src/cpu/x86/vm/assembler_x86.cpp

Tue, 02 Nov 2010 09:00:37 -0700

author
kvn
date
Tue, 02 Nov 2010 09:00:37 -0700
changeset 2269
ae065c367d93
parent 2201
d55217dc206f
child 2275
2fe998383789
permissions
-rw-r--r--

6987135: Performance regression on Intel platform with 32-bits edition between 6u13 and 6u14.
Summary: Use hardware DIV instruction for long division by constant when it is faster than code with multiply.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_x86.cpp.incl"
    28 // Implementation of AddressLiteral
    30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    31   _is_lval = false;
    32   _target = target;
    33   switch (rtype) {
    34   case relocInfo::oop_type:
    35     // Oops are a special case. Normally they would be their own section
    36     // but in cases like icBuffer they are literals in the code stream that
    37     // we don't have a section for. We use none so that we get a literal address
    38     // which is always patchable.
    39     break;
    40   case relocInfo::external_word_type:
    41     _rspec = external_word_Relocation::spec(target);
    42     break;
    43   case relocInfo::internal_word_type:
    44     _rspec = internal_word_Relocation::spec(target);
    45     break;
    46   case relocInfo::opt_virtual_call_type:
    47     _rspec = opt_virtual_call_Relocation::spec();
    48     break;
    49   case relocInfo::static_call_type:
    50     _rspec = static_call_Relocation::spec();
    51     break;
    52   case relocInfo::runtime_call_type:
    53     _rspec = runtime_call_Relocation::spec();
    54     break;
    55   case relocInfo::poll_type:
    56   case relocInfo::poll_return_type:
    57     _rspec = Relocation::spec_simple(rtype);
    58     break;
    59   case relocInfo::none:
    60     break;
    61   default:
    62     ShouldNotReachHere();
    63     break;
    64   }
    65 }
    67 // Implementation of Address
    69 #ifdef _LP64
    71 Address Address::make_array(ArrayAddress adr) {
    72   // Not implementable on 64bit machines
    73   // Should have been handled higher up the call chain.
    74   ShouldNotReachHere();
    75   return Address();
    76 }
    78 // exceedingly dangerous constructor
    79 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    80   _base  = noreg;
    81   _index = noreg;
    82   _scale = no_scale;
    83   _disp  = disp;
    84   switch (rtype) {
    85     case relocInfo::external_word_type:
    86       _rspec = external_word_Relocation::spec(loc);
    87       break;
    88     case relocInfo::internal_word_type:
    89       _rspec = internal_word_Relocation::spec(loc);
    90       break;
    91     case relocInfo::runtime_call_type:
    92       // HMM
    93       _rspec = runtime_call_Relocation::spec();
    94       break;
    95     case relocInfo::poll_type:
    96     case relocInfo::poll_return_type:
    97       _rspec = Relocation::spec_simple(rtype);
    98       break;
    99     case relocInfo::none:
   100       break;
   101     default:
   102       ShouldNotReachHere();
   103   }
   104 }
   105 #else // LP64
   107 Address Address::make_array(ArrayAddress adr) {
   108   AddressLiteral base = adr.base();
   109   Address index = adr.index();
   110   assert(index._disp == 0, "must not have disp"); // maybe it can?
   111   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   112   array._rspec = base._rspec;
   113   return array;
   114 }
   116 // exceedingly dangerous constructor
   117 Address::Address(address loc, RelocationHolder spec) {
   118   _base  = noreg;
   119   _index = noreg;
   120   _scale = no_scale;
   121   _disp  = (intptr_t) loc;
   122   _rspec = spec;
   123 }
   125 #endif // _LP64
   129 // Convert the raw encoding form into the form expected by the constructor for
   130 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   131 // that to noreg for the Address constructor.
   132 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   133   RelocationHolder rspec;
   134   if (disp_is_oop) {
   135     rspec = Relocation::spec_simple(relocInfo::oop_type);
   136   }
   137   bool valid_index = index != rsp->encoding();
   138   if (valid_index) {
   139     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   140     madr._rspec = rspec;
   141     return madr;
   142   } else {
   143     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   144     madr._rspec = rspec;
   145     return madr;
   146   }
   147 }
   149 // Implementation of Assembler
   151 int AbstractAssembler::code_fill_byte() {
   152   return (u_char)'\xF4'; // hlt
   153 }
   155 // make this go away someday
   156 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   157   if (rtype == relocInfo::none)
   158         emit_long(data);
   159   else  emit_data(data, Relocation::spec_simple(rtype), format);
   160 }
   162 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   163   assert(imm_operand == 0, "default format must be immediate in this file");
   164   assert(inst_mark() != NULL, "must be inside InstructionMark");
   165   if (rspec.type() !=  relocInfo::none) {
   166     #ifdef ASSERT
   167       check_relocation(rspec, format);
   168     #endif
   169     // Do not use AbstractAssembler::relocate, which is not intended for
   170     // embedded words.  Instead, relocate to the enclosing instruction.
   172     // hack. call32 is too wide for mask so use disp32
   173     if (format == call32_operand)
   174       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   175     else
   176       code_section()->relocate(inst_mark(), rspec, format);
   177   }
   178   emit_long(data);
   179 }
   181 static int encode(Register r) {
   182   int enc = r->encoding();
   183   if (enc >= 8) {
   184     enc -= 8;
   185   }
   186   return enc;
   187 }
   189 static int encode(XMMRegister r) {
   190   int enc = r->encoding();
   191   if (enc >= 8) {
   192     enc -= 8;
   193   }
   194   return enc;
   195 }
   197 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   198   assert(dst->has_byte_register(), "must have byte register");
   199   assert(isByte(op1) && isByte(op2), "wrong opcode");
   200   assert(isByte(imm8), "not a byte");
   201   assert((op1 & 0x01) == 0, "should be 8bit operation");
   202   emit_byte(op1);
   203   emit_byte(op2 | encode(dst));
   204   emit_byte(imm8);
   205 }
   208 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   209   assert(isByte(op1) && isByte(op2), "wrong opcode");
   210   assert((op1 & 0x01) == 1, "should be 32bit operation");
   211   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   212   if (is8bit(imm32)) {
   213     emit_byte(op1 | 0x02); // set sign bit
   214     emit_byte(op2 | encode(dst));
   215     emit_byte(imm32 & 0xFF);
   216   } else {
   217     emit_byte(op1);
   218     emit_byte(op2 | encode(dst));
   219     emit_long(imm32);
   220   }
   221 }
   223 // immediate-to-memory forms
   224 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   225   assert((op1 & 0x01) == 1, "should be 32bit operation");
   226   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   227   if (is8bit(imm32)) {
   228     emit_byte(op1 | 0x02); // set sign bit
   229     emit_operand(rm, adr, 1);
   230     emit_byte(imm32 & 0xFF);
   231   } else {
   232     emit_byte(op1);
   233     emit_operand(rm, adr, 4);
   234     emit_long(imm32);
   235   }
   236 }
   238 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   239   LP64_ONLY(ShouldNotReachHere());
   240   assert(isByte(op1) && isByte(op2), "wrong opcode");
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   InstructionMark im(this);
   244   emit_byte(op1);
   245   emit_byte(op2 | encode(dst));
   246   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   247 }
   250 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   251   assert(isByte(op1) && isByte(op2), "wrong opcode");
   252   emit_byte(op1);
   253   emit_byte(op2 | encode(dst) << 3 | encode(src));
   254 }
   257 void Assembler::emit_operand(Register reg, Register base, Register index,
   258                              Address::ScaleFactor scale, int disp,
   259                              RelocationHolder const& rspec,
   260                              int rip_relative_correction) {
   261   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   263   // Encode the registers as needed in the fields they are used in
   265   int regenc = encode(reg) << 3;
   266   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   267   int baseenc = base->is_valid() ? encode(base) : 0;
   269   if (base->is_valid()) {
   270     if (index->is_valid()) {
   271       assert(scale != Address::no_scale, "inconsistent address");
   272       // [base + index*scale + disp]
   273       if (disp == 0 && rtype == relocInfo::none  &&
   274           base != rbp LP64_ONLY(&& base != r13)) {
   275         // [base + index*scale]
   276         // [00 reg 100][ss index base]
   277         assert(index != rsp, "illegal addressing mode");
   278         emit_byte(0x04 | regenc);
   279         emit_byte(scale << 6 | indexenc | baseenc);
   280       } else if (is8bit(disp) && rtype == relocInfo::none) {
   281         // [base + index*scale + imm8]
   282         // [01 reg 100][ss index base] imm8
   283         assert(index != rsp, "illegal addressing mode");
   284         emit_byte(0x44 | regenc);
   285         emit_byte(scale << 6 | indexenc | baseenc);
   286         emit_byte(disp & 0xFF);
   287       } else {
   288         // [base + index*scale + disp32]
   289         // [10 reg 100][ss index base] disp32
   290         assert(index != rsp, "illegal addressing mode");
   291         emit_byte(0x84 | regenc);
   292         emit_byte(scale << 6 | indexenc | baseenc);
   293         emit_data(disp, rspec, disp32_operand);
   294       }
   295     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   296       // [rsp + disp]
   297       if (disp == 0 && rtype == relocInfo::none) {
   298         // [rsp]
   299         // [00 reg 100][00 100 100]
   300         emit_byte(0x04 | regenc);
   301         emit_byte(0x24);
   302       } else if (is8bit(disp) && rtype == relocInfo::none) {
   303         // [rsp + imm8]
   304         // [01 reg 100][00 100 100] disp8
   305         emit_byte(0x44 | regenc);
   306         emit_byte(0x24);
   307         emit_byte(disp & 0xFF);
   308       } else {
   309         // [rsp + imm32]
   310         // [10 reg 100][00 100 100] disp32
   311         emit_byte(0x84 | regenc);
   312         emit_byte(0x24);
   313         emit_data(disp, rspec, disp32_operand);
   314       }
   315     } else {
   316       // [base + disp]
   317       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   318       if (disp == 0 && rtype == relocInfo::none &&
   319           base != rbp LP64_ONLY(&& base != r13)) {
   320         // [base]
   321         // [00 reg base]
   322         emit_byte(0x00 | regenc | baseenc);
   323       } else if (is8bit(disp) && rtype == relocInfo::none) {
   324         // [base + disp8]
   325         // [01 reg base] disp8
   326         emit_byte(0x40 | regenc | baseenc);
   327         emit_byte(disp & 0xFF);
   328       } else {
   329         // [base + disp32]
   330         // [10 reg base] disp32
   331         emit_byte(0x80 | regenc | baseenc);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     }
   335   } else {
   336     if (index->is_valid()) {
   337       assert(scale != Address::no_scale, "inconsistent address");
   338       // [index*scale + disp]
   339       // [00 reg 100][ss index 101] disp32
   340       assert(index != rsp, "illegal addressing mode");
   341       emit_byte(0x04 | regenc);
   342       emit_byte(scale << 6 | indexenc | 0x05);
   343       emit_data(disp, rspec, disp32_operand);
   344     } else if (rtype != relocInfo::none ) {
   345       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   346       // [00 000 101] disp32
   348       emit_byte(0x05 | regenc);
   349       // Note that the RIP-rel. correction applies to the generated
   350       // disp field, but _not_ to the target address in the rspec.
   352       // disp was created by converting the target address minus the pc
   353       // at the start of the instruction. That needs more correction here.
   354       // intptr_t disp = target - next_ip;
   355       assert(inst_mark() != NULL, "must be inside InstructionMark");
   356       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   357       int64_t adjusted = disp;
   358       // Do rip-rel adjustment for 64bit
   359       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   360       assert(is_simm32(adjusted),
   361              "must be 32bit offset (RIP relative address)");
   362       emit_data((int32_t) adjusted, rspec, disp32_operand);
   364     } else {
   365       // 32bit never did this, did everything as the rip-rel/disp code above
   366       // [disp] ABSOLUTE
   367       // [00 reg 100][00 100 101] disp32
   368       emit_byte(0x04 | regenc);
   369       emit_byte(0x25);
   370       emit_data(disp, rspec, disp32_operand);
   371     }
   372   }
   373 }
   375 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   376                              Address::ScaleFactor scale, int disp,
   377                              RelocationHolder const& rspec) {
   378   emit_operand((Register)reg, base, index, scale, disp, rspec);
   379 }
   381 // Secret local extension to Assembler::WhichOperand:
   382 #define end_pc_operand (_WhichOperand_limit)
   384 address Assembler::locate_operand(address inst, WhichOperand which) {
   385   // Decode the given instruction, and return the address of
   386   // an embedded 32-bit operand word.
   388   // If "which" is disp32_operand, selects the displacement portion
   389   // of an effective address specifier.
   390   // If "which" is imm64_operand, selects the trailing immediate constant.
   391   // If "which" is call32_operand, selects the displacement of a call or jump.
   392   // Caller is responsible for ensuring that there is such an operand,
   393   // and that it is 32/64 bits wide.
   395   // If "which" is end_pc_operand, find the end of the instruction.
   397   address ip = inst;
   398   bool is_64bit = false;
   400   debug_only(bool has_disp32 = false);
   401   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   403   again_after_prefix:
   404   switch (0xFF & *ip++) {
   406   // These convenience macros generate groups of "case" labels for the switch.
   407 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   408 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   409              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   410 #define REP16(x) REP8((x)+0): \
   411               case REP8((x)+8)
   413   case CS_segment:
   414   case SS_segment:
   415   case DS_segment:
   416   case ES_segment:
   417   case FS_segment:
   418   case GS_segment:
   419     // Seems dubious
   420     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   421     assert(ip == inst+1, "only one prefix allowed");
   422     goto again_after_prefix;
   424   case 0x67:
   425   case REX:
   426   case REX_B:
   427   case REX_X:
   428   case REX_XB:
   429   case REX_R:
   430   case REX_RB:
   431   case REX_RX:
   432   case REX_RXB:
   433     NOT_LP64(assert(false, "64bit prefixes"));
   434     goto again_after_prefix;
   436   case REX_W:
   437   case REX_WB:
   438   case REX_WX:
   439   case REX_WXB:
   440   case REX_WR:
   441   case REX_WRB:
   442   case REX_WRX:
   443   case REX_WRXB:
   444     NOT_LP64(assert(false, "64bit prefixes"));
   445     is_64bit = true;
   446     goto again_after_prefix;
   448   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   449   case 0x88: // movb a, r
   450   case 0x89: // movl a, r
   451   case 0x8A: // movb r, a
   452   case 0x8B: // movl r, a
   453   case 0x8F: // popl a
   454     debug_only(has_disp32 = true);
   455     break;
   457   case 0x68: // pushq #32
   458     if (which == end_pc_operand) {
   459       return ip + 4;
   460     }
   461     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   462     return ip;                  // not produced by emit_operand
   464   case 0x66: // movw ... (size prefix)
   465     again_after_size_prefix2:
   466     switch (0xFF & *ip++) {
   467     case REX:
   468     case REX_B:
   469     case REX_X:
   470     case REX_XB:
   471     case REX_R:
   472     case REX_RB:
   473     case REX_RX:
   474     case REX_RXB:
   475     case REX_W:
   476     case REX_WB:
   477     case REX_WX:
   478     case REX_WXB:
   479     case REX_WR:
   480     case REX_WRB:
   481     case REX_WRX:
   482     case REX_WRXB:
   483       NOT_LP64(assert(false, "64bit prefix found"));
   484       goto again_after_size_prefix2;
   485     case 0x8B: // movw r, a
   486     case 0x89: // movw a, r
   487       debug_only(has_disp32 = true);
   488       break;
   489     case 0xC7: // movw a, #16
   490       debug_only(has_disp32 = true);
   491       tail_size = 2;  // the imm16
   492       break;
   493     case 0x0F: // several SSE/SSE2 variants
   494       ip--;    // reparse the 0x0F
   495       goto again_after_prefix;
   496     default:
   497       ShouldNotReachHere();
   498     }
   499     break;
   501   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   502     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   503     // these asserts are somewhat nonsensical
   504 #ifndef _LP64
   505     assert(which == imm_operand || which == disp32_operand, "");
   506 #else
   507     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   508            which == narrow_oop_operand && !is_64bit, "");
   509 #endif // _LP64
   510     return ip;
   512   case 0x69: // imul r, a, #32
   513   case 0xC7: // movl a, #32(oop?)
   514     tail_size = 4;
   515     debug_only(has_disp32 = true); // has both kinds of operands!
   516     break;
   518   case 0x0F: // movx..., etc.
   519     switch (0xFF & *ip++) {
   520     case 0x12: // movlps
   521     case 0x28: // movaps
   522     case 0x2E: // ucomiss
   523     case 0x2F: // comiss
   524     case 0x54: // andps
   525     case 0x55: // andnps
   526     case 0x56: // orps
   527     case 0x57: // xorps
   528     case 0x6E: // movd
   529     case 0x7E: // movd
   530     case 0xAE: // ldmxcsr   a
   531       // 64bit side says it these have both operands but that doesn't
   532       // appear to be true
   533       debug_only(has_disp32 = true);
   534       break;
   536     case 0xAD: // shrd r, a, %cl
   537     case 0xAF: // imul r, a
   538     case 0xBE: // movsbl r, a (movsxb)
   539     case 0xBF: // movswl r, a (movsxw)
   540     case 0xB6: // movzbl r, a (movzxb)
   541     case 0xB7: // movzwl r, a (movzxw)
   542     case REP16(0x40): // cmovl cc, r, a
   543     case 0xB0: // cmpxchgb
   544     case 0xB1: // cmpxchg
   545     case 0xC1: // xaddl
   546     case 0xC7: // cmpxchg8
   547     case REP16(0x90): // setcc a
   548       debug_only(has_disp32 = true);
   549       // fall out of the switch to decode the address
   550       break;
   552     case 0xAC: // shrd r, a, #8
   553       debug_only(has_disp32 = true);
   554       tail_size = 1;  // the imm8
   555       break;
   557     case REP16(0x80): // jcc rdisp32
   558       if (which == end_pc_operand)  return ip + 4;
   559       assert(which == call32_operand, "jcc has no disp32 or imm");
   560       return ip;
   561     default:
   562       ShouldNotReachHere();
   563     }
   564     break;
   566   case 0x81: // addl a, #32; addl r, #32
   567     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   568     // on 32bit in the case of cmpl, the imm might be an oop
   569     tail_size = 4;
   570     debug_only(has_disp32 = true); // has both kinds of operands!
   571     break;
   573   case 0x83: // addl a, #8; addl r, #8
   574     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   575     debug_only(has_disp32 = true); // has both kinds of operands!
   576     tail_size = 1;
   577     break;
   579   case 0x9B:
   580     switch (0xFF & *ip++) {
   581     case 0xD9: // fnstcw a
   582       debug_only(has_disp32 = true);
   583       break;
   584     default:
   585       ShouldNotReachHere();
   586     }
   587     break;
   589   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   590   case REP4(0x10): // adc...
   591   case REP4(0x20): // and...
   592   case REP4(0x30): // xor...
   593   case REP4(0x08): // or...
   594   case REP4(0x18): // sbb...
   595   case REP4(0x28): // sub...
   596   case 0xF7: // mull a
   597   case 0x8D: // lea r, a
   598   case 0x87: // xchg r, a
   599   case REP4(0x38): // cmp...
   600   case 0x85: // test r, a
   601     debug_only(has_disp32 = true); // has both kinds of operands!
   602     break;
   604   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   605   case 0xC6: // movb a, #8
   606   case 0x80: // cmpb a, #8
   607   case 0x6B: // imul r, a, #8
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     tail_size = 1; // the imm8
   610     break;
   612   case 0xE8: // call rdisp32
   613   case 0xE9: // jmp  rdisp32
   614     if (which == end_pc_operand)  return ip + 4;
   615     assert(which == call32_operand, "call has no disp32 or imm");
   616     return ip;
   618   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   619   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   620   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   621   case 0xDD: // fld_d a; fst_d a; fstp_d a
   622   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   623   case 0xDF: // fild_d a; fistp_d a
   624   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   625   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   626   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   627     debug_only(has_disp32 = true);
   628     break;
   630   case 0xF0:                    // Lock
   631     assert(os::is_MP(), "only on MP");
   632     goto again_after_prefix;
   634   case 0xF3:                    // For SSE
   635   case 0xF2:                    // For SSE2
   636     switch (0xFF & *ip++) {
   637     case REX:
   638     case REX_B:
   639     case REX_X:
   640     case REX_XB:
   641     case REX_R:
   642     case REX_RB:
   643     case REX_RX:
   644     case REX_RXB:
   645     case REX_W:
   646     case REX_WB:
   647     case REX_WX:
   648     case REX_WXB:
   649     case REX_WR:
   650     case REX_WRB:
   651     case REX_WRX:
   652     case REX_WRXB:
   653       NOT_LP64(assert(false, "found 64bit prefix"));
   654       ip++;
   655     default:
   656       ip++;
   657     }
   658     debug_only(has_disp32 = true); // has both kinds of operands!
   659     break;
   661   default:
   662     ShouldNotReachHere();
   664 #undef REP8
   665 #undef REP16
   666   }
   668   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   669 #ifdef _LP64
   670   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   671 #else
   672   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   673   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   674 #endif // LP64
   675   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   677   // parse the output of emit_operand
   678   int op2 = 0xFF & *ip++;
   679   int base = op2 & 0x07;
   680   int op3 = -1;
   681   const int b100 = 4;
   682   const int b101 = 5;
   683   if (base == b100 && (op2 >> 6) != 3) {
   684     op3 = 0xFF & *ip++;
   685     base = op3 & 0x07;   // refetch the base
   686   }
   687   // now ip points at the disp (if any)
   689   switch (op2 >> 6) {
   690   case 0:
   691     // [00 reg  100][ss index base]
   692     // [00 reg  100][00   100  esp]
   693     // [00 reg base]
   694     // [00 reg  100][ss index  101][disp32]
   695     // [00 reg  101]               [disp32]
   697     if (base == b101) {
   698       if (which == disp32_operand)
   699         return ip;              // caller wants the disp32
   700       ip += 4;                  // skip the disp32
   701     }
   702     break;
   704   case 1:
   705     // [01 reg  100][ss index base][disp8]
   706     // [01 reg  100][00   100  esp][disp8]
   707     // [01 reg base]               [disp8]
   708     ip += 1;                    // skip the disp8
   709     break;
   711   case 2:
   712     // [10 reg  100][ss index base][disp32]
   713     // [10 reg  100][00   100  esp][disp32]
   714     // [10 reg base]               [disp32]
   715     if (which == disp32_operand)
   716       return ip;                // caller wants the disp32
   717     ip += 4;                    // skip the disp32
   718     break;
   720   case 3:
   721     // [11 reg base]  (not a memory addressing mode)
   722     break;
   723   }
   725   if (which == end_pc_operand) {
   726     return ip + tail_size;
   727   }
   729 #ifdef _LP64
   730   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   731 #else
   732   assert(which == imm_operand, "instruction has only an imm field");
   733 #endif // LP64
   734   return ip;
   735 }
   737 address Assembler::locate_next_instruction(address inst) {
   738   // Secretly share code with locate_operand:
   739   return locate_operand(inst, end_pc_operand);
   740 }
   743 #ifdef ASSERT
   744 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   745   address inst = inst_mark();
   746   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   747   address opnd;
   749   Relocation* r = rspec.reloc();
   750   if (r->type() == relocInfo::none) {
   751     return;
   752   } else if (r->is_call() || format == call32_operand) {
   753     // assert(format == imm32_operand, "cannot specify a nonzero format");
   754     opnd = locate_operand(inst, call32_operand);
   755   } else if (r->is_data()) {
   756     assert(format == imm_operand || format == disp32_operand
   757            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   758     opnd = locate_operand(inst, (WhichOperand)format);
   759   } else {
   760     assert(format == imm_operand, "cannot specify a format");
   761     return;
   762   }
   763   assert(opnd == pc(), "must put operand where relocs can find it");
   764 }
   765 #endif // ASSERT
   767 void Assembler::emit_operand32(Register reg, Address adr) {
   768   assert(reg->encoding() < 8, "no extended registers");
   769   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   770   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   771                adr._rspec);
   772 }
   774 void Assembler::emit_operand(Register reg, Address adr,
   775                              int rip_relative_correction) {
   776   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   777                adr._rspec,
   778                rip_relative_correction);
   779 }
   781 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   782   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   783                adr._rspec);
   784 }
   786 // MMX operations
   787 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   788   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   789   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   790 }
   792 // work around gcc (3.2.1-7a) bug
   793 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   794   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   795   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   796 }
   799 void Assembler::emit_farith(int b1, int b2, int i) {
   800   assert(isByte(b1) && isByte(b2), "wrong opcode");
   801   assert(0 <= i &&  i < 8, "illegal stack offset");
   802   emit_byte(b1);
   803   emit_byte(b2 + i);
   804 }
   807 // Now the Assembler instruction (identical for 32/64 bits)
   809 void Assembler::adcl(Register dst, int32_t imm32) {
   810   prefix(dst);
   811   emit_arith(0x81, 0xD0, dst, imm32);
   812 }
   814 void Assembler::adcl(Register dst, Address src) {
   815   InstructionMark im(this);
   816   prefix(src, dst);
   817   emit_byte(0x13);
   818   emit_operand(dst, src);
   819 }
   821 void Assembler::adcl(Register dst, Register src) {
   822   (void) prefix_and_encode(dst->encoding(), src->encoding());
   823   emit_arith(0x13, 0xC0, dst, src);
   824 }
   826 void Assembler::addl(Address dst, int32_t imm32) {
   827   InstructionMark im(this);
   828   prefix(dst);
   829   emit_arith_operand(0x81, rax, dst, imm32);
   830 }
   832 void Assembler::addl(Address dst, Register src) {
   833   InstructionMark im(this);
   834   prefix(dst, src);
   835   emit_byte(0x01);
   836   emit_operand(src, dst);
   837 }
   839 void Assembler::addl(Register dst, int32_t imm32) {
   840   prefix(dst);
   841   emit_arith(0x81, 0xC0, dst, imm32);
   842 }
   844 void Assembler::addl(Register dst, Address src) {
   845   InstructionMark im(this);
   846   prefix(src, dst);
   847   emit_byte(0x03);
   848   emit_operand(dst, src);
   849 }
   851 void Assembler::addl(Register dst, Register src) {
   852   (void) prefix_and_encode(dst->encoding(), src->encoding());
   853   emit_arith(0x03, 0xC0, dst, src);
   854 }
   856 void Assembler::addr_nop_4() {
   857   // 4 bytes: NOP DWORD PTR [EAX+0]
   858   emit_byte(0x0F);
   859   emit_byte(0x1F);
   860   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   861   emit_byte(0);    // 8-bits offset (1 byte)
   862 }
   864 void Assembler::addr_nop_5() {
   865   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   866   emit_byte(0x0F);
   867   emit_byte(0x1F);
   868   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   869   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   870   emit_byte(0);    // 8-bits offset (1 byte)
   871 }
   873 void Assembler::addr_nop_7() {
   874   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   875   emit_byte(0x0F);
   876   emit_byte(0x1F);
   877   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   878   emit_long(0);    // 32-bits offset (4 bytes)
   879 }
   881 void Assembler::addr_nop_8() {
   882   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   883   emit_byte(0x0F);
   884   emit_byte(0x1F);
   885   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   886   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   887   emit_long(0);    // 32-bits offset (4 bytes)
   888 }
   890 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   891   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   892   emit_byte(0xF2);
   893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   894   emit_byte(0x0F);
   895   emit_byte(0x58);
   896   emit_byte(0xC0 | encode);
   897 }
   899 void Assembler::addsd(XMMRegister dst, Address src) {
   900   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   901   InstructionMark im(this);
   902   emit_byte(0xF2);
   903   prefix(src, dst);
   904   emit_byte(0x0F);
   905   emit_byte(0x58);
   906   emit_operand(dst, src);
   907 }
   909 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   911   emit_byte(0xF3);
   912   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_byte(0x0F);
   914   emit_byte(0x58);
   915   emit_byte(0xC0 | encode);
   916 }
   918 void Assembler::addss(XMMRegister dst, Address src) {
   919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   920   InstructionMark im(this);
   921   emit_byte(0xF3);
   922   prefix(src, dst);
   923   emit_byte(0x0F);
   924   emit_byte(0x58);
   925   emit_operand(dst, src);
   926 }
   928 void Assembler::andl(Register dst, int32_t imm32) {
   929   prefix(dst);
   930   emit_arith(0x81, 0xE0, dst, imm32);
   931 }
   933 void Assembler::andl(Register dst, Address src) {
   934   InstructionMark im(this);
   935   prefix(src, dst);
   936   emit_byte(0x23);
   937   emit_operand(dst, src);
   938 }
   940 void Assembler::andl(Register dst, Register src) {
   941   (void) prefix_and_encode(dst->encoding(), src->encoding());
   942   emit_arith(0x23, 0xC0, dst, src);
   943 }
   945 void Assembler::andpd(XMMRegister dst, Address src) {
   946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   947   InstructionMark im(this);
   948   emit_byte(0x66);
   949   prefix(src, dst);
   950   emit_byte(0x0F);
   951   emit_byte(0x54);
   952   emit_operand(dst, src);
   953 }
   955 void Assembler::bsfl(Register dst, Register src) {
   956   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   957   emit_byte(0x0F);
   958   emit_byte(0xBC);
   959   emit_byte(0xC0 | encode);
   960 }
   962 void Assembler::bsrl(Register dst, Register src) {
   963   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
   964   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   965   emit_byte(0x0F);
   966   emit_byte(0xBD);
   967   emit_byte(0xC0 | encode);
   968 }
   970 void Assembler::bswapl(Register reg) { // bswap
   971   int encode = prefix_and_encode(reg->encoding());
   972   emit_byte(0x0F);
   973   emit_byte(0xC8 | encode);
   974 }
   976 void Assembler::call(Label& L, relocInfo::relocType rtype) {
   977   // suspect disp32 is always good
   978   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
   980   if (L.is_bound()) {
   981     const int long_size = 5;
   982     int offs = (int)( target(L) - pc() );
   983     assert(offs <= 0, "assembler error");
   984     InstructionMark im(this);
   985     // 1110 1000 #32-bit disp
   986     emit_byte(0xE8);
   987     emit_data(offs - long_size, rtype, operand);
   988   } else {
   989     InstructionMark im(this);
   990     // 1110 1000 #32-bit disp
   991     L.add_patch_at(code(), locator());
   993     emit_byte(0xE8);
   994     emit_data(int(0), rtype, operand);
   995   }
   996 }
   998 void Assembler::call(Register dst) {
   999   // This was originally using a 32bit register encoding
  1000   // and surely we want 64bit!
  1001   // this is a 32bit encoding but in 64bit mode the default
  1002   // operand size is 64bit so there is no need for the
  1003   // wide prefix. So prefix only happens if we use the
  1004   // new registers. Much like push/pop.
  1005   int x = offset();
  1006   // this may be true but dbx disassembles it as if it
  1007   // were 32bits...
  1008   // int encode = prefix_and_encode(dst->encoding());
  1009   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  1010   int encode = prefixq_and_encode(dst->encoding());
  1012   emit_byte(0xFF);
  1013   emit_byte(0xD0 | encode);
  1017 void Assembler::call(Address adr) {
  1018   InstructionMark im(this);
  1019   prefix(adr);
  1020   emit_byte(0xFF);
  1021   emit_operand(rdx, adr);
  1024 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1025   assert(entry != NULL, "call most probably wrong");
  1026   InstructionMark im(this);
  1027   emit_byte(0xE8);
  1028   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1029   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1030   // Technically, should use call32_operand, but this format is
  1031   // implied by the fact that we're emitting a call instruction.
  1033   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1034   emit_data((int) disp, rspec, operand);
  1037 void Assembler::cdql() {
  1038   emit_byte(0x99);
  1041 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1042   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1043   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1044   emit_byte(0x0F);
  1045   emit_byte(0x40 | cc);
  1046   emit_byte(0xC0 | encode);
  1050 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1051   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1052   prefix(src, dst);
  1053   emit_byte(0x0F);
  1054   emit_byte(0x40 | cc);
  1055   emit_operand(dst, src);
  1058 void Assembler::cmpb(Address dst, int imm8) {
  1059   InstructionMark im(this);
  1060   prefix(dst);
  1061   emit_byte(0x80);
  1062   emit_operand(rdi, dst, 1);
  1063   emit_byte(imm8);
  1066 void Assembler::cmpl(Address dst, int32_t imm32) {
  1067   InstructionMark im(this);
  1068   prefix(dst);
  1069   emit_byte(0x81);
  1070   emit_operand(rdi, dst, 4);
  1071   emit_long(imm32);
  1074 void Assembler::cmpl(Register dst, int32_t imm32) {
  1075   prefix(dst);
  1076   emit_arith(0x81, 0xF8, dst, imm32);
  1079 void Assembler::cmpl(Register dst, Register src) {
  1080   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1081   emit_arith(0x3B, 0xC0, dst, src);
  1085 void Assembler::cmpl(Register dst, Address  src) {
  1086   InstructionMark im(this);
  1087   prefix(src, dst);
  1088   emit_byte(0x3B);
  1089   emit_operand(dst, src);
  1092 void Assembler::cmpw(Address dst, int imm16) {
  1093   InstructionMark im(this);
  1094   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1095   emit_byte(0x66);
  1096   emit_byte(0x81);
  1097   emit_operand(rdi, dst, 2);
  1098   emit_word(imm16);
  1101 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1102 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1103 // The ZF is set if the compared values were equal, and cleared otherwise.
