch (t->base()) {          // switch on original type
  2771   case Int:                     // Mixing ints & oops happens when javac
  2772   case Long:                    // reuses local variables
  2773   case FloatTop:
  2774   case FloatCon:
  2775   case FloatBot:
  2776   case DoubleTop:
  2777   case DoubleCon:
  2778   case DoubleBot:
  2779   case NarrowOop:
  2780   case Bottom:                  // Ye Olde Default
  2781     return Type::BOTTOM;
  2782   case Top:
  2783     return this;
  2785   default:                      // All else is a mistake
  2786     typerr(t);
  2788   case RawPtr: return TypePtr::BOTTOM;
  2790   case AryPtr: {                // All arrays inherit from Object class
  2791     const TypeAryPtr *tp = t->is_aryptr();
  2792     int offset = meet_offset(tp->offset());
  2793     PTR ptr = meet_ptr(tp->ptr());
  2794     int instance_id = meet_instance_id(tp->instance_id());
  2795     switch (ptr) {
  2796     case TopPTR:
  2797     case AnyNull:                // Fall 'down' to dual of object klass
  2798       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2799         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2800       } else {
  2801         // cannot subclass, so the meet has to fall badly below the centerline
  2802         ptr = NotNull;
  2803         instance_id = InstanceBot;
  2804         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  2806     case Constant:
  2807     case NotNull:
  2808     case BotPTR:                // Fall down to object klass
  2809       // LCA is object_klass, but if we subclass from the top we can do better
  2810       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2811         // If 'this' (InstPtr) is above the centerline and it is Object class
  2812         // then we can subclass in the Java class hierarchy.
  2813         if (klass()->equals(ciEnv::current()->Object_klass())) {
  2814           // that is, tp's array type is a subtype of my klass
  2815           return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2818       // The other case cannot happen, since I cannot be a subtype of an array.
  2819       // The meet falls down to Object class below centerline.
  2820       if( ptr == Constant )
  2821          ptr = NotNull;
  2822       instance_id = InstanceBot;
  2823       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  2824     default: typerr(t);
  2828   case OopPtr: {                // Meeting to OopPtrs
  2829     // Found a OopPtr type vs self-InstPtr type
  2830     const TypeOopPtr *tp = t->is_oopptr();
  2831     int offset = meet_offset(tp->offset());
  2832     PTR ptr = meet_ptr(tp->ptr());
  2833     switch (tp->ptr()) {
  2834     case TopPTR:
  2835     case AnyNull: {
  2836       int instance_id = meet_instance_id(InstanceTop);
  2837       return make(ptr, klass(), klass_is_exact(),
  2838                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2840     case NotNull:
  2841     case BotPTR: {
  2842       int instance_id = meet_instance_id(tp->instance_id());
  2843       return TypeOopPtr::make(ptr, offset, instance_id);
  2845     default: typerr(t);
  2849   case AnyPtr: {                // Meeting to AnyPtrs
  2850     // Found an AnyPtr type vs self-InstPtr type
  2851     const TypePtr *tp = t->is_ptr();
  2852     int offset = meet_offset(tp->offset());
  2853     PTR ptr = meet_ptr(tp->ptr());
  2854     switch (tp->ptr()) {
  2855     case Null:
  2856       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  2857       // else fall through to AnyNull
  2858     case TopPTR:
  2859     case AnyNull: {
  2860       int instance_id = meet_instance_id(InstanceTop);
  2861       return make( ptr, klass(), klass_is_exact(),
  2862                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  2864     case NotNull:
  2865     case BotPTR:
  2866       return TypePtr::make( AnyPtr, ptr, offset );
  2867     default: typerr(t);
  2871   /*
  2872                  A-top         }
  2873                /   |   \       }  Tops
  2874            B-top A-any C-top   }
  2875               | /  |  \ |      }  Any-nulls
  2876            B-any   |   C-any   }
  2877               |    |    |
  2878            B-con A-con C-con   } constants; not comparable across classes
  2879               |    |    |
  2880            B-not   |   C-not   }
  2881               | \  |  / |      }  not-nulls
  2882            B-bot A-not C-bot   }
  2883                \   |   /       }  Bottoms
  2884                  A-bot         }
  2885   */
  2887   case InstPtr: {                // Meeting 2 Oops?
  2888     // Found an InstPtr sub-type vs self-InstPtr type
  2889     const TypeInstPtr *tinst = t->is_instptr();
  2890     int off = meet_offset( tinst->offset() );
  2891     PTR ptr = meet_ptr( tinst->ptr() );
  2892     int instance_id = meet_instance_id(tinst->instance_id());
  2894     // Check for easy case; klasses are equal (and perhaps not loaded!)
  2895     // If we have constants, then we created oops so classes are loaded
  2896     // and we can handle the constants further down.  This case handles
  2897     // both-not-loaded or both-loaded classes
  2898     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  2899       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  2902     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  2903     ciKlass* tinst_klass = tinst->klass();
  2904     ciKlass* this_klass  = this->klass();
  2905     bool tinst_xk = tinst->klass_is_exact();
  2906     bool this_xk  = this->klass_is_exact();
  2907     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  2908       // One of these classes has not been loaded
  2909       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  2910 #ifndef PRODUCT
  2911       if( PrintOpto && Verbose ) {
  2912         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  2913         tty->print("  this == "); this->dump(); tty->cr();
  2914         tty->print(" tinst == "); tinst->dump(); tty->cr();
  2916 #endif
  2917       return unloaded_meet;
  2920     // Handle mixing oops and interfaces first.