  1104 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1105   if (Atomics & 2) {
  1106      // caveat: no instructionmark, so this isn't relocatable.
  1107      // Emit a synthetic, non-atomic, CAS equivalent.
  1108      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1109      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1110      cmpl(rax, adr);
  1111      movl(rax, adr);
  1112      if (reg != rax) {
  1113         Label L ;
  1114         jcc(Assembler::notEqual, L);
  1115         movl(adr, reg);
  1116         bind(L);
  1118   } else {
  1119      InstructionMark im(this);
  1120      prefix(adr, reg);
  1121      emit_byte(0x0F);
  1122      emit_byte(0xB1);
  1123      emit_operand(reg, adr);
  1127 void Assembler::comisd(XMMRegister dst, Address src) {
  1128   // NOTE: dbx seems to decode this as comiss even though the
  1129   // 0x66 is there. Strangly ucomisd comes out correct
  1130   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1131   emit_byte(0x66);
  1132   comiss(dst, src);
  1135 void Assembler::comiss(XMMRegister dst, Address src) {
  1136   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1138   InstructionMark im(this);
  1139   prefix(src, dst);
  1140   emit_byte(0x0F);
  1141   emit_byte(0x2F);
  1142   emit_operand(dst, src);
  1145 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1147   emit_byte(0xF3);
  1148   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1149   emit_byte(0x0F);
  1150   emit_byte(0xE6);
  1151   emit_byte(0xC0 | encode);
  1154 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1156   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1157   emit_byte(0x0F);
  1158   emit_byte(0x5B);
  1159   emit_byte(0xC0 | encode);
  1162 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1163   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1164   emit_byte(0xF2);
  1165   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1166   emit_byte(0x0F);
  1167   emit_byte(0x5A);
  1168   emit_byte(0xC0 | encode);
  1171 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1172   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1173   emit_byte(0xF2);
  1174   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1175   emit_byte(0x0F);
  1176   emit_byte(0x2A);
  1177   emit_byte(0xC0 | encode);
  1180 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1181   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1182   emit_byte(0xF3);
  1183   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1184   emit_byte(0x0F);
  1185   emit_byte(0x2A);
  1186   emit_byte(0xC0 | encode);
  1189 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1190   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1191   emit_byte(0xF3);
  1192   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1193   emit_byte(0x0F);
  1194   emit_byte(0x5A);
  1195   emit_byte(0xC0 | encode);
  1198 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1200   emit_byte(0xF2);
  1201   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1202   emit_byte(0x0F);
  1203   emit_byte(0x2C);
  1204   emit_byte(0xC0 | encode);
  1207 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1208   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1209   emit_byte(0xF3);
  1210   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1211   emit_byte(0x0F);
  1212   emit_byte(0x2C);
  1213   emit_byte(0xC0 | encode);
  1216 void Assembler::decl(Address dst) {
  1217   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1218   InstructionMark im(this);
  1219   prefix(dst);
  1220   emit_byte(0xFF);
  1221   emit_operand(rcx, dst);
  1224 void Assembler::divsd(XMMRegister dst, Address src) {
  1225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1226   InstructionMark im(this);
  1227   emit_byte(0xF2);
  1228   prefix(src, dst);
  1229   emit_byte(0x0F);
  1230   emit_byte(0x5E);
  1231   emit_operand(dst, src);
  1234 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1235   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1236   emit_byte(0xF2);
  1237   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1238   emit_byte(0x0F);
  1239   emit_byte(0x5E);
  1240   emit_byte(0xC0 | encode);
  1243 void Assembler::divss(XMMRegister dst, Address src) {
  1244   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1245   InstructionMark im(this);
  1246   emit_byte(0xF3);
  1247   prefix(src, dst);
  1248   emit_byte(0x0F);
  1249   emit_byte(0x5E);
  1250   emit_operand(dst, src);
  1253 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1255   emit_byte(0xF3);
  1256   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1257   emit_byte(0x0F);
  1258   emit_byte(0x5E);
  1259   emit_byte(0xC0 | encode);
  1262 void Assembler::emms() {
  1263   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1264   emit_byte(0x0F);
  1265   emit_byte(0x77);
  1268 void Assembler::hlt() {
  1269   emit_byte(0xF4);
  1272 void Assembler::idivl(Register src) {
  1273   int encode = prefix_and_encode(src->encoding());
  1274   emit_byte(0xF7);
  1275   emit_byte(0xF8 | encode);
  1278 void Assembler::imull(Register dst, Register src) {
  1279   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1280   emit_byte(0x0F);
  1281   emit_byte(0xAF);
  1282   emit_byte(0xC0 | encode);
  1286 void Assembler::imull(Register dst, Register src, int value) {
  1287   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1288   if (is8bit(value)) {
  1289     emit_byte(0x6B);
  1290     emit_byte(0xC0 | encode);
  1291     emit_byte(value & 0xFF);
  1292   } else {
  1293     emit_byte(0x69);
  1294     emit_byte(0xC0 | encode);
  1295     emit_long(value);
  1299 void Assembler::incl(Address dst) {
  1300   // Don't use it directly. Use MacroAssembler::increment() instead.
  1301   InstructionMark im(this);
  1302   prefix(dst);
  1303   emit_byte(0xFF);
  1304   emit_operand(rax, dst);
  1307 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1308   InstructionMark im(this);
  1309   relocate(rtype);
  1310   assert((0 <= cc) && (cc < 16), "illegal cc");
  1311   if (L.is_bound()) {
  1312     address dst = target(L);
  1313     assert(dst != NULL, "jcc most probably wrong");
  1315     const int short_size = 2;
  1316     const int long_size = 6;
  1317     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1318     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1319       // 0111 tttn #8-bit disp
  1320       emit_byte(0x70 | cc);
  1321       emit_byte((offs - short_size) & 0xFF);
  1322     } else {
  1323       // 0000 1111 1000 tttn #32-bit disp
  1324       assert(is_simm32(offs - long_size),
  1325              "must be 32bit offset (call4)");
  1326       emit_byte(0x0F);
  1327       emit_byte(0x80 | cc);
  1328       emit_long(offs - long_size);
  1330   } else {
  1331     // Note: could eliminate cond. jumps to this jump if condition
  1332     //       is the same however, seems to be rather unlikely case.
  1333     // Note: use jccb() if label to be bound is very close to get
  1334     //       an 8-bit displacement
  1335     L.add_patch_at(code(), locator());
  1336     emit_byte(0x0F);
  1337     emit_byte(0x80 | cc);
  1338     emit_long(0);
  1342 void Assembler::jccb(Condition cc, Label& L) {
  1343   if (L.is_bound()) {
  1344     const int short_size = 2;
  1345     address entry = target(L);
  1346     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1347            "Dispacement too large for a short jmp");
  1348     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1349     // 0111 tttn #8-bit disp
  1350     emit_byte(0x70 | cc);
  1351     emit_byte((offs - short_size) & 0xFF);
  1352   } else {
  1353     InstructionMark im(this);
  1354     L.add_patch_at(code(), locator());
  1355     emit_byte(0x70 | cc);
  1356     emit_byte(0);
  1360 void Assembler::jmp(Address adr) {
  1361   InstructionMark im(this);
  1362   prefix(adr);
  1363   emit_byte(0xFF);
  1364   emit_operand(rsp, adr);
  1367 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1368   if (L.is_bound()) {
  1369     address entry = target(L);
  1370     assert(entry != NULL, "jmp most probably wrong");
  1371     InstructionMark im(this);
  1372     const int short_size = 2;
  1373     const int long_size = 5;
  1374     intptr_t offs = entry - _code_pos;
  1375     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1376       emit_byte(0xEB);
  1377       emit_byte((offs - short_size) & 0xFF);
  1378     } else {
  1379       emit_byte(0xE9);
  1380       emit_long(offs - long_size);
  1382   } else {
  1383     // By default, forward jumps are always 32-bit displacements, since
  1384     // we can't yet know where the label will be bound.  If you're sure that
  1385     // the forward jump will not run beyond 256 bytes, use jmpb to
  1386     // force an 8-bit displacement.
  1387     InstructionMark im(this);
  1388     relocate(rtype);
  1389     L.add_patch_at(code(), locator());
  1390     emit_byte(0xE9);
  1391     emit_long(0);
  1395 void Assembler::jmp(Register entry) {
  1396   int encode = prefix_and_encode(entry->encoding());
  1397   emit_byte(0xFF);
  1398   emit_byte(0xE0 | encode);
  1401 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1402   InstructionMark im(this);
  1403   emit_byte(0xE9);
  1404   assert(dest != NULL, "must have a target");
  1405   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1406   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1407   emit_data(disp, rspec.reloc(), call32_operand);
  1410 void Assembler::jmpb(Label& L) {
  1411   if (L.is_bound()) {
  1412     const int short_size = 2;
  1413     address entry = target(L);
  1414     assert(is8bit((entry - _code_pos) + short_size),
  1415            "Dispacement too large for a short jmp");
  1416     assert(entry != NULL, "jmp most probably wrong");
  1417     intptr_t offs = entry - _code_pos;
  1418     emit_byte(0xEB);
  1419     emit_byte((offs - short_size) & 0xFF);
  1420   } else {
  1421     InstructionMark im(this);
  1422     L.add_patch_at(code(), locator());
  1423     emit_byte(0xEB);
  1424     emit_byte(0);
  1428 void Assembler::ldmxcsr( Address src) {
  1429   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1430   InstructionMark im(this);
  1431   prefix(src);
  1432   emit_byte(0x0F);
  1433   emit_byte(0xAE);
  1434   emit_operand(as_Register(2), src);
  1437 void Assembler::leal(Register dst, Address src) {
  1438   InstructionMark im(this);
  1439 #ifdef _LP64
  1440   emit_byte(0x67); // addr32
  1441   prefix(src, dst);
  1442 #endif // LP64
  1443   emit_byte(0x8D);
  1444   emit_operand(dst, src);
  1447 void Assembler::lock() {
  1448   if (Atomics & 1) {
  1449      // Emit either nothing, a NOP, or a NOP: prefix
  1450      emit_byte(0x90) ;
  1451   } else {
  1452      emit_byte(0xF0);
  1456 void Assembler::lzcntl(Register dst, Register src) {
  1457   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1458   emit_byte(0xF3);
  1459   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1460   emit_byte(0x0F);
  1461   emit_byte(0xBD);
  1462   emit_byte(0xC0 | encode);
  1465 // Emit mfence instruction
  1466 void Assembler::mfence() {
  1467   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1468   emit_byte( 0x0F );
  1469   emit_byte( 0xAE );
  1470   emit_byte( 0xF0 );
  1473 void Assembler::mov(Register dst, Register src) {
  1474   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1477 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1479   int dstenc = dst->encoding();
  1480   int srcenc = src->encoding();
  1481   emit_byte(0x66);
  1482   if (dstenc < 8) {
  1483     if (srcenc >= 8) {
  1484       prefix(REX_B);
  1485       srcenc -= 8;
  1487   } else {
  1488     if (srcenc < 8) {
  1489       prefix(REX_R);
  1490     } else {
  1491       prefix(REX_RB);
  1492       srcenc -= 8;
  1494     dstenc -= 8;
  1496   emit_byte(0x0F);
  1497   emit_byte(0x28);
  1498   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1501 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1502   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1503   int dstenc = dst->encoding();
  1504   int srcenc = src->encoding();
  1505   if (dstenc < 8) {
  1506     if (srcenc >= 8) {
  1507       prefix(REX_B);
  1508       srcenc -= 8;
  1510   } else {
  1511     if (srcenc < 8) {
  1512       prefix(REX_R);
  1513     } else {
  1514       prefix(REX_RB);
  1515       srcenc -= 8;
  1517     dstenc -= 8;
  1519   emit_byte(0x0F);
  1520   emit_byte(0x28);
  1521   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1524 void Assembler::movb(Register dst, Address src) {
  1525   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1526   InstructionMark im(this);
  1527   prefix(src, dst, true);
  1528   emit_byte(0x8A);
  1529   emit_operand(dst, src);
  1533 void Assembler::movb(Address dst, int imm8) {
  1534   InstructionMark im(this);
  1535    prefix(dst);
  1536   emit_byte(0xC6);
  1537   emit_operand(rax, dst, 1);
  1538   emit_byte(imm8);
  1542 void Assembler::movb(Address dst, Register src) {
  1543   assert(src->has_byte_register(), "must have byte register");
  1544   InstructionMark im(this);
  1545   prefix(dst, src, true);
  1546   emit_byte(0x88);
  1547   emit_operand(src, dst);
  1550 void Assembler::movdl(XMMRegister dst, Register src) {
  1551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1552   emit_byte(0x66);
  1553   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1554   emit_byte(0x0F);
  1555   emit_byte(0x6E);
  1556   emit_byte(0xC0 | encode);
  1559 void Assembler::movdl(Register dst, XMMRegister src) {
  1560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1561   emit_byte(0x66);
  1562   // swap src/dst to get correct prefix
  1563   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1564   emit_byte(0x0F);
  1565   emit_byte(0x7E);
  1566   emit_byte(0xC0 | encode);
  1569 void Assembler::movdqa(XMMRegister dst, Address src) {
  1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1571   InstructionMark im(this);
  1572   emit_byte(0x66);
  1573   prefix(src, dst);
  1574   emit_byte(0x0F);
  1575   emit_byte(0x6F);
  1576   emit_operand(dst, src);
  1579 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1580   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1581   emit_byte(0x66);
  1582   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1583   emit_byte(0x0F);
  1584   emit_byte(0x6F);
  1585   emit_byte(0xC0 | encode);
  1588 void Assembler::movdqa(Address dst, XMMRegister src) {
  1589   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1590   InstructionMark im(this);
  1591   emit_byte(0x66);
  1592   prefix(dst, src);
  1593   emit_byte(0x0F);
  1594   emit_byte(0x7F);
  1595   emit_operand(src, dst);
  1598 void Assembler::movdqu(XMMRegister dst, Address src) {
  1599   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1600   InstructionMark im(this);
  1601   emit_byte(0xF3);
  1602   prefix(src, dst);
  1603   emit_byte(0x0F);
  1604   emit_byte(0x6F);
  1605   emit_operand(dst, src);
  1608 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1610   emit_byte(0xF3);
  1611   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1612   emit_byte(0x0F);
  1613   emit_byte(0x6F);
  1614   emit_byte(0xC0 | encode);
  1617 void Assembler::movdqu(Address dst, XMMRegister src) {
  1618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1619   InstructionMark im(this);
  1620   emit_byte(0xF3);
  1621   prefix(dst, src);
  1622   emit_byte(0x0F);
  1623   emit_byte(0x7F);
  1624   emit_operand(src, dst);
  1627 // Uses zero extension on 64bit
  1629 void Assembler::movl(Register dst, int32_t imm32) {
  1630   int encode = prefix_and_encode(dst->encoding());
  1631   emit_byte(0xB8 | encode);
  1632   emit_long(imm32);
  1635 void Assembler::movl(Register dst, Register src) {
  1636   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1637   emit_byte(0x8B);
  1638   emit_byte(0xC0 | encode);
  1641 void Assembler::movl(Register dst, Address src) {
  1642   InstructionMark im(this);
  1643   prefix(src, dst);
  1644   emit_byte(0x8B);
  1645   emit_operand(dst, src);
  1648 void Assembler::movl(Address dst, int32_t imm32) {
  1649   InstructionMark im(this);
  1650   prefix(dst);
  1651   emit_byte(0xC7);
  1652   emit_operand(rax, dst, 4);
  1653   emit_long(imm32);
  1656 void Assembler::movl(Address dst, Register src) {
  1657   InstructionMark im(this);
  1658   prefix(dst, src);
  1659   emit_byte(0x89);
  1660   emit_operand(src, dst);
  1663 // New cpus require to use movsd and movss to avoid partial register stall
  1664 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1665 // The selection is done in MacroAssembler::movdbl() and movflt().
  1666 void Assembler::movlpd(XMMRegister dst, Address src) {
  1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1668   InstructionMark im(this);
  1669   emit_byte(0x66);
  1670   prefix(src, dst);
  1671   emit_byte(0x0F);
  1672   emit_byte(0x12);
  1673   emit_operand(dst, src);
  1676 void Assembler::movq( MMXRegister dst, Address src ) {
  1677   assert( VM_Version::supports_mmx(), "" );
  1678   emit_byte(0x0F);
  1679   emit_byte(0x6F);
  1680   emit_operand(dst, src);
  1683 void Assembler::movq( Address dst, MMXRegister src ) {
  1684   assert( VM_Version::supports_mmx(), "" );
  1685   emit_byte(0x0F);
  1686   emit_byte(0x7F);
  1687   // workaround gcc (3.2.1-7a) bug
  1688   // In that version of gcc with only an emit_operand(MMX, Address)
  1689   // gcc will tail jump and try and reverse the parameters completely
  1690   // obliterating dst in the process. By having a version available
  1691   // that doesn't need to swap the args at the tail jump the bug is
  1692   // avoided.
  1693   emit_operand(dst, src);
  1696 void Assembler::movq(XMMRegister dst, Address src) {
  1697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1698   InstructionMark im(this);
  1699   emit_byte(0xF3);
  1700   prefix(src, dst);
  1701   emit_byte(0x0F);
  1702   emit_byte(0x7E);
  1703   emit_operand(dst, src);
  1706 void Assembler::movq(Address dst, XMMRegister src) {
  1707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1708   InstructionMark im(this);
  1709   emit_byte(0x66);
  1710   prefix(dst, src);
  1711   emit_byte(0x0F);
  1712   emit_byte(0xD6);
  1713   emit_operand(src, dst);
  1716 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1717   InstructionMark im(this);
  1718   prefix(src, dst);
  1719   emit_byte(0x0F);
  1720   emit_byte(0xBE);
  1721   emit_operand(dst, src);
  1724 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1725   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1726   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1727   emit_byte(0x0F);
  1728   emit_byte(0xBE);
  1729   emit_byte(0xC0 | encode);
  1732 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1734   emit_byte(0xF2);
  1735   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1736   emit_byte(0x0F);
  1737   emit_byte(0x10);
  1738   emit_byte(0xC0 | encode);
  1741 void Assembler::movsd(XMMRegister dst, Address src) {
  1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1743   InstructionMark im(this);
  1744   emit_byte(0xF2);
  1745   prefix(src, dst);
  1746   emit_byte(0x0F);
  1747   emit_byte(0x10);
  1748   emit_operand(dst, src);
  1751 void Assembler::movsd(Address dst, XMMRegister src) {
  1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1753   InstructionMark im(this);
  1754   emit_byte(0xF2);
  1755   prefix(dst, src);
  1756   emit_byte(0x0F);
  1757   emit_byte(0x11);
  1758   emit_operand(src, dst);
  1761 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1762   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1763   emit_byte(0xF3);
  1764   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1765   emit_byte(0x0F);
  1766   emit_byte(0x10);
  1767   emit_byte(0xC0 | encode);
  1770 void Assembler::movss(XMMRegister dst, Address src) {
  1771   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1772   InstructionMark im(this);
  1773   emit_byte(0xF3);
  1774   prefix(src, dst);
  1775   emit_byte(0x0F);
  1776   emit_byte(0x10);
  1777   emit_operand(dst, src);
  1780 void Assembler::movss(Address dst, XMMRegister src) {
  1781   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1782   InstructionMark im(this);
  1783   emit_byte(0xF3);
  1784   prefix(dst, src);
  1785   emit_byte(0x0F);
  1786   emit_byte(0x11);
  1787   emit_operand(src, dst);
  1790 void Assembler::movswl(Register dst, Address src) { // movsxw
  1791   InstructionMark im(this);
  1792   prefix(src, dst);
  1793   emit_byte(0x0F);
  1794   emit_byte(0xBF);
  1795   emit_operand(dst, src);
  1798 void Assembler::movswl(Register dst, Register src) { // movsxw
  1799   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1800   emit_byte(0x0F);
  1801   emit_byte(0xBF);
  1802   emit_byte(0xC0 | encode);
  1805 void Assembler::movw(Address dst, int imm16) {
  1806   InstructionMark im(this);
  1808   emit_byte(0x66); // switch to 16-bit mode
  1809   prefix(dst);
  1810   emit_byte(0xC7);
  1811   emit_operand(rax, dst, 2);
  1812   emit_word(imm16);
  1815 void Assembler::movw(Register dst, Address src) {
  1816   InstructionMark im(this);
  1817   emit_byte(0x66);
  1818   prefix(src, dst);
  1819   emit_byte(0x8B);
  1820   emit_operand(dst, src);
  1823 void Assembler::movw(Address dst, Register src) {
  1824   InstructionMark im(this);
  1825   emit_byte(0x66);
  1826   prefix(dst, src);
  1827   emit_byte(0x89);
  1828   emit_operand(src, dst);
  1831 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1832   InstructionMark im(this);
  1833   prefix(src, dst);
  1834   emit_byte(0x0F);
  1835   emit_byte(0xB6);
  1836   emit_operand(dst, src);
  1839 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1840   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1841   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1842   emit_byte(0x0F);
  1843   emit_byte(0xB6);
  1844   emit_byte(0xC0 | encode);
  1847 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1848   InstructionMark im(this);
  1849   prefix(src, dst);
  1850   emit_byte(0x0F);
  1851   emit_byte(0xB7);
  1852   emit_operand(dst, src);
  1855 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1856   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1857   emit_byte(0x0F);
  1858   emit_byte(0xB7);
  1859   emit_byte(0xC0 | encode);
  1862 void Assembler::mull(Address src) {
  1863   InstructionMark im(this);
  1864   prefix(src);
  1865   emit_byte(0xF7);
  1866   emit_operand(rsp, src);
  1869 void Assembler::mull(Register src) {
  1870   int encode = prefix_and_encode(src->encoding());
  1871   emit_byte(0xF7);
  1872   emit_byte(0xE0 | encode);
  1875 void Assembler::mulsd(XMMRegister dst, Address src) {
  1876   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1877   InstructionMark im(this);
  1878   emit_byte(0xF2);
  1879   prefix(src, dst);
  1880   emit_byte(0x0F);
  1881   emit_byte(0x59);
  1882   emit_operand(dst, src);
  1885 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1887   emit_byte(0xF2);
  1888   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1889   emit_byte(0x0F);
  1890   emit_byte(0x59);
  1891   emit_byte(0xC0 | encode);
  1894 void Assembler::mulss(XMMRegister dst, Address src) {
  1895   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1896   InstructionMark im(this);
  1897   emit_byte(0xF3);
  1898   prefix(src, dst);
  1899   emit_byte(0x0F);
  1900   emit_byte(0x59);
  1901   emit_operand(dst, src);
  1904 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1905   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1906   emit_byte(0xF3);
  1907   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1908   emit_byte(0x0F);
  1909   emit_byte(0x59);
  1910   emit_byte(0xC0 | encode);
  1913 void Assembler::negl(Register dst) {
  1914   int encode = prefix_and_encode(dst->encoding());
  1915   emit_byte(0xF7);
  1916   emit_byte(0xD8 | encode);
  1919 void Assembler::nop(int i) {
  1920 #ifdef ASSERT
  1921   assert(i > 0, " ");
  1922   // The fancy nops aren't currently recognized by debuggers making it a
  1923   // pain to disassemble code while debugging. If asserts are on clearly
  1924   // speed is not an issue so simply use the single byte traditional nop
  1925   // to do alignment.
  1927   for (; i > 0 ; i--) emit_byte(0x90);
  1928   return;
  1930 #endif // ASSERT
  1932   if (UseAddressNop && VM_Version::is_intel()) {
  1933     //
  1934     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1935     //  1: 0x90
  1936     //  2: 0x66 0x90
  1937     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1938     //  4: 0x0F 0x1F 0x40 0x00
  1939     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1940     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1941     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1942     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1943     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1944     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1945     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1947     // The rest coding is Intel specific - don't use consecutive address nops
  1949     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1950     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1951     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1952     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1954     while(i >= 15) {
  1955       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1956       i -= 15;
  1957       emit_byte(0x66);   // size prefix
  1958       emit_byte(0x66);   // size prefix
  1959       emit_byte(0x66);   // size prefix
  1960       addr_nop_8();
  1961       emit_byte(0x66);   // size prefix
  1962       emit_byte(0x66);   // size prefix
  1963       emit_byte(0x66);   // size prefix
  1964       emit_byte(0x90);   // nop
  1966     switch (i) {
  1967       case 14:
  1968         emit_byte(0x66); // size prefix
  1969       case 13:
  1970         emit_byte(0x66); // size prefix
  1971       case 12:
  1972         addr_nop_8();
  1973         emit_byte(0x66); // size prefix
  1974         emit_byte(0x66); // size prefix
  1975         emit_byte(0x66); // size prefix
  1976         emit_byte(0x90); // nop
  1977         break;
  1978       case 11:
  1979         emit_byte(0x66); // size prefix
  1980       case 10:
  1981         emit_byte(0x66); // size prefix
  1982       case 9:
  1983         emit_byte(0x66); // size prefix
  1984       case 8:
  1985         addr_nop_8();
  1986         break;
  1987       case 7:
  1988         addr_nop_7();
  1989         break;
  1990       case 6:
  1991         emit_byte(0x66); // size prefix
  1992       case 5:
  1993         addr_nop_5();
  1994         break;
  1995       case 4:
  1996         addr_nop_4();
  1997         break;
  1998       case 3:
  1999         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2000         emit_byte(0x66); // size prefix
  2001       case 2:
  2002         emit_byte(0x66); // size prefix
  2003       case 1:
  2004         emit_byte(0x90); // nop
  2005         break;
  2006       default:
  2007         assert(i == 0, " ");
  2009     return;
  2011   if (UseAddressNop && VM_Version::is_amd()) {
  2012     //
  2013     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2014     //  1: 0x90
  2015     //  2: 0x66 0x90
  2016     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2017     //  4: 0x0F 0x1F 0x40 0x00
  2018     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2019     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2020     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2021     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2022     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2023     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2024     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2026     // The rest coding is AMD specific - use consecutive address nops
  2028     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2029     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2030     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2031     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2032     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2033     //     Size prefixes (0x66) are added for larger sizes
  2035     while(i >= 22) {
  2036       i -= 11;
  2037       emit_byte(0x66); // size prefix
  2038       emit_byte(0x66); // size prefix
  2039       emit_byte(0x66); // size prefix
  2040       addr_nop_8();
  2042     // Generate first nop for size between 21-12
  2043     switch (i) {
  2044       case 21:
  2045         i -= 1;
  2046         emit_byte(0x66); // size prefix
  2047       case 20:
  2048       case 19:
  2049         i -= 1;
  2050         emit_byte(0x66); // size prefix
  2051       case 18:
  2052       case 17:
  2053         i -= 1;
  2054         emit_byte(0x66); // size prefix
  2055       case 16:
  2056       case 15:
  2057         i -= 8;
  2058         addr_nop_8();
  2059         break;
  2060       case 14:
  2061       case 13:
  2062         i -= 7;
  2063         addr_nop_7();
  2064         break;
  2065       case 12:
  2066         i -= 6;
  2067         emit_byte(0x66); // size prefix
  2068         addr_nop_5();
  2069         break;
  2070       default:
  2071         assert(i < 12, " ");
  2074     // Generate second nop for size between 11-1
  2075     switch (i) {
  2076       case 11:
  2077         emit_byte(0x66); // size prefix
  2078       case 10:
  2079         emit_byte(0x66); // size prefix
  2080       case 9:
  2081         emit_byte(0x66); // size prefix
  2082       case 8:
  2083         addr_nop_8();
  2084         break;
  2085       case 7:
  2086         addr_nop_7();
  2087         break;
  2088       case 6:
  2089         emit_byte(0x66); // size prefix
  2090       case 5:
  2091         addr_nop_5();
  2092         break;
  2093       case 4:
  2094         addr_nop_4();
  2095         break;
  2096       case 3:
  2097         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2098         emit_byte(0x66); // size prefix
  2099       case 2:
  2100         emit_byte(0x66); // size prefix
  2101       case 1:
  2102         emit_byte(0x90); // nop
  2103         break;
  2104       default:
  2105         assert(i == 0, " ");
  2107     return;
  2110   // Using nops with size prefixes "0x66 0x90".
  2111   // From AMD Optimization Guide:
  2112   //  1: 0x90
  2113   //  2: 0x66 0x90
  2114   //  3: 0x66 0x66 0x90
  2115   //  4: 0x66 0x66 0x66 0x90
  2116   //  5: 0x66 0x66 0x90 0x66 0x90
  2117   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2118   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2119   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2120   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2121   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2122   //
  2123   while(i > 12) {
  2124     i -= 4;
  2125     emit_byte(0x66); // size prefix
  2126     emit_byte(0x66);
  2127     emit_byte(0x66);
  2128     emit_byte(0x90); // nop
  2130   // 1 - 12 nops
  2131   if(i > 8) {
  2132     if(i > 9) {
  2133       i -= 1;
  2134       emit_byte(0x66);
  2136     i -= 3;
  2137     emit_byte(0x66);
  2138     emit_byte(0x66);
  2139     emit_byte(0x90);
  2141   // 1 - 8 nops
  2142   if(i > 4) {
  2143     if(i > 6) {
  2144       i -= 1;
  2145       emit_byte(0x66);
  2147     i -= 3;
  2148     emit_byte(0x66);
  2149     emit_byte(0x66);
  2150     emit_byte(0x90);
  2152   switch (i) {
  2153     case 4:
  2154       emit_byte(0x66);
  2155     case 3:
  2156       emit_byte(0x66);
  2157     case 2:
  2158       emit_byte(0x66);
  2159     case 1:
  2160       emit_byte(0x90);
  2161       break;
  2162     default:
  2163       assert(i == 0, " ");
  2167 void Assembler::notl(Register dst) {
  2168   int encode = prefix_and_encode(dst->encoding());
  2169   emit_byte(0xF7);
  2170   emit_byte(0xD0 | encode );
  2173 void Assembler::orl(Address dst, int32_t imm32) {
  2174   InstructionMark im(this);
  2175   prefix(dst);
  2176   emit_byte(0x81);
  2177   emit_operand(rcx, dst, 4);
  2178   emit_long(imm32);
  2181 void Assembler::orl(Register dst, int32_t imm32) {
  2182   prefix(dst);
  2183   emit_arith(0x81, 0xC8, dst, imm32);
  2187 void Assembler::orl(Register dst, Address src) {
  2188   InstructionMark im(this);
  2189   prefix(src, dst);
  2190   emit_byte(0x0B);
  2191   emit_operand(dst, src);
  2195 void Assembler::orl(Register dst, Register src) {
  2196   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2197   emit_arith(0x0B, 0xC0, dst, src);
  2200 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2201   assert(VM_Version::supports_sse4_2(), "");
  2203   InstructionMark im(this);
  2204   emit_byte(0x66);
  2205   prefix(src, dst);
  2206   emit_byte(0x0F);
  2207   emit_byte(0x3A);
  2208   emit_byte(0x61);
  2209   emit_operand(dst, src);
  2210   emit_byte(imm8);
  2213 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2214   assert(VM_Version::supports_sse4_2(), "");
  2216   emit_byte(0x66);
  2217   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2218   emit_byte(0x0F);
  2219   emit_byte(0x3A);
  2220   emit_byte(0x61);
  2221   emit_byte(0xC0 | encode);
  2222   emit_byte(imm8);
  2225 // generic
  2226 void Assembler::pop(Register dst) {
  2227   int encode = prefix_and_encode(dst->encoding());
  2228   emit_byte(0x58 | encode);
  2231 void Assembler::popcntl(Register dst, Address src) {
  2232   assert(VM_Version::supports_popcnt(), "must support");
  2233   InstructionMark im(this);
  2234   emit_byte(0xF3);
  2235   prefix(src, dst);
  2236   emit_byte(0x0F);
  2237   emit_byte(0xB8);
  2238   emit_operand(dst, src);
  2241 void Assembler::popcntl(Register dst, Register src) {
  2242   assert(VM_Version::supports_popcnt(), "must support");
  2243   emit_byte(0xF3);
  2244   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2245   emit_byte(0x0F);
  2246   emit_byte(0xB8);
  2247   emit_byte(0xC0 | encode);
  2250 void Assembler::popf() {
  2251   emit_byte(0x9D);
  2254 #ifndef _LP64 // no 32bit push/pop on amd64
  2255 void Assembler::popl(Address dst) {
  2256   // NOTE: this will adjust stack by 8byte on 64bits
  2257   InstructionMark im(this);
  2258   prefix(dst);
  2259   emit_byte(0x8F);
  2260   emit_operand(rax, dst);
  2262 #endif
  2264 void Assembler::prefetch_prefix(Address src) {
  2265   prefix(src);
  2266   emit_byte(0x0F);
  2269 void Assembler::prefetchnta(Address src) {
  2270   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2271   InstructionMark im(this);
  2272   prefetch_prefix(src);
  2273   emit_byte(0x18);
  2274   emit_operand(rax, src); // 0, src
  2277 void Assembler::prefetchr(Address src) {
  2278   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2279   InstructionMark im(this);
  2280   prefetch_prefix(src);
  2281   emit_byte(0x0D);
  2282   emit_operand(rax, src); // 0, src
  2285 void Assembler::prefetcht0(Address src) {
  2286   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2287   InstructionMark im(this);
  2288   prefetch_prefix(src);
  2289   emit_byte(0x18);
  2290   emit_operand(rcx, src); // 1, src
  2293 void Assembler::prefetcht1(Address src) {
  2294   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2295   InstructionMark im(this);
  2296   prefetch_prefix(src);
  2297   emit_byte(0x18);
  2298   emit_operand(rdx, src); // 2, src
  2301 void Assembler::prefetcht2(Address src) {
  2302   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2303   InstructionMark im(this);
  2304   prefetch_prefix(src);
  2305   emit_byte(0x18);
  2306   emit_operand(rbx, src); // 3, src
  2309 void Assembler::prefetchw(Address src) {
  2310   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2311   InstructionMark im(this);
  2312   prefetch_prefix(src);
  2313   emit_byte(0x0D);
  2314   emit_operand(rcx, src); // 1, src
  2317 void Assembler::prefix(Prefix p) {
  2318   a_byte(p);
  2321 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2322   assert(isByte(mode), "invalid value");
  2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2325   emit_byte(0x66);
  2326   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2327   emit_byte(0x0F);
  2328   emit_byte(0x70);
  2329   emit_byte(0xC0 | encode);
  2330   emit_byte(mode & 0xFF);
  2334 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2335   assert(isByte(mode), "invalid value");
  2336   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2338   InstructionMark im(this);
  2339   emit_byte(0x66);
  2340   prefix(src, dst);
  2341   emit_byte(0x0F);
  2342   emit_byte(0x70);
  2343   emit_operand(dst, src);
  2344   emit_byte(mode & 0xFF);
  2347 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2348   assert(isByte(mode), "invalid value");
  2349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2351   emit_byte(0xF2);
  2352   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2353   emit_byte(0x0F);
  2354   emit_byte(0x70);
  2355   emit_byte(0xC0 | encode);
  2356   emit_byte(mode & 0xFF);
  2359 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2360   assert(isByte(mode), "invalid value");
  2361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2363   InstructionMark im(this);
  2364   emit_byte(0xF2);
  2365   prefix(src, dst); // QQ new
  2366   emit_byte(0x0F);
  2367   emit_byte(0x70);
  2368   emit_operand(dst, src);
  2369   emit_byte(mode & 0xFF);
  2372 void Assembler::psrlq(XMMRegister dst, int shift) {
  2373   // HMM Table D-1 says sse2 or mmx
  2374   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2376   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2377   emit_byte(0x66);
  2378   emit_byte(0x0F);
  2379   emit_byte(0x73);
  2380   emit_byte(0xC0 | encode);
  2381   emit_byte(shift);
  2384 void Assembler::ptest(XMMRegister dst, Address src) {
  2385   assert(VM_Version::supports_sse4_1(), "");
  2387   InstructionMark im(this);
  2388   emit_byte(0x66);
  2389   prefix(src, dst);
  2390   emit_byte(0x0F);
  2391   emit_byte(0x38);
  2392   emit_byte(0x17);
  2393   emit_operand(dst, src);
  2396 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2397   assert(VM_Version::supports_sse4_1(), "");
  2399   emit_byte(0x66);
  2400   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2401   emit_byte(0x0F);
  2402   emit_byte(0x38);
  2403   emit_byte(0x17);
  2404   emit_byte(0xC0 | encode);
  2407 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2409   emit_byte(0x66);
  2410   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2411   emit_byte(0x0F);
  2412   emit_byte(0x60);
  2413   emit_byte(0xC0 | encode);
  2416 void Assembler::push(int32_t imm32) {
  2417   // in 64bits we push 64bits onto the stack but only
  2418   // take a 32bit immediate
  2419   emit_byte(0x68);
  2420   emit_long(imm32);
  2423 void Assembler::push(Register src) {
  2424   int encode = prefix_and_encode(src->encoding());
  2426   emit_byte(0x50 | encode);
  2429 void Assembler::pushf() {
  2430   emit_byte(0x9C);
  2433 #ifndef _LP64 // no 32bit push/pop on amd64
  2434 void Assembler::pushl(Address src) {
  2435   // Note this will push 64bit on 64bit
  2436   InstructionMark im(this);
  2437   prefix(src);
  2438   emit_byte(0xFF);
  2439   emit_operand(rsi, src);
  2441 #endif
  2443 void Assembler::pxor(XMMRegister dst, Address src) {
  2444   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2445   InstructionMark im(this);
  2446   emit_byte(0x66);
  2447   prefix(src, dst);
  2448   emit_byte(0x0F);
  2449   emit_byte(0xEF);
  2450   emit_operand(dst, src);
  2453 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2455   InstructionMark im(this);
  2456   emit_byte(0x66);
  2457   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2458   emit_byte(0x0F);
  2459   emit_byte(0xEF);
  2460   emit_byte(0xC0 | encode);
  2463 void Assembler::rcll(Register dst, int imm8) {
  2464   assert(isShiftCount(imm8), "illegal shift count");
  2465   int encode = prefix_and_encode(dst->encoding());
  2466   if (imm8 == 1) {
  2467     emit_byte(0xD1);
  2468     emit_byte(0xD0 | encode);
  2469   } else {
  2470     emit_byte(0xC1);
  2471     emit_byte(0xD0 | encode);
  2472     emit_byte(imm8);
  2476 // copies data from [esi] to [edi] using rcx pointer sized words
  2477 // generic
  2478 void Assembler::rep_mov() {
  2479   emit_byte(0xF3);
  2480   // MOVSQ
  2481   LP64_ONLY(prefix(REX_W));
  2482   emit_byte(0xA5);
  2485 // sets rcx pointer sized words with rax, value at [edi]
  2486 // generic
  2487 void Assembler::rep_set() { // rep_set
  2488   emit_byte(0xF3);
  2489   // STOSQ
  2490   LP64_ONLY(prefix(REX_W));
  2491   emit_byte(0xAB);
  2494 // scans rcx pointer sized words at [edi] for occurance of rax,
  2495 // generic
  2496 void Assembler::repne_scan() { // repne_scan
  2497   emit_byte(0xF2);
  2498   // SCASQ
  2499   LP64_ONLY(prefix(REX_W));
  2500   emit_byte(0xAF);
  2503 #ifdef _LP64
  2504 // scans rcx 4 byte words at [edi] for occurance of rax,
  2505 // generic
  2506 void Assembler::repne_scanl() { // repne_scan
  2507   emit_byte(0xF2);
  2508   // SCASL
  2509   emit_byte(0xAF);
  2511 #endif
  2513 void Assembler::ret(int imm16) {
  2514   if (imm16 == 0) {
  2515     emit_byte(0xC3);
  2516   } else {
  2517     emit_byte(0xC2);
  2518     emit_word(imm16);
  2522 void Assembler::sahf() {
  2523 #ifdef _LP64
  2524   // Not supported in 64bit mode
  2525   ShouldNotReachHere();
  2526 #endif
  2527   emit_byte(0x9E);
  2530 void Assembler::sarl(Register dst, int imm8) {
  2531   int encode = prefix_and_encode(dst->encoding());
  2532   assert(isShiftCount(imm8), "illegal shift count");
  2533   if (imm8 == 1) {
  2534     emit_byte(0xD1);
  2535     emit_byte(0xF8 | encode);
  2536   } else {
  2537     emit_byte(0xC1);
  2538     emit_byte(0xF8 | encode);
  2539     emit_byte(imm8);
  2543 void Assembler::sarl(Register dst) {
  2544   int encode = prefix_and_encode(dst->encoding());
  2545   emit_byte(0xD3);
  2546   emit_byte(0xF8 | encode);
  2549 void Assembler::sbbl(Address dst, int32_t imm32) {
  2550   InstructionMark im(this);
  2551   prefix(dst);
  2552   emit_arith_operand(0x81, rbx, dst, imm32);
  2555 void Assembler::sbbl(Register dst, int32_t imm32) {
  2556   prefix(dst);
  2557   emit_arith(0x81, 0xD8, dst, imm32);
  2561 void Assembler::sbbl(Register dst, Address src) {
  2562   InstructionMark im(this);
  2563   prefix(src, dst);
  2564   emit_byte(0x1B);
  2565   emit_operand(dst, src);
  2568 void Assembler::sbbl(Register dst, Register src) {
  2569   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2570   emit_arith(0x1B, 0xC0, dst, src);
  2573 void Assembler::setb(Condition cc, Register dst) {
  2574   assert(0 <= cc && cc < 16, "illegal cc");
  2575   int encode = prefix_and_encode(dst->encoding(), true);
  2576   emit_byte(0x0F);
  2577   emit_byte(0x90 | cc);
  2578   emit_byte(0xC0 | encode);
  2581 void Assembler::shll(Register dst, int imm8) {
  2582   assert(isShiftCount(imm8), "illegal shift count");
  2583   int encode = prefix_and_encode(dst->encoding());
  2584   if (imm8 == 1 ) {
  2585     emit_byte(0xD1);
  2586     emit_byte(0xE0 | encode);
  2587   } else {
  2588     emit_byte(0xC1);
  2589     emit_byte(0xE0 | encode);
  2590     emit_byte(imm8);
  2594 void Assembler::shll(Register dst) {
  2595   int encode = prefix_and_encode(dst->encoding());
  2596   emit_byte(0xD3);
  2597   emit_byte(0xE0 | encode);
  2600 void Assembler::shrl(Register dst, int imm8) {
  2601   assert(isShiftCount(imm8), "illegal shift count");
  2602   int encode = prefix_and_encode(dst->encoding());
  2603   emit_byte(0xC1);
  2604   emit_byte(0xE8 | encode);
  2605   emit_byte(imm8);
  2608 void Assembler::shrl(Register dst) {
  2609   int encode = prefix_and_encode(dst->encoding());
  2610   emit_byte(0xD3);
  2611   emit_byte(0xE8 | encode);
  2614 // copies a single word from [esi] to [edi]
  2615 void Assembler::smovl() {
  2616   emit_byte(0xA5);
  2619 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2620   // HMM Table D-1 says sse2
  2621   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2622   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2623   emit_byte(0xF2);
  2624   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2625   emit_byte(0x0F);
  2626   emit_byte(0x51);
  2627   emit_byte(0xC0 | encode);
  2630 void Assembler::stmxcsr( Address dst) {
  2631   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2632   InstructionMark im(this);
  2633   prefix(dst);
  2634   emit_byte(0x0F);
  2635   emit_byte(0xAE);
  2636   emit_operand(as_Register(3), dst);
  2639 void Assembler::subl(Address dst, int32_t imm32) {
  2640   InstructionMark im(this);
  2641   prefix(dst);
  2642   if (is8bit(imm32)) {
  2643     emit_byte(0x83);
  2644     emit_operand(rbp, dst, 1);
  2645     emit_byte(imm32 & 0xFF);
  2646   } else {
  2647     emit_byte(0x81);
  2648     emit_operand(rbp, dst, 4);
  2649     emit_long(imm32);
  2653 void Assembler::subl(Register dst, int32_t imm32) {
  2654   prefix(dst);
  2655   emit_arith(0x81, 0xE8, dst, imm32);
  2658 void Assembler::subl(Address dst, Register src) {
  2659   InstructionMark im(this);
  2660   prefix(dst, src);
  2661   emit_byte(0x29);
  2662   emit_operand(src, dst);
  2665 void Assembler::subl(Register dst, Address src) {
  2666   InstructionMark im(this);
  2667   prefix(src, dst);
  2668   emit_byte(0x2B);
  2669   emit_operand(dst, src);
  2672 void Assembler::subl(Register dst, Register src) {
  2673   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2674   emit_arith(0x2B, 0xC0, dst, src);
  2677 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2679   emit_byte(0xF2);
  2680   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2681   emit_byte(0x0F);
  2682   emit_byte(0x5C);
  2683   emit_byte(0xC0 | encode);
  2686 void Assembler::subsd(XMMRegister dst, Address src) {
  2687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2688   InstructionMark im(this);
  2689   emit_byte(0xF2);
  2690   prefix(src, dst);
  2691   emit_byte(0x0F);
  2692   emit_byte(0x5C);
  2693   emit_operand(dst, src);
  2696 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2697   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2698   emit_byte(0xF3);
  2699   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2700   emit_byte(0x0F);
  2701   emit_byte(0x5C);
  2702   emit_byte(0xC0 | encode);
  2705 void Assembler::subss(XMMRegister dst, Address src) {
  2706   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2707   InstructionMark im(this);
  2708   emit_byte(0xF3);
  2709   prefix(src, dst);
  2710   emit_byte(0x0F);
  2711   emit_byte(0x5C);
  2712   emit_operand(dst, src);
  2715 void Assembler::testb(Register dst, int imm8) {
  2716   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2717   (void) prefix_and_encode(dst->encoding(), true);
  2718   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2721 void Assembler::testl(Register dst, int32_t imm32) {
  2722   // not using emit_arith because test
  2723   // doesn't support sign-extension of
  2724   // 8bit operands
  2725   int encode = dst->encoding();
  2726   if (encode == 0) {
  2727     emit_byte(0xA9);
  2728   } else {
  2729     encode = prefix_and_encode(encode);
  2730     emit_byte(0xF7);
  2731     emit_byte(0xC0 | encode);
  2733   emit_long(imm32);
  2736 void Assembler::testl(Register dst, Register src) {
  2737   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2738   emit_arith(0x85, 0xC0, dst, src);
  2741 void Assembler::testl(Register dst, Address  src) {
  2742   InstructionMark im(this);
  2743   prefix(src, dst);
  2744   emit_byte(0x85);
  2745   emit_operand(dst, src);
  2748 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2750   emit_byte(0x66);
  2751   ucomiss(dst, src);
  2754 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2756   emit_byte(0x66);
  2757   ucomiss(dst, src);
  2760 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2761   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2763   InstructionMark im(this);
  2764   prefix(src, dst);
  2765   emit_byte(0x0F);
  2766   emit_byte(0x2E);
  2767   emit_operand(dst, src);
  2770 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2771   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2772   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2773   emit_byte(0x0F);
  2774   emit_byte(0x2E);
  2775   emit_byte(0xC0 | encode);
  2779 void Assembler::xaddl(Address dst, Register src) {
  2780   InstructionMark im(this);
  2781   prefix(dst, src);
  2782   emit_byte(0x0F);
  2783   emit_byte(0xC1);
  2784   emit_operand(src, dst);
  2787 void Assembler::xchgl(Register dst, Address src) { // xchg
  2788   InstructionMark im(this);
  2789   prefix(src, dst);
  2790   emit_byte(0x87);
  2791   emit_operand(dst, src);
  2794 void Assembler::xchgl(Register dst, Register src) {
  2795   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2796   emit_byte(0x87);
  2797   emit_byte(0xc0 | encode);
  2800 void Assembler::xorl(Register dst, int32_t imm32) {
  2801   prefix(dst);
  2802   emit_arith(0x81, 0xF0, dst, imm32);
  2805 void Assembler::xorl(Register dst, Address src) {
  2806   InstructionMark im(this);
  2807   prefix(src, dst);
  2808   emit_byte(0x33);
  2809   emit_operand(dst, src);
  2812 void Assembler::xorl(Register dst, Register src) {
  2813   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2814   emit_arith(0x33, 0xC0, dst, src);
  2817 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2819   emit_byte(0x66);
  2820   xorps(dst, src);
  2823 void Assembler::xorpd(XMMRegister dst, Address src) {
  2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2825   InstructionMark im(this);
  2826   emit_byte(0x66);
  2827   prefix(src, dst);
  2828   emit_byte(0x0F);
  2829   emit_byte(0x57);
  2830   emit_operand(dst, src);
  2834 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2836   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2837   emit_byte(0x0F);
  2838   emit_byte(0x57);
  2839   emit_byte(0xC0 | encode);
  2842 void Assembler::xorps(XMMRegister dst, Address src) {
  2843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2844   InstructionMark im(this);
  2845   prefix(src, dst);
  2846   emit_byte(0x0F);
  2847   emit_byte(0x57);
  2848   emit_operand(dst, src);
  2851 #ifndef _LP64
  2852 // 32bit only pieces of the assembler
  2854 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2855   // NO PREFIX AS NEVER 64BIT
  2856   InstructionMark im(this);
  2857   emit_byte(0x81);
  2858   emit_byte(0xF8 | src1->encoding());
  2859   emit_data(imm32, rspec, 0);
  2862 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2863   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2864   InstructionMark im(this);
  2865   emit_byte(0x81);
  2866   emit_operand(rdi, src1);
  2867   emit_data(imm32, rspec, 0);
  2870 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2871 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2872 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2873 void Assembler::cmpxchg8(Address adr) {
  2874   InstructionMark im(this);
  2875   emit_byte(0x0F);
  2876   emit_byte(0xc7);
  2877   emit_operand(rcx, adr);
  2880 void Assembler::decl(Register dst) {
  2881   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2882  emit_byte(0x48 | dst->encoding());
  2885 #endif // _LP64
  2887 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2889 void Assembler::fabs() {
  2890   emit_byte(0xD9);
  2891   emit_byte(0xE1);
  2894 void Assembler::fadd(int i) {
  2895   emit_farith(0xD8, 0xC0, i);
  2898 void Assembler::fadd_d(Address src) {
  2899   InstructionMark im(this);
  2900   emit_byte(0xDC);
  2901   emit_operand32(rax, src);
  2904 void Assembler::fadd_s(Address src) {
  2905   InstructionMark im(this);
  2906   emit_byte(0xD8);
  2907   emit_operand32(rax, src);
  2910 void Assembler::fadda(int i) {
  2911   emit_farith(0xDC, 0xC0, i);
  2914 void Assembler::faddp(int i) {
  2915   emit_farith(0xDE, 0xC0, i);
  2918 void Assembler::fchs() {
  2919   emit_byte(0xD9);
  2920   emit_byte(0xE0);
  2923 void Assembler::fcom(int i) {
  2924   emit_farith(0xD8, 0xD0, i);
  2927 void Assembler::fcomp(int i) {
  2928   emit_farith(0xD8, 0xD8, i);
  2931 void Assembler::fcomp_d(Address src) {
  2932   InstructionMark im(this);
  2933   emit_byte(0xDC);
  2934   emit_operand32(rbx, src);
  2937 void Assembler::fcomp_s(Address src) {
  2938   InstructionMark im(this);
  2939   emit_byte(0xD8);
  2940   emit_operand32(rbx, src);
  2943 void Assembler::fcompp() {
  2944   emit_byte(0xDE);
  2945   emit_byte(0xD9);
  2948 void Assembler::fcos() {
  2949   emit_byte(0xD9);
  2950   emit_byte(0xFF);
  2953 void Assembler::fdecstp() {
  2954   emit_byte(0xD9);
  2955   emit_byte(0xF6);
  2958 void Assembler::fdiv(int i) {
  2959   emit_farith(0xD8, 0xF0, i);
  2962 void Assembler::fdiv_d(Address src) {
  2963   InstructionMark im(this);
  2964   emit_byte(0xDC);
  2965   emit_operand32(rsi, src);
  2968 void Assembler::fdiv_s(Address src) {
  2969   InstructionMark im(this);
  2970   emit_byte(0xD8);
  2971   emit_operand32(rsi, src);
  2974 void Assembler::fdiva(int i) {
  2975   emit_farith(0xDC, 0xF8, i);
  2978 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  2979 //       is erroneous for some of the floating-point instructions below.
  2981 void Assembler::fdivp(int i) {
  2982   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  2985 void Assembler::fdivr(int i) {
  2986   emit_farith(0xD8, 0xF8, i);
  2989 void Assembler::fdivr_d(Address src) {
  2990   InstructionMark im(this);
  2991   emit_byte(0xDC);
  2992   emit_operand32(rdi, src);
  2995 void Assembler::fdivr_s(Address src) {
  2996   InstructionMark im(this);
  2997   emit_byte(0xD8);
  2998   emit_operand32(rdi, src);
  3001 void Assembler::fdivra(int i) {
  3002   emit_farith(0xDC, 0xF0, i);
  3005 void Assembler::fdivrp(int i) {
  3006   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3009 void Assembler::ffree(int i) {
  3010   emit_farith(0xDD, 0xC0, i);
  3013 void Assembler::fild_d(Address adr) {
  3014   InstructionMark im(this);
  3015   emit_byte(0xDF);
  3016   emit_operand32(rbp, adr);
  3019 void Assembler::fild_s(Address adr) {
  3020   InstructionMark im(this);
  3021   emit_byte(0xDB);
  3022   emit_operand32(rax, adr);
  3025 void Assembler::fincstp() {
  3026   emit_byte(0xD9);
  3027   emit_byte(0xF7);
  3030 void Assembler::finit() {
  3031   emit_byte(0x9B);
  3032   emit_byte(0xDB);
  3033   emit_byte(0xE3);
  3036 void Assembler::fist_s(Address adr) {
  3037   InstructionMark im(this);
  3038   emit_byte(0xDB);
  3039   emit_operand32(rdx, adr);
  3042 void Assembler::fistp_d(Address adr) {
  3043   InstructionMark im(this);
  3044   emit_byte(0xDF);
  3045   emit_operand32(rdi, adr);
  3048 void Assembler::fistp_s(Address adr) {
  3049   InstructionMark im(this);
  3050   emit_byte(0xDB);
  3051   emit_operand32(rbx, adr);
  3054 void Assembler::fld1() {
  3055   emit_byte(0xD9);
  3056   emit_byte(0xE8);
  3059 void Assembler::fld_d(Address adr) {
  3060   InstructionMark im(this);
  3061   emit_byte(0xDD);
  3062   emit_operand32(rax, adr);
  3065 void Assembler::fld_s(Address adr) {
  3066   InstructionMark im(this);
  3067   emit_byte(0xD9);
  3068   emit_operand32(rax, adr);
  3072 void Assembler::fld_s(int index) {
  3073   emit_farith(0xD9, 0xC0, index);
  3076 void Assembler::fld_x(Address adr) {
  3077   InstructionMark im(this);
  3078   emit_byte(0xDB);
  3079   emit_operand32(rbp, adr);
  3082 void Assembler::fldcw(Address src) {
  3083   InstructionMark im(this);
  3084   emit_byte(0xd9);
  3085   emit_operand32(rbp, src);
  3088 void Assembler::fldenv(Address src) {
  3089   InstructionMark im(this);
  3090   emit_byte(0xD9);
  3091   emit_operand32(rsp, src);
  3094 void Assembler::fldlg2() {
  3095   emit_byte(0xD9);
  3096   emit_byte(0xEC);
  3099 void Assembler::fldln2() {
  3100   emit_byte(0xD9);
  3101   emit_byte(0xED);
  3104 void Assembler::fldz() {
  3105   emit_byte(0xD9);
  3106   emit_byte(0xEE);
  3109 void Assembler::flog() {
  3110   fldln2();
  3111   fxch();
  3112   fyl2x();
  3115 void Assembler::flog10() {
  3116   fldlg2();
  3117   fxch();
  3118   fyl2x();
  3121 void Assembler::fmul(int i) {
  3122   emit_farith(0xD8, 0xC8, i);
  3125 void Assembler::fmul_d(Address src) {
  3126   InstructionMark im(this);
  3127   emit_byte(0xDC);
  3128   emit_operand32(rcx, src);
  3131 void Assembler::fmul_s(Address src) {
  3132   InstructionMark im(this);
  3133   emit_byte(0xD8);
  3134   emit_operand32(rcx, src);
  3137 void Assembler::fmula(int i) {
  3138   emit_farith(0xDC, 0xC8, i);
  3141 void Assembler::fmulp(int i) {
  3142   emit_farith(0xDE, 0xC8, i);
  3145 void Assembler::fnsave(Address dst) {
  3146   InstructionMark im(this);
  3147   emit_byte(0xDD);
  3148   emit_operand32(rsi, dst);
  3151 void Assembler::fnstcw(Address src) {
  3152   InstructionMark im(this);
  3153   emit_byte(0x9B);
  3154   emit_byte(0xD9);
  3155   emit_operand32(rdi, src);
  3158 void Assembler::fnstsw_ax() {
  3159   emit_byte(0xdF);
  3160   emit_byte(0xE0);
  3163 void Assembler::fprem() {
  3164   emit_byte(0xD9);
  3165   emit_byte(0xF8);
  3168 void Assembler::fprem1() {
  3169   emit_byte(0xD9);
  3170   emit_byte(0xF5);
  3173 void Assembler::frstor(Address src) {
  3174   InstructionMark im(this);
  3175   emit_byte(0xDD);
  3176   emit_operand32(rsp, src);
  3179 void Assembler::fsin() {
  3180   emit_byte(0xD9);
  3181   emit_byte(0xFE);
  3184 void Assembler::fsqrt() {
  3185   emit_byte(0xD9);
  3186   emit_byte(0xFA);
  3189 void Assembler::fst_d(Address adr) {
  3190   InstructionMark im(this);
  3191   emit_byte(0xDD);
  3192   emit_operand32(rdx, adr);
  3195 void Assembler::fst_s(Address adr) {
  3196   InstructionMark im(this);
  3197   emit_byte(0xD9);
  3198   emit_operand32(rdx, adr);
  3201 void Assembler::fstp_d(Address adr) {
  3202   InstructionMark im(this);
  3203   emit_byte(0xDD);
  3204   emit_operand32(rbx, adr);
  3207 void Assembler::fstp_d(int index) {
  3208   emit_farith(0xDD, 0xD8, index);
  3211 void Assembler::fstp_s(Address adr) {
  3212   InstructionMark im(this);
  3213   emit_byte(0xD9);
  3214   emit_operand32(rbx, adr);
  3217 void Assembler::fstp_x(Address adr) {
  3218   InstructionMark im(this);
  3219   emit_byte(0xDB);
  3220   emit_operand32(rdi, adr);
  3223 void Assembler::fsub(int i) {
  3224   emit_farith(0xD8, 0xE0, i);
  3227 void Assembler::fsub_d(Address src) {
  3228   InstructionMark im(this);
  3229   emit_byte(0xDC);
  3230   emit_operand32(rsp, src);
  3233 void Assembler::fsub_s(Address src) {
  3234   InstructionMark im(this);
  3235   emit_byte(0xD8);
  3236   emit_operand32(rsp, src);
  3239 void Assembler::fsuba(int i) {
  3240   emit_farith(0xDC, 0xE8, i);
  3243 void Assembler::fsubp(int i) {
  3244   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3247 void Assembler::fsubr(int i) {
  3248   emit_farith(0xD8, 0xE8, i);
  3251 void Assembler::fsubr_d(Address src) {
  3252   InstructionMark im(this);
  3253   emit_byte(0xDC);
  3254   emit_operand32(rbp, src);
  3257 void Assembler::fsubr_s(Address src) {
  3258   InstructionMark im(this);
  3259   emit_byte(0xD8);
  3260   emit_operand32(rbp, src);
  3263 void Assembler::fsubra(int i) {
  3264   emit_farith(0xDC, 0xE0, i);
  3267 void Assembler::fsubrp(int i) {
  3268   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3271 void Assembler::ftan() {
  3272   emit_byte(0xD9);
  3273   emit_byte(0xF2);
  3274   emit_byte(0xDD);
  3275   emit_byte(0xD8);
  3278 void Assembler::ftst() {
  3279   emit_byte(0xD9);
  3280   emit_byte(0xE4);
  3283 void Assembler::fucomi(int i) {
  3284   // make sure the instruction is supported (introduced for P6, together with cmov)
  3285   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3286   emit_farith(0xDB, 0xE8, i);
  3289 void Assembler::fucomip(int i) {
  3290   // make sure the instruction is supported (introduced for P6, together with cmov)
  3291   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3292   emit_farith(0xDF, 0xE8, i);
  3295 void Assembler::fwait() {
  3296   emit_byte(0x9B);
  3299 void Assembler::fxch(int i) {
  3300   emit_farith(0xD9, 0xC8, i);
  3303 void Assembler::fyl2x() {
  3304   emit_byte(0xD9);
  3305   emit_byte(0xF1);
  3309 #ifndef _LP64
  3311 void Assembler::incl(Register dst) {
  3312   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3313  emit_byte(0x40 | dst->encoding());
  3316 void Assembler::lea(Register dst, Address src) {
  3317   leal(dst, src);
  3320 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3321   InstructionMark im(this);
  3322   emit_byte(0xC7);
  3323   emit_operand(rax, dst);
  3324   emit_data((int)imm32, rspec, 0);
  3327 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3328   InstructionMark im(this);
  3329   int encode = prefix_and_encode(dst->encoding());
  3330   emit_byte(0xB8 | encode);
  3331   emit_data((int)imm32, rspec, 0);
  3334 void Assembler::popa() { // 32bit
  3335   emit_byte(0x61);
  3338 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3339   InstructionMark im(this);
  3340   emit_byte(0x68);
  3341   emit_data(imm32, rspec, 0);
  3344 void Assembler::pusha() { // 32bit
  3345   emit_byte(0x60);
  3348 void Assembler::set_byte_if_not_zero(Register dst) {
  3349   emit_byte(0x0F);
  3350   emit_byte(0x95);
  3351   emit_byte(0xE0 | dst->encoding());
  3354 void Assembler::shldl(Register dst, Register src) {
  3355   emit_byte(0x0F);
  3356   emit_byte(0xA5);
  3357   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3360 void Assembler::shrdl(Register dst, Register src) {
  3361   emit_byte(0x0F);
  3362   emit_byte(0xAD);
  3363   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3366 #else // LP64
  3368 void Assembler::set_byte_if_not_zero(Register dst) {
  3369   int enc = prefix_and_encode(dst->encoding(), true);
  3370   emit_byte(0x0F);
  3371   emit_byte(0x95);
  3372   emit_byte(0xE0 | enc);
  3375 // 64bit only pieces of the assembler
  3376 // This should only be used by 64bit instructions that can use rip-relative
  3377 // it cannot be used by instructions that want an immediate value.
  3379 bool Assembler::reachable(AddressLiteral adr) {
  3380   int64_t disp;
  3381   // None will force a 64bit literal to the code stream. Likely a placeholder
  3382   // for something that will be patched later and we need to certain it will
  3383   // always be reachable.
  3384   if (adr.reloc() == relocInfo::none) {
  3385     return false;
  3387   if (adr.reloc() == relocInfo::internal_word_type) {
  3388     // This should be rip relative and easily reachable.
  3389     return true;
  3391   if (adr.reloc() == relocInfo::virtual_call_type ||
  3392       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3393       adr.reloc() == relocInfo::static_call_type ||
  3394       adr.reloc() == relocInfo::static_stub_type ) {
  3395     // This should be rip relative within the code cache and easily
  3396     // reachable until we get huge code caches. (At which point
  3397     // ic code is going to have issues).
  3398     return true;
  3400   if (adr.reloc() != relocInfo::external_word_type &&
  3401       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3402       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3403       adr.reloc() != relocInfo::runtime_call_type ) {
  3404     return false;
  3407   // Stress the correction code
  3408   if (ForceUnreachable) {
  3409     // Must be runtimecall reloc, see if it is in the codecache
  3410     // Flipping stuff in the codecache to be unreachable causes issues
  3411     // with things like inline caches where the additional instructions
  3412     // are not handled.
  3413     if (CodeCache::find_blob(adr._target) == NULL) {
  3414       return false;
  3417   // For external_word_type/runtime_call_type if it is reachable from where we
  3418   // are now (possibly a temp buffer) and where we might end up
  3419   // anywhere in the codeCache then we are always reachable.
  3420   // This would have to change if we ever save/restore shared code
  3421   // to be more pessimistic.
  3423   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3424   if (!is_simm32(disp)) return false;
  3425   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3426   if (!is_simm32(disp)) return false;
  3428   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3430   // Because rip relative is a disp + address_of_next_instruction and we
  3431   // don't know the value of address_of_next_instruction we apply a fudge factor
  3432   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3433   // We don't have to fudge the checks above here because they are already worst case.
  3435   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3436   // + 4 because better safe than sorry.
  3437   const int fudge = 12 + 4;
  3438   if (disp < 0) {
  3439     disp -= fudge;
  3440   } else {
  3441     disp += fudge;
  3443   return is_simm32(disp);
  3446 void Assembler::emit_data64(jlong data,
  3447                             relocInfo::relocType rtype,
  3448                             int format) {
  3449   if (rtype == relocInfo::none) {
  3450     emit_long64(data);
  3451   } else {
  3452     emit_data64(data, Relocation::spec_simple(rtype), format);
  3456 void Assembler::emit_data64(jlong data,
  3457                             RelocationHolder const& rspec,
  3458                             int format) {
  3459   assert(imm_operand == 0, "default format must be immediate in this file");
  3460   assert(imm_operand == format, "must be immediate");
  3461   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3462   // Do not use AbstractAssembler::relocate, which is not intended for
  3463   // embedded words.  Instead, relocate to the enclosing instruction.