  2921     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  2922       ciKlass *tmp = tinst_klass; // Swap interface around
  2923       tinst_klass = this_klass;
  2924       this_klass = tmp;
  2925       bool tmp2 = tinst_xk;
  2926       tinst_xk = this_xk;
  2927       this_xk = tmp2;
  2929     if (tinst_klass->is_interface() &&
  2930         !(this_klass->is_interface() ||
  2931           // Treat java/lang/Object as an honorary interface,
  2932           // because we need a bottom for the interface hierarchy.
  2933           this_klass == ciEnv::current()->Object_klass())) {
  2934       // Oop meets interface!
  2936       // See if the oop subtypes (implements) interface.
  2937       ciKlass *k;
  2938       bool xk;
  2939       if( this_klass->is_subtype_of( tinst_klass ) ) {
  2940         // Oop indeed subtypes.  Now keep oop or interface depending
  2941         // on whether we are both above the centerline or either is
  2942         // below the centerline.  If we are on the centerline
  2943         // (e.g., Constant vs. AnyNull interface), use the constant.
  2944         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  2945         // If we are keeping this_klass, keep its exactness too.
  2946         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  2947       } else {                  // Does not implement, fall to Object
  2948         // Oop does not implement interface, so mixing falls to Object
  2949         // just like the verifier does (if both are above the
  2950         // centerline fall to interface)
  2951         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  2952         xk = above_centerline(ptr) ? tinst_xk : false;
  2953         // Watch out for Constant vs. AnyNull interface.
  2954         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  2955         instance_id = InstanceBot;
  2957       ciObject* o = NULL;  // the Constant value, if any
  2958       if (ptr == Constant) {
  2959         // Find out which constant.
  2960         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  2962       return make( ptr, k, xk, o, off, instance_id );
  2965     // Either oop vs oop or interface vs interface or interface vs Object
  2967     // !!! Here's how the symmetry requirement breaks down into invariants:
  2968     // If we split one up & one down AND they subtype, take the down man.
  2969     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2970     // If both are up and they subtype, take the subtype class.
  2971     // If both are up and they do NOT subtype, "fall hard".
  2972     // If both are down and they subtype, take the supertype class.
  2973     // If both are down and they do NOT subtype, "fall hard".
  2974     // Constants treated as down.
  2976     // Now, reorder the above list; observe that both-down+subtype is also
  2977     // "fall hard"; "fall hard" becomes the default case:
  2978     // If we split one up & one down AND they subtype, take the down man.
  2979     // If both are up and they subtype, take the subtype class.
  2981     // If both are down and they subtype, "fall hard".
  2982     // If both are down and they do NOT subtype, "fall hard".
  2983     // If both are up and they do NOT subtype, "fall hard".
  2984     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2986     // If a proper subtype is exact, and we return it, we return it exactly.
  2987     // If a proper supertype is exact, there can be no subtyping relationship!
  2988     // If both types are equal to the subtype, exactness is and-ed below the
  2989     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  2991     // Check for subtyping:
  2992     ciKlass *subtype = NULL;
  2993     bool subtype_exact = false;
  2994     if( tinst_klass->equals(this_klass) ) {
  2995       subtype = this_klass;
  2996       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  2997     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  2998       subtype = this_klass;     // Pick subtyping class
  2999       subtype_exact = this_xk;
  3000     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3001       subtype = tinst_klass;    // Pick subtyping class
  3002       subtype_exact = tinst_xk;
  3005     if( subtype ) {
  3006       if( above_centerline(ptr) ) { // both are up?
  3007         this_klass = tinst_klass = subtype;
  3008         this_xk = tinst_xk = subtype_exact;
  3009       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3010         this_klass = tinst_klass; // tinst is down; keep down man
  3011         this_xk = tinst_xk;
  3012       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3013         tinst_klass = this_klass; // this is down; keep down man
  3014         tinst_xk = this_xk;
  3015       } else {
  3016         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3020     // Check for classes now being equal
  3021     if (tinst_klass->equals(this_klass)) {
  3022       // If the klasses are equal, the constants may still differ.  Fall to
  3023       // NotNull if they do (neither constant is NULL; that is a special case
  3024       // handled elsewhere).
  3025       ciObject* o = NULL;             // Assume not constant when done
  3026       ciObject* this_oop  = const_oop();
  3027       ciObject* tinst_oop = tinst->const_oop();
  3028       if( ptr == Constant ) {
  3029         if (this_oop != NULL && tinst_oop != NULL &&
  3030             this_oop->equals(tinst_oop) )
  3031           o = this_oop;
  3032         else if (above_centerline(this ->_ptr))
  3033           o = tinst_oop;
  3034         else if (above_centerline(tinst ->_ptr))
  3035           o = this_oop;
  3036         else
  3037           ptr = NotNull;
  3039       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3040     } // Else classes are not equal
  3042     // Since klasses are different, we require a LCA in the Java
  3043     // class hierarchy - which means we have to fall to at least NotNull.
  3044     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3045       ptr = NotNull;
  3046     instance_id = InstanceBot;
  3048     // Now we find the LCA of Java classes
  3049     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3050     return make( ptr, k, false, NULL, off, instance_id );
  3051   } // End of case InstPtr
  3053   case KlassPtr:
  3054     return TypeInstPtr::BOTTOM;
  3056   } // End of switch
  3057   return this;                  // Return the double constant
  3061 //------------------------java_mirror_type--------------------------------------
  3062 ciType* TypeInstPtr::java_mirror_type() const {
  3063   // must be a singleton type
  3064   if( const_oop() == NULL )  return NULL;
  3066   // must be of type java.lang.Class
  3067   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3069   return const_oop()->as_instance()->java_mirror_type();
  3073 //------------------------------xdual------------------------------------------
  3074 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3075 // inheritance mechanism.