  3464   code_section()->relocate(inst_mark(), rspec, format);
  3465 #ifdef ASSERT
  3466   check_relocation(rspec, format);
  3467 #endif
  3468   emit_long64(data);
  3471 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3472   if (reg_enc >= 8) {
  3473     prefix(REX_B);
  3474     reg_enc -= 8;
  3475   } else if (byteinst && reg_enc >= 4) {
  3476     prefix(REX);
  3478   return reg_enc;
  3481 int Assembler::prefixq_and_encode(int reg_enc) {
  3482   if (reg_enc < 8) {
  3483     prefix(REX_W);
  3484   } else {
  3485     prefix(REX_WB);
  3486     reg_enc -= 8;
  3488   return reg_enc;
  3491 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3492   if (dst_enc < 8) {
  3493     if (src_enc >= 8) {
  3494       prefix(REX_B);
  3495       src_enc -= 8;
  3496     } else if (byteinst && src_enc >= 4) {
  3497       prefix(REX);
  3499   } else {
  3500     if (src_enc < 8) {
  3501       prefix(REX_R);
  3502     } else {
  3503       prefix(REX_RB);
  3504       src_enc -= 8;
  3506     dst_enc -= 8;
  3508   return dst_enc << 3 | src_enc;
  3511 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3512   if (dst_enc < 8) {
  3513     if (src_enc < 8) {
  3514       prefix(REX_W);
  3515     } else {
  3516       prefix(REX_WB);
  3517       src_enc -= 8;
  3519   } else {
  3520     if (src_enc < 8) {
  3521       prefix(REX_WR);
  3522     } else {
  3523       prefix(REX_WRB);
  3524       src_enc -= 8;
  3526     dst_enc -= 8;
  3528   return dst_enc << 3 | src_enc;
  3531 void Assembler::prefix(Register reg) {
  3532   if (reg->encoding() >= 8) {
  3533     prefix(REX_B);
  3537 void Assembler::prefix(Address adr) {
  3538   if (adr.base_needs_rex()) {
  3539     if (adr.index_needs_rex()) {
  3540       prefix(REX_XB);
  3541     } else {
  3542       prefix(REX_B);
  3544   } else {
  3545     if (adr.index_needs_rex()) {
  3546       prefix(REX_X);
  3551 void Assembler::prefixq(Address adr) {
  3552   if (adr.base_needs_rex()) {
  3553     if (adr.index_needs_rex()) {
  3554       prefix(REX_WXB);
  3555     } else {
  3556       prefix(REX_WB);
  3558   } else {
  3559     if (adr.index_needs_rex()) {
  3560       prefix(REX_WX);
  3561     } else {
  3562       prefix(REX_W);
  3568 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3569   if (reg->encoding() < 8) {
  3570     if (adr.base_needs_rex()) {
  3571       if (adr.index_needs_rex()) {
  3572         prefix(REX_XB);
  3573       } else {
  3574         prefix(REX_B);
  3576     } else {
  3577       if (adr.index_needs_rex()) {
  3578         prefix(REX_X);
  3579       } else if (reg->encoding() >= 4 ) {
  3580         prefix(REX);
  3583   } else {
  3584     if (adr.base_needs_rex()) {
  3585       if (adr.index_needs_rex()) {
  3586         prefix(REX_RXB);
  3587       } else {
  3588         prefix(REX_RB);
  3590     } else {
  3591       if (adr.index_needs_rex()) {
  3592         prefix(REX_RX);
  3593       } else {
  3594         prefix(REX_R);
  3600 void Assembler::prefixq(Address adr, Register src) {
  3601   if (src->encoding() < 8) {
  3602     if (adr.base_needs_rex()) {
  3603       if (adr.index_needs_rex()) {
  3604         prefix(REX_WXB);
  3605       } else {
  3606         prefix(REX_WB);
  3608     } else {
  3609       if (adr.index_needs_rex()) {
  3610         prefix(REX_WX);
  3611       } else {
  3612         prefix(REX_W);
  3615   } else {
  3616     if (adr.base_needs_rex()) {
  3617       if (adr.index_needs_rex()) {
  3618         prefix(REX_WRXB);
  3619       } else {
  3620         prefix(REX_WRB);
  3622     } else {
  3623       if (adr.index_needs_rex()) {
  3624         prefix(REX_WRX);
  3625       } else {
  3626         prefix(REX_WR);
  3632 void Assembler::prefix(Address adr, XMMRegister reg) {
  3633   if (reg->encoding() < 8) {
  3634     if (adr.base_needs_rex()) {
  3635       if (adr.index_needs_rex()) {
  3636         prefix(REX_XB);
  3637       } else {
  3638         prefix(REX_B);
  3640     } else {
  3641       if (adr.index_needs_rex()) {
  3642         prefix(REX_X);
  3645   } else {
  3646     if (adr.base_needs_rex()) {
  3647       if (adr.index_needs_rex()) {
  3648         prefix(REX_RXB);
  3649       } else {
  3650         prefix(REX_RB);
  3652     } else {
  3653       if (adr.index_needs_rex()) {
  3654         prefix(REX_RX);
  3655       } else {
  3656         prefix(REX_R);
  3662 void Assembler::adcq(Register dst, int32_t imm32) {
  3663   (void) prefixq_and_encode(dst->encoding());
  3664   emit_arith(0x81, 0xD0, dst, imm32);
  3667 void Assembler::adcq(Register dst, Address src) {
  3668   InstructionMark im(this);
  3669   prefixq(src, dst);
  3670   emit_byte(0x13);
  3671   emit_operand(dst, src);
  3674 void Assembler::adcq(Register dst, Register src) {
  3675   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3676   emit_arith(0x13, 0xC0, dst, src);
  3679 void Assembler::addq(Address dst, int32_t imm32) {
  3680   InstructionMark im(this);
  3681   prefixq(dst);
  3682   emit_arith_operand(0x81, rax, dst,imm32);
  3685 void Assembler::addq(Address dst, Register src) {
  3686   InstructionMark im(this);
  3687   prefixq(dst, src);
  3688   emit_byte(0x01);
  3689   emit_operand(src, dst);
  3692 void Assembler::addq(Register dst, int32_t imm32) {
  3693   (void) prefixq_and_encode(dst->encoding());
  3694   emit_arith(0x81, 0xC0, dst, imm32);
  3697 void Assembler::addq(Register dst, Address src) {
  3698   InstructionMark im(this);
  3699   prefixq(src, dst);
  3700   emit_byte(0x03);
  3701   emit_operand(dst, src);
  3704 void Assembler::addq(Register dst, Register src) {
  3705   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3706   emit_arith(0x03, 0xC0, dst, src);
  3709 void Assembler::andq(Register dst, int32_t imm32) {
  3710   (void) prefixq_and_encode(dst->encoding());
  3711   emit_arith(0x81, 0xE0, dst, imm32);
  3714 void Assembler::andq(Register dst, Address src) {
  3715   InstructionMark im(this);
  3716   prefixq(src, dst);
  3717   emit_byte(0x23);
  3718   emit_operand(dst, src);
  3721 void Assembler::andq(Register dst, Register src) {
  3722   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3723   emit_arith(0x23, 0xC0, dst, src);
  3726 void Assembler::bsfq(Register dst, Register src) {
  3727   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3728   emit_byte(0x0F);
  3729   emit_byte(0xBC);
  3730   emit_byte(0xC0 | encode);
  3733 void Assembler::bsrq(Register dst, Register src) {
  3734   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  3735   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3736   emit_byte(0x0F);
  3737   emit_byte(0xBD);
  3738   emit_byte(0xC0 | encode);
  3741 void Assembler::bswapq(Register reg) {
  3742   int encode = prefixq_and_encode(reg->encoding());
  3743   emit_byte(0x0F);
  3744   emit_byte(0xC8 | encode);
  3747 void Assembler::cdqq() {
  3748   prefix(REX_W);
  3749   emit_byte(0x99);
  3752 void Assembler::clflush(Address adr) {
  3753   prefix(adr);
  3754   emit_byte(0x0F);
  3755   emit_byte(0xAE);
  3756   emit_operand(rdi, adr);
  3759 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3760   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3761   emit_byte(0x0F);
  3762   emit_byte(0x40 | cc);
  3763   emit_byte(0xC0 | encode);
  3766 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3767   InstructionMark im(this);
  3768   prefixq(src, dst);
  3769   emit_byte(0x0F);
  3770   emit_byte(0x40 | cc);
  3771   emit_operand(dst, src);
  3774 void Assembler::cmpq(Address dst, int32_t imm32) {
  3775   InstructionMark im(this);
  3776   prefixq(dst);
  3777   emit_byte(0x81);
  3778   emit_operand(rdi, dst, 4);
  3779   emit_long(imm32);
  3782 void Assembler::cmpq(Register dst, int32_t imm32) {
  3783   (void) prefixq_and_encode(dst->encoding());
  3784   emit_arith(0x81, 0xF8, dst, imm32);
  3787 void Assembler::cmpq(Address dst, Register src) {
  3788   InstructionMark im(this);
  3789   prefixq(dst, src);
  3790   emit_byte(0x3B);
  3791   emit_operand(src, dst);
  3794 void Assembler::cmpq(Register dst, Register src) {
  3795   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3796   emit_arith(0x3B, 0xC0, dst, src);
  3799 void Assembler::cmpq(Register dst, Address  src) {
  3800   InstructionMark im(this);
  3801   prefixq(src, dst);
  3802   emit_byte(0x3B);
  3803   emit_operand(dst, src);
  3806 void Assembler::cmpxchgq(Register reg, Address adr) {
  3807   InstructionMark im(this);
  3808   prefixq(adr, reg);
  3809   emit_byte(0x0F);
  3810   emit_byte(0xB1);
  3811   emit_operand(reg, adr);
  3814 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3816   emit_byte(0xF2);
  3817   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3818   emit_byte(0x0F);
  3819   emit_byte(0x2A);
  3820   emit_byte(0xC0 | encode);
  3823 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3824   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3825   emit_byte(0xF3);
  3826   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3827   emit_byte(0x0F);
  3828   emit_byte(0x2A);
  3829   emit_byte(0xC0 | encode);
  3832 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3833   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3834   emit_byte(0xF2);
  3835   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3836   emit_byte(0x0F);
  3837   emit_byte(0x2C);
  3838   emit_byte(0xC0 | encode);
  3841 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3842   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3843   emit_byte(0xF3);
  3844   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3845   emit_byte(0x0F);
  3846   emit_byte(0x2C);
  3847   emit_byte(0xC0 | encode);
  3850 void Assembler::decl(Register dst) {
  3851   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3852   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3853   int encode = prefix_and_encode(dst->encoding());
  3854   emit_byte(0xFF);
  3855   emit_byte(0xC8 | encode);
  3858 void Assembler::decq(Register dst) {
  3859   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3860   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3861   int encode = prefixq_and_encode(dst->encoding());
  3862   emit_byte(0xFF);
  3863   emit_byte(0xC8 | encode);
  3866 void Assembler::decq(Address dst) {
  3867   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3868   InstructionMark im(this);
  3869   prefixq(dst);
  3870   emit_byte(0xFF);
  3871   emit_operand(rcx, dst);
  3874 void Assembler::fxrstor(Address src) {
  3875   prefixq(src);
  3876   emit_byte(0x0F);
  3877   emit_byte(0xAE);
  3878   emit_operand(as_Register(1), src);
  3881 void Assembler::fxsave(Address dst) {
  3882   prefixq(dst);
  3883   emit_byte(0x0F);
  3884   emit_byte(0xAE);
  3885   emit_operand(as_Register(0), dst);
  3888 void Assembler::idivq(Register src) {
  3889   int encode = prefixq_and_encode(src->encoding());
  3890   emit_byte(0xF7);
  3891   emit_byte(0xF8 | encode);
  3894 void Assembler::imulq(Register dst, Register src) {
  3895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3896   emit_byte(0x0F);
  3897   emit_byte(0xAF);
  3898   emit_byte(0xC0 | encode);
  3901 void Assembler::imulq(Register dst, Register src, int value) {
  3902   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3903   if (is8bit(value)) {
  3904     emit_byte(0x6B);
  3905     emit_byte(0xC0 | encode);
  3906     emit_byte(value & 0xFF);
  3907   } else {
  3908     emit_byte(0x69);
  3909     emit_byte(0xC0 | encode);
  3910     emit_long(value);
  3914 void Assembler::incl(Register dst) {
  3915   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3916   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3917   int encode = prefix_and_encode(dst->encoding());
  3918   emit_byte(0xFF);
  3919   emit_byte(0xC0 | encode);
  3922 void Assembler::incq(Register dst) {
  3923   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3924   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3925   int encode = prefixq_and_encode(dst->encoding());
  3926   emit_byte(0xFF);
  3927   emit_byte(0xC0 | encode);
  3930 void Assembler::incq(Address dst) {
  3931   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3932   InstructionMark im(this);
  3933   prefixq(dst);
  3934   emit_byte(0xFF);
  3935   emit_operand(rax, dst);
  3938 void Assembler::lea(Register dst, Address src) {
  3939   leaq(dst, src);
  3942 void Assembler::leaq(Register dst, Address src) {
  3943   InstructionMark im(this);
  3944   prefixq(src, dst);
  3945   emit_byte(0x8D);
  3946   emit_operand(dst, src);
  3949 void Assembler::mov64(Register dst, int64_t imm64) {
  3950   InstructionMark im(this);
  3951   int encode = prefixq_and_encode(dst->encoding());
  3952   emit_byte(0xB8 | encode);
  3953   emit_long64(imm64);
  3956 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  3957   InstructionMark im(this);
  3958   int encode = prefixq_and_encode(dst->encoding());
  3959   emit_byte(0xB8 | encode);
  3960   emit_data64(imm64, rspec);
  3963 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3964   InstructionMark im(this);
  3965   int encode = prefix_and_encode(dst->encoding());
  3966   emit_byte(0xB8 | encode);
  3967   emit_data((int)imm32, rspec, narrow_oop_operand);
  3970 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3971   InstructionMark im(this);
  3972   prefix(dst);
  3973   emit_byte(0xC7);
  3974   emit_operand(rax, dst, 4);
  3975   emit_data((int)imm32, rspec, narrow_oop_operand);
  3978 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3979   InstructionMark im(this);
  3980   int encode = prefix_and_encode(src1->encoding());
  3981   emit_byte(0x81);
  3982   emit_byte(0xF8 | encode);
  3983   emit_data((int)imm32, rspec, narrow_oop_operand);
  3986 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3987   InstructionMark im(this);
  3988   prefix(src1);
  3989   emit_byte(0x81);
  3990   emit_operand(rax, src1, 4);
  3991   emit_data((int)imm32, rspec, narrow_oop_operand);
  3994 void Assembler::lzcntq(Register dst, Register src) {
  3995   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  3996   emit_byte(0xF3);
  3997   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3998   emit_byte(0x0F);
  3999   emit_byte(0xBD);
  4000   emit_byte(0xC0 | encode);
  4003 void Assembler::movdq(XMMRegister dst, Register src) {
  4004   // table D-1 says MMX/SSE2
  4005   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4006   emit_byte(0x66);
  4007   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4008   emit_byte(0x0F);
  4009   emit_byte(0x6E);
  4010   emit_byte(0xC0 | encode);
  4013 void Assembler::movdq(Register dst, XMMRegister src) {
  4014   // table D-1 says MMX/SSE2
  4015   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4016   emit_byte(0x66);
  4017   // swap src/dst to get correct prefix
  4018   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  4019   emit_byte(0x0F);
  4020   emit_byte(0x7E);
  4021   emit_byte(0xC0 | encode);
  4024 void Assembler::movq(Register dst, Register src) {
  4025   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4026   emit_byte(0x8B);
  4027   emit_byte(0xC0 | encode);
  4030 void Assembler::movq(Register dst, Address src) {
  4031   InstructionMark im(this);
  4032   prefixq(src, dst);
  4033   emit_byte(0x8B);
  4034   emit_operand(dst, src);
  4037 void Assembler::movq(Address dst, Register src) {
  4038   InstructionMark im(this);
  4039   prefixq(dst, src);
  4040   emit_byte(0x89);
  4041   emit_operand(src, dst);
  4044 void Assembler::movsbq(Register dst, Address src) {
  4045   InstructionMark im(this);
  4046   prefixq(src, dst);
  4047   emit_byte(0x0F);
  4048   emit_byte(0xBE);
  4049   emit_operand(dst, src);
  4052 void Assembler::movsbq(Register dst, Register src) {
  4053   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4054   emit_byte(0x0F);
  4055   emit_byte(0xBE);
  4056   emit_byte(0xC0 | encode);
  4059 void Assembler::movslq(Register dst, int32_t imm32) {
  4060   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4061   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4062   // as a result we shouldn't use until tested at runtime...
  4063   ShouldNotReachHere();
  4064   InstructionMark im(this);
  4065   int encode = prefixq_and_encode(dst->encoding());
  4066   emit_byte(0xC7 | encode);
  4067   emit_long(imm32);
  4070 void Assembler::movslq(Address dst, int32_t imm32) {
  4071   assert(is_simm32(imm32), "lost bits");
  4072   InstructionMark im(this);
  4073   prefixq(dst);
  4074   emit_byte(0xC7);
  4075   emit_operand(rax, dst, 4);
  4076   emit_long(imm32);
  4079 void Assembler::movslq(Register dst, Address src) {
  4080   InstructionMark im(this);
  4081   prefixq(src, dst);
  4082   emit_byte(0x63);
  4083   emit_operand(dst, src);
  4086 void Assembler::movslq(Register dst, Register src) {
  4087   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4088   emit_byte(0x63);
  4089   emit_byte(0xC0 | encode);
  4092 void Assembler::movswq(Register dst, Address src) {
  4093   InstructionMark im(this);
  4094   prefixq(src, dst);
  4095   emit_byte(0x0F);
  4096   emit_byte(0xBF);
  4097   emit_operand(dst, src);
  4100 void Assembler::movswq(Register dst, Register src) {
  4101   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4102   emit_byte(0x0F);
  4103   emit_byte(0xBF);
  4104   emit_byte(0xC0 | encode);
  4107 void Assembler::movzbq(Register dst, Address src) {
  4108   InstructionMark im(this);
  4109   prefixq(src, dst);
  4110   emit_byte(0x0F);
  4111   emit_byte(0xB6);
  4112   emit_operand(dst, src);
  4115 void Assembler::movzbq(Register dst, Register src) {
  4116   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4117   emit_byte(0x0F);
  4118   emit_byte(0xB6);
  4119   emit_byte(0xC0 | encode);
  4122 void Assembler::movzwq(Register dst, Address src) {
  4123   InstructionMark im(this);
  4124   prefixq(src, dst);
  4125   emit_byte(0x0F);
  4126   emit_byte(0xB7);
  4127   emit_operand(dst, src);
  4130 void Assembler::movzwq(Register dst, Register src) {
  4131   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4132   emit_byte(0x0F);
  4133   emit_byte(0xB7);
  4134   emit_byte(0xC0 | encode);
  4137 void Assembler::negq(Register dst) {
  4138   int encode = prefixq_and_encode(dst->encoding());
  4139   emit_byte(0xF7);
  4140   emit_byte(0xD8 | encode);
  4143 void Assembler::notq(Register dst) {
  4144   int encode = prefixq_and_encode(dst->encoding());
  4145   emit_byte(0xF7);
  4146   emit_byte(0xD0 | encode);
  4149 void Assembler::orq(Address dst, int32_t imm32) {
  4150   InstructionMark im(this);
  4151   prefixq(dst);
  4152   emit_byte(0x81);
  4153   emit_operand(rcx, dst, 4);
  4154   emit_long(imm32);
  4157 void Assembler::orq(Register dst, int32_t imm32) {
  4158   (void) prefixq_and_encode(dst->encoding());
  4159   emit_arith(0x81, 0xC8, dst, imm32);
  4162 void Assembler::orq(Register dst, Address src) {
  4163   InstructionMark im(this);
  4164   prefixq(src, dst);
  4165   emit_byte(0x0B);
  4166   emit_operand(dst, src);
  4169 void Assembler::orq(Register dst, Register src) {
  4170   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4171   emit_arith(0x0B, 0xC0, dst, src);
  4174 void Assembler::popa() { // 64bit
  4175   movq(r15, Address(rsp, 0));
  4176   movq(r14, Address(rsp, wordSize));
  4177   movq(r13, Address(rsp, 2 * wordSize));
  4178   movq(r12, Address(rsp, 3 * wordSize));
  4179   movq(r11, Address(rsp, 4 * wordSize));
  4180   movq(r10, Address(rsp, 5 * wordSize));
  4181   movq(r9,  Address(rsp, 6 * wordSize));
  4182   movq(r8,  Address(rsp, 7 * wordSize));
  4183   movq(rdi, Address(rsp, 8 * wordSize));
  4184   movq(rsi, Address(rsp, 9 * wordSize));
  4185   movq(rbp, Address(rsp, 10 * wordSize));
  4186   // skip rsp
  4187   movq(rbx, Address(rsp, 12 * wordSize));
  4188   movq(rdx, Address(rsp, 13 * wordSize));
  4189   movq(rcx, Address(rsp, 14 * wordSize));
  4190   movq(rax, Address(rsp, 15 * wordSize));
  4192   addq(rsp, 16 * wordSize);
  4195 void Assembler::popcntq(Register dst, Address src) {
  4196   assert(VM_Version::supports_popcnt(), "must support");
  4197   InstructionMark im(this);
  4198   emit_byte(0xF3);
  4199   prefixq(src, dst);
  4200   emit_byte(0x0F);
  4201   emit_byte(0xB8);
  4202   emit_operand(dst, src);
  4205 void Assembler::popcntq(Register dst, Register src) {
  4206   assert(VM_Version::supports_popcnt(), "must support");
  4207   emit_byte(0xF3);
  4208   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4209   emit_byte(0x0F);
  4210   emit_byte(0xB8);
  4211   emit_byte(0xC0 | encode);
  4214 void Assembler::popq(Address dst) {
  4215   InstructionMark im(this);
  4216   prefixq(dst);
  4217   emit_byte(0x8F);
  4218   emit_operand(rax, dst);
  4221 void Assembler::pusha() { // 64bit
  4222   // we have to store original rsp.  ABI says that 128 bytes
  4223   // below rsp are local scratch.
  4224   movq(Address(rsp, -5 * wordSize), rsp);
  4226   subq(rsp, 16 * wordSize);
  4228   movq(Address(rsp, 15 * wordSize), rax);
  4229   movq(Address(rsp, 14 * wordSize), rcx);
  4230   movq(Address(rsp, 13 * wordSize), rdx);
  4231   movq(Address(rsp, 12 * wordSize), rbx);
  4232   // skip rsp
  4233   movq(Address(rsp, 10 * wordSize), rbp);
  4234   movq(Address(rsp, 9 * wordSize), rsi);
  4235   movq(Address(rsp, 8 * wordSize), rdi);
  4236   movq(Address(rsp, 7 * wordSize), r8);
  4237   movq(Address(rsp, 6 * wordSize), r9);
  4238   movq(Address(rsp, 5 * wordSize), r10);
  4239   movq(Address(rsp, 4 * wordSize), r11);
  4240   movq(Address(rsp, 3 * wordSize), r12);
  4241   movq(Address(rsp, 2 * wordSize), r13);
  4242   movq(Address(rsp, wordSize), r14);
  4243   movq(Address(rsp, 0), r15);
  4246 void Assembler::pushq(Address src) {
  4247   InstructionMark im(this);
  4248   prefixq(src);
  4249   emit_byte(0xFF);
  4250   emit_operand(rsi, src);
  4253 void Assembler::rclq(Register dst, int imm8) {
  4254   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4255   int encode = prefixq_and_encode(dst->encoding());
  4256   if (imm8 == 1) {
  4257     emit_byte(0xD1);
  4258     emit_byte(0xD0 | encode);
  4259   } else {
  4260     emit_byte(0xC1);
  4261     emit_byte(0xD0 | encode);
  4262     emit_byte(imm8);
  4265 void Assembler::sarq(Register dst, int imm8) {
  4266   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4267   int encode = prefixq_and_encode(dst->encoding());
  4268   if (imm8 == 1) {
  4269     emit_byte(0xD1);
  4270     emit_byte(0xF8 | encode);
  4271   } else {
  4272     emit_byte(0xC1);
  4273     emit_byte(0xF8 | encode);
  4274     emit_byte(imm8);
  4278 void Assembler::sarq(Register dst) {
  4279   int encode = prefixq_and_encode(dst->encoding());
  4280   emit_byte(0xD3);
  4281   emit_byte(0xF8 | encode);
  4283 void Assembler::sbbq(Address dst, int32_t imm32) {
  4284   InstructionMark im(this);
  4285   prefixq(dst);
  4286   emit_arith_operand(0x81, rbx, dst, imm32);
  4289 void Assembler::sbbq(Register dst, int32_t imm32) {
  4290   (void) prefixq_and_encode(dst->encoding());
  4291   emit_arith(0x81, 0xD8, dst, imm32);
  4294 void Assembler::sbbq(Register dst, Address src) {
  4295   InstructionMark im(this);
  4296   prefixq(src, dst);
  4297   emit_byte(0x1B);
  4298   emit_operand(dst, src);
  4301 void Assembler::sbbq(Register dst, Register src) {
  4302   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4303   emit_arith(0x1B, 0xC0, dst, src);
  4306 void Assembler::shlq(Register dst, int imm8) {
  4307   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4308   int encode = prefixq_and_encode(dst->encoding());
  4309   if (imm8 == 1) {
  4310     emit_byte(0xD1);
  4311     emit_byte(0xE0 | encode);
  4312   } else {
  4313     emit_byte(0xC1);
  4314     emit_byte(0xE0 | encode);
  4315     emit_byte(imm8);
  4319 void Assembler::shlq(Register dst) {
  4320   int encode = prefixq_and_encode(dst->encoding());
  4321   emit_byte(0xD3);
  4322   emit_byte(0xE0 | encode);
  4325 void Assembler::shrq(Register dst, int imm8) {
  4326   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4327   int encode = prefixq_and_encode(dst->encoding());
  4328   emit_byte(0xC1);
  4329   emit_byte(0xE8 | encode);
  4330   emit_byte(imm8);
  4333 void Assembler::shrq(Register dst) {
  4334   int encode = prefixq_and_encode(dst->encoding());
  4335   emit_byte(0xD3);
  4336   emit_byte(0xE8 | encode);
  4339 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  4340   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4341   InstructionMark im(this);
  4342   emit_byte(0xF2);
  4343   prefix(src, dst);
  4344   emit_byte(0x0F);
  4345   emit_byte(0x51);
  4346   emit_operand(dst, src);
  4349 void Assembler::subq(Address dst, int32_t imm32) {
  4350   InstructionMark im(this);
  4351   prefixq(dst);
  4352   if (is8bit(imm32)) {
  4353     emit_byte(0x83);
  4354     emit_operand(rbp, dst, 1);
  4355     emit_byte(imm32 & 0xFF);
  4356   } else {
  4357     emit_byte(0x81);
  4358     emit_operand(rbp, dst, 4);
  4359     emit_long(imm32);
  4363 void Assembler::subq(Register dst, int32_t imm32) {
  4364   (void) prefixq_and_encode(dst->encoding());
  4365   emit_arith(0x81, 0xE8, dst, imm32);
  4368 void Assembler::subq(Address dst, Register src) {
  4369   InstructionMark im(this);
  4370   prefixq(dst, src);
  4371   emit_byte(0x29);
  4372   emit_operand(src, dst);
  4375 void Assembler::subq(Register dst, Address src) {
  4376   InstructionMark im(this);
  4377   prefixq(src, dst);
  4378   emit_byte(0x2B);
  4379   emit_operand(dst, src);
  4382 void Assembler::subq(Register dst, Register src) {
  4383   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4384   emit_arith(0x2B, 0xC0, dst, src);
  4387 void Assembler::testq(Register dst, int32_t imm32) {
  4388   // not using emit_arith because test
  4389   // doesn't support sign-extension of
  4390   // 8bit operands
  4391   int encode = dst->encoding();
  4392   if (encode == 0) {
  4393     prefix(REX_W);
  4394     emit_byte(0xA9);
  4395   } else {
  4396     encode = prefixq_and_encode(encode);
  4397     emit_byte(0xF7);
  4398     emit_byte(0xC0 | encode);
  4400   emit_long(imm32);
  4403 void Assembler::testq(Register dst, Register src) {
  4404   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4405   emit_arith(0x85, 0xC0, dst, src);
  4408 void Assembler::xaddq(Address dst, Register src) {
  4409   InstructionMark im(this);
  4410   prefixq(dst, src);
  4411   emit_byte(0x0F);
  4412   emit_byte(0xC1);
  4413   emit_operand(src, dst);
  4416 void Assembler::xchgq(Register dst, Address src) {
  4417   InstructionMark im(this);
  4418   prefixq(src, dst);
  4419   emit_byte(0x87);
  4420   emit_operand(dst, src);
  4423 void Assembler::xchgq(Register dst, Register src) {
  4424   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4425   emit_byte(0x87);
  4426   emit_byte(0xc0 | encode);
  4429 void Assembler::xorq(Register dst, Register src) {
  4430   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4431   emit_arith(0x33, 0xC0, dst, src);
  4434 void Assembler::xorq(Register dst, Address src) {
  4435   InstructionMark im(this);
  4436   prefixq(src, dst);
  4437   emit_byte(0x33);
  4438   emit_operand(dst, src);
  4441 #endif // !LP64
  4443 static Assembler::Condition reverse[] = {
  4444     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4445     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4446     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4447     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4448     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4449     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4450     Assembler::above          /* belowEqual    = 0x6 */ ,
  4451     Assembler::belowEqual     /* above         = 0x7 */ ,
  4452     Assembler::positive       /* negative      = 0x8 */ ,
  4453     Assembler::negative       /* positive      = 0x9 */ ,
  4454     Assembler::noParity       /* parity        = 0xa */ ,
  4455     Assembler::parity         /* noParity      = 0xb */ ,
  4456     Assembler::greaterEqual   /* less          = 0xc */ ,
  4457     Assembler::less           /* greaterEqual  = 0xd */ ,
  4458     Assembler::greater        /* lessEqual     = 0xe */ ,
  4459     Assembler::lessEqual      /* greater       = 0xf, */
  4461 };
  4464 // Implementation of MacroAssembler
  4466 // First all the versions that have distinct versions depending on 32/64 bit
  4467 // Unless the difference is trivial (1 line or so).
  4469 #ifndef _LP64
  4471 // 32bit versions
  4473 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4474   return Address(adr.target(), adr.rspec());
  4477 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4478   return Address::make_array(adr);
  4481 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4482                                          Register obj_reg,
  4483                                          Register swap_reg,
  4484                                          Register tmp_reg,
  4485                                          bool swap_reg_contains_mark,
  4486                                          Label& done,
  4487                                          Label* slow_case,
  4488                                          BiasedLockingCounters* counters) {
  4489   assert(UseBiasedLocking, "why call this otherwise?");
  4490   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4491   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4493   if (PrintBiasedLockingStatistics && counters == NULL)
  4494     counters = BiasedLocking::counters();
  4496   bool need_tmp_reg = false;
  4497   if (tmp_reg == noreg) {
  4498     need_tmp_reg = true;
  4499     tmp_reg = lock_reg;
  4500   } else {
  4501     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4503   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4504   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4505   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4506   Address saved_mark_addr(lock_reg, 0);
  4508   // Biased locking
  4509   // See whether the lock is currently biased toward our thread and
  4510   // whether the epoch is still valid
  4511   // Note that the runtime guarantees sufficient alignment of JavaThread
  4512   // pointers to allow age to be placed into low bits
  4513   // First check to see whether biasing is even enabled for this object
  4514   Label cas_label;
  4515   int null_check_offset = -1;
  4516   if (!swap_reg_contains_mark) {
  4517     null_check_offset = offset();
  4518     movl(swap_reg, mark_addr);
  4520   if (need_tmp_reg) {
  4521     push(tmp_reg);
  4523   movl(tmp_reg, swap_reg);
  4524   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4525   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4526   if (need_tmp_reg) {
  4527     pop(tmp_reg);
  4529   jcc(Assembler::notEqual, cas_label);
  4530   // The bias pattern is present in the object's header. Need to check
  4531   // whether the bias owner and the epoch are both still current.
  4532   // Note that because there is no current thread register on x86 we
  4533   // need to store off the mark word we read out of the object to
  4534   // avoid reloading it and needing to recheck invariants below. This
  4535   // store is unfortunate but it makes the overall code shorter and
  4536   // simpler.