  3076 const Type *TypeInstPtr::xdual() const {
  3077   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3080 //------------------------------eq---------------------------------------------
  3081 // Structural equality check for Type representations
  3082 bool TypeInstPtr::eq( const Type *t ) const {
  3083   const TypeInstPtr *p = t->is_instptr();
  3084   return
  3085     klass()->equals(p->klass()) &&
  3086     TypeOopPtr::eq(p);          // Check sub-type stuff
  3089 //------------------------------hash-------------------------------------------
  3090 // Type-specific hashing function.
  3091 int TypeInstPtr::hash(void) const {
  3092   int hash = klass()->hash() + TypeOopPtr::hash();
  3093   return hash;
  3096 //------------------------------dump2------------------------------------------
  3097 // Dump oop Type
  3098 #ifndef PRODUCT
  3099 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3100   // Print the name of the klass.
  3101   klass()->print_name_on(st);
  3103   switch( _ptr ) {
  3104   case Constant:
  3105     // TO DO: Make CI print the hex address of the underlying oop.
  3106     if (WizardMode || Verbose) {
  3107       const_oop()->print_oop(st);
  3109   case BotPTR:
  3110     if (!WizardMode && !Verbose) {
  3111       if( _klass_is_exact ) st->print(":exact");
  3112       break;
  3114   case TopPTR:
  3115   case AnyNull:
  3116   case NotNull:
  3117     st->print(":%s", ptr_msg[_ptr]);
  3118     if( _klass_is_exact ) st->print(":exact");
  3119     break;
  3122   if( _offset ) {               // Dump offset, if any
  3123     if( _offset == OffsetBot )      st->print("+any");
  3124     else if( _offset == OffsetTop ) st->print("+unknown");
  3125     else st->print("+%d", _offset);
  3128   st->print(" *");
  3129   if (_instance_id == InstanceTop)
  3130     st->print(",iid=top");
  3131   else if (_instance_id != InstanceBot)
  3132     st->print(",iid=%d",_instance_id);
  3134 #endif
  3136 //------------------------------add_offset-------------------------------------
  3137 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3138   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3141 //=============================================================================
  3142 // Convenience common pre-built types.
  3143 const TypeAryPtr *TypeAryPtr::RANGE;
  3144 const TypeAryPtr *TypeAryPtr::OOPS;
  3145 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3146 const TypeAryPtr *TypeAryPtr::BYTES;
  3147 const TypeAryPtr *TypeAryPtr::SHORTS;
  3148 const TypeAryPtr *TypeAryPtr::CHARS;
  3149 const TypeAryPtr *TypeAryPtr::INTS;
  3150 const TypeAryPtr *TypeAryPtr::LONGS;
  3151 const TypeAryPtr *TypeAryPtr::FLOATS;
  3152 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3154 //------------------------------make-------------------------------------------
  3155 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3156   assert(!(k == NULL && ary->_elem->isa_int()),
  3157          "integral arrays must be pre-equipped with a class");
  3158   if (!xk)  xk = ary->ary_must_be_exact();
  3159   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3160   if (!UseExactTypes)  xk = (ptr == Constant);
  3161   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  3164 //------------------------------make-------------------------------------------
  3165 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3166   assert(!(k == NULL && ary->_elem->isa_int()),
  3167          "integral arrays must be pre-equipped with a class");
  3168   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3169   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3170   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3171   if (!UseExactTypes)  xk = (ptr == Constant);
  3172   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  3175 //------------------------------cast_to_ptr_type-------------------------------
  3176 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3177   if( ptr == _ptr ) return this;
  3178   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3182 //-----------------------------cast_to_exactness-------------------------------
  3183 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3184   if( klass_is_exact == _klass_is_exact ) return this;
  3185   if (!UseExactTypes)  return this;
  3186   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3187   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3190 //-----------------------------cast_to_instance_id----------------------------
  3191 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3192   if( instance_id == _instance_id ) return this;
  3193   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3196 //-----------------------------narrow_size_type-------------------------------
  3197 // Local cache for arrayOopDesc::max_array_length(etype),
  3198 // which is kind of slow (and cached elsewhere by other users).
  3199 static jint max_array_length_cache[T_CONFLICT+1];
  3200 static jint max_array_length(BasicType etype) {
  3201   jint& cache = max_array_length_cache[etype];
  3202   jint res = cache;
  3203   if (res == 0) {
  3204     switch (etype) {
  3205     case T_NARROWOOP:
  3206       etype = T_OBJECT;
  3207       break;
  3208     case T_CONFLICT:
  3209     case T_ILLEGAL:
  3210     case T_VOID:
  3211       etype = T_BYTE;           // will produce conservatively high value
  3213     cache = res = arrayOopDesc::max_array_length(etype);
  3215   return res;
  3218 // Narrow the given size type to the index range for the given array base type.
  3219 // Return NULL if the resulting int type becomes empty.