  4537   movl(saved_mark_addr, swap_reg);
  4538   if (need_tmp_reg) {
  4539     push(tmp_reg);
  4541   get_thread(tmp_reg);
  4542   xorl(swap_reg, tmp_reg);
  4543   if (swap_reg_contains_mark) {
  4544     null_check_offset = offset();
  4546   movl(tmp_reg, klass_addr);
  4547   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4548   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4549   if (need_tmp_reg) {
  4550     pop(tmp_reg);
  4552   if (counters != NULL) {
  4553     cond_inc32(Assembler::zero,
  4554                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4556   jcc(Assembler::equal, done);
  4558   Label try_revoke_bias;
  4559   Label try_rebias;
  4561   // At this point we know that the header has the bias pattern and
  4562   // that we are not the bias owner in the current epoch. We need to
  4563   // figure out more details about the state of the header in order to
  4564   // know what operations can be legally performed on the object's
  4565   // header.
  4567   // If the low three bits in the xor result aren't clear, that means
  4568   // the prototype header is no longer biased and we have to revoke
  4569   // the bias on this object.
  4570   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4571   jcc(Assembler::notZero, try_revoke_bias);
  4573   // Biasing is still enabled for this data type. See whether the
  4574   // epoch of the current bias is still valid, meaning that the epoch
  4575   // bits of the mark word are equal to the epoch bits of the
  4576   // prototype header. (Note that the prototype header's epoch bits
  4577   // only change at a safepoint.) If not, attempt to rebias the object
  4578   // toward the current thread. Note that we must be absolutely sure
  4579   // that the current epoch is invalid in order to do this because
  4580   // otherwise the manipulations it performs on the mark word are
  4581   // illegal.
  4582   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4583   jcc(Assembler::notZero, try_rebias);
  4585   // The epoch of the current bias is still valid but we know nothing
  4586   // about the owner; it might be set or it might be clear. Try to
  4587   // acquire the bias of the object using an atomic operation. If this
  4588   // fails we will go in to the runtime to revoke the object's bias.
  4589   // Note that we first construct the presumed unbiased header so we
  4590   // don't accidentally blow away another thread's valid bias.
  4591   movl(swap_reg, saved_mark_addr);
  4592   andl(swap_reg,
  4593        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4594   if (need_tmp_reg) {
  4595     push(tmp_reg);
  4597   get_thread(tmp_reg);
  4598   orl(tmp_reg, swap_reg);
  4599   if (os::is_MP()) {
  4600     lock();
  4602   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4603   if (need_tmp_reg) {
  4604     pop(tmp_reg);
  4606   // If the biasing toward our thread failed, this means that
  4607   // another thread succeeded in biasing it toward itself and we
  4608   // need to revoke that bias. The revocation will occur in the
  4609   // interpreter runtime in the slow case.
  4610   if (counters != NULL) {
  4611     cond_inc32(Assembler::zero,
  4612                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4614   if (slow_case != NULL) {
  4615     jcc(Assembler::notZero, *slow_case);
  4617   jmp(done);
  4619   bind(try_rebias);
  4620   // At this point we know the epoch has expired, meaning that the
  4621   // current "bias owner", if any, is actually invalid. Under these
  4622   // circumstances _only_, we are allowed to use the current header's
  4623   // value as the comparison value when doing the cas to acquire the
  4624   // bias in the current epoch. In other words, we allow transfer of
  4625   // the bias from one thread to another directly in this situation.
  4626   //
  4627   // FIXME: due to a lack of registers we currently blow away the age
  4628   // bits in this situation. Should attempt to preserve them.
  4629   if (need_tmp_reg) {
  4630     push(tmp_reg);
  4632   get_thread(tmp_reg);
  4633   movl(swap_reg, klass_addr);
  4634   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4635   movl(swap_reg, saved_mark_addr);
  4636   if (os::is_MP()) {
  4637     lock();
  4639   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4640   if (need_tmp_reg) {
  4641     pop(tmp_reg);
  4643   // If the biasing toward our thread failed, then another thread
  4644   // succeeded in biasing it toward itself and we need to revoke that
  4645   // bias. The revocation will occur in the runtime in the slow case.
  4646   if (counters != NULL) {
  4647     cond_inc32(Assembler::zero,
  4648                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4650   if (slow_case != NULL) {
  4651     jcc(Assembler::notZero, *slow_case);
  4653   jmp(done);
  4655   bind(try_revoke_bias);
  4656   // The prototype mark in the klass doesn't have the bias bit set any
  4657   // more, indicating that objects of this data type are not supposed
  4658   // to be biased any more. We are going to try to reset the mark of
  4659   // this object to the prototype value and fall through to the
  4660   // CAS-based locking scheme. Note that if our CAS fails, it means
  4661   // that another thread raced us for the privilege of revoking the
  4662   // bias of this particular object, so it's okay to continue in the
  4663   // normal locking code.
  4664   //
  4665   // FIXME: due to a lack of registers we currently blow away the age
  4666   // bits in this situation. Should attempt to preserve them.
  4667   movl(swap_reg, saved_mark_addr);
  4668   if (need_tmp_reg) {
  4669     push(tmp_reg);
  4671   movl(tmp_reg, klass_addr);
  4672   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4673   if (os::is_MP()) {
  4674     lock();
  4676   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4677   if (need_tmp_reg) {
  4678     pop(tmp_reg);
  4680   // Fall through to the normal CAS-based lock, because no matter what
  4681   // the result of the above CAS, some thread must have succeeded in
  4682   // removing the bias bit from the object's header.
  4683   if (counters != NULL) {
  4684     cond_inc32(Assembler::zero,
  4685                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4688   bind(cas_label);
  4690   return null_check_offset;
  4692 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4693                                        int number_of_arguments) {
  4694   call(RuntimeAddress(entry_point));
  4695   increment(rsp, number_of_arguments * wordSize);
  4698 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4699   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4702 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4703   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4706 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4707   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4708   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4709     cdql();
  4710   } else {
  4711     movl(hi, lo);
  4712     sarl(hi, 31);
  4716 void MacroAssembler::fat_nop() {
  4717   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4718   emit_byte(0x26); // es:
  4719   emit_byte(0x2e); // cs:
  4720   emit_byte(0x64); // fs:
  4721   emit_byte(0x65); // gs:
  4722   emit_byte(0x90);
  4725 void MacroAssembler::jC2(Register tmp, Label& L) {
  4726   // set parity bit if FPU flag C2 is set (via rax)
  4727   save_rax(tmp);
  4728   fwait(); fnstsw_ax();
  4729   sahf();
  4730   restore_rax(tmp);
  4731   // branch
  4732   jcc(Assembler::parity, L);
  4735 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4736   // set parity bit if FPU flag C2 is set (via rax)
  4737   save_rax(tmp);
  4738   fwait(); fnstsw_ax();
  4739   sahf();
  4740   restore_rax(tmp);
  4741   // branch
  4742   jcc(Assembler::noParity, L);
  4745 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4746 // to be installed in the Address class
  4747 void MacroAssembler::jump(ArrayAddress entry) {
  4748   jmp(as_Address(entry));
  4751 // Note: y_lo will be destroyed
  4752 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4753   // Long compare for Java (semantics as described in JVM spec.)
  4754   Label high, low, done;
  4756   cmpl(x_hi, y_hi);
  4757   jcc(Assembler::less, low);
  4758   jcc(Assembler::greater, high);
  4759   // x_hi is the return register
  4760   xorl(x_hi, x_hi);
  4761   cmpl(x_lo, y_lo);
  4762   jcc(Assembler::below, low);
  4763   jcc(Assembler::equal, done);
  4765   bind(high);
  4766   xorl(x_hi, x_hi);
  4767   increment(x_hi);
  4768   jmp(done);
  4770   bind(low);
  4771   xorl(x_hi, x_hi);
  4772   decrementl(x_hi);
  4774   bind(done);
  4777 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4778     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4781 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4782   // leal(dst, as_Address(adr));
  4783   // see note in movl as to why we must use a move
  4784   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4787 void MacroAssembler::leave() {
  4788   mov(rsp, rbp);
  4789   pop(rbp);
  4792 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4793   // Multiplication of two Java long values stored on the stack
  4794   // as illustrated below. Result is in rdx:rax.
  4795   //
  4796   // rsp ---> [  ??  ] \               \
  4797   //            ....    | y_rsp_offset  |
  4798   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4799   //          [ y_hi ]                  | (in bytes)
  4800   //            ....                    |
  4801   //          [ x_lo ]                 /
  4802   //          [ x_hi ]
  4803   //            ....
  4804   //
  4805   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4806   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4807   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4808   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4809   Label quick;
  4810   // load x_hi, y_hi and check if quick
  4811   // multiplication is possible
  4812   movl(rbx, x_hi);
  4813   movl(rcx, y_hi);
  4814   movl(rax, rbx);
  4815   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4816   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4817   // do full multiplication
  4818   // 1st step
  4819   mull(y_lo);                                    // x_hi * y_lo
  4820   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4821   // 2nd step
  4822   movl(rax, x_lo);
  4823   mull(rcx);                                     // x_lo * y_hi
  4824   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4825   // 3rd step
  4826   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4827   movl(rax, x_lo);
  4828   mull(y_lo);                                    // x_lo * y_lo
  4829   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4832 void MacroAssembler::lneg(Register hi, Register lo) {
  4833   negl(lo);
  4834   adcl(hi, 0);
  4835   negl(hi);
  4838 void MacroAssembler::lshl(Register hi, Register lo) {
  4839   // Java shift left long support (semantics as described in JVM spec., p.305)
  4840   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4841   // shift value is in rcx !
  4842   assert(hi != rcx, "must not use rcx");
  4843   assert(lo != rcx, "must not use rcx");
  4844   const Register s = rcx;                        // shift count
  4845   const int      n = BitsPerWord;
  4846   Label L;
  4847   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4848   cmpl(s, n);                                    // if (s < n)
  4849   jcc(Assembler::less, L);                       // else (s >= n)
  4850   movl(hi, lo);                                  // x := x << n
  4851   xorl(lo, lo);
  4852   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4853   bind(L);                                       // s (mod n) < n
  4854   shldl(hi, lo);                                 // x := x << s
  4855   shll(lo);
  4859 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4860   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4861   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4862   assert(hi != rcx, "must not use rcx");
  4863   assert(lo != rcx, "must not use rcx");
  4864   const Register s = rcx;                        // shift count
  4865   const int      n = BitsPerWord;
  4866   Label L;
  4867   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4868   cmpl(s, n);                                    // if (s < n)
  4869   jcc(Assembler::less, L);                       // else (s >= n)
  4870   movl(lo, hi);                                  // x := x >> n
  4871   if (sign_extension) sarl(hi, 31);
  4872   else                xorl(hi, hi);
  4873   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4874   bind(L);                                       // s (mod n) < n
  4875   shrdl(lo, hi);                                 // x := x >> s
  4876   if (sign_extension) sarl(hi);
  4877   else                shrl(hi);
  4880 void MacroAssembler::movoop(Register dst, jobject obj) {
  4881   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4884 void MacroAssembler::movoop(Address dst, jobject obj) {
  4885   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4888 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4889   if (src.is_lval()) {
  4890     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4891   } else {
  4892     movl(dst, as_Address(src));
  4896 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4897   movl(as_Address(dst), src);
  4900 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4901   movl(dst, as_Address(src));
  4904 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4905 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4906   movl(dst, src);
  4910 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  4911   movsd(dst, as_Address(src));
  4914 void MacroAssembler::pop_callee_saved_registers() {
  4915   pop(rcx);
  4916   pop(rdx);
  4917   pop(rdi);
  4918   pop(rsi);
  4921 void MacroAssembler::pop_fTOS() {
  4922   fld_d(Address(rsp, 0));
  4923   addl(rsp, 2 * wordSize);
  4926 void MacroAssembler::push_callee_saved_registers() {
  4927   push(rsi);
  4928   push(rdi);
  4929   push(rdx);
  4930   push(rcx);
  4933 void MacroAssembler::push_fTOS() {
  4934   subl(rsp, 2 * wordSize);
  4935   fstp_d(Address(rsp, 0));
  4939 void MacroAssembler::pushoop(jobject obj) {
  4940   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  4944 void MacroAssembler::pushptr(AddressLiteral src) {
  4945   if (src.is_lval()) {
  4946     push_literal32((int32_t)src.target(), src.rspec());
  4947   } else {
  4948     pushl(as_Address(src));
  4952 void MacroAssembler::set_word_if_not_zero(Register dst) {
  4953   xorl(dst, dst);
  4954   set_byte_if_not_zero(dst);
  4957 static void pass_arg0(MacroAssembler* masm, Register arg) {
  4958   masm->push(arg);
  4961 static void pass_arg1(MacroAssembler* masm, Register arg) {
  4962   masm->push(arg);
  4965 static void pass_arg2(MacroAssembler* masm, Register arg) {
  4966   masm->push(arg);
  4969 static void pass_arg3(MacroAssembler* masm, Register arg) {
  4970   masm->push(arg);
  4973 #ifndef PRODUCT
  4974 extern "C" void findpc(intptr_t x);
  4975 #endif
  4977 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  4978   // In order to get locks to work, we need to fake a in_VM state
  4979   JavaThread* thread = JavaThread::current();
  4980   JavaThreadState saved_state = thread->thread_state();
  4981   thread->set_thread_state(_thread_in_vm);
  4982   if (ShowMessageBoxOnError) {
  4983     JavaThread* thread = JavaThread::current();
  4984     JavaThreadState saved_state = thread->thread_state();
  4985     thread->set_thread_state(_thread_in_vm);
  4986     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  4987       ttyLocker ttyl;
  4988       BytecodeCounter::print();
  4990     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  4991     // This is the value of eip which points to where verify_oop will return.
  4992     if (os::message_box(msg, "Execution stopped, print registers?")) {
  4993       ttyLocker ttyl;
  4994       tty->print_cr("eip = 0x%08x", eip);
  4995 #ifndef PRODUCT
  4996       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  4997         tty->cr();
  4998         findpc(eip);
  4999         tty->cr();
  5001 #endif
  5002       tty->print_cr("rax = 0x%08x", rax);
  5003       tty->print_cr("rbx = 0x%08x", rbx);
  5004       tty->print_cr("rcx = 0x%08x", rcx);
  5005       tty->print_cr("rdx = 0x%08x", rdx);
  5006       tty->print_cr("rdi = 0x%08x", rdi);
  5007       tty->print_cr("rsi = 0x%08x", rsi);
  5008       tty->print_cr("rbp = 0x%08x", rbp);
  5009       tty->print_cr("rsp = 0x%08x", rsp);
  5010       BREAKPOINT;
  5011       assert(false, "start up GDB");
  5013   } else {
  5014     ttyLocker ttyl;
  5015     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5016     assert(false, "DEBUG MESSAGE");
  5018   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5021 void MacroAssembler::stop(const char* msg) {
  5022   ExternalAddress message((address)msg);
  5023   // push address of message
  5024   pushptr(message.addr());
  5025   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5026   pusha();                                           // push registers
  5027   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5028   hlt();
  5031 void MacroAssembler::warn(const char* msg) {
  5032   push_CPU_state();
  5034   ExternalAddress message((address) msg);
  5035   // push address of message
  5036   pushptr(message.addr());
  5038   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5039   addl(rsp, wordSize);       // discard argument
  5040   pop_CPU_state();
  5043 #else // _LP64
  5045 // 64 bit versions
  5047 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5048   // amd64 always does this as a pc-rel
  5049   // we can be absolute or disp based on the instruction type
  5050   // jmp/call are displacements others are absolute
  5051   assert(!adr.is_lval(), "must be rval");
  5052   assert(reachable(adr), "must be");
  5053   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5057 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5058   AddressLiteral base = adr.base();
  5059   lea(rscratch1, base);
  5060   Address index = adr.index();
  5061   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5062   Address array(rscratch1, index._index, index._scale, index._disp);
  5063   return array;
  5066 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5067                                          Register obj_reg,
  5068                                          Register swap_reg,
  5069                                          Register tmp_reg,
  5070                                          bool swap_reg_contains_mark,
  5071                                          Label& done,
  5072                                          Label* slow_case,
  5073                                          BiasedLockingCounters* counters) {
  5074   assert(UseBiasedLocking, "why call this otherwise?");
  5075   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5076   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5077   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5078   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5079   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5080   Address saved_mark_addr(lock_reg, 0);
  5082   if (PrintBiasedLockingStatistics && counters == NULL)
  5083     counters = BiasedLocking::counters();
  5085   // Biased locking
  5086   // See whether the lock is currently biased toward our thread and
  5087   // whether the epoch is still valid
  5088   // Note that the runtime guarantees sufficient alignment of JavaThread
  5089   // pointers to allow age to be placed into low bits
  5090   // First check to see whether biasing is even enabled for this object
  5091   Label cas_label;
  5092   int null_check_offset = -1;
  5093   if (!swap_reg_contains_mark) {
  5094     null_check_offset = offset();
  5095     movq(swap_reg, mark_addr);
  5097   movq(tmp_reg, swap_reg);
  5098   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5099   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5100   jcc(Assembler::notEqual, cas_label);
  5101   // The bias pattern is present in the object's header. Need to check
  5102   // whether the bias owner and the epoch are both still current.
  5103   load_prototype_header(tmp_reg, obj_reg);
  5104   orq(tmp_reg, r15_thread);
  5105   xorq(tmp_reg, swap_reg);
  5106   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5107   if (counters != NULL) {
  5108     cond_inc32(Assembler::zero,
  5109                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5111   jcc(Assembler::equal, done);
  5113   Label try_revoke_bias;
  5114   Label try_rebias;
  5116   // At this point we know that the header has the bias pattern and
  5117   // that we are not the bias owner in the current epoch. We need to
  5118   // figure out more details about the state of the header in order to
  5119   // know what operations can be legally performed on the object's
  5120   // header.
  5122   // If the low three bits in the xor result aren't clear, that means
  5123   // the prototype header is no longer biased and we have to revoke
  5124   // the bias on this object.
  5125   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5126   jcc(Assembler::notZero, try_revoke_bias);
  5128   // Biasing is still enabled for this data type. See whether the
  5129   // epoch of the current bias is still valid, meaning that the epoch
  5130   // bits of the mark word are equal to the epoch bits of the
  5131   // prototype header. (Note that the prototype header's epoch bits
  5132   // only change at a safepoint.) If not, attempt to rebias the object
  5133   // toward the current thread. Note that we must be absolutely sure
  5134   // that the current epoch is invalid in order to do this because
  5135   // otherwise the manipulations it performs on the mark word are
  5136   // illegal.
  5137   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5138   jcc(Assembler::notZero, try_rebias);
  5140   // The epoch of the current bias is still valid but we know nothing
  5141   // about the owner; it might be set or it might be clear. Try to
  5142   // acquire the bias of the object using an atomic operation. If this
  5143   // fails we will go in to the runtime to revoke the object's bias.
  5144   // Note that we first construct the presumed unbiased header so we
  5145   // don't accidentally blow away another thread's valid bias.
  5146   andq(swap_reg,
  5147        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5148   movq(tmp_reg, swap_reg);
  5149   orq(tmp_reg, r15_thread);
  5150   if (os::is_MP()) {
  5151     lock();
  5153   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5154   // If the biasing toward our thread failed, this means that
  5155   // another thread succeeded in biasing it toward itself and we
  5156   // need to revoke that bias. The revocation will occur in the
  5157   // interpreter runtime in the slow case.
  5158   if (counters != NULL) {
  5159     cond_inc32(Assembler::zero,
  5160                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5162   if (slow_case != NULL) {
  5163     jcc(Assembler::notZero, *slow_case);
  5165   jmp(done);
  5167   bind(try_rebias);
  5168   // At this point we know the epoch has expired, meaning that the
  5169   // current "bias owner", if any, is actually invalid. Under these
  5170   // circumstances _only_, we are allowed to use the current header's
  5171   // value as the comparison value when doing the cas to acquire the
  5172   // bias in the current epoch. In other words, we allow transfer of
  5173   // the bias from one thread to another directly in this situation.
  5174   //
  5175   // FIXME: due to a lack of registers we currently blow away the age
  5176   // bits in this situation. Should attempt to preserve them.
  5177   load_prototype_header(tmp_reg, obj_reg);
  5178   orq(tmp_reg, r15_thread);
  5179   if (os::is_MP()) {
  5180     lock();
  5182   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5183   // If the biasing toward our thread failed, then another thread
  5184   // succeeded in biasing it toward itself and we need to revoke that
  5185   // bias. The revocation will occur in the runtime in the slow case.
  5186   if (counters != NULL) {
  5187     cond_inc32(Assembler::zero,
  5188                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5190   if (slow_case != NULL) {
  5191     jcc(Assembler::notZero, *slow_case);
  5193   jmp(done);
  5195   bind(try_revoke_bias);
  5196   // The prototype mark in the klass doesn't have the bias bit set any
  5197   // more, indicating that objects of this data type are not supposed
  5198   // to be biased any more. We are going to try to reset the mark of
  5199   // this object to the prototype value and fall through to the
  5200   // CAS-based locking scheme. Note that if our CAS fails, it means
  5201   // that another thread raced us for the privilege of revoking the
  5202   // bias of this particular object, so it's okay to continue in the
  5203   // normal locking code.
  5204   //
  5205   // FIXME: due to a lack of registers we currently blow away the age
  5206   // bits in this situation. Should attempt to preserve them.
  5207   load_prototype_header(tmp_reg, obj_reg);
  5208   if (os::is_MP()) {
  5209     lock();
  5211   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5212   // Fall through to the normal CAS-based lock, because no matter what
  5213   // the result of the above CAS, some thread must have succeeded in
  5214   // removing the bias bit from the object's header.
  5215   if (counters != NULL) {
  5216     cond_inc32(Assembler::zero,
  5217                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5220   bind(cas_label);
  5222   return null_check_offset;
  5225 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5226   Label L, E;
  5228 #ifdef _WIN64
  5229   // Windows always allocates space for it's register args
  5230   assert(num_args <= 4, "only register arguments supported");
  5231   subq(rsp,  frame::arg_reg_save_area_bytes);
  5232 #endif
  5234   // Align stack if necessary
  5235   testl(rsp, 15);
  5236   jcc(Assembler::zero, L);
  5238   subq(rsp, 8);
  5240     call(RuntimeAddress(entry_point));
  5242   addq(rsp, 8);
  5243   jmp(E);
  5245   bind(L);
  5247     call(RuntimeAddress(entry_point));
  5250   bind(E);
  5252 #ifdef _WIN64
  5253   // restore stack pointer
  5254   addq(rsp, frame::arg_reg_save_area_bytes);
  5255 #endif
  5259 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5260   assert(!src2.is_lval(), "should use cmpptr");
  5262   if (reachable(src2)) {
  5263     cmpq(src1, as_Address(src2));
  5264   } else {
  5265     lea(rscratch1, src2);
  5266     Assembler::cmpq(src1, Address(rscratch1, 0));
  5270 int MacroAssembler::corrected_idivq(Register reg) {
  5271   // Full implementation of Java ldiv and lrem; checks for special
  5272   // case as described in JVM spec., p.243 & p.271.  The function
  5273   // returns the (pc) offset of the idivl instruction - may be needed
  5274   // for implicit exceptions.
  5275   //
  5276   //         normal case                           special case
  5277   //
  5278   // input : rax: dividend                         min_long
  5279   //         reg: divisor   (may not be eax/edx)   -1
  5280   //
  5281   // output: rax: quotient  (= rax idiv reg)       min_long
  5282   //         rdx: remainder (= rax irem reg)       0
  5283   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5284   static const int64_t min_long = 0x8000000000000000;
  5285   Label normal_case, special_case;
  5287   // check for special case
  5288   cmp64(rax, ExternalAddress((address) &min_long));
  5289   jcc(Assembler::notEqual, normal_case);
  5290   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5291                   // remainder = 0)
  5292   cmpq(reg, -1);
  5293   jcc(Assembler::equal, special_case);
  5295   // handle normal case
  5296   bind(normal_case);
  5297   cdqq();
  5298   int idivq_offset = offset();
  5299   idivq(reg);
  5301   // normal and special case exit
  5302   bind(special_case);
  5304   return idivq_offset;
  5307 void MacroAssembler::decrementq(Register reg, int value) {
  5308   if (value == min_jint) { subq(reg, value); return; }
  5309   if (value <  0) { incrementq(reg, -value); return; }
  5310   if (value == 0) {                        ; return; }
  5311   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5312   /* else */      { subq(reg, value)       ; return; }
  5315 void MacroAssembler::decrementq(Address dst, int value) {
  5316   if (value == min_jint) { subq(dst, value); return; }
  5317   if (value <  0) { incrementq(dst, -value); return; }
  5318   if (value == 0) {                        ; return; }
  5319   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5320   /* else */      { subq(dst, value)       ; return; }
  5323 void MacroAssembler::fat_nop() {
  5324   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5325   // Recommened sequence from 'Software Optimization Guide for the AMD
  5326   // Hammer Processor'
  5327   emit_byte(0x66);
  5328   emit_byte(0x66);
  5329   emit_byte(0x90);
  5330   emit_byte(0x66);
  5331   emit_byte(0x90);
  5334 void MacroAssembler::incrementq(Register reg, int value) {
  5335   if (value == min_jint) { addq(reg, value); return; }
  5336   if (value <  0) { decrementq(reg, -value); return; }
  5337   if (value == 0) {                        ; return; }
  5338   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5339   /* else */      { addq(reg, value)       ; return; }
  5342 void MacroAssembler::incrementq(Address dst, int value) {
  5343   if (value == min_jint) { addq(dst, value); return; }
  5344   if (value <  0) { decrementq(dst, -value); return; }
  5345   if (value == 0) {                        ; return; }
  5346   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5347   /* else */      { addq(dst, value)       ; return; }
  5350 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5351 // to be installed in the Address class
  5352 void MacroAssembler::jump(ArrayAddress entry) {
  5353   lea(rscratch1, entry.base());
  5354   Address dispatch = entry.index();
  5355   assert(dispatch._base == noreg, "must be");
  5356   dispatch._base = rscratch1;
  5357   jmp(dispatch);
  5360 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5361   ShouldNotReachHere(); // 64bit doesn't use two regs
  5362   cmpq(x_lo, y_lo);
  5365 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5366     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5369 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5370   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5371   movptr(dst, rscratch1);
  5374 void MacroAssembler::leave() {
  5375   // %%% is this really better? Why not on 32bit too?
  5376   emit_byte(0xC9); // LEAVE
  5379 void MacroAssembler::lneg(Register hi, Register lo) {
  5380   ShouldNotReachHere(); // 64bit doesn't use two regs
  5381   negq(lo);
  5384 void MacroAssembler::movoop(Register dst, jobject obj) {
  5385   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5388 void MacroAssembler::movoop(Address dst, jobject obj) {
  5389   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5390   movq(dst, rscratch1);
  5393 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5394   if (src.is_lval()) {
  5395     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5396   } else {
  5397     if (reachable(src)) {
  5398       movq(dst, as_Address(src));
  5399     } else {
  5400       lea(rscratch1, src);
  5401       movq(dst, Address(rscratch1,0));
  5406 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5407   movq(as_Address(dst), src);
  5410 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5411   movq(dst, as_Address(src));
  5414 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5415 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5416   mov64(rscratch1, src);
  5417   movq(dst, rscratch1);
  5420 // These are mostly for initializing NULL
  5421 void MacroAssembler::movptr(Address dst, int32_t src) {
  5422   movslq(dst, src);
  5425 void MacroAssembler::movptr(Register dst, int32_t src) {
  5426   mov64(dst, (intptr_t)src);
  5429 void MacroAssembler::pushoop(jobject obj) {
  5430   movoop(rscratch1, obj);
  5431   push(rscratch1);
  5434 void MacroAssembler::pushptr(AddressLiteral src) {
  5435   lea(rscratch1, src);
  5436   if (src.is_lval()) {
  5437     push(rscratch1);
  5438   } else {
  5439     pushq(Address(rscratch1, 0));
  5443 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5444                                            bool clear_pc) {
  5445   // we must set sp to zero to clear frame
  5446   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5447   // must clear fp, so that compiled frames are not confused; it is
  5448   // possible that we need it only for debugging
  5449   if (clear_fp) {
  5450     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5453   if (clear_pc) {
  5454     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5458 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5459                                          Register last_java_fp,
  5460                                          address  last_java_pc) {
  5461   // determine last_java_sp register
  5462   if (!last_java_sp->is_valid()) {
  5463     last_java_sp = rsp;
  5466   // last_java_fp is optional
  5467   if (last_java_fp->is_valid()) {
  5468     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5469            last_java_fp);
  5472   // last_java_pc is optional
  5473   if (last_java_pc != NULL) {
  5474     Address java_pc(r15_thread,
  5475                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5476     lea(rscratch1, InternalAddress(last_java_pc));
  5477     movptr(java_pc, rscratch1);
  5480   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5483 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5484   if (c_rarg0 != arg ) {
  5485     masm->mov(c_rarg0, arg);
  5489 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5490   if (c_rarg1 != arg ) {
  5491     masm->mov(c_rarg1, arg);
  5495 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5496   if (c_rarg2 != arg ) {
  5497     masm->mov(c_rarg2, arg);
  5501 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5502   if (c_rarg3 != arg ) {
  5503     masm->mov(c_rarg3, arg);
  5507 void MacroAssembler::stop(const char* msg) {
  5508   address rip = pc();
  5509   pusha(); // get regs on stack
  5510   lea(c_rarg0, ExternalAddress((address) msg));
  5511   lea(c_rarg1, InternalAddress(rip));
  5512   movq(c_rarg2, rsp); // pass pointer to regs array
  5513   andq(rsp, -16); // align stack as required by ABI
  5514   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5515   hlt();
  5518 void MacroAssembler::warn(const char* msg) {
  5519   push(r12);
  5520   movq(r12, rsp);
  5521   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5523   push_CPU_state();   // keeps alignment at 16 bytes
  5524   lea(c_rarg0, ExternalAddress((address) msg));
  5525   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5526   pop_CPU_state();
  5528   movq(rsp, r12);
  5529   pop(r12);
  5532 #ifndef PRODUCT
  5533 extern "C" void findpc(intptr_t x);
  5534 #endif
  5536 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5537   // In order to get locks to work, we need to fake a in_VM state
  5538   if (ShowMessageBoxOnError ) {
  5539     JavaThread* thread = JavaThread::current();
  5540     JavaThreadState saved_state = thread->thread_state();
  5541     thread->set_thread_state(_thread_in_vm);
  5542 #ifndef PRODUCT
  5543     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5544       ttyLocker ttyl;
  5545       BytecodeCounter::print();
  5547 #endif
  5548     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5549     // XXX correct this offset for amd64
  5550     // This is the value of eip which points to where verify_oop will return.
  5551     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5552       ttyLocker ttyl;
  5553       tty->print_cr("rip = 0x%016lx", pc);
  5554 #ifndef PRODUCT
  5555       tty->cr();
  5556       findpc(pc);
  5557       tty->cr();
  5558 #endif
  5559       tty->print_cr("rax = 0x%016lx", regs[15]);
  5560       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5561       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5562       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5563       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5564       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5565       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5566       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5567       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5568       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5569       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5570       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5571       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5572       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5573       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5574       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5575       BREAKPOINT;
  5577     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5578   } else {
  5579     ttyLocker ttyl;
  5580     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5581                     msg);
  5585 #endif // _LP64
  5587 // Now versions that are common to 32/64 bit
  5589 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5590   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5593 void MacroAssembler::addptr(Register dst, Register src) {
  5594   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5597 void MacroAssembler::addptr(Address dst, Register src) {
  5598   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5601 void MacroAssembler::align(int modulus) {
  5602   if (offset() % modulus != 0) {
  5603     nop(modulus - (offset() % modulus));
  5607 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5608   if (reachable(src)) {
  5609     andpd(dst, as_Address(src));
  5610   } else {
  5611     lea(rscratch1, src);
  5612     andpd(dst, Address(rscratch1, 0));
  5616 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5617   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5620 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5621   pushf();
  5622   if (os::is_MP())
  5623     lock();
  5624   incrementl(counter_addr);
  5625   popf();
  5628 // Writes to stack successive pages until offset reached to check for
  5629 // stack overflow + shadow pages.  This clobbers tmp.
  5630 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5631   movptr(tmp, rsp);
  5632   // Bang stack for total size given plus shadow page size.
  5633   // Bang one page at a time because large size can bang beyond yellow and
  5634   // red zones.
  5635   Label loop;
  5636   bind(loop);
  5637   movl(Address(tmp, (-os::vm_page_size())), size );
  5638   subptr(tmp, os::vm_page_size());
  5639   subl(size, os::vm_page_size());
  5640   jcc(Assembler::greater, loop);
  5642   // Bang down shadow pages too.
  5643   // The -1 because we already subtracted 1 page.
  5644   for (int i = 0; i< StackShadowPages-1; i++) {
  5645     // this could be any sized move but this is can be a debugging crumb
  5646     // so the bigger the better.
  5647     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5651 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5652   assert(UseBiasedLocking, "why call this otherwise?");
  5654   // Check for biased locking unlock case, which is a no-op
  5655   // Note: we do not have to check the thread ID for two reasons.
  5656   // First, the interpreter checks for IllegalMonitorStateException at
  5657   // a higher level. Second, if the bias was revoked while we held the
  5658   // lock, the object could not be rebiased toward another thread, so
  5659   // the bias bit would be clear.
  5660   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5661   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5662   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5663   jcc(Assembler::equal, done);
  5666 void MacroAssembler::c2bool(Register x) {
  5667   // implements x == 0 ? 0 : 1
  5668   // note: must only look at least-significant byte of x
  5669   //       since C-style booleans are stored in one byte
  5670   //       only! (was bug)
  5671   andl(x, 0xFF);
  5672   setb(Assembler::notZero, x);
  5675 // Wouldn't need if AddressLiteral version had new name
  5676 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5677   Assembler::call(L, rtype);
  5680 void MacroAssembler::call(Register entry) {
  5681   Assembler::call(entry);
  5684 void MacroAssembler::call(AddressLiteral entry) {
  5685   if (reachable(entry)) {
  5686     Assembler::call_literal(entry.target(), entry.rspec());
  5687   } else {
  5688     lea(rscratch1, entry);
  5689     Assembler::call(rscratch1);
  5693 // Implementation of call_VM versions
  5695 void MacroAssembler::call_VM(Register oop_result,
  5696                              address entry_point,
  5697                              bool check_exceptions) {
  5698   Label C, E;
  5699   call(C, relocInfo::none);
  5700   jmp(E);
  5702   bind(C);
  5703   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5704   ret(0);
  5706   bind(E);
  5709 void MacroAssembler::call_VM(Register oop_result,
  5710                              address entry_point,
  5711                              Register arg_1,
  5712                              bool check_exceptions) {
  5713   Label C, E;
  5714   call(C, relocInfo::none);
  5715   jmp(E);
  5717   bind(C);
  5718   pass_arg1(this, arg_1);
  5719   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5720   ret(0);
  5722   bind(E);
  5725 void MacroAssembler::call_VM(Register oop_result,
  5726                              address entry_point,
  5727                              Register arg_1,
  5728                              Register arg_2,
  5729                              bool check_exceptions) {
  5730   Label C, E;
  5731   call(C, relocInfo::none);
  5732   jmp(E);
  5734   bind(C);
  5736   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5738   pass_arg2(this, arg_2);
  5739   pass_arg1(this, arg_1);
  5740   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5741   ret(0);
  5743   bind(E);
  5746 void MacroAssembler::call_VM(Register oop_result,
  5747                              address entry_point,
  5748                              Register arg_1,
  5749                              Register arg_2,
  5750                              Register arg_3,
  5751                              bool check_exceptions) {
  5752   Label C, E;
  5753   call(C, relocInfo::none);
  5754   jmp(E);
  5756   bind(C);
  5758   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5759   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5760   pass_arg3(this, arg_3);
  5762   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5763   pass_arg2(this, arg_2);
  5765   pass_arg1(this, arg_1);
  5766   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5767   ret(0);
  5769   bind(E);
  5772 void MacroAssembler::call_VM(Register oop_result,
  5773                              Register last_java_sp,
  5774                              address entry_point,
  5775                              int number_of_arguments,
  5776                              bool check_exceptions) {
  5777   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5778   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5781 void MacroAssembler::call_VM(Register oop_result,
  5782                              Register last_java_sp,
  5783                              address entry_point,
  5784                              Register arg_1,
  5785                              bool check_exceptions) {
  5786   pass_arg1(this, arg_1);
  5787   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5790 void MacroAssembler::call_VM(Register oop_result,
  5791                              Register last_java_sp,
  5792                              address entry_point,
  5793                              Register arg_1,
  5794                              Register arg_2,
  5795                              bool check_exceptions) {
  5797   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5798   pass_arg2(this, arg_2);
  5799   pass_arg1(this, arg_1);
  5800   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5803 void MacroAssembler::call_VM(Register oop_result,
  5804                              Register last_java_sp,
  5805                              address entry_point,
  5806                              Register arg_1,
  5807                              Register arg_2,
  5808                              Register arg_3,
  5809                              bool check_exceptions) {
  5810   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5811   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5812   pass_arg3(this, arg_3);
  5813   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5814   pass_arg2(this, arg_2);
  5815   pass_arg1(this, arg_1);
  5816   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5819 void MacroAssembler::call_VM_base(Register oop_result,
  5820                                   Register java_thread,
  5821                                   Register last_java_sp,
  5822                                   address  entry_point,
  5823                                   int      number_of_arguments,
  5824                                   bool     check_exceptions) {
  5825   // determine java_thread register
  5826   if (!java_thread->is_valid()) {
  5827 #ifdef _LP64
  5828     java_thread = r15_thread;
  5829 #else
  5830     java_thread = rdi;
  5831     get_thread(java_thread);
  5832 #endif // LP64
  5834   // determine last_java_sp register
  5835   if (!last_java_sp->is_valid()) {
  5836     last_java_sp = rsp;
  5838   // debugging support
  5839   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5840   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5841   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5842   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5844   // push java thread (becomes first argument of C function)
  5846   NOT_LP64(push(java_thread); number_of_arguments++);
  5847   LP64_ONLY(mov(c_rarg0, r15_thread));
  5849   // set last Java frame before call
  5850   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5852   // Only interpreter should have to set fp
  5853   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5855   // do the call, remove parameters
  5856   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5858   // restore the thread (cannot use the pushed argument since arguments
  5859   // may be overwritten by C code generated by an optimizing compiler);
  5860   // however can use the register value directly if it is callee saved.
  5861   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5862     // rdi & rsi (also r15) are callee saved -> nothing to do
  5863 #ifdef ASSERT
  5864     guarantee(java_thread != rax, "change this code");
  5865     push(rax);
  5866     { Label L;
  5867       get_thread(rax);
  5868       cmpptr(java_thread, rax);
  5869       jcc(Assembler::equal, L);
  5870       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5871       bind(L);
  5873     pop(rax);
  5874 #endif
  5875   } else {
  5876     get_thread(java_thread);
  5878   // reset last Java frame
  5879   // Only interpreter should have to clear fp
  5880   reset_last_Java_frame(java_thread, true, false);
  5882 #ifndef CC_INTERP
  5883    // C++ interp handles this in the interpreter
  5884   check_and_handle_popframe(java_thread);
  5885   check_and_handle_earlyret(java_thread);
  5886 #endif /* CC_INTERP */
  5888   if (check_exceptions) {
  5889     // check for pending exceptions (java_thread is set upon return)
  5890     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5891 #ifndef _LP64
  5892     jump_cc(Assembler::notEqual,
  5893             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5894 #else
  5895     // This used to conditionally jump to forward_exception however it is
  5896     // possible if we relocate that the branch will not reach. So we must jump
  5897     // around so we can always reach
  5899     Label ok;
  5900     jcc(Assembler::equal, ok);
  5901     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5902     bind(ok);
  5903 #endif // LP64
  5906   // get oop result if there is one and reset the value in the thread
  5907   if (oop_result->is_valid()) {
  5908     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5909     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5910     verify_oop(oop_result, "broken oop in call_VM_base");
  5914 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5916   // Calculate the value for last_Java_sp
  5917   // somewhat subtle. call_VM does an intermediate call
  5918   // which places a return address on the stack just under the
  5919   // stack pointer as the user finsihed with it. This allows
  5920   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5921   // On 32bit we then have to push additional args on the stack to accomplish
  5922   // the actual requested call. On 64bit call_VM only can use register args
  5923   // so the only extra space is the return address that call_VM created.
  5924   // This hopefully explains the calculations here.
  5926 #ifdef _LP64
  5927   // We've pushed one address, correct last_Java_sp
  5928   lea(rax, Address(rsp, wordSize));
  5929 #else
  5930   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  5931 #endif // LP64
  5933   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  5937 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  5938   call_VM_leaf_base(entry_point, number_of_arguments);
  5941 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  5942   pass_arg0(this, arg_0);
  5943   call_VM_leaf(entry_point, 1);
  5946 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  5948   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5949   pass_arg1(this, arg_1);
  5950   pass_arg0(this, arg_0);
  5951   call_VM_leaf(entry_point, 2);
  5954 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  5955   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  5956   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5957   pass_arg2(this, arg_2);
  5958   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5959   pass_arg1(this, arg_1);
  5960   pass_arg0(this, arg_0);
  5961   call_VM_leaf(entry_point, 3);
  5964 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  5967 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  5970 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  5971   if (reachable(src1)) {
  5972     cmpl(as_Address(src1), imm);
  5973   } else {
  5974     lea(rscratch1, src1);
  5975     cmpl(Address(rscratch1, 0), imm);
  5979 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  5980   assert(!src2.is_lval(), "use cmpptr");
  5981   if (reachable(src2)) {
  5982     cmpl(src1, as_Address(src2));
  5983   } else {
  5984     lea(rscratch1, src2);
  5985     cmpl(src1, Address(rscratch1, 0));
  5989 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  5990   Assembler::cmpl(src1, imm);
  5993 void MacroAssembler::cmp32(Register src1, Address src2) {
  5994   Assembler::cmpl(src1, src2);
  5997 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  5998   ucomisd(opr1, opr2);
  6000   Label L;
  6001   if (unordered_is_less) {
  6002     movl(dst, -1);
  6003     jcc(Assembler::parity, L);
  6004     jcc(Assembler::below , L);
  6005     movl(dst, 0);
  6006     jcc(Assembler::equal , L);
  6007     increment(dst);
  6008   } else { // unordered is greater
  6009     movl(dst, 1);
  6010     jcc(Assembler::parity, L);
  6011     jcc(Assembler::above , L);
  6012     movl(dst, 0);
  6013     jcc(Assembler::equal , L);
  6014     decrementl(dst);
  6016   bind(L);
  6019 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6020   ucomiss(opr1, opr2);
  6022   Label L;
  6023   if (unordered_is_less) {
  6024     movl(dst, -1);
  6025     jcc(Assembler::parity, L);
  6026     jcc(Assembler::below , L);
  6027     movl(dst, 0);
  6028     jcc(Assembler::equal , L);
  6029     increment(dst);
  6030   } else { // unordered is greater
  6031     movl(dst, 1);
  6032     jcc(Assembler::parity, L);
  6033     jcc(Assembler::above , L);
  6034     movl(dst, 0);
  6035     jcc(Assembler::equal , L);
  6036     decrementl(dst);
  6038   bind(L);
  6042 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6043   if (reachable(src1)) {
  6044     cmpb(as_Address(src1), imm);
  6045   } else {
  6046     lea(rscratch1, src1);
  6047     cmpb(Address(rscratch1, 0), imm);
  6051 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6052 #ifdef _LP64
  6053   if (src2.is_lval()) {
  6054     movptr(rscratch1, src2);
  6055     Assembler::cmpq(src1, rscratch1);
  6056   } else if (reachable(src2)) {
  6057     cmpq(src1, as_Address(src2));
  6058   } else {
  6059     lea(rscratch1, src2);
  6060     Assembler::cmpq(src1, Address(rscratch1, 0));
  6062 #else
  6063   if (src2.is_lval()) {
  6064     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6065   } else {
  6066     cmpl(src1, as_Address(src2));
  6068 #endif // _LP64
  6071 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6072   assert(src2.is_lval(), "not a mem-mem compare");
  6073 #ifdef _LP64
  6074   // moves src2's literal address
  6075   movptr(rscratch1, src2);
  6076   Assembler::cmpq(src1, rscratch1);
  6077 #else
  6078   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6079 #endif // _LP64
  6082 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6083   if (reachable(adr)) {
  6084     if (os::is_MP())
  6085       lock();
  6086     cmpxchgptr(reg, as_Address(adr));
  6087   } else {
  6088     lea(rscratch1, adr);
  6089     if (os::is_MP())
  6090       lock();
  6091     cmpxchgptr(reg, Address(rscratch1, 0));
  6095 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6096   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6099 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6100   if (reachable(src)) {
  6101     comisd(dst, as_Address(src));
  6102   } else {
  6103     lea(rscratch1, src);
  6104     comisd(dst, Address(rscratch1, 0));
  6108 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6109   if (reachable(src)) {
  6110     comiss(dst, as_Address(src));
  6111   } else {
  6112     lea(rscratch1, src);
  6113     comiss(dst, Address(rscratch1, 0));
  6118 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6119   Condition negated_cond = negate_condition(cond);
  6120   Label L;
  6121   jcc(negated_cond, L);
  6122   atomic_incl(counter_addr);
  6123   bind(L);
  6126 int MacroAssembler::corrected_idivl(Register reg) {
  6127   // Full implementation of Java idiv and irem; checks for
  6128   // special case as described in JVM spec., p.243 & p.271.
  6129   // The function returns the (pc) offset of the idivl
  6130   // instruction - may be needed for implicit exceptions.
  6131   //
  6132   //         normal case                           special case
  6133   //
  6134   // input : rax,: dividend                         min_int
  6135   //         reg: divisor   (may not be rax,/rdx)   -1
  6136   //
  6137   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6138   //         rdx: remainder (= rax, irem reg)       0
  6139   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6140   const int min_int = 0x80000000;
  6141   Label normal_case, special_case;
  6143   // check for special case
  6144   cmpl(rax, min_int);
  6145   jcc(Assembler::notEqual, normal_case);
  6146   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6147   cmpl(reg, -1);
  6148   jcc(Assembler::equal, special_case);
  6150   // handle normal case
  6151   bind(normal_case);
  6152   cdql();
  6153   int idivl_offset = offset();
  6154   idivl(reg);
  6156   // normal and special case exit
  6157   bind(special_case);
  6159   return idivl_offset;
  6164 void MacroAssembler::decrementl(Register reg, int value) {
  6165   if (value == min_jint) {subl(reg, value) ; return; }
  6166   if (value <  0) { incrementl(reg, -value); return; }
  6167   if (value == 0) {                        ; return; }
  6168   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6169   /* else */      { subl(reg, value)       ; return; }
  6172 void MacroAssembler::decrementl(Address dst, int value) {
  6173   if (value == min_jint) {subl(dst, value) ; return; }
  6174   if (value <  0) { incrementl(dst, -value); return; }
  6175   if (value == 0) {                        ; return; }
  6176   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6177   /* else */      { subl(dst, value)       ; return; }
  6180 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6181   assert (shift_value > 0, "illegal shift value");
  6182   Label _is_positive;
  6183   testl (reg, reg);
  6184   jcc (Assembler::positive, _is_positive);
  6185   int offset = (1 << shift_value) - 1 ;
  6187   if (offset == 1) {
  6188     incrementl(reg);
  6189   } else {
  6190     addl(reg, offset);
  6193   bind (_is_positive);
  6194   sarl(reg, shift_value);
  6197 // !defined(COMPILER2) is because of stupid core builds
  6198 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6199 void MacroAssembler::empty_FPU_stack() {
  6200   if (VM_Version::supports_mmx()) {
  6201     emms();
  6202   } else {
  6203     for (int i = 8; i-- > 0; ) ffree(i);
  6206 #endif // !LP64 || C1 || !C2
  6209 // Defines obj, preserves var_size_in_bytes
  6210 void MacroAssembler::eden_allocate(Register obj,
  6211                                    Register var_size_in_bytes,
  6212                                    int con_size_in_bytes,
  6213                                    Register t1,
  6214                                    Label& slow_case) {
  6215   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6216   assert_different_registers(obj, var_size_in_bytes, t1);
  6217   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6218     jmp(slow_case);
  6219   } else {
  6220     Register end = t1;
  6221     Label retry;
  6222     bind(retry);
  6223     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6224     movptr(obj, heap_top);
  6225     if (var_size_in_bytes == noreg) {
  6226       lea(end, Address(obj, con_size_in_bytes));
  6227     } else {
  6228       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6230     // if end < obj then we wrapped around => object too long => slow case
  6231     cmpptr(end, obj);
  6232     jcc(Assembler::below, slow_case);
  6233     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6234     jcc(Assembler::above, slow_case);
  6235     // Compare obj with the top addr, and if still equal, store the new top addr in
  6236     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6237     // it otherwise. Use lock prefix for atomicity on MPs.
  6238     locked_cmpxchgptr(end, heap_top);
  6239     jcc(Assembler::notEqual, retry);
  6243 void MacroAssembler::enter() {
  6244   push(rbp);
  6245   mov(rbp, rsp);
  6248 void MacroAssembler::fcmp(Register tmp) {
  6249   fcmp(tmp, 1, true, true);
  6252 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6253   assert(!pop_right || pop_left, "usage error");
  6254   if (VM_Version::supports_cmov()) {
  6255     assert(tmp == noreg, "unneeded temp");
  6256     if (pop_left) {
  6257       fucomip(index);
  6258     } else {
  6259       fucomi(index);
  6261     if (pop_right) {
  6262       fpop();
  6264   } else {
  6265     assert(tmp != noreg, "need temp");
  6266     if (pop_left) {
  6267       if (pop_right) {
  6268         fcompp();
  6269       } else {
  6270         fcomp(index);
  6272     } else {
  6273       fcom(index);
  6275     // convert FPU condition into eflags condition via rax,
  6276     save_rax(tmp);
  6277     fwait(); fnstsw_ax();
  6278     sahf();
  6279     restore_rax(tmp);
  6281   // condition codes set as follows:
  6282   //
  6283   // CF (corresponds to C0) if x < y
  6284   // PF (corresponds to C2) if unordered
  6285   // ZF (corresponds to C3) if x = y
  6288 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6289   fcmp2int(dst, unordered_is_less, 1, true, true);
  6292 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6293   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6294   Label L;
  6295   if (unordered_is_less) {
  6296     movl(dst, -1);
  6297     jcc(Assembler::parity, L);
  6298     jcc(Assembler::below , L);
  6299     movl(dst, 0);
  6300     jcc(Assembler::equal , L);
  6301     increment(dst);
  6302   } else { // unordered is greater
  6303     movl(dst, 1);
  6304     jcc(Assembler::parity, L);
  6305     jcc(Assembler::above , L);
  6306     movl(dst, 0);
  6307     jcc(Assembler::equal , L);
  6308     decrementl(dst);
  6310   bind(L);
  6313 void MacroAssembler::fld_d(AddressLiteral src) {
  6314   fld_d(as_Address(src));
  6317 void MacroAssembler::fld_s(AddressLiteral src) {
  6318   fld_s(as_Address(src));
  6321 void MacroAssembler::fld_x(AddressLiteral src) {
  6322   Assembler::fld_x(as_Address(src));
  6325 void MacroAssembler::fldcw(AddressLiteral src) {
  6326   Assembler::fldcw(as_Address(src));
  6329 void MacroAssembler::fpop() {
  6330   ffree();
  6331   fincstp();
  6334 void MacroAssembler::fremr(Register tmp) {
  6335   save_rax(tmp);
  6336   { Label L;
  6337     bind(L);
  6338     fprem();
  6339     fwait(); fnstsw_ax();
  6340 #ifdef _LP64
  6341     testl(rax, 0x400);
  6342     jcc(Assembler::notEqual, L);
  6343 #else
  6344     sahf();
  6345     jcc(Assembler::parity, L);
  6346 #endif // _LP64
  6348   restore_rax(tmp);
  6349   // Result is in ST0.
  6350   // Note: fxch & fpop to get rid of ST1
  6351   // (otherwise FPU stack could overflow eventually)
  6352   fxch(1);
  6353   fpop();
  6357 void MacroAssembler::incrementl(AddressLiteral dst) {
  6358   if (reachable(dst)) {
  6359     incrementl(as_Address(dst));
  6360   } else {
  6361     lea(rscratch1, dst);
  6362     incrementl(Address(rscratch1, 0));
  6366 void MacroAssembler::incrementl(ArrayAddress dst) {
  6367   incrementl(as_Address(dst));
  6370 void MacroAssembler::incrementl(Register reg, int value) {
  6371   if (value == min_jint) {addl(reg, value) ; return; }
  6372   if (value <  0) { decrementl(reg, -value); return; }
  6373   if (value == 0) {                        ; return; }
  6374   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6375   /* else */      { addl(reg, value)       ; return; }
  6378 void MacroAssembler::incrementl(Address dst, int value) {
  6379   if (value == min_jint) {addl(dst, value) ; return; }
  6380   if (value <  0) { decrementl(dst, -value); return; }
  6381   if (value == 0) {                        ; return; }
  6382   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6383   /* else */      { addl(dst, value)       ; return; }
  6386 void MacroAssembler::jump(AddressLiteral dst) {
  6387   if (reachable(dst)) {
  6388     jmp_literal(dst.target(), dst.rspec());
  6389   } else {
  6390     lea(rscratch1, dst);
  6391     jmp(rscratch1);
  6395 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6396   if (reachable(dst)) {
  6397     InstructionMark im(this);
  6398     relocate(dst.reloc());
  6399     const int short_size = 2;
  6400     const int long_size = 6;
  6401     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6402     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6403       // 0111 tttn #8-bit disp
  6404       emit_byte(0x70 | cc);
  6405       emit_byte((offs - short_size) & 0xFF);
  6406     } else {
  6407       // 0000 1111 1000 tttn #32-bit disp
  6408       emit_byte(0x0F);
  6409       emit_byte(0x80 | cc);
  6410       emit_long(offs - long_size);
  6412   } else {
  6413 #ifdef ASSERT
  6414     warning("reversing conditional branch");
  6415 #endif /* ASSERT */
  6416     Label skip;
  6417     jccb(reverse[cc], skip);
  6418     lea(rscratch1, dst);
  6419     Assembler::jmp(rscratch1);
  6420     bind(skip);
  6424 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6425   if (reachable(src)) {
  6426     Assembler::ldmxcsr(as_Address(src));
  6427   } else {
  6428     lea(rscratch1, src);
  6429     Assembler::ldmxcsr(Address(rscratch1, 0));
  6433 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6434   int off;
  6435   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6436     off = offset();
  6437     movsbl(dst, src); // movsxb
  6438   } else {
  6439     off = load_unsigned_byte(dst, src);
  6440     shll(dst, 24);
  6441     sarl(dst, 24);
  6443   return off;
  6446 // Note: load_signed_short used to be called load_signed_word.
  6447 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6448 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6449 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6450 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6451   int off;
  6452   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6453     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6454     // version but this is what 64bit has always done. This seems to imply
  6455     // that users are only using 32bits worth.
  6456     off = offset();
  6457     movswl(dst, src); // movsxw
  6458   } else {
  6459     off = load_unsigned_short(dst, src);
  6460     shll(dst, 16);
  6461     sarl(dst, 16);
  6463   return off;
  6466 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6467   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6468   // and "3.9 Partial Register Penalties", p. 22).
  6469   int off;
  6470   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6471     off = offset();
  6472     movzbl(dst, src); // movzxb
  6473   } else {
  6474     xorl(dst, dst);
  6475     off = offset();
  6476     movb(dst, src);
  6478   return off;
  6481 // Note: load_unsigned_short used to be called load_unsigned_word.
  6482 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6483   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6484   // and "3.9 Partial Register Penalties", p. 22).
  6485   int off;
  6486   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6487     off = offset();
  6488     movzwl(dst, src); // movzxw
  6489   } else {
  6490     xorl(dst, dst);
  6491     off = offset();
  6492     movw(dst, src);
  6494   return off;
  6497 void MacroAssembler::load_sized_value(Register dst, Address src,
  6498                                       size_t size_in_bytes, bool is_signed) {
  6499   switch (size_in_bytes) {
  6500 #ifndef _LP64
  6501   // For case 8, caller is responsible for manually loading
  6502   // the second word into another register.
  6503   case  8: movl(dst, src); break;
  6504 #else
  6505   case  8: movq(dst, src); break;
  6506 #endif
  6507   case  4: movl(dst, src); break;
  6508   case  2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  6509   case  1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  6510   default: ShouldNotReachHere();
  6514 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6515   if (reachable(dst)) {
  6516     movl(as_Address(dst), src);
  6517   } else {
  6518     lea(rscratch1, dst);
  6519     movl(Address(rscratch1, 0), src);
  6523 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6524   if (reachable(src)) {
  6525     movl(dst, as_Address(src));
  6526   } else {
  6527     lea(rscratch1, src);
  6528     movl(dst, Address(rscratch1, 0));
  6532 // C++ bool manipulation
  6534 void MacroAssembler::movbool(Register dst, Address src) {
  6535   if(sizeof(bool) == 1)
  6536     movb(dst, src);
  6537   else if(sizeof(bool) == 2)
  6538     movw(dst, src);
  6539   else if(sizeof(bool) == 4)
  6540     movl(dst, src);
  6541   else
  6542     // unsupported
  6543     ShouldNotReachHere();
  6546 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6547   if(sizeof(bool) == 1)
  6548     movb(dst, (int) boolconst);
  6549   else if(sizeof(bool) == 2)
  6550     movw(dst, (int) boolconst);
  6551   else if(sizeof(bool) == 4)
  6552     movl(dst, (int) boolconst);
  6553   else
  6554     // unsupported
  6555     ShouldNotReachHere();
  6558 void MacroAssembler::movbool(Address dst, Register src) {
  6559   if(sizeof(bool) == 1)
  6560     movb(dst, src);
  6561   else if(sizeof(bool) == 2)
  6562     movw(dst, src);
  6563   else if(sizeof(bool) == 4)
  6564     movl(dst, src);
  6565   else
  6566     // unsupported
  6567     ShouldNotReachHere();
  6570 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6571   movb(as_Address(dst), src);
  6574 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6575   if (reachable(src)) {
  6576     if (UseXmmLoadAndClearUpper) {
  6577       movsd (dst, as_Address(src));
  6578     } else {
  6579       movlpd(dst, as_Address(src));
  6581   } else {
  6582     lea(rscratch1, src);
  6583     if (UseXmmLoadAndClearUpper) {
  6584       movsd (dst, Address(rscratch1, 0));
  6585     } else {
  6586       movlpd(dst, Address(rscratch1, 0));
  6591 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6592   if (reachable(src)) {
  6593     movss(dst, as_Address(src));
  6594   } else {
  6595     lea(rscratch1, src);
  6596     movss(dst, Address(rscratch1, 0));
  6600 void MacroAssembler::movptr(Register dst, Register src) {
  6601   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6604 void MacroAssembler::movptr(Register dst, Address src) {
  6605   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6608 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6609 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6610   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6613 void MacroAssembler::movptr(Address dst, Register src) {
  6614   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6617 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6618   if (reachable(src)) {
  6619     movss(dst, as_Address(src));
  6620   } else {
  6621     lea(rscratch1, src);
  6622     movss(dst, Address(rscratch1, 0));
  6626 void MacroAssembler::null_check(Register reg, int offset) {
  6627   if (needs_explicit_null_check(offset)) {
  6628     // provoke OS NULL exception if reg = NULL by
  6629     // accessing M[reg] w/o changing any (non-CC) registers
  6630     // NOTE: cmpl is plenty here to provoke a segv
  6631     cmpptr(rax, Address(reg, 0));
  6632     // Note: should probably use testl(rax, Address(reg, 0));
  6633     //       may be shorter code (however, this version of
  6634     //       testl needs to be implemented first)
  6635   } else {
  6636     // nothing to do, (later) access of M[reg + offset]
  6637     // will provoke OS NULL exception if reg = NULL
  6641 void MacroAssembler::os_breakpoint() {
  6642   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6643   // (e.g., MSVC can't call ps() otherwise)
  6644   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6647 void MacroAssembler::pop_CPU_state() {
  6648   pop_FPU_state();
  6649   pop_IU_state();
  6652 void MacroAssembler::pop_FPU_state() {
  6653   NOT_LP64(frstor(Address(rsp, 0));)
  6654   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6655   addptr(rsp, FPUStateSizeInWords * wordSize);
  6658 void MacroAssembler::pop_IU_state() {
  6659   popa();
  6660   LP64_ONLY(addq(rsp, 8));
  6661   popf();
  6664 // Save Integer and Float state
  6665 // Warning: Stack must be 16 byte aligned (64bit)
  6666 void MacroAssembler::push_CPU_state() {
  6667   push_IU_state();
  6668   push_FPU_state();
  6671 void MacroAssembler::push_FPU_state() {
  6672   subptr(rsp, FPUStateSizeInWords * wordSize);
  6673 #ifndef _LP64
  6674   fnsave(Address(rsp, 0));
  6675   fwait();
  6676 #else
  6677   fxsave(Address(rsp, 0));
  6678 #endif // LP64
  6681 void MacroAssembler::push_IU_state() {
  6682   // Push flags first because pusha kills them
  6683   pushf();
  6684   // Make sure rsp stays 16-byte aligned
  6685   LP64_ONLY(subq(rsp, 8));
  6686   pusha();
  6689 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6690   // determine java_thread register
  6691   if (!java_thread->is_valid()) {
  6692     java_thread = rdi;
  6693     get_thread(java_thread);
  6695   // we must set sp to zero to clear frame
  6696   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6697   if (clear_fp) {
  6698     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6701   if (clear_pc)
  6702     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6706 void MacroAssembler::restore_rax(Register tmp) {
  6707   if (tmp == noreg) pop(rax);
  6708   else if (tmp != rax) mov(rax, tmp);
  6711 void MacroAssembler::round_to(Register reg, int modulus) {
  6712   addptr(reg, modulus - 1);
  6713   andptr(reg, -modulus);
  6716 void MacroAssembler::save_rax(Register tmp) {
  6717   if (tmp == noreg) push(rax);
  6718   else if (tmp != rax) mov(tmp, rax);
  6721 // Write serialization page so VM thread can do a pseudo remote membar.
  6722 // We use the current thread pointer to calculate a thread specific
  6723 // offset to write to within the page. This minimizes bus traffic
  6724 // due to cache line collision.
  6725 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6726   movl(tmp, thread);
  6727   shrl(tmp, os::get_serialize_page_shift_count());
  6728   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6730   Address index(noreg, tmp, Address::times_1);
  6731   ExternalAddress page(os::get_memory_serialize_page());
  6733   // Size of store must match masking code above
  6734   movl(as_Address(ArrayAddress(page, index)), tmp);
  6737 // Calls to C land
  6738 //
  6739 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6740 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6741 // has to be reset to 0. This is required to allow proper stack traversal.
  6742 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6743                                          Register last_java_sp,
  6744                                          Register last_java_fp,
  6745                                          address  last_java_pc) {
  6746   // determine java_thread register
  6747   if (!java_thread->is_valid()) {
  6748     java_thread = rdi;
  6749     get_thread(java_thread);
  6751   // determine last_java_sp register
  6752   if (!last_java_sp->is_valid()) {
  6753     last_java_sp = rsp;
  6756   // last_java_fp is optional
  6758   if (last_java_fp->is_valid()) {
  6759     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6762   // last_java_pc is optional
  6764   if (last_java_pc != NULL) {
  6765     lea(Address(java_thread,
  6766                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6767         InternalAddress(last_java_pc));
  6770   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6773 void MacroAssembler::shlptr(Register dst, int imm8) {
  6774   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6777 void MacroAssembler::shrptr(Register dst, int imm8) {
  6778   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6781 void MacroAssembler::sign_extend_byte(Register reg) {
  6782   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6783     movsbl(reg, reg); // movsxb
  6784   } else {
  6785     shll(reg, 24);
  6786     sarl(reg, 24);
  6790 void MacroAssembler::sign_extend_short(Register reg) {
  6791   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6792     movswl(reg, reg); // movsxw
  6793   } else {
  6794     shll(reg, 16);
  6795     sarl(reg, 16);
  6799 //////////////////////////////////////////////////////////////////////////////////
  6800 #ifndef SERIALGC
  6802 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6803 #ifndef _LP64
  6804                                           Register thread,
  6805 #endif
  6806                                           Register tmp,
  6807                                           Register tmp2,
  6808                                           bool tosca_live) {
  6809   LP64_ONLY(Register thread = r15_thread;)
  6810   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6811                                        PtrQueue::byte_offset_of_active()));
  6813   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6814                                        PtrQueue::byte_offset_of_index()));
  6815   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6816                                        PtrQueue::byte_offset_of_buf()));
  6819   Label done;
  6820   Label runtime;
  6822   // if (!marking_in_progress) goto done;
  6823   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6824     cmpl(in_progress, 0);
  6825   } else {
  6826     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6827     cmpb(in_progress, 0);
  6829   jcc(Assembler::equal, done);
  6831   // if (x.f == NULL) goto done;
  6832 #ifdef _LP64
  6833   load_heap_oop(tmp2, Address(obj, 0));
  6834 #else
  6835   movptr(tmp2, Address(obj, 0));
  6836 #endif
  6837   cmpptr(tmp2, (int32_t) NULL_WORD);
  6838   jcc(Assembler::equal, done);
  6840   // Can we store original value in the thread's buffer?