  3220 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3221   jint hi = size->_hi;
  3222   jint lo = size->_lo;
  3223   jint min_lo = 0;
  3224   jint max_hi = max_array_length(elem()->basic_type());
  3225   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3226   bool chg = false;
  3227   if (lo < min_lo) { lo = min_lo; chg = true; }
  3228   if (hi > max_hi) { hi = max_hi; chg = true; }
  3229   // Negative length arrays will produce weird intermediate dead fast-path code
  3230   if (lo > hi)
  3231     return TypeInt::ZERO;
  3232   if (!chg)
  3233     return size;
  3234   return TypeInt::make(lo, hi, Type::WidenMin);
  3237 //-------------------------------cast_to_size----------------------------------
  3238 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3239   assert(new_size != NULL, "");
  3240   new_size = narrow_size_type(new_size);
  3241   if (new_size == size())  return this;
  3242   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3243   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3247 //------------------------------eq---------------------------------------------
  3248 // Structural equality check for Type representations
  3249 bool TypeAryPtr::eq( const Type *t ) const {
  3250   const TypeAryPtr *p = t->is_aryptr();
  3251   return
  3252     _ary == p->_ary &&  // Check array
  3253     TypeOopPtr::eq(p);  // Check sub-parts
  3256 //------------------------------hash-------------------------------------------
  3257 // Type-specific hashing function.
  3258 int TypeAryPtr::hash(void) const {
  3259   return (intptr_t)_ary + TypeOopPtr::hash();
  3262 //------------------------------meet-------------------------------------------
  3263 // Compute the MEET of two types.  It returns a new Type object.
  3264 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3265   // Perform a fast test for common case; meeting the same types together.
  3266   if( this == t ) return this;  // Meeting same type-rep?
  3267   // Current "this->_base" is Pointer
  3268   switch (t->base()) {          // switch on original type
  3270   // Mixing ints & oops happens when javac reuses local variables
  3271   case Int:
  3272   case Long:
  3273   case FloatTop:
  3274   case FloatCon:
  3275   case FloatBot:
  3276   case DoubleTop:
  3277   case DoubleCon:
  3278   case DoubleBot:
  3279   case NarrowOop:
  3280   case Bottom:                  // Ye Olde Default
  3281     return Type::BOTTOM;
  3282   case Top:
  3283     return this;
  3285   default:                      // All else is a mistake
  3286     typerr(t);
  3288   case OopPtr: {                // Meeting to OopPtrs
  3289     // Found a OopPtr type vs self-AryPtr type
  3290     const TypeOopPtr *tp = t->is_oopptr();
  3291     int offset = meet_offset(tp->offset());
  3292     PTR ptr = meet_ptr(tp->ptr());
  3293     switch (tp->ptr()) {
  3294     case TopPTR:
  3295     case AnyNull: {
  3296       int instance_id = meet_instance_id(InstanceTop);
  3297       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3298                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3300     case BotPTR:
  3301     case NotNull: {
  3302       int instance_id = meet_instance_id(tp->instance_id());
  3303       return TypeOopPtr::make(ptr, offset, instance_id);
  3305     default: ShouldNotReachHere();
  3309   case AnyPtr: {                // Meeting two AnyPtrs
  3310     // Found an AnyPtr type vs self-AryPtr type
  3311     const TypePtr *tp = t->is_ptr();
  3312     int offset = meet_offset(tp->offset());
  3313     PTR ptr = meet_ptr(tp->ptr());
  3314     switch (tp->ptr()) {
  3315     case TopPTR:
  3316       return this;
  3317     case BotPTR:
  3318     case NotNull:
  3319       return TypePtr::make(AnyPtr, ptr, offset);
  3320     case Null:
  3321       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3322       // else fall through to AnyNull
  3323     case AnyNull: {
  3324       int instance_id = meet_instance_id(InstanceTop);
  3325       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3326                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3328     default: ShouldNotReachHere();
  3332   case RawPtr: return TypePtr::BOTTOM;
  3334   case AryPtr: {                // Meeting 2 references?
  3335     const TypeAryPtr *tap = t->is_aryptr();
  3336     int off = meet_offset(tap->offset());
  3337     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3338     PTR ptr = meet_ptr(tap->ptr());
  3339     int instance_id = meet_instance_id(tap->instance_id());
  3340     ciKlass* lazy_klass = NULL;
  3341     if (tary->_elem->isa_int()) {
  3342       // Integral array element types have irrelevant lattice relations.
  3343       // It is the klass that determines array layout, not the element type.
  3344       if (_klass == NULL)
  3345         lazy_klass = tap->_klass;
  3346       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3347         lazy_klass = _klass;
  3348       } else {
  3349         // Something like byte[int+] meets char[int+].
  3350         // This must fall to bottom, not (int[-128..65535])[int+].
  3351         instance_id = InstanceBot;
  3352         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3355     bool xk;
  3356     switch (tap->ptr()) {
  3357     case AnyNull:
  3358     case TopPTR:
  3359       // Compute new klass on demand, do not use tap->_klass
  3360       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3361       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3362     case Constant: {
  3363       ciObject* o = const_oop();
  3364       if( _ptr == Constant ) {
  3365         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3366           xk = (klass() == tap->klass());
  3367           ptr = NotNull;
  3368           o = NULL;
  3369           instance_id = InstanceBot;
  3370         } else {
  3371           xk = true;
  3373       } else if( above_centerline(_ptr) ) {
  3374         o = tap->const_oop();
  3375         xk = true;
  3376       } else {
  3377         xk = this->_klass_is_exact;
  3379       return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
  3381     case NotNull:
  3382     case BotPTR:
  3383       // Compute new klass on demand, do not use tap->_klass
  3384       if (above_centerline(this->_ptr))
  3385             xk = tap->_klass_is_exact;
  3386       else if (above_centerline(tap->_ptr))
  3387             xk = this->_klass_is_exact;
  3388       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3389               (klass() == tap->klass()); // Only precise for identical arrays
  3390       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3391     default: ShouldNotReachHere();
  3395   // All arrays inherit from Object class
  3396   case InstPtr: {
  3397     const TypeInstPtr *tp = t->is_instptr();
  3398     int offset = meet_offset(tp->offset());
  3399     PTR ptr = meet_ptr(tp->ptr());
  3400     int instance_id = meet_instance_id(tp->instance_id());
  3401     switch (ptr) {
  3402     case TopPTR:
  3403     case AnyNull:                // Fall 'down' to dual of object klass
  3404       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3405         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3406       } else {
  3407         // cannot subclass, so the meet has to fall badly below the centerline
  3408         ptr = NotNull;
  3409         instance_id = InstanceBot;
  3410         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3412     case Constant:
  3413     case NotNull:
  3414     case BotPTR:                // Fall down to object klass
  3415       // LCA is object_klass, but if we subclass from the top we can do better
  3416       if (above_centerline(tp->ptr())) {
  3417         // If 'tp'  is above the centerline and it is Object class
  3418         // then we can subclass in the Java class hierarchy.