  6842 #ifdef _LP64
  6843   movslq(tmp, index);
  6844   cmpq(tmp, 0);
  6845 #else
  6846   cmpl(index, 0);
  6847 #endif
  6848   jcc(Assembler::equal, runtime);
  6849 #ifdef _LP64
  6850   subq(tmp, wordSize);
  6851   movl(index, tmp);
  6852   addq(tmp, buffer);
  6853 #else
  6854   subl(index, wordSize);
  6855   movl(tmp, buffer);
  6856   addl(tmp, index);
  6857 #endif
  6858   movptr(Address(tmp, 0), tmp2);
  6859   jmp(done);
  6860   bind(runtime);
  6861   // save the live input values
  6862   if(tosca_live) push(rax);
  6863   push(obj);
  6864 #ifdef _LP64
  6865   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, r15_thread);
  6866 #else
  6867   push(thread);
  6868   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6869   pop(thread);
  6870 #endif
  6871   pop(obj);
  6872   if(tosca_live) pop(rax);
  6873   bind(done);
  6877 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6878                                            Register new_val,
  6879 #ifndef _LP64
  6880                                            Register thread,
  6881 #endif
  6882                                            Register tmp,
  6883                                            Register tmp2) {
  6885   LP64_ONLY(Register thread = r15_thread;)
  6886   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6887                                        PtrQueue::byte_offset_of_index()));
  6888   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6889                                        PtrQueue::byte_offset_of_buf()));
  6890   BarrierSet* bs = Universe::heap()->barrier_set();
  6891   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6892   Label done;
  6893   Label runtime;
  6895   // Does store cross heap regions?
  6897   movptr(tmp, store_addr);
  6898   xorptr(tmp, new_val);
  6899   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  6900   jcc(Assembler::equal, done);
  6902   // crosses regions, storing NULL?
  6904   cmpptr(new_val, (int32_t) NULL_WORD);
  6905   jcc(Assembler::equal, done);
  6907   // storing region crossing non-NULL, is card already dirty?
  6909   ExternalAddress cardtable((address) ct->byte_map_base);
  6910   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6911 #ifdef _LP64
  6912   const Register card_addr = tmp;
  6914   movq(card_addr, store_addr);
  6915   shrq(card_addr, CardTableModRefBS::card_shift);
  6917   lea(tmp2, cardtable);
  6919   // get the address of the card
  6920   addq(card_addr, tmp2);
  6921 #else
  6922   const Register card_index = tmp;
  6924   movl(card_index, store_addr);
  6925   shrl(card_index, CardTableModRefBS::card_shift);
  6927   Address index(noreg, card_index, Address::times_1);
  6928   const Register card_addr = tmp;
  6929   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  6930 #endif
  6931   cmpb(Address(card_addr, 0), 0);
  6932   jcc(Assembler::equal, done);
  6934   // storing a region crossing, non-NULL oop, card is clean.
  6935   // dirty card and log.
  6937   movb(Address(card_addr, 0), 0);
  6939   cmpl(queue_index, 0);
  6940   jcc(Assembler::equal, runtime);
  6941   subl(queue_index, wordSize);
  6942   movptr(tmp2, buffer);
  6943 #ifdef _LP64
  6944   movslq(rscratch1, queue_index);
  6945   addq(tmp2, rscratch1);
  6946   movq(Address(tmp2, 0), card_addr);
  6947 #else
  6948   addl(tmp2, queue_index);
  6949   movl(Address(tmp2, 0), card_index);
  6950 #endif
  6951   jmp(done);
  6953   bind(runtime);
  6954   // save the live input values
  6955   push(store_addr);
  6956   push(new_val);
  6957 #ifdef _LP64
  6958   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  6959 #else
  6960   push(thread);
  6961   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  6962   pop(thread);
  6963 #endif
  6964   pop(new_val);
  6965   pop(store_addr);
  6967   bind(done);
  6971 #endif // SERIALGC
  6972 //////////////////////////////////////////////////////////////////////////////////
  6975 void MacroAssembler::store_check(Register obj) {
  6976   // Does a store check for the oop in register obj. The content of
  6977   // register obj is destroyed afterwards.
  6978   store_check_part_1(obj);
  6979   store_check_part_2(obj);
  6982 void MacroAssembler::store_check(Register obj, Address dst) {
  6983   store_check(obj);
  6987 // split the store check operation so that other instructions can be scheduled inbetween
  6988 void MacroAssembler::store_check_part_1(Register obj) {
  6989   BarrierSet* bs = Universe::heap()->barrier_set();
  6990   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6991   shrptr(obj, CardTableModRefBS::card_shift);
  6994 void MacroAssembler::store_check_part_2(Register obj) {
  6995   BarrierSet* bs = Universe::heap()->barrier_set();
  6996   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6997   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6998   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7000   // The calculation for byte_map_base is as follows:
  7001   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7002   // So this essentially converts an address to a displacement and
  7003   // it will never need to be relocated. On 64bit however the value may be too
  7004   // large for a 32bit displacement
  7006   intptr_t disp = (intptr_t) ct->byte_map_base;
  7007   if (is_simm32(disp)) {
  7008     Address cardtable(noreg, obj, Address::times_1, disp);
  7009     movb(cardtable, 0);
  7010   } else {
  7011     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7012     // displacement and done in a single instruction given favorable mapping and
  7013     // a smarter version of as_Address. Worst case it is two instructions which
  7014     // is no worse off then loading disp into a register and doing as a simple
  7015     // Address() as above.
  7016     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7017     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7018     // in some cases we'll get a single instruction version.
  7020     ExternalAddress cardtable((address)disp);
  7021     Address index(noreg, obj, Address::times_1);
  7022     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7026 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7027   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7030 void MacroAssembler::subptr(Register dst, Register src) {
  7031   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7034 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  7035   // src2 must be rval
  7037   if (reachable(src2)) {
  7038     testl(src1, as_Address(src2));
  7039   } else {
  7040     lea(rscratch1, src2);
  7041     testl(src1, Address(rscratch1, 0));
  7045 // C++ bool manipulation
  7046 void MacroAssembler::testbool(Register dst) {
  7047   if(sizeof(bool) == 1)
  7048     testb(dst, 0xff);
  7049   else if(sizeof(bool) == 2) {
  7050     // testw implementation needed for two byte bools
  7051     ShouldNotReachHere();
  7052   } else if(sizeof(bool) == 4)
  7053     testl(dst, dst);
  7054   else
  7055     // unsupported
  7056     ShouldNotReachHere();
  7059 void MacroAssembler::testptr(Register dst, Register src) {
  7060   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7063 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7064 void MacroAssembler::tlab_allocate(Register obj,
  7065                                    Register var_size_in_bytes,
  7066                                    int con_size_in_bytes,
  7067                                    Register t1,
  7068                                    Register t2,
  7069                                    Label& slow_case) {
  7070   assert_different_registers(obj, t1, t2);
  7071   assert_different_registers(obj, var_size_in_bytes, t1);
  7072   Register end = t2;
  7073   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7075   verify_tlab();
  7077   NOT_LP64(get_thread(thread));
  7079   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7080   if (var_size_in_bytes == noreg) {
  7081     lea(end, Address(obj, con_size_in_bytes));
  7082   } else {
  7083     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7085   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7086   jcc(Assembler::above, slow_case);
  7088   // update the tlab top pointer
  7089   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7091   // recover var_size_in_bytes if necessary
  7092   if (var_size_in_bytes == end) {
  7093     subptr(var_size_in_bytes, obj);
  7095   verify_tlab();
  7098 // Preserves rbx, and rdx.
  7099 void MacroAssembler::tlab_refill(Label& retry,
  7100                                  Label& try_eden,
  7101                                  Label& slow_case) {
  7102   Register top = rax;
  7103   Register t1  = rcx;
  7104   Register t2  = rsi;
  7105   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7106   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7107   Label do_refill, discard_tlab;
  7109   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7110     // No allocation in the shared eden.
  7111     jmp(slow_case);
  7114   NOT_LP64(get_thread(thread_reg));
  7116   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7117   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7119   // calculate amount of free space
  7120   subptr(t1, top);
  7121   shrptr(t1, LogHeapWordSize);
  7123   // Retain tlab and allocate object in shared space if
  7124   // the amount free in the tlab is too large to discard.
  7125   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7126   jcc(Assembler::lessEqual, discard_tlab);
  7128   // Retain
  7129   // %%% yuck as movptr...
  7130   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7131   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7132   if (TLABStats) {
  7133     // increment number of slow_allocations
  7134     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7136   jmp(try_eden);
  7138   bind(discard_tlab);
  7139   if (TLABStats) {
  7140     // increment number of refills
  7141     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7142     // accumulate wastage -- t1 is amount free in tlab
  7143     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7146   // if tlab is currently allocated (top or end != null) then
  7147   // fill [top, end + alignment_reserve) with array object
  7148   testptr (top, top);
  7149   jcc(Assembler::zero, do_refill);
  7151   // set up the mark word
  7152   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7153   // set the length to the remaining space
  7154   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7155   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7156   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7157   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7158   // set klass to intArrayKlass
  7159   // dubious reloc why not an oop reloc?
  7160   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  7161   // store klass last.  concurrent gcs assumes klass length is valid if
  7162   // klass field is not null.
  7163   store_klass(top, t1);
  7165   // refill the tlab with an eden allocation
  7166   bind(do_refill);
  7167   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7168   shlptr(t1, LogHeapWordSize);
  7169   // add object_size ??
  7170   eden_allocate(top, t1, 0, t2, slow_case);
  7172   // Check that t1 was preserved in eden_allocate.
  7173 #ifdef ASSERT
  7174   if (UseTLAB) {
  7175     Label ok;
  7176     Register tsize = rsi;
  7177     assert_different_registers(tsize, thread_reg, t1);
  7178     push(tsize);
  7179     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7180     shlptr(tsize, LogHeapWordSize);
  7181     cmpptr(t1, tsize);
  7182     jcc(Assembler::equal, ok);
  7183     stop("assert(t1 != tlab size)");
  7184     should_not_reach_here();
  7186     bind(ok);
  7187     pop(tsize);
  7189 #endif
  7190   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7191   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7192   addptr(top, t1);
  7193   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7194   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7195   verify_tlab();
  7196   jmp(retry);
  7199 static const double     pi_4 =  0.7853981633974483;
  7201 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7202   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7203   // was attempted in this code; unfortunately it appears that the
  7204   // switch to 80-bit precision and back causes this to be
  7205   // unprofitable compared with simply performing a runtime call if
  7206   // the argument is out of the (-pi/4, pi/4) range.
  7208   Register tmp = noreg;
  7209   if (!VM_Version::supports_cmov()) {
  7210     // fcmp needs a temporary so preserve rbx,
  7211     tmp = rbx;
  7212     push(tmp);
  7215   Label slow_case, done;
  7217   ExternalAddress pi4_adr = (address)&pi_4;
  7218   if (reachable(pi4_adr)) {
  7219     // x ?<= pi/4
  7220     fld_d(pi4_adr);
  7221     fld_s(1);                // Stack:  X  PI/4  X
  7222     fabs();                  // Stack: |X| PI/4  X
  7223     fcmp(tmp);
  7224     jcc(Assembler::above, slow_case);
  7226     // fastest case: -pi/4 <= x <= pi/4
  7227     switch(trig) {
  7228     case 's':
  7229       fsin();
  7230       break;
  7231     case 'c':
  7232       fcos();
  7233       break;
  7234     case 't':
  7235       ftan();
  7236       break;
  7237     default:
  7238       assert(false, "bad intrinsic");
  7239       break;
  7241     jmp(done);
  7244   // slow case: runtime call
  7245   bind(slow_case);
  7246   // Preserve registers across runtime call
  7247   pusha();
  7248   int incoming_argument_and_return_value_offset = -1;
  7249   if (num_fpu_regs_in_use > 1) {
  7250     // Must preserve all other FPU regs (could alternatively convert
  7251     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7252     // FPU state, but can not trust C compiler)
  7253     NEEDS_CLEANUP;
  7254     // NOTE that in this case we also push the incoming argument to
  7255     // the stack and restore it later; we also use this stack slot to
  7256     // hold the return value from dsin or dcos.
  7257     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7258       subptr(rsp, sizeof(jdouble));
  7259       fstp_d(Address(rsp, 0));
  7261     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7262     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7264   subptr(rsp, sizeof(jdouble));
  7265   fstp_d(Address(rsp, 0));
  7266 #ifdef _LP64
  7267   movdbl(xmm0, Address(rsp, 0));
  7268 #endif // _LP64
  7270   // NOTE: we must not use call_VM_leaf here because that requires a
  7271   // complete interpreter frame in debug mode -- same bug as 4387334
  7272   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7273   // do proper 64bit abi
  7275   NEEDS_CLEANUP;
  7276   // Need to add stack banging before this runtime call if it needs to
  7277   // be taken; however, there is no generic stack banging routine at
  7278   // the MacroAssembler level
  7279   switch(trig) {
  7280   case 's':
  7282       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7284     break;
  7285   case 'c':
  7287       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7289     break;
  7290   case 't':
  7292       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7294     break;
  7295   default:
  7296     assert(false, "bad intrinsic");
  7297     break;
  7299 #ifdef _LP64
  7300     movsd(Address(rsp, 0), xmm0);
  7301     fld_d(Address(rsp, 0));
  7302 #endif // _LP64
  7303   addptr(rsp, sizeof(jdouble));
  7304   if (num_fpu_regs_in_use > 1) {
  7305     // Must save return value to stack and then restore entire FPU stack
  7306     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7307     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7308       fld_d(Address(rsp, 0));
  7309       addptr(rsp, sizeof(jdouble));
  7312   popa();
  7314   // Come here with result in F-TOS
  7315   bind(done);
  7317   if (tmp != noreg) {
  7318     pop(tmp);
  7323 // Look up the method for a megamorphic invokeinterface call.
  7324 // The target method is determined by <intf_klass, itable_index>.
  7325 // The receiver klass is in recv_klass.
  7326 // On success, the result will be in method_result, and execution falls through.
  7327 // On failure, execution transfers to the given label.
  7328 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7329                                              Register intf_klass,
  7330                                              RegisterOrConstant itable_index,
  7331                                              Register method_result,
  7332                                              Register scan_temp,
  7333                                              Label& L_no_such_interface) {
  7334   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7335   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7336          "caller must use same register for non-constant itable index as for method");
  7338   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7339   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7340   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7341   int scan_step   = itableOffsetEntry::size() * wordSize;
  7342   int vte_size    = vtableEntry::size() * wordSize;
  7343   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7344   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7346   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7348   // %%% Could store the aligned, prescaled offset in the klassoop.
  7349   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7350   if (HeapWordsPerLong > 1) {
  7351     // Round up to align_object_offset boundary
  7352     // see code for instanceKlass::start_of_itable!
  7353     round_to(scan_temp, BytesPerLong);
  7356   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7357   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7358   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7360   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7361   //   if (scan->interface() == intf) {
  7362   //     result = (klass + scan->offset() + itable_index);
  7363   //   }
  7364   // }
  7365   Label search, found_method;
  7367   for (int peel = 1; peel >= 0; peel--) {
  7368     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7369     cmpptr(intf_klass, method_result);
  7371     if (peel) {
  7372       jccb(Assembler::equal, found_method);
  7373     } else {
  7374       jccb(Assembler::notEqual, search);
  7375       // (invert the test to fall through to found_method...)
  7378     if (!peel)  break;
  7380     bind(search);
  7382     // Check that the previous entry is non-null.  A null entry means that
  7383     // the receiver class doesn't implement the interface, and wasn't the
  7384     // same as when the caller was compiled.
  7385     testptr(method_result, method_result);
  7386     jcc(Assembler::zero, L_no_such_interface);
  7387     addptr(scan_temp, scan_step);
  7390   bind(found_method);
  7392   // Got a hit.
  7393   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7394   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7398 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7399                            Register super_klass,
  7400                            Register temp_reg,
  7401                            Label& L_success) {
  7402   Label L_failure;
  7403   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7404   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7405   bind(L_failure);
  7409 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7410                                                    Register super_klass,
  7411                                                    Register temp_reg,
  7412                                                    Label* L_success,
  7413                                                    Label* L_failure,
  7414                                                    Label* L_slow_path,
  7415                                         RegisterOrConstant super_check_offset) {
  7416   assert_different_registers(sub_klass, super_klass, temp_reg);
  7417   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7418   if (super_check_offset.is_register()) {
  7419     assert_different_registers(sub_klass, super_klass,
  7420                                super_check_offset.as_register());
  7421   } else if (must_load_sco) {
  7422     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7425   Label L_fallthrough;
  7426   int label_nulls = 0;
  7427   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7428   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7429   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7430   assert(label_nulls <= 1, "at most one NULL in the batch");
  7432   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7433                    Klass::secondary_super_cache_offset_in_bytes());
  7434   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7435                     Klass::super_check_offset_offset_in_bytes());
  7436   Address super_check_offset_addr(super_klass, sco_offset);
  7438   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7439   // range of a jccb.  If this routine grows larger, reconsider at
  7440   // least some of these.
  7441 #define local_jcc(assembler_cond, label)                                \
  7442   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7443   else                             jcc( assembler_cond, label) /*omit semi*/
  7445   // Hacked jmp, which may only be used just before L_fallthrough.
  7446 #define final_jmp(label)                                                \
  7447   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7448   else                            jmp(label)                /*omit semi*/
  7450   // If the pointers are equal, we are done (e.g., String[] elements).
  7451   // This self-check enables sharing of secondary supertype arrays among
  7452   // non-primary types such as array-of-interface.  Otherwise, each such
  7453   // type would need its own customized SSA.
  7454   // We move this check to the front of the fast path because many
  7455   // type checks are in fact trivially successful in this manner,
  7456   // so we get a nicely predicted branch right at the start of the check.
  7457   cmpptr(sub_klass, super_klass);
  7458   local_jcc(Assembler::equal, *L_success);
  7460   // Check the supertype display:
  7461   if (must_load_sco) {
  7462     // Positive movl does right thing on LP64.
  7463     movl(temp_reg, super_check_offset_addr);
  7464     super_check_offset = RegisterOrConstant(temp_reg);
  7466   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7467   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7469   // This check has worked decisively for primary supers.
  7470   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7471   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7472   // This works in the same check above because of a tricky aliasing
  7473   // between the super_cache and the primary super display elements.
  7474   // (The 'super_check_addr' can address either, as the case requires.)
  7475   // Note that the cache is updated below if it does not help us find
  7476   // what we need immediately.
  7477   // So if it was a primary super, we can just fail immediately.
  7478   // Otherwise, it's the slow path for us (no success at this point).
  7480   if (super_check_offset.is_register()) {
  7481     local_jcc(Assembler::equal, *L_success);
  7482     cmpl(super_check_offset.as_register(), sc_offset);
  7483     if (L_failure == &L_fallthrough) {
  7484       local_jcc(Assembler::equal, *L_slow_path);
  7485     } else {
  7486       local_jcc(Assembler::notEqual, *L_failure);
  7487       final_jmp(*L_slow_path);
  7489   } else if (super_check_offset.as_constant() == sc_offset) {
  7490     // Need a slow path; fast failure is impossible.
  7491     if (L_slow_path == &L_fallthrough) {
  7492       local_jcc(Assembler::equal, *L_success);
  7493     } else {
  7494       local_jcc(Assembler::notEqual, *L_slow_path);
  7495       final_jmp(*L_success);
  7497   } else {
  7498     // No slow path; it's a fast decision.
  7499     if (L_failure == &L_fallthrough) {
  7500       local_jcc(Assembler::equal, *L_success);
  7501     } else {
  7502       local_jcc(Assembler::notEqual, *L_failure);
  7503       final_jmp(*L_success);
  7507   bind(L_fallthrough);
  7509 #undef local_jcc
  7510 #undef final_jmp
  7514 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7515                                                    Register super_klass,
  7516                                                    Register temp_reg,
  7517                                                    Register temp2_reg,
  7518                                                    Label* L_success,
  7519                                                    Label* L_failure,
  7520                                                    bool set_cond_codes) {
  7521   assert_different_registers(sub_klass, super_klass, temp_reg);
  7522   if (temp2_reg != noreg)
  7523     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7524 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7526   Label L_fallthrough;
  7527   int label_nulls = 0;
  7528   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7529   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7530   assert(label_nulls <= 1, "at most one NULL in the batch");
  7532   // a couple of useful fields in sub_klass:
  7533   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7534                    Klass::secondary_supers_offset_in_bytes());
  7535   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7536                    Klass::secondary_super_cache_offset_in_bytes());
  7537   Address secondary_supers_addr(sub_klass, ss_offset);
  7538   Address super_cache_addr(     sub_klass, sc_offset);
  7540   // Do a linear scan of the secondary super-klass chain.
  7541   // This code is rarely used, so simplicity is a virtue here.
  7542   // The repne_scan instruction uses fixed registers, which we must spill.
  7543   // Don't worry too much about pre-existing connections with the input regs.
  7545   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7546   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7548   // Get super_klass value into rax (even if it was in rdi or rcx).
  7549   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7550   if (super_klass != rax || UseCompressedOops) {
  7551     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7552     mov(rax, super_klass);
  7554   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7555   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7557 #ifndef PRODUCT
  7558   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7559   ExternalAddress pst_counter_addr((address) pst_counter);
  7560   NOT_LP64(  incrementl(pst_counter_addr) );
  7561   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7562   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7563 #endif //PRODUCT
  7565   // We will consult the secondary-super array.
  7566   movptr(rdi, secondary_supers_addr);
  7567   // Load the array length.  (Positive movl does right thing on LP64.)
  7568   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7569   // Skip to start of data.
  7570   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7572   // Scan RCX words at [RDI] for an occurrence of RAX.
  7573   // Set NZ/Z based on last compare.
  7574   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  7575   // not change flags (only scas instruction which is repeated sets flags).
  7576   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  7577 #ifdef _LP64
  7578   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7579   // and we store values in objArrays always encoded, thus we need to encode
  7580   // the value of rax before repne.  Note that rax is dead after the repne.
  7581   if (UseCompressedOops) {
  7582     encode_heap_oop_not_null(rax); // Changes flags.
  7583     // The superclass is never null; it would be a basic system error if a null
  7584     // pointer were to sneak in here.  Note that we have already loaded the
  7585     // Klass::super_check_offset from the super_klass in the fast path,
  7586     // so if there is a null in that register, we are already in the afterlife.
  7587     testl(rax,rax); // Set Z = 0
  7588     repne_scanl();
  7589   } else
  7590 #endif // _LP64
  7592     testptr(rax,rax); // Set Z = 0
  7593     repne_scan();
  7595   // Unspill the temp. registers:
  7596   if (pushed_rdi)  pop(rdi);
  7597   if (pushed_rcx)  pop(rcx);
  7598   if (pushed_rax)  pop(rax);
  7600   if (set_cond_codes) {
  7601     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7602     assert(!pushed_rdi, "rdi must be left non-NULL");
  7603     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7606   if (L_failure == &L_fallthrough)
  7607         jccb(Assembler::notEqual, *L_failure);
  7608   else  jcc(Assembler::notEqual, *L_failure);
  7610   // Success.  Cache the super we found and proceed in triumph.
  7611   movptr(super_cache_addr, super_klass);
  7613   if (L_success != &L_fallthrough) {
  7614     jmp(*L_success);
  7617 #undef IS_A_TEMP
  7619   bind(L_fallthrough);
  7623 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7624   ucomisd(dst, as_Address(src));
  7627 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7628   ucomiss(dst, as_Address(src));
  7631 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7632   if (reachable(src)) {
  7633     xorpd(dst, as_Address(src));
  7634   } else {
  7635     lea(rscratch1, src);
  7636     xorpd(dst, Address(rscratch1, 0));
  7640 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7641   if (reachable(src)) {
  7642     xorps(dst, as_Address(src));
  7643   } else {
  7644     lea(rscratch1, src);
  7645     xorps(dst, Address(rscratch1, 0));
  7649 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7650   if (!VerifyOops) return;
  7652   // Pass register number to verify_oop_subroutine
  7653   char* b = new char[strlen(s) + 50];
  7654   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7655 #ifdef _LP64
  7656   push(rscratch1);                    // save r10, trashed by movptr()
  7657 #endif
  7658   push(rax);                          // save rax,
  7659   push(reg);                          // pass register argument
  7660   ExternalAddress buffer((address) b);
  7661   // avoid using pushptr, as it modifies scratch registers
  7662   // and our contract is not to modify anything
  7663   movptr(rax, buffer.addr());
  7664   push(rax);
  7665   // call indirectly to solve generation ordering problem
  7666   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7667   call(rax);
  7668   // Caller pops the arguments (oop, message) and restores rax, r10
  7672 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7673                                                       Register tmp,
  7674                                                       int offset) {
  7675   intptr_t value = *delayed_value_addr;
  7676   if (value != 0)
  7677     return RegisterOrConstant(value + offset);
  7679   // load indirectly to solve generation ordering problem
  7680   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7682 #ifdef ASSERT
  7683   { Label L;
  7684     testptr(tmp, tmp);
  7685     if (WizardMode) {
  7686       jcc(Assembler::notZero, L);
  7687       char* buf = new char[40];
  7688       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  7689       stop(buf);
  7690     } else {
  7691       jccb(Assembler::notZero, L);
  7692       hlt();
  7694     bind(L);
  7696 #endif
  7698   if (offset != 0)
  7699     addptr(tmp, offset);
  7701   return RegisterOrConstant(tmp);
  7705 // registers on entry:
  7706 //  - rax ('check' register): required MethodType
  7707 //  - rcx: method handle
  7708 //  - rdx, rsi, or ?: killable temp
  7709 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  7710                                               Register temp_reg,
  7711                                               Label& wrong_method_type) {
  7712   Address type_addr(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg));
  7713   // compare method type against that of the receiver
  7714   if (UseCompressedOops) {
  7715     load_heap_oop(temp_reg, type_addr);
  7716     cmpptr(mtype_reg, temp_reg);
  7717   } else {
  7718     cmpptr(mtype_reg, type_addr);
  7720   jcc(Assembler::notEqual, wrong_method_type);
  7724 // A method handle has a "vmslots" field which gives the size of its
  7725 // argument list in JVM stack slots.  This field is either located directly
  7726 // in every method handle, or else is indirectly accessed through the
  7727 // method handle's MethodType.  This macro hides the distinction.
  7728 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  7729                                                 Register temp_reg) {
  7730   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  7731   // load mh.type.form.vmslots
  7732   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
  7733     // hoist vmslots into every mh to avoid dependent load chain
  7734     movl(vmslots_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
  7735   } else {
  7736     Register temp2_reg = vmslots_reg;
  7737     load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
  7738     load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)));
  7739     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  7744 // registers on entry:
  7745 //  - rcx: method handle
  7746 //  - rdx: killable temp (interpreted only)
  7747 //  - rax: killable temp (compiled only)
  7748 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  7749   assert(mh_reg == rcx, "caller must put MH object in rcx");
  7750   assert_different_registers(mh_reg, temp_reg);
  7752   // pick out the interpreted side of the handler
  7753   // NOTE: vmentry is not an oop!
  7754   movptr(temp_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  7756   // off we go...
  7757   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  7759   // for the various stubs which take control at this point,
  7760   // see MethodHandles::generate_method_handle_stub
  7764 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  7765                                          int extra_slot_offset) {
  7766   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  7767   int stackElementSize = Interpreter::stackElementSize;
  7768   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  7769 #ifdef ASSERT
  7770   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  7771   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  7772 #endif
  7773   Register             scale_reg    = noreg;
  7774   Address::ScaleFactor scale_factor = Address::no_scale;
  7775   if (arg_slot.is_constant()) {
  7776     offset += arg_slot.as_constant() * stackElementSize;
  7777   } else {
  7778     scale_reg    = arg_slot.as_register();
  7779     scale_factor = Address::times(stackElementSize);
  7781   offset += wordSize;           // return PC is on stack
  7782   return Address(rsp, scale_reg, scale_factor, offset);
  7786 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7787   if (!VerifyOops) return;
  7789   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7790   // Pass register number to verify_oop_subroutine
  7791   char* b = new char[strlen(s) + 50];
  7792   sprintf(b, "verify_oop_addr: %s", s);
  7794 #ifdef _LP64
  7795   push(rscratch1);                    // save r10, trashed by movptr()
  7796 #endif
  7797   push(rax);                          // save rax,
  7798   // addr may contain rsp so we will have to adjust it based on the push
  7799   // we just did
  7800   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7801   // stores rax into addr which is backwards of what was intended.
  7802   if (addr.uses(rsp)) {
  7803     lea(rax, addr);
  7804     pushptr(Address(rax, BytesPerWord));
  7805   } else {
  7806     pushptr(addr);
  7809   ExternalAddress buffer((address) b);
  7810   // pass msg argument
  7811   // avoid using pushptr, as it modifies scratch registers
  7812   // and our contract is not to modify anything
  7813   movptr(rax, buffer.addr());
  7814   push(rax);
  7816   // call indirectly to solve generation ordering problem
  7817   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7818   call(rax);
  7819   // Caller pops the arguments (addr, message) and restores rax, r10.
  7822 void MacroAssembler::verify_tlab() {
  7823 #ifdef ASSERT
  7824   if (UseTLAB && VerifyOops) {
  7825     Label next, ok;
  7826     Register t1 = rsi;
  7827     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7829     push(t1);
  7830     NOT_LP64(push(thread_reg));
  7831     NOT_LP64(get_thread(thread_reg));
  7833     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7834     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7835     jcc(Assembler::aboveEqual, next);
  7836     stop("assert(top >= start)");
  7837     should_not_reach_here();
  7839     bind(next);
  7840     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7841     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7842     jcc(Assembler::aboveEqual, ok);
  7843     stop("assert(top <= end)");
  7844     should_not_reach_here();
  7846     bind(ok);
  7847     NOT_LP64(pop(thread_reg));
  7848     pop(t1);
  7850 #endif
  7853 class ControlWord {
  7854  public:
  7855   int32_t _value;
  7857   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  7858   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  7859   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7860   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7861   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7862   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7863   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7864   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7866   void print() const {
  7867     // rounding control
  7868     const char* rc;
  7869     switch (rounding_control()) {
  7870       case 0: rc = "round near"; break;
  7871       case 1: rc = "round down"; break;
  7872       case 2: rc = "round up  "; break;
  7873       case 3: rc = "chop      "; break;
  7874     };
  7875     // precision control
  7876     const char* pc;
  7877     switch (precision_control()) {
  7878       case 0: pc = "24 bits "; break;
  7879       case 1: pc = "reserved"; break;
  7880       case 2: pc = "53 bits "; break;
  7881       case 3: pc = "64 bits "; break;
  7882     };
  7883     // flags
  7884     char f[9];
  7885     f[0] = ' ';
  7886     f[1] = ' ';
  7887     f[2] = (precision   ()) ? 'P' : 'p';
  7888     f[3] = (underflow   ()) ? 'U' : 'u';
  7889     f[4] = (overflow    ()) ? 'O' : 'o';
  7890     f[5] = (zero_divide ()) ? 'Z' : 'z';
  7891     f[6] = (denormalized()) ? 'D' : 'd';
  7892     f[7] = (invalid     ()) ? 'I' : 'i';
  7893     f[8] = '\x0';
  7894     // output
  7895     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  7898 };
  7900 class StatusWord {
  7901  public:
  7902   int32_t _value;
  7904   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  7905   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  7906   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  7907   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  7908   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  7909   int  top() const                     { return  (_value >> 11) & 7      ; }
  7910   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  7911   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  7912   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7913   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7914   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7915   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7916   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7917   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7919   void print() const {
  7920     // condition codes
  7921     char c[5];
  7922     c[0] = (C3()) ? '3' : '-';
  7923     c[1] = (C2()) ? '2' : '-';
  7924     c[2] = (C1()) ? '1' : '-';
  7925     c[3] = (C0()) ? '0' : '-';
  7926     c[4] = '\x0';
  7927     // flags
  7928     char f[9];
  7929     f[0] = (error_status()) ? 'E' : '-';
  7930     f[1] = (stack_fault ()) ? 'S' : '-';
  7931     f[2] = (precision   ()) ? 'P' : '-';
  7932     f[3] = (underflow   ()) ? 'U' : '-';
  7933     f[4] = (overflow    ()) ? 'O' : '-';
  7934     f[5] = (zero_divide ()) ? 'Z' : '-';
  7935     f[6] = (denormalized()) ? 'D' : '-';
  7936     f[7] = (invalid     ()) ? 'I' : '-';
  7937     f[8] = '\x0';
  7938     // output
  7939     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  7942 };
  7944 class TagWord {
  7945  public:
  7946   int32_t _value;
  7948   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  7950   void print() const {
  7951     printf("%04x", _value & 0xFFFF);
  7954 };
  7956 class FPU_Register {
  7957  public:
  7958   int32_t _m0;
  7959   int32_t _m1;
  7960   int16_t _ex;
  7962   bool is_indefinite() const           {
  7963     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  7966   void print() const {
  7967     char  sign = (_ex < 0) ? '-' : '+';
  7968     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  7969     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  7970   };
  7972 };
  7974 class FPU_State {
  7975  public:
  7976   enum {
  7977     register_size       = 10,
  7978     number_of_registers =  8,
  7979     register_mask       =  7
  7980   };
  7982   ControlWord  _control_word;
  7983   StatusWord   _status_word;
  7984   TagWord      _tag_word;
  7985   int32_t      _error_offset;
  7986   int32_t      _error_selector;
  7987   int32_t      _data_offset;
  7988   int32_t      _data_selector;
  7989   int8_t       _register[register_size * number_of_registers];
  7991   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  7992   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  7994   const char* tag_as_string(int tag) const {
  7995     switch (tag) {
  7996       case 0: return "valid";
  7997       case 1: return "zero";
  7998       case 2: return "special";
  7999       case 3: return "empty";
  8001     ShouldNotReachHere();
  8002     return NULL;
  8005   void print() const {
  8006     // print computation registers
  8007     { int t = _status_word.top();
  8008       for (int i = 0; i < number_of_registers; i++) {
  8009         int j = (i - t) & register_mask;
  8010         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8011         st(j)->print();
  8012         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8015     printf("\n");
  8016     // print control registers
  8017     printf("ctrl = "); _control_word.print(); printf("\n");
  8018     printf("stat = "); _status_word .print(); printf("\n");
  8019     printf("tags = "); _tag_word    .print(); printf("\n");
  8022 };
  8024 class Flag_Register {
  8025  public:
  8026   int32_t _value;
  8028   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8029   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8030   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8031   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8032   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8033   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8034   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8036   void print() const {
  8037     // flags
  8038     char f[8];
  8039     f[0] = (overflow       ()) ? 'O' : '-';
  8040     f[1] = (direction      ()) ? 'D' : '-';
  8041     f[2] = (sign           ()) ? 'S' : '-';
  8042     f[3] = (zero           ()) ? 'Z' : '-';
  8043     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8044     f[5] = (parity         ()) ? 'P' : '-';
  8045     f[6] = (carry          ()) ? 'C' : '-';
  8046     f[7] = '\x0';
  8047     // output
  8048     printf("%08x  flags = %s", _value, f);
  8051 };
  8053 class IU_Register {
  8054  public:
  8055   int32_t _value;
  8057   void print() const {
  8058     printf("%08x  %11d", _value, _value);
  8061 };
  8063 class IU_State {
  8064  public:
  8065   Flag_Register _eflags;
  8066   IU_Register   _rdi;
  8067   IU_Register   _rsi;
  8068   IU_Register   _rbp;
  8069   IU_Register   _rsp;
  8070   IU_Register   _rbx;
  8071   IU_Register   _rdx;
  8072   IU_Register   _rcx;
  8073   IU_Register   _rax;
  8075   void print() const {
  8076     // computation registers
  8077     printf("rax,  = "); _rax.print(); printf("\n");
  8078     printf("rbx,  = "); _rbx.print(); printf("\n");
  8079     printf("rcx  = "); _rcx.print(); printf("\n");
  8080     printf("rdx  = "); _rdx.print(); printf("\n");
  8081     printf("rdi  = "); _rdi.print(); printf("\n");
  8082     printf("rsi  = "); _rsi.print(); printf("\n");
  8083     printf("rbp,  = "); _rbp.print(); printf("\n");
  8084     printf("rsp  = "); _rsp.print(); printf("\n");
  8085     printf("\n");
  8086     // control registers
  8087     printf("flgs = "); _eflags.print(); printf("\n");
  8089 };
  8092 class CPU_State {
  8093  public:
  8094   FPU_State _fpu_state;
  8095   IU_State  _iu_state;
  8097   void print() const {
  8098     printf("--------------------------------------------------\n");
  8099     _iu_state .print();
  8100     printf("\n");
  8101     _fpu_state.print();
  8102     printf("--------------------------------------------------\n");
  8105 };
  8108 static void _print_CPU_state(CPU_State* state) {
  8109   state->print();
  8110 };
  8113 void MacroAssembler::print_CPU_state() {
  8114   push_CPU_state();
  8115   push(rsp);                // pass CPU state
  8116   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8117   addptr(rsp, wordSize);       // discard argument
  8118   pop_CPU_state();
  8122 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8123   static int counter = 0;
  8124   FPU_State* fs = &state->_fpu_state;
  8125   counter++;
  8126   // For leaf calls, only verify that the top few elements remain empty.
  8127   // We only need 1 empty at the top for C2 code.
  8128   if( stack_depth < 0 ) {
  8129     if( fs->tag_for_st(7) != 3 ) {
  8130       printf("FPR7 not empty\n");
  8131       state->print();
  8132       assert(false, "error");
  8133       return false;
  8135     return true;                // All other stack states do not matter
  8138   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8139          "bad FPU control word");
  8141   // compute stack depth
  8142   int i = 0;
  8143   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8144   int d = i;
  8145   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8146   // verify findings
  8147   if (i != FPU_State::number_of_registers) {
  8148     // stack not contiguous
  8149     printf("%s: stack not contiguous at ST%d\n", s, i);
  8150     state->print();
  8151     assert(false, "error");
  8152     return false;
  8154   // check if computed stack depth corresponds to expected stack depth
  8155   if (stack_depth < 0) {
  8156     // expected stack depth is -stack_depth or less
  8157     if (d > -stack_depth) {
  8158       // too many elements on the stack
  8159       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8160       state->print();
  8161       assert(false, "error");
  8162       return false;
  8164   } else {
  8165     // expected stack depth is stack_depth
  8166     if (d != stack_depth) {
  8167       // wrong stack depth
  8168       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8169       state->print();
  8170       assert(false, "error");
  8171       return false;
  8174   // everything is cool
  8175   return true;
  8179 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8180   if (!VerifyFPU) return;
  8181   push_CPU_state();
  8182   push(rsp);                // pass CPU state
  8183   ExternalAddress msg((address) s);
  8184   // pass message string s
  8185   pushptr(msg.addr());
  8186   push(stack_depth);        // pass stack depth
  8187   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8188   addptr(rsp, 3 * wordSize);   // discard arguments
  8189   // check for error
  8190   { Label L;
  8191     testl(rax, rax);
  8192     jcc(Assembler::notZero, L);
  8193     int3();                  // break if error condition
  8194     bind(L);
  8196   pop_CPU_state();
  8199 void MacroAssembler::load_klass(Register dst, Register src) {
  8200 #ifdef _LP64
  8201   if (UseCompressedOops) {
  8202     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8203     decode_heap_oop_not_null(dst);
  8204   } else
  8205 #endif
  8206     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8209 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8210 #ifdef _LP64
  8211   if (UseCompressedOops) {
  8212     assert (Universe::heap() != NULL, "java heap should be initialized");
  8213     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8214     if (Universe::narrow_oop_shift() != 0) {
  8215       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8216       if (LogMinObjAlignmentInBytes == Address::times_8) {
  8217         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8218       } else {
  8219         // OK to use shift since we don't need to preserve flags.
  8220         shlq(dst, LogMinObjAlignmentInBytes);
  8221         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8223     } else {
  8224       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8226   } else
  8227 #endif
  8229     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8230     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8234 void MacroAssembler::store_klass(Register dst, Register src) {
  8235 #ifdef _LP64
  8236   if (UseCompressedOops) {
  8237     encode_heap_oop_not_null(src);
  8238     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8239   } else
  8240 #endif
  8241     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8244 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8245 #ifdef _LP64
  8246   if (UseCompressedOops) {
  8247     movl(dst, src);
  8248     decode_heap_oop(dst);
  8249   } else
  8250 #endif
  8251     movptr(dst, src);
  8254 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8255 #ifdef _LP64
  8256   if (UseCompressedOops) {
  8257     assert(!dst.uses(src), "not enough registers");
  8258     encode_heap_oop(src);
  8259     movl(dst, src);
  8260   } else
  8261 #endif
  8262     movptr(dst, src);
  8265 // Used for storing NULLs.
  8266 void MacroAssembler::store_heap_oop_null(Address dst) {
  8267 #ifdef _LP64
  8268   if (UseCompressedOops) {
  8269     movl(dst, (int32_t)NULL_WORD);
  8270   } else {
  8271     movslq(dst, (int32_t)NULL_WORD);
  8273 #else
  8274   movl(dst, (int32_t)NULL_WORD);
  8275 #endif
  8278 #ifdef _LP64
  8279 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8280   if (UseCompressedOops) {
  8281     // Store to klass gap in destination
  8282     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8286 #ifdef ASSERT
  8287 void MacroAssembler::verify_heapbase(const char* msg) {
  8288   assert (UseCompressedOops, "should be compressed");
  8289   assert (Universe::heap() != NULL, "java heap should be initialized");
  8290   if (CheckCompressedOops) {
  8291     Label ok;
  8292     push(rscratch1); // cmpptr trashes rscratch1
  8293     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8294     jcc(Assembler::equal, ok);
  8295     stop(msg);
  8296     bind(ok);
  8297     pop(rscratch1);
  8300 #endif
  8302 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8303 void MacroAssembler::encode_heap_oop(Register r) {
  8304 #ifdef ASSERT
  8305   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8306 #endif
  8307   verify_oop(r, "broken oop in encode_heap_oop");
  8308   if (Universe::narrow_oop_base() == NULL) {
  8309     if (Universe::narrow_oop_shift() != 0) {
  8310       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8311       shrq(r, LogMinObjAlignmentInBytes);
  8313     return;
  8315   testq(r, r);
  8316   cmovq(Assembler::equal, r, r12_heapbase);
  8317   subq(r, r12_heapbase);
  8318   shrq(r, LogMinObjAlignmentInBytes);
  8321 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8322 #ifdef ASSERT
  8323   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  8324   if (CheckCompressedOops) {
  8325     Label ok;
  8326     testq(r, r);
  8327     jcc(Assembler::notEqual, ok);
  8328     stop("null oop passed to encode_heap_oop_not_null");
  8329     bind(ok);
  8331 #endif
  8332   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8333   if (Universe::narrow_oop_base() != NULL) {
  8334     subq(r, r12_heapbase);
  8336   if (Universe::narrow_oop_shift() != 0) {
  8337     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8338     shrq(r, LogMinObjAlignmentInBytes);
  8342 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8343 #ifdef ASSERT
  8344   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  8345   if (CheckCompressedOops) {
  8346     Label ok;
  8347     testq(src, src);
  8348     jcc(Assembler::notEqual, ok);
  8349     stop("null oop passed to encode_heap_oop_not_null2");
  8350     bind(ok);
  8352 #endif
  8353   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8354   if (dst != src) {
  8355     movq(dst, src);
  8357   if (Universe::narrow_oop_base() != NULL) {
  8358     subq(dst, r12_heapbase);
  8360   if (Universe::narrow_oop_shift() != 0) {
  8361     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8362     shrq(dst, LogMinObjAlignmentInBytes);
  8366 void  MacroAssembler::decode_heap_oop(Register r) {
  8367 #ifdef ASSERT
  8368   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8369 #endif
  8370   if (Universe::narrow_oop_base() == NULL) {
  8371     if (Universe::narrow_oop_shift() != 0) {
  8372       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8373       shlq(r, LogMinObjAlignmentInBytes);
  8375   } else {
  8376     Label done;
  8377     shlq(r, LogMinObjAlignmentInBytes);
  8378     jccb(Assembler::equal, done);
  8379     addq(r, r12_heapbase);
  8380     bind(done);
  8382   verify_oop(r, "broken oop in decode_heap_oop");
  8385 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8386   // Note: it will change flags
  8387   assert (UseCompressedOops, "should only be used for compressed headers");
  8388   assert (Universe::heap() != NULL, "java heap should be initialized");
  8389   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8390   // vtableStubs also counts instructions in pd_code_size_limit.
  8391   // Also do not verify_oop as this is called by verify_oop.
  8392   if (Universe::narrow_oop_shift() != 0) {
  8393     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8394     shlq(r, LogMinObjAlignmentInBytes);
  8395     if (Universe::narrow_oop_base() != NULL) {
  8396       addq(r, r12_heapbase);
  8398   } else {
  8399     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8403 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8404   // Note: it will change flags
  8405   assert (UseCompressedOops, "should only be used for compressed headers");
  8406   assert (Universe::heap() != NULL, "java heap should be initialized");
  8407   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8408   // vtableStubs also counts instructions in pd_code_size_limit.
  8409   // Also do not verify_oop as this is called by verify_oop.
  8410   if (Universe::narrow_oop_shift() != 0) {
  8411     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8412     if (LogMinObjAlignmentInBytes == Address::times_8) {
  8413       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8414     } else {
  8415       if (dst != src) {
  8416         movq(dst, src);
  8418       shlq(dst, LogMinObjAlignmentInBytes);
  8419       if (Universe::narrow_oop_base() != NULL) {
  8420         addq(dst, r12_heapbase);
  8423   } else {
  8424     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8425     if (dst != src) {
  8426       movq(dst, src);
  8431 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8432   assert (UseCompressedOops, "should only be used for compressed headers");
  8433   assert (Universe::heap() != NULL, "java heap should be initialized");
  8434   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8435   int oop_index = oop_recorder()->find_index(obj);
  8436   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8437   mov_narrow_oop(dst, oop_index, rspec);
  8440 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8441   assert (UseCompressedOops, "should only be used for compressed headers");
  8442   assert (Universe::heap() != NULL, "java heap should be initialized");
  8443   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8444   int oop_index = oop_recorder()->find_index(obj);
  8445   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8446   mov_narrow_oop(dst, oop_index, rspec);
  8449 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8450   assert (UseCompressedOops, "should only be used for compressed headers");
  8451   assert (Universe::heap() != NULL, "java heap should be initialized");
  8452   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8453   int oop_index = oop_recorder()->find_index(obj);
  8454   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8455   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8458 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8459   assert (UseCompressedOops, "should only be used for compressed headers");
  8460   assert (Universe::heap() != NULL, "java heap should be initialized");
  8461   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8462   int oop_index = oop_recorder()->find_index(obj);
  8463   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8464   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8467 void MacroAssembler::reinit_heapbase() {
  8468   if (UseCompressedOops) {
  8469     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8472 #endif // _LP64
  8474 // IndexOf substring.
  8475 void MacroAssembler::string_indexof(Register str1, Register str2,
  8476                                     Register cnt1, Register cnt2, Register result,
  8477                                     XMMRegister vec, Register tmp) {
  8478   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8480   Label RELOAD_SUBSTR, PREP_FOR_SCAN, SCAN_TO_SUBSTR,
  8481         SCAN_SUBSTR, RET_NOT_FOUND, CLEANUP;
  8483   push(str1); // string addr
  8484   push(str2); // substr addr
  8485   push(cnt2); // substr count
  8486   jmpb(PREP_FOR_SCAN);
  8488   // Substr count saved at sp
  8489   // Substr saved at sp+1*wordSize
  8490   // String saved at sp+2*wordSize
  8492   // Reload substr for rescan
  8493   bind(RELOAD_SUBSTR);
  8494   movl(cnt2, Address(rsp, 0));
  8495   movptr(str2, Address(rsp, wordSize));
  8496   // We came here after the beginninig of the substring was
  8497   // matched but the rest of it was not so we need to search
  8498   // again. Start from the next element after the previous match.
  8499   subptr(str1, result); // Restore counter
  8500   shrl(str1, 1);
  8501   addl(cnt1, str1);
  8502   decrementl(cnt1);
  8503   lea(str1, Address(result, 2)); // Reload string
  8505   // Load substr
  8506   bind(PREP_FOR_SCAN);
  8507   movdqu(vec, Address(str2, 0));
  8508   addl(cnt1, 8);  // prime the loop
  8509   subptr(str1, 16);
  8511   // Scan string for substr in 16-byte vectors
  8512   bind(SCAN_TO_SUBSTR);
  8513   subl(cnt1, 8);
  8514   addptr(str1, 16);
  8516   // pcmpestri
  8517   //   inputs:
  8518   //     xmm - substring
  8519   //     rax - substring length (elements count)
  8520   //     mem - scaned string
  8521   //     rdx - string length (elements count)
  8522   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8523   //   outputs:
  8524   //     rcx - matched index in string
  8525   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8527   pcmpestri(vec, Address(str1, 0), 0x0d);
  8528   jcc(Assembler::above, SCAN_TO_SUBSTR);      // CF == 0 && ZF == 0
  8529   jccb(Assembler::aboveEqual, RET_NOT_FOUND); // CF == 0
  8531   // Fallthrough: found a potential substr
  8533   // Make sure string is still long enough
  8534   subl(cnt1, tmp);
  8535   cmpl(cnt1, cnt2);
  8536   jccb(Assembler::negative, RET_NOT_FOUND);
  8537   // Compute start addr of substr
  8538   lea(str1, Address(str1, tmp, Address::times_2));
  8539   movptr(result, str1); // save
  8541   // Compare potential substr
  8542   addl(cnt1, 8);     // prime the loop
  8543   addl(cnt2, 8);
  8544   subptr(str1, 16);
  8545   subptr(str2, 16);
  8547   // Scan 16-byte vectors of string and substr
  8548   bind(SCAN_SUBSTR);
  8549   subl(cnt1, 8);
  8550   subl(cnt2, 8);
  8551   addptr(str1, 16);
  8552   addptr(str2, 16);
  8553   movdqu(vec, Address(str2, 0));
  8554   pcmpestri(vec, Address(str1, 0), 0x0d);
  8555   jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  8556   jcc(Assembler::positive, SCAN_SUBSTR);     // SF == 0
  8558   // Compute substr offset
  8559   subptr(result, Address(rsp, 2*wordSize));
  8560   shrl(result, 1); // index
  8561   jmpb(CLEANUP);
  8563   bind(RET_NOT_FOUND);
  8564   movl(result, -1);
  8566   bind(CLEANUP);
  8567   addptr(rsp, 3*wordSize);
  8570 // Compare strings.
  8571 void MacroAssembler::string_compare(Register str1, Register str2,
  8572                                     Register cnt1, Register cnt2, Register result,
  8573                                     XMMRegister vec1, XMMRegister vec2) {
  8574   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  8576   // Compute the minimum of the string lengths and the
  8577   // difference of the string lengths (stack).
  8578   // Do the conditional move stuff
  8579   movl(result, cnt1);
  8580   subl(cnt1, cnt2);
  8581   push(cnt1);
  8582   if (VM_Version::supports_cmov()) {
  8583     cmovl(Assembler::lessEqual, cnt2, result);
  8584   } else {
  8585     Label GT_LABEL;
  8586     jccb(Assembler::greater, GT_LABEL);
  8587     movl(cnt2, result);
  8588     bind(GT_LABEL);
  8591   // Is the minimum length zero?
  8592   testl(cnt2, cnt2);
  8593   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  8595   // Load first characters
  8596   load_unsigned_short(result, Address(str1, 0));
  8597   load_unsigned_short(cnt1, Address(str2, 0));
  8599   // Compare first characters
  8600   subl(result, cnt1);
  8601   jcc(Assembler::notZero,  POP_LABEL);
  8602   decrementl(cnt2);
  8603   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  8606     // Check after comparing first character to see if strings are equivalent
  8607     Label LSkip2;
  8608     // Check if the strings start at same location
  8609     cmpptr(str1, str2);
  8610     jccb(Assembler::notEqual, LSkip2);
  8612     // Check if the length difference is zero (from stack)
  8613     cmpl(Address(rsp, 0), 0x0);
  8614     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  8616     // Strings might not be equivalent
  8617     bind(LSkip2);
  8620   // Advance to next character
  8621   addptr(str1, 2);
  8622   addptr(str2, 2);
  8624   if (UseSSE42Intrinsics) {
  8625     // With SSE4.2, use double quad vector compare
  8626     Label COMPARE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  8627     // Setup to compare 16-byte vectors
  8628     movl(cnt1, cnt2);
  8629     andl(cnt2, 0xfffffff8); // cnt2 holds the vector count
  8630     andl(cnt1, 0x00000007); // cnt1 holds the tail count
  8631     testl(cnt2, cnt2);
  8632     jccb(Assembler::zero, COMPARE_TAIL);
  8634     lea(str2, Address(str2, cnt2, Address::times_2));
  8635     lea(str1, Address(str1, cnt2, Address::times_2));
  8636     negptr(cnt2);
  8638     bind(COMPARE_VECTORS);
  8639     movdqu(vec1, Address(str1, cnt2, Address::times_2));
  8640     movdqu(vec2, Address(str2, cnt2, Address::times_2));
  8641     pxor(vec1, vec2);
  8642     ptest(vec1, vec1);
  8643     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  8644     addptr(cnt2, 8);
  8645     jcc(Assembler::notZero, COMPARE_VECTORS);
  8646     jmpb(COMPARE_TAIL);
  8648     // Mismatched characters in the vectors
  8649     bind(VECTOR_NOT_EQUAL);
  8650     lea(str1, Address(str1, cnt2, Address::times_2));
  8651     lea(str2, Address(str2, cnt2, Address::times_2));
  8652     movl(cnt1, 8);
  8654     // Compare tail (< 8 chars), or rescan last vectors to
  8655     // find 1st mismatched characters
  8656     bind(COMPARE_TAIL);
  8657     testl(cnt1, cnt1);
  8658     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  8659     movl(cnt2, cnt1);
  8660     // Fallthru to tail compare
  8663   // Shift str2 and str1 to the end of the arrays, negate min
  8664   lea(str1, Address(str1, cnt2, Address::times_2, 0));
  8665   lea(str2, Address(str2, cnt2, Address::times_2, 0));
  8666   negptr(cnt2);
  8668     // Compare the rest of the characters
  8669   bind(WHILE_HEAD_LABEL);
  8670   load_unsigned_short(result, Address(str1, cnt2, Address::times_2, 0));
  8671   load_unsigned_short(cnt1, Address(str2, cnt2, Address::times_2, 0));
  8672   subl(result, cnt1);
  8673   jccb(Assembler::notZero, POP_LABEL);
  8674   increment(cnt2);
  8675   jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  8677   // Strings are equal up to min length.  Return the length difference.
  8678   bind(LENGTH_DIFF_LABEL);
  8679   pop(result);
  8680   jmpb(DONE_LABEL);
  8682   // Discard the stored length difference
  8683   bind(POP_LABEL);
  8684   addptr(rsp, wordSize);
  8686   // That's it
  8687   bind(DONE_LABEL);
  8690 // Compare char[] arrays aligned to 4 bytes or substrings.
  8691 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  8692                                         Register limit, Register result, Register chr,
  8693                                         XMMRegister vec1, XMMRegister vec2) {
  8694   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  8696   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  8697   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  8699   // Check the input args
  8700   cmpptr(ary1, ary2);
  8701   jcc(Assembler::equal, TRUE_LABEL);
  8703   if (is_array_equ) {
  8704     // Need additional checks for arrays_equals.
  8705     testptr(ary1, ary1);
  8706     jcc(Assembler::zero, FALSE_LABEL);
  8707     testptr(ary2, ary2);
  8708     jcc(Assembler::zero, FALSE_LABEL);
  8710     // Check the lengths
  8711     movl(limit, Address(ary1, length_offset));
  8712     cmpl(limit, Address(ary2, length_offset));
  8713     jcc(Assembler::notEqual, FALSE_LABEL);
  8716   // count == 0
  8717   testl(limit, limit);
  8718   jcc(Assembler::zero, TRUE_LABEL);
  8720   if (is_array_equ) {
  8721     // Load array address
  8722     lea(ary1, Address(ary1, base_offset));
  8723     lea(ary2, Address(ary2, base_offset));
  8726   shll(limit, 1);      // byte count != 0
  8727   movl(result, limit); // copy
  8729   if (UseSSE42Intrinsics) {
  8730     // With SSE4.2, use double quad vector compare
  8731     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  8732     // Compare 16-byte vectors
  8733     andl(result, 0x0000000e);  //   tail count (in bytes)
  8734     andl(limit, 0xfffffff0);   // vector count (in bytes)
  8735     jccb(Assembler::zero, COMPARE_TAIL);
  8737     lea(ary1, Address(ary1, limit, Address::times_1));
  8738     lea(ary2, Address(ary2, limit, Address::times_1));
  8739     negptr(limit);
  8741     bind(COMPARE_WIDE_VECTORS);
  8742     movdqu(vec1, Address(ary1, limit, Address::times_1));
  8743     movdqu(vec2, Address(ary2, limit, Address::times_1));
  8744     pxor(vec1, vec2);
  8745     ptest(vec1, vec1);
  8746     jccb(Assembler::notZero, FALSE_LABEL);
  8747     addptr(limit, 16);
  8748     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  8750     bind(COMPARE_TAIL); // limit is zero
  8751     movl(limit, result);
  8752     // Fallthru to tail compare
  8755   // Compare 4-byte vectors
  8756   andl(limit, 0xfffffffc); // vector count (in bytes)
  8757   jccb(Assembler::zero, COMPARE_CHAR);
  8759   lea(ary1, Address(ary1, limit, Address::times_1));
  8760   lea(ary2, Address(ary2, limit, Address::times_1));
  8761   negptr(limit);
  8763   bind(COMPARE_VECTORS);
  8764   movl(chr, Address(ary1, limit, Address::times_1));
  8765   cmpl(chr, Address(ary2, limit, Address::times_1));
  8766   jccb(Assembler::notEqual, FALSE_LABEL);
  8767   addptr(limit, 4);
  8768   jcc(Assembler::notZero, COMPARE_VECTORS);
  8770   // Compare trailing char (final 2 bytes), if any
  8771   bind(COMPARE_CHAR);
  8772   testl(result, 0x2);   // tail  char
  8773   jccb(Assembler::zero, TRUE_LABEL);
  8774   load_unsigned_short(chr, Address(ary1, 0));
  8775   load_unsigned_short(limit, Address(ary2, 0));
  8776   cmpl(chr, limit);
  8777   jccb(Assembler::notEqual, FALSE_LABEL);
  8779   bind(TRUE_LABEL);
  8780   movl(result, 1);   // return true
  8781   jmpb(DONE);
  8783   bind(FALSE_LABEL);
  8784   xorl(result, result); // return false
  8786   // That's it
  8787   bind(DONE);
  8790 #ifdef PRODUCT
  8791 #define BLOCK_COMMENT(str) /* nothing */
  8792 #else
  8793 #define BLOCK_COMMENT(str) block_comment(str)
  8794 #endif
  8796 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  8797 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  8798                                    Register to, Register value, Register count,
  8799                                    Register rtmp, XMMRegister xtmp) {
  8800   assert_different_registers(to, value, count, rtmp);
  8801   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  8802   Label L_fill_2_bytes, L_fill_4_bytes;
  8804   int shift = -1;
  8805   switch (t) {
  8806     case T_BYTE:
  8807       shift = 2;
  8808       break;
  8809     case T_SHORT:
  8810       shift = 1;
  8811       break;
  8812     case T_INT:
  8813       shift = 0;
  8814       break;
  8815     default: ShouldNotReachHere();
  8818   if (t == T_BYTE) {
  8819     andl(value, 0xff);
  8820     movl(rtmp, value);
  8821     shll(rtmp, 8);
  8822     orl(value, rtmp);
  8824   if (t == T_SHORT) {
  8825     andl(value, 0xffff);
  8827   if (t == T_BYTE || t == T_SHORT) {
  8828     movl(rtmp, value);
  8829     shll(rtmp, 16);
  8830     orl(value, rtmp);
  8833   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  8834   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  8835   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  8836     // align source address at 4 bytes address boundary
  8837     if (t == T_BYTE) {
  8838       // One byte misalignment happens only for byte arrays
  8839       testptr(to, 1);
  8840       jccb(Assembler::zero, L_skip_align1);
  8841       movb(Address(to, 0), value);
  8842       increment(to);
  8843       decrement(count);
  8844       BIND(L_skip_align1);
  8846     // Two bytes misalignment happens only for byte and short (char) arrays
  8847     testptr(to, 2);
  8848     jccb(Assembler::zero, L_skip_align2);
  8849     movw(Address(to, 0), value);
  8850     addptr(to, 2);
  8851     subl(count, 1<<(shift-1));
  8852     BIND(L_skip_align2);
  8854   if (UseSSE < 2) {
  8855     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  8856     // Fill 32-byte chunks
  8857     subl(count, 8 << shift);
  8858     jcc(Assembler::less, L_check_fill_8_bytes);
  8859     align(16);
  8861     BIND(L_fill_32_bytes_loop);
  8863     for (int i = 0; i < 32; i += 4) {
  8864       movl(Address(to, i), value);
  8867     addptr(to, 32);
  8868     subl(count, 8 << shift);
  8869     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  8870     BIND(L_check_fill_8_bytes);
  8871     addl(count, 8 << shift);
  8872     jccb(Assembler::zero, L_exit);
  8873     jmpb(L_fill_8_bytes);
  8875     //
  8876     // length is too short, just fill qwords
  8877     //
  8878     BIND(L_fill_8_bytes_loop);
  8879     movl(Address(to, 0), value);
  8880     movl(Address(to, 4), value);
  8881     addptr(to, 8);
  8882     BIND(L_fill_8_bytes);
  8883     subl(count, 1 << (shift + 1));
  8884     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  8885     // fall through to fill 4 bytes
  8886   } else {
  8887     Label L_fill_32_bytes;
  8888     if (!UseUnalignedLoadStores) {
  8889       // align to 8 bytes, we know we are 4 byte aligned to start
  8890       testptr(to, 4);
  8891       jccb(Assembler::zero, L_fill_32_bytes);
  8892       movl(Address(to, 0), value);
  8893       addptr(to, 4);
  8894       subl(count, 1<<shift);
  8896     BIND(L_fill_32_bytes);
  8898       assert( UseSSE >= 2, "supported cpu only" );
  8899       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  8900       // Fill 32-byte chunks
  8901       movdl(xtmp, value);
  8902       pshufd(xtmp, xtmp, 0);
  8904       subl(count, 8 << shift);
  8905       jcc(Assembler::less, L_check_fill_8_bytes);
  8906       align(16);
  8908       BIND(L_fill_32_bytes_loop);
  8910       if (UseUnalignedLoadStores) {
  8911         movdqu(Address(to, 0), xtmp);
  8912         movdqu(Address(to, 16), xtmp);
  8913       } else {
  8914         movq(Address(to, 0), xtmp);
  8915         movq(Address(to, 8), xtmp);
  8916         movq(Address(to, 16), xtmp);
  8917         movq(Address(to, 24), xtmp);
  8920       addptr(to, 32);
  8921       subl(count, 8 << shift);
  8922       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  8923       BIND(L_check_fill_8_bytes);
  8924       addl(count, 8 << shift);
  8925       jccb(Assembler::zero, L_exit);
  8926       jmpb(L_fill_8_bytes);
  8928       //
  8929       // length is too short, just fill qwords
  8930       //
  8931       BIND(L_fill_8_bytes_loop);
  8932       movq(Address(to, 0), xtmp);
  8933       addptr(to, 8);
  8934       BIND(L_fill_8_bytes);
  8935       subl(count, 1 << (shift + 1));
  8936       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  8939   // fill trailing 4 bytes
  8940   BIND(L_fill_4_bytes);
  8941   testl(count, 1<<shift);
  8942   jccb(Assembler::zero, L_fill_2_bytes);
  8943   movl(Address(to, 0), value);
  8944   if (t == T_BYTE || t == T_SHORT) {
  8945     addptr(to, 4);
  8946     BIND(L_fill_2_bytes);
  8947     // fill trailing 2 bytes
  8948     testl(count, 1<<(shift-1));
  8949     jccb(Assembler::zero, L_fill_byte);
  8950     movw(Address(to, 0), value);
  8951     if (t == T_BYTE) {
  8952       addptr(to, 2);
  8953       BIND(L_fill_byte);
  8954       // fill trailing byte
  8955       testl(count, 1);
  8956       jccb(Assembler::zero, L_exit);
  8957       movb(Address(to, 0), value);
  8958     } else {
  8959       BIND(L_fill_byte);
  8961   } else {
  8962     BIND(L_fill_2_bytes);
  8964   BIND(L_exit);
  8966 #undef BIND
  8967 #undef BLOCK_COMMENT
  8970 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  8971   switch (cond) {
  8972     // Note some conditions are synonyms for others
  8973     case Assembler::zero:         return Assembler::notZero;
  8974     case Assembler::notZero:      return Assembler::zero;
  8975     case Assembler::less:         return Assembler::greaterEqual;
  8976     case Assembler::lessEqual:    return Assembler::greater;
  8977     case Assembler::greater:      return Assembler::lessEqual;
  8978     case Assembler::greaterEqual: return Assembler::less;
  8979     case Assembler::below:        return Assembler::aboveEqual;
  8980     case Assembler::belowEqual:   return Assembler::above;
  8981     case Assembler::above:        return Assembler::belowEqual;
  8982     case Assembler::aboveEqual:   return Assembler::below;
  8983     case Assembler::overflow:     return Assembler::noOverflow;
  8984     case Assembler::noOverflow:   return Assembler::overflow;
  8985     case Assembler::negative:     return Assembler::positive;
  8986     case Assembler::positive:     return Assembler::negative;
  8987     case Assembler::parity:       return Assembler::noParity;
  8988     case Assembler::noParity:     return Assembler::parity;
  8990   ShouldNotReachHere(); return Assembler::overflow;
  8993 SkipIfEqual::SkipIfEqual(
  8994     MacroAssembler* masm, const bool* flag_addr, bool value) {
  8995   _masm = masm;
  8996   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  8997   _masm->jcc(Assembler::equal, _label);
  9000 SkipIfEqual::~SkipIfEqual() {
  9001   _masm->bind(_label);

mercurial