  3419         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3420           // that is, my array type is a subtype of 'tp' klass
  3421           return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3424       // The other case cannot happen, since t cannot be a subtype of an array.
  3425       // The meet falls down to Object class below centerline.
  3426       if( ptr == Constant )
  3427          ptr = NotNull;
  3428       instance_id = InstanceBot;
  3429       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3430     default: typerr(t);
  3434   case KlassPtr:
  3435     return TypeInstPtr::BOTTOM;
  3438   return this;                  // Lint noise
  3441 //------------------------------xdual------------------------------------------
  3442 // Dual: compute field-by-field dual
  3443 const Type *TypeAryPtr::xdual() const {
  3444   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
  3447 //----------------------interface_vs_oop---------------------------------------
  3448 #ifdef ASSERT
  3449 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3450   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3451   if (t_aryptr) {
  3452     return _ary->interface_vs_oop(t_aryptr->_ary);
  3454   return false;
  3456 #endif
  3458 //------------------------------dump2------------------------------------------
  3459 #ifndef PRODUCT
  3460 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3461   _ary->dump2(d,depth,st);
  3462   switch( _ptr ) {
  3463   case Constant:
  3464     const_oop()->print(st);
  3465     break;
  3466   case BotPTR:
  3467     if (!WizardMode && !Verbose) {
  3468       if( _klass_is_exact ) st->print(":exact");
  3469       break;
  3471   case TopPTR:
  3472   case AnyNull:
  3473   case NotNull:
  3474     st->print(":%s", ptr_msg[_ptr]);
  3475     if( _klass_is_exact ) st->print(":exact");
  3476     break;
  3479   if( _offset != 0 ) {
  3480     int header_size = objArrayOopDesc::header_size() * wordSize;
  3481     if( _offset == OffsetTop )       st->print("+undefined");
  3482     else if( _offset == OffsetBot )  st->print("+any");
  3483     else if( _offset < header_size ) st->print("+%d", _offset);
  3484     else {
  3485       BasicType basic_elem_type = elem()->basic_type();
  3486       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3487       int elem_size = type2aelembytes(basic_elem_type);
  3488       st->print("[%d]", (_offset - array_base)/elem_size);
  3491   st->print(" *");
  3492   if (_instance_id == InstanceTop)
  3493     st->print(",iid=top");
  3494   else if (_instance_id != InstanceBot)
  3495     st->print(",iid=%d",_instance_id);
  3497 #endif
  3499 bool TypeAryPtr::empty(void) const {
  3500   if (_ary->empty())       return true;
  3501   return TypeOopPtr::empty();
  3504 //------------------------------add_offset-------------------------------------
  3505 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3506   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3510 //=============================================================================
  3511 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3512 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3515 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3516   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3519 //------------------------------hash-------------------------------------------
  3520 // Type-specific hashing function.
  3521 int TypeNarrowOop::hash(void) const {
  3522   return _ptrtype->hash() + 7;
  3526 bool TypeNarrowOop::eq( const Type *t ) const {
  3527   const TypeNarrowOop* tc = t->isa_narrowoop();
  3528   if (tc != NULL) {
  3529     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3530       return false;
  3532     return tc->_ptrtype->eq(_ptrtype);
  3534   return false;
  3537 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
  3538   return _ptrtype->singleton();
  3541 bool TypeNarrowOop::empty(void) const {
  3542   return _ptrtype->empty();
  3545 //------------------------------xmeet------------------------------------------
  3546 // Compute the MEET of two types.  It returns a new Type object.
  3547 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
  3548   // Perform a fast test for common case; meeting the same types together.
  3549   if( this == t ) return this;  // Meeting same type-rep?
  3552   // Current "this->_base" is OopPtr
  3553   switch (t->base()) {          // switch on original type
  3555   case Int:                     // Mixing ints & oops happens when javac
  3556   case Long:                    // reuses local variables
  3557   case FloatTop:
  3558   case FloatCon:
  3559   case FloatBot:
  3560   case DoubleTop:
  3561   case DoubleCon:
  3562   case DoubleBot:
  3563   case AnyPtr:
  3564   case RawPtr:
  3565   case OopPtr:
  3566   case InstPtr:
  3567   case KlassPtr:
  3568   case AryPtr:
  3570   case Bottom:                  // Ye Olde Default
  3571     return Type::BOTTOM;
  3572   case Top:
  3573     return this;
  3575   case NarrowOop: {
  3576     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3577     if (result->isa_ptr()) {
  3578       return TypeNarrowOop::make(result->is_ptr());
  3580     return result;
  3583   default:                      // All else is a mistake
  3584     typerr(t);
  3586   } // End of switch
  3588   return this;
  3591 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
  3592   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3593   return new TypeNarrowOop(odual);
  3596 const Type *TypeNarrowOop::filter( const Type *kills ) const {
  3597   if (kills->isa_narrowoop()) {
  3598     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
  3599     if (ft->empty())
  3600       return Type::TOP;           // Canonical empty value
  3601     if (ft->isa_ptr()) {
  3602       return make(ft->isa_ptr());
  3604     return ft;
  3605   } else if (kills->isa_ptr()) {
  3606     const Type* ft = _ptrtype->join(kills);
  3607     if (ft->empty())
  3608       return Type::TOP;           // Canonical empty value
  3609     return ft;
  3610   } else {
  3611     return Type::TOP;
  3616 intptr_t TypeNarrowOop::get_con() const {
  3617   return _ptrtype->get_con();
  3620 #ifndef PRODUCT
  3621 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3622   st->print("narrowoop: ");
  3623   _ptrtype->dump2(d, depth, st);
  3625 #endif
  3628 //=============================================================================
  3629 // Convenience common pre-built types.
  3631 // Not-null object klass or below
  3632 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3633 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3635 //------------------------------TypeKlasPtr------------------------------------
  3636 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3637   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3640 //------------------------------make-------------------------------------------
  3641 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3642 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3643   assert( k != NULL, "Expect a non-NULL klass");
  3644   assert(k->is_instance_klass() || k->is_array_klass() ||
  3645          k->is_method_klass(), "Incorrect type of klass oop");
  3646   TypeKlassPtr *r =
  3647     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3649   return r;
  3652 //------------------------------eq---------------------------------------------
  3653 // Structural equality check for Type representations
  3654 bool TypeKlassPtr::eq( const Type *t ) const {
  3655   const TypeKlassPtr *p = t->is_klassptr();
  3656   return
  3657     klass()->equals(p->klass()) &&
  3658     TypeOopPtr::eq(p);
  3661 //------------------------------hash-------------------------------------------
  3662 // Type-specific hashing function.
  3663 int TypeKlassPtr::hash(void) const {
  3664   return klass()->hash() + TypeOopPtr::hash();
  3668 //------------------------------klass------------------------------------------
  3669 // Return the defining klass for this class
  3670 ciKlass* TypeAryPtr::klass() const {
  3671   if( _klass ) return _klass;   // Return cached value, if possible
  3673   // Oops, need to compute _klass and cache it
  3674   ciKlass* k_ary = NULL;
  3675   const TypeInstPtr *tinst;
  3676   const TypeAryPtr *tary;
  3677   const Type* el = elem();
  3678   if (el->isa_narrowoop()) {
  3679     el = el->make_ptr();
  3682   // Get element klass
  3683   if ((tinst = el->isa_instptr()) != NULL) {
  3684     // Compute array klass from element klass
  3685     k_ary = ciObjArrayKlass::make(tinst->klass());
  3686   } else if ((tary = el->isa_aryptr()) != NULL) {
  3687     // Compute array klass from element klass
  3688     ciKlass* k_elem = tary->klass();
  3689     // If element type is something like bottom[], k_elem will be null.
  3690     if (k_elem != NULL)
  3691       k_ary = ciObjArrayKlass::make(k_elem);
  3692   } else if ((el->base() == Type::Top) ||
  3693              (el->base() == Type::Bottom)) {
  3694     // element type of Bottom occurs from meet of basic type
  3695     // and object; Top occurs when doing join on Bottom.
  3696     // Leave k_ary at NULL.
  3697   } else {
  3698     // Cannot compute array klass directly from basic type,
  3699     // since subtypes of TypeInt all have basic type T_INT.
  3700     assert(!el->isa_int(),
  3701            "integral arrays must be pre-equipped with a class");
  3702     // Compute array klass directly from basic type
  3703     k_ary = ciTypeArrayKlass::make(el->basic_type());
  3706   if( this != TypeAryPtr::OOPS ) {
  3707     // The _klass field acts as a cache of the underlying
  3708     // ciKlass for this array type.  In order to set the field,
  3709     // we need to cast away const-ness.
  3710     //
  3711     // IMPORTANT NOTE: we *never* set the _klass field for the
  3712     // type TypeAryPtr::OOPS.  This Type is shared between all
  3713     // active compilations.  However, the ciKlass which represents
  3714     // this Type is *not* shared between compilations, so caching
  3715     // this value would result in fetching a dangling pointer.
  3716     //
  3717     // Recomputing the underlying ciKlass for each request is
  3718     // a bit less efficient than caching, but calls to
  3719     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3720     ((TypeAryPtr*)this)->_klass = k_ary;
  3721     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  3722         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  3723       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  3726   return k_ary;
  3730 //------------------------------add_offset-------------------------------------
  3731 // Access internals of klass object
  3732 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  3733   return make( _ptr, klass(), xadd_offset(offset) );
  3736 //------------------------------cast_to_ptr_type-------------------------------
  3737 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3738   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  3739   if( ptr == _ptr ) return this;
  3740   return make(ptr, _klass, _offset);
  3744 //-----------------------------cast_to_exactness-------------------------------
  3745 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3746   if( klass_is_exact == _klass_is_exact ) return this;
  3747   if (!UseExactTypes)  return this;
  3748   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3752 //-----------------------------as_instance_type--------------------------------
  3753 // Corresponding type for an instance of the given class.
  3754 // It will be NotNull, and exact if and only if the klass type is exact.
  3755 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3756   ciKlass* k = klass();
  3757   bool    xk = klass_is_exact();
  3758   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3759   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3760   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3761   return toop->cast_to_exactness(xk)->is_oopptr();
  3765 //------------------------------xmeet------------------------------------------
  3766 // Compute the MEET of two types, return a new Type object.
  3767 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3768   // Perform a fast test for common case; meeting the same types together.
  3769   if( this == t ) return this;  // Meeting same type-rep?
  3771   // Current "this->_base" is Pointer
  3772   switch (t->base()) {          // switch on original type
  3774   case Int:                     // Mixing ints & oops happens when javac
  3775   case Long:                    // reuses local variables
  3776   case FloatTop:
  3777   case FloatCon:
  3778   case FloatBot:
  3779   case DoubleTop:
  3780   case DoubleCon:
  3781   case DoubleBot:
  3782   case NarrowOop:
  3783   case Bottom:                  // Ye Olde Default
  3784     return Type::BOTTOM;
  3785   case Top:
  3786     return this;
  3788   default:                      // All else is a mistake
  3789     typerr(t);
  3791   case RawPtr: return TypePtr::BOTTOM;
  3793   case OopPtr: {                // Meeting to OopPtrs
  3794     // Found a OopPtr type vs self-KlassPtr type
  3795     const TypePtr *tp = t->is_oopptr();
  3796     int offset = meet_offset(tp->offset());
  3797     PTR ptr = meet_ptr(tp->ptr());
  3798     switch (tp->ptr()) {
  3799     case TopPTR:
  3800     case AnyNull:
  3801       return make(ptr, klass(), offset);
  3802     case BotPTR:
  3803     case NotNull:
  3804       return TypePtr::make(AnyPtr, ptr, offset);
  3805     default: typerr(t);
  3809   case AnyPtr: {                // Meeting to AnyPtrs
  3810     // Found an AnyPtr type vs self-KlassPtr type
  3811     const TypePtr *tp = t->is_ptr();
  3812     int offset = meet_offset(tp->offset());
  3813     PTR ptr = meet_ptr(tp->ptr());
  3814     switch (tp->ptr()) {
  3815     case TopPTR:
  3816       return this;
  3817     case Null:
  3818       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3819     case AnyNull:
  3820       return make( ptr, klass(), offset );
  3821     case BotPTR:
  3822     case NotNull:
  3823       return TypePtr::make(AnyPtr, ptr, offset);
  3824     default: typerr(t);
  3828   case AryPtr:                  // Meet with AryPtr
  3829   case InstPtr:                 // Meet with InstPtr
  3830     return TypeInstPtr::BOTTOM;
  3832   //
  3833   //             A-top         }
  3834   //           /   |   \       }  Tops
  3835   //       B-top A-any C-top   }
  3836   //          | /  |  \ |      }  Any-nulls
  3837   //       B-any   |   C-any   }
  3838   //          |    |    |
  3839   //       B-con A-con C-con   } constants; not comparable across classes
  3840   //          |    |    |
  3841   //       B-not   |   C-not   }
  3842   //          | \  |  / |      }  not-nulls
  3843   //       B-bot A-not C-bot   }
  3844   //           \   |   /       }  Bottoms
  3845   //             A-bot         }
  3846   //
  3848   case KlassPtr: {  // Meet two KlassPtr types
  3849     const TypeKlassPtr *tkls = t->is_klassptr();
  3850     int  off     = meet_offset(tkls->offset());
  3851     PTR  ptr     = meet_ptr(tkls->ptr());
  3853     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3854     // If we have constants, then we created oops so classes are loaded
  3855     // and we can handle the constants further down.  This case handles
  3856     // not-loaded classes
  3857     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  3858       return make( ptr, klass(), off );
  3861     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3862     ciKlass* tkls_klass = tkls->klass();
  3863     ciKlass* this_klass = this->klass();
  3864     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  3865     assert( this_klass->is_loaded(), "This class should have been loaded.");
  3867     // If 'this' type is above the centerline and is a superclass of the
  3868     // other, we can treat 'this' as having the same type as the other.
  3869     if ((above_centerline(this->ptr())) &&
  3870         tkls_klass->is_subtype_of(this_klass)) {
  3871       this_klass = tkls_klass;
  3873     // If 'tinst' type is above the centerline and is a superclass of the
  3874     // other, we can treat 'tinst' as having the same type as the other.
  3875     if ((above_centerline(tkls->ptr())) &&
  3876         this_klass->is_subtype_of(tkls_klass)) {
  3877       tkls_klass = this_klass;
  3880     // Check for classes now being equal
  3881     if (tkls_klass->equals(this_klass)) {
  3882       // If the klasses are equal, the constants may still differ.  Fall to
  3883       // NotNull if they do (neither constant is NULL; that is a special case
  3884       // handled elsewhere).
  3885       ciObject* o = NULL;             // Assume not constant when done
  3886       ciObject* this_oop = const_oop();
  3887       ciObject* tkls_oop = tkls->const_oop();
  3888       if( ptr == Constant ) {
  3889         if (this_oop != NULL && tkls_oop != NULL &&
  3890             this_oop->equals(tkls_oop) )
  3891           o = this_oop;
  3892         else if (above_centerline(this->ptr()))
  3893           o = tkls_oop;
  3894         else if (above_centerline(tkls->ptr()))
  3895           o = this_oop;
  3896         else
  3897           ptr = NotNull;
  3899       return make( ptr, this_klass, off );
  3900     } // Else classes are not equal
  3902     // Since klasses are different, we require the LCA in the Java
  3903     // class hierarchy - which means we have to fall to at least NotNull.
  3904     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3905       ptr = NotNull;
  3906     // Now we find the LCA of Java classes
  3907     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  3908     return   make( ptr, k, off );
  3909   } // End of case KlassPtr
  3911   } // End of switch
  3912   return this;                  // Return the double constant
  3915 //------------------------------xdual------------------------------------------
  3916 // Dual: compute field-by-field dual
  3917 const Type    *TypeKlassPtr::xdual() const {
  3918   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  3921 //------------------------------dump2------------------------------------------
  3922 // Dump Klass Type
  3923 #ifndef PRODUCT
  3924 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3925   switch( _ptr ) {
  3926   case Constant:
  3927     st->print("precise ");
  3928   case NotNull:
  3930       const char *name = klass()->name()->as_utf8();
  3931       if( name ) {
  3932         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  3933       } else {
  3934         ShouldNotReachHere();
  3937   case BotPTR:
  3938     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  3939   case TopPTR:
  3940   case AnyNull:
  3941     st->print(":%s", ptr_msg[_ptr]);
  3942     if( _klass_is_exact ) st->print(":exact");
  3943     break;
  3946   if( _offset ) {               // Dump offset, if any
  3947     if( _offset == OffsetBot )      { st->print("+any"); }
  3948     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  3949     else                            { st->print("+%d", _offset); }
  3952   st->print(" *");
  3954 #endif
  3958 //=============================================================================
  3959 // Convenience common pre-built types.
  3961 //------------------------------make-------------------------------------------
  3962 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  3963   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  3966 //------------------------------make-------------------------------------------
  3967 const TypeFunc *TypeFunc::make(ciMethod* method) {
  3968   Compile* C = Compile::current();
  3969   const TypeFunc* tf = C->last_tf(method); // check cache
  3970   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  3971   const TypeTuple *domain;
  3972   if (method->flags().is_static()) {
  3973     domain = TypeTuple::make_domain(NULL, method->signature());
  3974   } else {
  3975     domain = TypeTuple::make_domain(method->holder(), method->signature());
  3977   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  3978   tf = TypeFunc::make(domain, range);
  3979   C->set_last_tf(method, tf);  // fill cache
  3980   return tf;
  3983 //------------------------------meet-------------------------------------------
  3984 // Compute the MEET of two types.  It returns a new Type object.
  3985 const Type *TypeFunc::xmeet( const Type *t ) const {
  3986   // Perform a fast test for common case; meeting the same types together.
  3987   if( this == t ) return this;  // Meeting same type-rep?
  3989   // Current "this->_base" is Func
  3990   switch (t->base()) {          // switch on original type
  3992   case Bottom:                  // Ye Olde Default
  3993     return t;
  3995   default:                      // All else is a mistake
  3996     typerr(t);
  3998   case Top:
  3999     break;
  4001   return this;                  // Return the double constant
  4004 //------------------------------xdual------------------------------------------
  4005 // Dual: compute field-by-field dual
  4006 const Type *TypeFunc::xdual() const {
  4007   return this;
  4010 //------------------------------eq---------------------------------------------
  4011 // Structural equality check for Type representations
  4012 bool TypeFunc::eq( const Type *t ) const {
  4013   const TypeFunc *a = (const TypeFunc*)t;
  4014   return _domain == a->_domain &&
  4015     _range == a->_range;
  4018 //------------------------------hash-------------------------------------------
  4019 // Type-specific hashing function.
  4020 int TypeFunc::hash(void) const {
  4021   return (intptr_t)_domain + (intptr_t)_range;
  4024 //------------------------------dump2------------------------------------------
  4025 // Dump Function Type
  4026 #ifndef PRODUCT
  4027 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4028   if( _range->_cnt <= Parms )
  4029     st->print("void");
  4030   else {
  4031     uint i;
  4032     for (i = Parms; i < _range->_cnt-1; i++) {
  4033       _range->field_at(i)->dump2(d,depth,st);
  4034       st->print("/");
  4036     _range->field_at(i)->dump2(d,depth,st);
  4038   st->print(" ");
  4039   st->print("( ");
  4040   if( !depth || d[this] ) {     // Check for recursive dump
  4041     st->print("...)");
  4042     return;
  4044   d.Insert((void*)this,(void*)this);    // Stop recursion
  4045   if (Parms < _domain->_cnt)
  4046     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4047   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4048     st->print(", ");
  4049     _domain->field_at(i)->dump2(d,depth-1,st);
  4051   st->print(" )");
  4054 //------------------------------print_flattened--------------------------------
  4055 // Print a 'flattened' signature
  4056 static const char * const flat_type_msg[Type::lastype] = {
  4057   "bad","control","top","int","long","_", "narrowoop",
  4058   "tuple:", "array:",
  4059   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  4060   "func", "abIO", "return_address", "mem",
  4061   "float_top", "ftcon:", "flt",
  4062   "double_top", "dblcon:", "dbl",
  4063   "bottom"
  4064 };
  4066 void TypeFunc::print_flattened() const {
  4067   if( _range->_cnt <= Parms )
  4068     tty->print("void");
  4069   else {
  4070     uint i;
  4071     for (i = Parms; i < _range->_cnt-1; i++)
  4072       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  4073     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  4075   tty->print(" ( ");
  4076   if (Parms < _domain->_cnt)
  4077     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  4078   for (uint i = Parms+1; i < _domain->_cnt; i++)
  4079     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  4080   tty->print(" )");
  4082 #endif
  4084 //------------------------------singleton--------------------------------------
  4085 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4086 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4087 // or a single symbol.
  4088 bool TypeFunc::singleton(void) const {
  4089   return false;                 // Never a singleton
  4092 bool TypeFunc::empty(void) const {
  4093   return false;                 // Never empty
  4097 BasicType TypeFunc::return_type() const{
  4098   if (range()->cnt() == TypeFunc::Parms) {
  4099     return T_VOID;
  4101   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial