src/share/vm/gc_implementation/g1/heapRegion.hpp

Mon, 15 Dec 2008 16:55:11 -0800

author
xdono
date
Mon, 15 Dec 2008 16:55:11 -0800
changeset 905
ad8c8ca4ab0f
parent 825
cc68c8e9b309
child 980
58054a18d735
permissions
-rw-r--r--

6785258: Update copyright year
Summary: Update copyright for files that have been modified starting July 2008 to Dec 2008
Reviewed-by: katleman, ohair, tbell

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifndef SERIALGC
    27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    28 // can be collected independently.
    30 // NOTE: Although a HeapRegion is a Space, its
    31 // Space::initDirtyCardClosure method must not be called.
    32 // The problem is that the existence of this method breaks
    33 // the independence of barrier sets from remembered sets.
    34 // The solution is to remove this method from the definition
    35 // of a Space.
    37 class CompactibleSpace;
    38 class ContiguousSpace;
    39 class HeapRegionRemSet;
    40 class HeapRegionRemSetIterator;
    41 class HeapRegion;
    43 // A dirty card to oop closure for heap regions. It
    44 // knows how to get the G1 heap and how to use the bitmap
    45 // in the concurrent marker used by G1 to filter remembered
    46 // sets.
    48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    49 public:
    50   // Specification of possible DirtyCardToOopClosure filtering.
    51   enum FilterKind {
    52     NoFilterKind,
    53     IntoCSFilterKind,
    54     OutOfRegionFilterKind
    55   };
    57 protected:
    58   HeapRegion* _hr;
    59   FilterKind _fk;
    60   G1CollectedHeap* _g1;
    62   void walk_mem_region_with_cl(MemRegion mr,
    63                                HeapWord* bottom, HeapWord* top,
    64                                OopClosure* cl);
    66   // We don't specialize this for FilteringClosure; filtering is handled by
    67   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    68   // warning.
    69   void walk_mem_region_with_cl(MemRegion mr,
    70                                HeapWord* bottom, HeapWord* top,
    71                                FilteringClosure* cl) {
    72     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    73                                                        (OopClosure*)cl);
    74   }
    76   // Get the actual top of the area on which the closure will
    77   // operate, given where the top is assumed to be (the end of the
    78   // memory region passed to do_MemRegion) and where the object
    79   // at the top is assumed to start. For example, an object may
    80   // start at the top but actually extend past the assumed top,
    81   // in which case the top becomes the end of the object.
    82   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    83     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
    84   }
    86   // Walk the given memory region from bottom to (actual) top
    87   // looking for objects and applying the oop closure (_cl) to
    88   // them. The base implementation of this treats the area as
    89   // blocks, where a block may or may not be an object. Sub-
    90   // classes should override this to provide more accurate
    91   // or possibly more efficient walking.
    92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
    93     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
    94   }
    96 public:
    97   HeapRegionDCTOC(G1CollectedHeap* g1,
    98                   HeapRegion* hr, OopClosure* cl,
    99                   CardTableModRefBS::PrecisionStyle precision,
   100                   FilterKind fk);
   101 };
   104 // The complicating factor is that BlockOffsetTable diverged
   105 // significantly, and we need functionality that is only in the G1 version.
   106 // So I copied that code, which led to an alternate G1 version of
   107 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   108 // be reconciled, then G1OffsetTableContigSpace could go away.
   110 // The idea behind time stamps is the following. Doing a save_marks on
   111 // all regions at every GC pause is time consuming (if I remember
   112 // well, 10ms or so). So, we would like to do that only for regions
   113 // that are GC alloc regions. To achieve this, we use time
   114 // stamps. For every evacuation pause, G1CollectedHeap generates a
   115 // unique time stamp (essentially a counter that gets
   116 // incremented). Every time we want to call save_marks on a region,
   117 // we set the saved_mark_word to top and also copy the current GC
   118 // time stamp to the time stamp field of the space. Reading the
   119 // saved_mark_word involves checking the time stamp of the
   120 // region. If it is the same as the current GC time stamp, then we
   121 // can safely read the saved_mark_word field, as it is valid. If the
   122 // time stamp of the region is not the same as the current GC time
   123 // stamp, then we instead read top, as the saved_mark_word field is
   124 // invalid. Time stamps (on the regions and also on the
   125 // G1CollectedHeap) are reset at every cleanup (we iterate over
   126 // the regions anyway) and at the end of a Full GC. The current scheme
   127 // that uses sequential unsigned ints will fail only if we have 4b
   128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   130 class G1OffsetTableContigSpace: public ContiguousSpace {
   131   friend class VMStructs;
   132  protected:
   133   G1BlockOffsetArrayContigSpace _offsets;
   134   Mutex _par_alloc_lock;
   135   volatile unsigned _gc_time_stamp;
   137  public:
   138   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   139   // assumed to contain zeros.
   140   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   141                            MemRegion mr, bool is_zeroed = false);
   143   void set_bottom(HeapWord* value);
   144   void set_end(HeapWord* value);
   146   virtual HeapWord* saved_mark_word() const;
   147   virtual void set_saved_mark();
   148   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   151   virtual void clear(bool mangle_space);
   153   HeapWord* block_start(const void* p);
   154   HeapWord* block_start_const(const void* p) const;
   156   // Add offset table update.
   157   virtual HeapWord* allocate(size_t word_size);
   158   HeapWord* par_allocate(size_t word_size);
   160   // MarkSweep support phase3
   161   virtual HeapWord* initialize_threshold();
   162   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   164   virtual void print() const;
   165 };
   167 class HeapRegion: public G1OffsetTableContigSpace {
   168   friend class VMStructs;
   169  private:
   171   enum HumongousType {
   172     NotHumongous = 0,
   173     StartsHumongous,
   174     ContinuesHumongous
   175   };
   177   // The next filter kind that should be used for a "new_dcto_cl" call with
   178   // the "traditional" signature.
   179   HeapRegionDCTOC::FilterKind _next_fk;
   181   // Requires that the region "mr" be dense with objects, and begin and end
   182   // with an object.
   183   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   185   // The remembered set for this region.
   186   // (Might want to make this "inline" later, to avoid some alloc failure
   187   // issues.)
   188   HeapRegionRemSet* _rem_set;
   190   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   192  protected:
   193   // If this region is a member of a HeapRegionSeq, the index in that
   194   // sequence, otherwise -1.
   195   int  _hrs_index;
   197   HumongousType _humongous_type;
   198   // For a humongous region, region in which it starts.
   199   HeapRegion* _humongous_start_region;
   200   // For the start region of a humongous sequence, it's original end().
   201   HeapWord* _orig_end;
   203   // True iff the region is in current collection_set.
   204   bool _in_collection_set;
   206     // True iff the region is on the unclean list, waiting to be zero filled.
   207   bool _is_on_unclean_list;
   209   // True iff the region is on the free list, ready for allocation.
   210   bool _is_on_free_list;
   212   // Is this or has it been an allocation region in the current collection
   213   // pause.
   214   bool _is_gc_alloc_region;
   216   // True iff an attempt to evacuate an object in the region failed.
   217   bool _evacuation_failed;
   219   // A heap region may be a member one of a number of special subsets, each
   220   // represented as linked lists through the field below.  Currently, these
   221   // sets include:
   222   //   The collection set.
   223   //   The set of allocation regions used in a collection pause.
   224   //   Spaces that may contain gray objects.
   225   HeapRegion* _next_in_special_set;
   227   // next region in the young "generation" region set
   228   HeapRegion* _next_young_region;
   230   // For parallel heapRegion traversal.
   231   jint _claimed;
   233   // We use concurrent marking to determine the amount of live data
   234   // in each heap region.
   235   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   236   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   238   // See "sort_index" method.  -1 means is not in the array.
   239   int _sort_index;
   241   // Means it has (or at least had) a very large RS, and should not be
   242   // considered for membership in a collection set.
   243   enum PopularityState {
   244     NotPopular,
   245     PopularPending,
   246     Popular
   247   };
   248   PopularityState _popularity;
   250   // <PREDICTION>
   251   double _gc_efficiency;
   252   // </PREDICTION>
   254   enum YoungType {
   255     NotYoung,                   // a region is not young
   256     ScanOnly,                   // a region is young and scan-only
   257     Young,                      // a region is young
   258     Survivor                    // a region is young and it contains
   259                                 // survivor
   260   };
   262   YoungType _young_type;
   263   int  _young_index_in_cset;
   264   SurvRateGroup* _surv_rate_group;
   265   int  _age_index;
   267   // The start of the unmarked area. The unmarked area extends from this
   268   // word until the top and/or end of the region, and is the part
   269   // of the region for which no marking was done, i.e. objects may
   270   // have been allocated in this part since the last mark phase.
   271   // "prev" is the top at the start of the last completed marking.
   272   // "next" is the top at the start of the in-progress marking (if any.)
   273   HeapWord* _prev_top_at_mark_start;
   274   HeapWord* _next_top_at_mark_start;
   275   // If a collection pause is in progress, this is the top at the start
   276   // of that pause.
   278   // We've counted the marked bytes of objects below here.
   279   HeapWord* _top_at_conc_mark_count;
   281   void init_top_at_mark_start() {
   282     assert(_prev_marked_bytes == 0 &&
   283            _next_marked_bytes == 0,
   284            "Must be called after zero_marked_bytes.");
   285     HeapWord* bot = bottom();
   286     _prev_top_at_mark_start = bot;
   287     _next_top_at_mark_start = bot;
   288     _top_at_conc_mark_count = bot;
   289   }
   291   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
   292   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
   293                         // made it so.
   295   void set_young_type(YoungType new_type) {
   296     //assert(_young_type != new_type, "setting the same type" );
   297     // TODO: add more assertions here
   298     _young_type = new_type;
   299   }
   301  public:
   302   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   303   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   304              MemRegion mr, bool is_zeroed);
   306   enum SomePublicConstants {
   307     // HeapRegions are GrainBytes-aligned
   308     // and have sizes that are multiples of GrainBytes.
   309     LogOfHRGrainBytes = 20,
   310     LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
   311     GrainBytes = 1 << LogOfHRGrainBytes,
   312     GrainWords = 1 <<LogOfHRGrainWords,
   313     MaxAge = 2, NoOfAges = MaxAge+1
   314   };
   316   enum ClaimValues {
   317     InitialClaimValue     = 0,
   318     FinalCountClaimValue  = 1,
   319     NoteEndClaimValue     = 2,
   320     ScrubRemSetClaimValue = 3,
   321     ParVerifyClaimValue   = 4
   322   };
   324   // Concurrent refinement requires contiguous heap regions (in which TLABs
   325   // might be allocated) to be zero-filled.  Each region therefore has a
   326   // zero-fill-state.
   327   enum ZeroFillState {
   328     NotZeroFilled,
   329     ZeroFilling,
   330     ZeroFilled,
   331     Allocated
   332   };
   334   // If this region is a member of a HeapRegionSeq, the index in that
   335   // sequence, otherwise -1.
   336   int hrs_index() const { return _hrs_index; }
   337   void set_hrs_index(int index) { _hrs_index = index; }
   339   // The number of bytes marked live in the region in the last marking phase.
   340   size_t marked_bytes()    { return _prev_marked_bytes; }
   341   // The number of bytes counted in the next marking.
   342   size_t next_marked_bytes() { return _next_marked_bytes; }
   343   // The number of bytes live wrt the next marking.
   344   size_t next_live_bytes() {
   345     return (top() - next_top_at_mark_start())
   346       * HeapWordSize
   347       + next_marked_bytes();
   348   }
   350   // A lower bound on the amount of garbage bytes in the region.
   351   size_t garbage_bytes() {
   352     size_t used_at_mark_start_bytes =
   353       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   354     assert(used_at_mark_start_bytes >= marked_bytes(),
   355            "Can't mark more than we have.");
   356     return used_at_mark_start_bytes - marked_bytes();
   357   }
   359   // An upper bound on the number of live bytes in the region.
   360   size_t max_live_bytes() { return used() - garbage_bytes(); }
   362   void add_to_marked_bytes(size_t incr_bytes) {
   363     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   364     guarantee( _next_marked_bytes <= used(), "invariant" );
   365   }
   367   void zero_marked_bytes()      {
   368     _prev_marked_bytes = _next_marked_bytes = 0;
   369   }
   371   bool isHumongous() const { return _humongous_type != NotHumongous; }
   372   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   373   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   374   // For a humongous region, region in which it starts.
   375   HeapRegion* humongous_start_region() const {
   376     return _humongous_start_region;
   377   }
   379   // Causes the current region to represent a humongous object spanning "n"
   380   // regions.
   381   virtual void set_startsHumongous();
   383   // The regions that continue a humongous sequence should be added using
   384   // this method, in increasing address order.
   385   void set_continuesHumongous(HeapRegion* start);
   387   void add_continuingHumongousRegion(HeapRegion* cont);
   389   // If the region has a remembered set, return a pointer to it.
   390   HeapRegionRemSet* rem_set() const {
   391     return _rem_set;
   392   }
   394   // True iff the region is in current collection_set.
   395   bool in_collection_set() const {
   396     return _in_collection_set;
   397   }
   398   void set_in_collection_set(bool b) {
   399     _in_collection_set = b;
   400   }
   401   HeapRegion* next_in_collection_set() {
   402     assert(in_collection_set(), "should only invoke on member of CS.");
   403     assert(_next_in_special_set == NULL ||
   404            _next_in_special_set->in_collection_set(),
   405            "Malformed CS.");
   406     return _next_in_special_set;
   407   }
   408   void set_next_in_collection_set(HeapRegion* r) {
   409     assert(in_collection_set(), "should only invoke on member of CS.");
   410     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   411     _next_in_special_set = r;
   412   }
   414   // True iff it is or has been an allocation region in the current
   415   // collection pause.
   416   bool is_gc_alloc_region() const {
   417     return _is_gc_alloc_region;
   418   }
   419   void set_is_gc_alloc_region(bool b) {
   420     _is_gc_alloc_region = b;
   421   }
   422   HeapRegion* next_gc_alloc_region() {
   423     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   424     assert(_next_in_special_set == NULL ||
   425            _next_in_special_set->is_gc_alloc_region(),
   426            "Malformed CS.");
   427     return _next_in_special_set;
   428   }
   429   void set_next_gc_alloc_region(HeapRegion* r) {
   430     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   431     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   432     _next_in_special_set = r;
   433   }
   435   bool is_reserved() {
   436     return popular();
   437   }
   439   bool is_on_free_list() {
   440     return _is_on_free_list;
   441   }
   443   void set_on_free_list(bool b) {
   444     _is_on_free_list = b;
   445   }
   447   HeapRegion* next_from_free_list() {
   448     assert(is_on_free_list(),
   449            "Should only invoke on free space.");
   450     assert(_next_in_special_set == NULL ||
   451            _next_in_special_set->is_on_free_list(),
   452            "Malformed Free List.");
   453     return _next_in_special_set;
   454   }
   456   void set_next_on_free_list(HeapRegion* r) {
   457     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
   458     _next_in_special_set = r;
   459   }
   461   bool is_on_unclean_list() {
   462     return _is_on_unclean_list;
   463   }
   465   void set_on_unclean_list(bool b);
   467   HeapRegion* next_from_unclean_list() {
   468     assert(is_on_unclean_list(),
   469            "Should only invoke on unclean space.");
   470     assert(_next_in_special_set == NULL ||
   471            _next_in_special_set->is_on_unclean_list(),
   472            "Malformed unclean List.");
   473     return _next_in_special_set;
   474   }
   476   void set_next_on_unclean_list(HeapRegion* r);
   478   HeapRegion* get_next_young_region() { return _next_young_region; }
   479   void set_next_young_region(HeapRegion* hr) {
   480     _next_young_region = hr;
   481   }
   483   // Allows logical separation between objects allocated before and after.
   484   void save_marks();
   486   // Reset HR stuff to default values.
   487   void hr_clear(bool par, bool clear_space);
   489   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   491   // Ensure that "this" is zero-filled.
   492   void ensure_zero_filled();
   493   // This one requires that the calling thread holds ZF_mon.
   494   void ensure_zero_filled_locked();
   496   // Get the start of the unmarked area in this region.
   497   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   498   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   500   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   501   // allocated in the current region before the last call to "save_mark".
   502   void oop_before_save_marks_iterate(OopClosure* cl);
   504   // This call determines the "filter kind" argument that will be used for
   505   // the next call to "new_dcto_cl" on this region with the "traditional"
   506   // signature (i.e., the call below.)  The default, in the absence of a
   507   // preceding call to this method, is "NoFilterKind", and a call to this
   508   // method is necessary for each such call, or else it reverts to the
   509   // default.
   510   // (This is really ugly, but all other methods I could think of changed a
   511   // lot of main-line code for G1.)
   512   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   513     _next_fk = nfk;
   514   }
   516   DirtyCardToOopClosure*
   517   new_dcto_closure(OopClosure* cl,
   518                    CardTableModRefBS::PrecisionStyle precision,
   519                    HeapRegionDCTOC::FilterKind fk);
   521 #if WHASSUP
   522   DirtyCardToOopClosure*
   523   new_dcto_closure(OopClosure* cl,
   524                    CardTableModRefBS::PrecisionStyle precision,
   525                    HeapWord* boundary) {
   526     assert(boundary == NULL, "This arg doesn't make sense here.");
   527     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   528     _next_fk = HeapRegionDCTOC::NoFilterKind;
   529     return res;
   530   }
   531 #endif
   533   //
   534   // Note the start or end of marking. This tells the heap region
   535   // that the collector is about to start or has finished (concurrently)
   536   // marking the heap.
   537   //
   539   // Note the start of a marking phase. Record the
   540   // start of the unmarked area of the region here.
   541   void note_start_of_marking(bool during_initial_mark) {
   542     init_top_at_conc_mark_count();
   543     _next_marked_bytes = 0;
   544     if (during_initial_mark && is_young() && !is_survivor())
   545       _next_top_at_mark_start = bottom();
   546     else
   547       _next_top_at_mark_start = top();
   548   }
   550   // Note the end of a marking phase. Install the start of
   551   // the unmarked area that was captured at start of marking.
   552   void note_end_of_marking() {
   553     _prev_top_at_mark_start = _next_top_at_mark_start;
   554     _prev_marked_bytes = _next_marked_bytes;
   555     _next_marked_bytes = 0;
   557     guarantee(_prev_marked_bytes <=
   558               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   559               "invariant");
   560   }
   562   // After an evacuation, we need to update _next_top_at_mark_start
   563   // to be the current top.  Note this is only valid if we have only
   564   // ever evacuated into this region.  If we evacuate, allocate, and
   565   // then evacuate we are in deep doodoo.
   566   void note_end_of_copying() {
   567     assert(top() >= _next_top_at_mark_start,
   568            "Increase only");
   569     _next_top_at_mark_start = top();
   570   }
   572   // Returns "false" iff no object in the region was allocated when the
   573   // last mark phase ended.
   574   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   576   // If "is_marked()" is true, then this is the index of the region in
   577   // an array constructed at the end of marking of the regions in a
   578   // "desirability" order.
   579   int sort_index() {
   580     return _sort_index;
   581   }
   582   void set_sort_index(int i) {
   583     _sort_index = i;
   584   }
   586   void init_top_at_conc_mark_count() {
   587     _top_at_conc_mark_count = bottom();
   588   }
   590   void set_top_at_conc_mark_count(HeapWord *cur) {
   591     assert(bottom() <= cur && cur <= end(), "Sanity.");
   592     _top_at_conc_mark_count = cur;
   593   }
   595   HeapWord* top_at_conc_mark_count() {
   596     return _top_at_conc_mark_count;
   597   }
   599   void reset_during_compaction() {
   600     guarantee( isHumongous() && startsHumongous(),
   601                "should only be called for humongous regions");
   603     zero_marked_bytes();
   604     init_top_at_mark_start();
   605   }
   607   bool popular() { return _popularity == Popular; }
   608   void set_popular(bool b) {
   609     if (b) {
   610       _popularity = Popular;
   611     } else {
   612       _popularity = NotPopular;
   613     }
   614   }
   615   bool popular_pending() { return _popularity == PopularPending; }
   616   void set_popular_pending(bool b) {
   617     if (b) {
   618       _popularity = PopularPending;
   619     } else {
   620       _popularity = NotPopular;
   621     }
   622   }
   624   // <PREDICTION>
   625   void calc_gc_efficiency(void);
   626   double gc_efficiency() { return _gc_efficiency;}
   627   // </PREDICTION>
   629   bool is_young() const     { return _young_type != NotYoung; }
   630   bool is_scan_only() const { return _young_type == ScanOnly; }
   631   bool is_survivor() const  { return _young_type == Survivor; }
   633   int  young_index_in_cset() const { return _young_index_in_cset; }
   634   void set_young_index_in_cset(int index) {
   635     assert( (index == -1) || is_young(), "pre-condition" );
   636     _young_index_in_cset = index;
   637   }
   639   int age_in_surv_rate_group() {
   640     assert( _surv_rate_group != NULL, "pre-condition" );
   641     assert( _age_index > -1, "pre-condition" );
   642     return _surv_rate_group->age_in_group(_age_index);
   643   }
   645   void recalculate_age_in_surv_rate_group() {
   646     assert( _surv_rate_group != NULL, "pre-condition" );
   647     assert( _age_index > -1, "pre-condition" );
   648     _age_index = _surv_rate_group->recalculate_age_index(_age_index);
   649   }
   651   void record_surv_words_in_group(size_t words_survived) {
   652     assert( _surv_rate_group != NULL, "pre-condition" );
   653     assert( _age_index > -1, "pre-condition" );
   654     int age_in_group = age_in_surv_rate_group();
   655     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   656   }
   658   int age_in_surv_rate_group_cond() {
   659     if (_surv_rate_group != NULL)
   660       return age_in_surv_rate_group();
   661     else
   662       return -1;
   663   }
   665   SurvRateGroup* surv_rate_group() {
   666     return _surv_rate_group;
   667   }
   669   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   670     assert( surv_rate_group != NULL, "pre-condition" );
   671     assert( _surv_rate_group == NULL, "pre-condition" );
   672     assert( is_young(), "pre-condition" );
   674     _surv_rate_group = surv_rate_group;
   675     _age_index = surv_rate_group->next_age_index();
   676   }
   678   void uninstall_surv_rate_group() {
   679     if (_surv_rate_group != NULL) {
   680       assert( _age_index > -1, "pre-condition" );
   681       assert( is_young(), "pre-condition" );
   683       _surv_rate_group = NULL;
   684       _age_index = -1;
   685     } else {
   686       assert( _age_index == -1, "pre-condition" );
   687     }
   688   }
   690   void set_young() { set_young_type(Young); }
   692   void set_scan_only() { set_young_type(ScanOnly); }
   694   void set_survivor() { set_young_type(Survivor); }
   696   void set_not_young() { set_young_type(NotYoung); }
   698   // Determine if an object has been allocated since the last
   699   // mark performed by the collector. This returns true iff the object
   700   // is within the unmarked area of the region.
   701   bool obj_allocated_since_prev_marking(oop obj) const {
   702     return (HeapWord *) obj >= prev_top_at_mark_start();
   703   }
   704   bool obj_allocated_since_next_marking(oop obj) const {
   705     return (HeapWord *) obj >= next_top_at_mark_start();
   706   }
   708   // For parallel heapRegion traversal.
   709   bool claimHeapRegion(int claimValue);
   710   jint claim_value() { return _claimed; }
   711   // Use this carefully: only when you're sure no one is claiming...
   712   void set_claim_value(int claimValue) { _claimed = claimValue; }
   714   // Returns the "evacuation_failed" property of the region.
   715   bool evacuation_failed() { return _evacuation_failed; }
   717   // Sets the "evacuation_failed" property of the region.
   718   void set_evacuation_failed(bool b) {
   719     _evacuation_failed = b;
   721     if (b) {
   722       init_top_at_conc_mark_count();
   723       _next_marked_bytes = 0;
   724     }
   725   }
   727   // Requires that "mr" be entirely within the region.
   728   // Apply "cl->do_object" to all objects that intersect with "mr".
   729   // If the iteration encounters an unparseable portion of the region,
   730   // or if "cl->abort()" is true after a closure application,
   731   // terminate the iteration and return the address of the start of the
   732   // subregion that isn't done.  (The two can be distinguished by querying
   733   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   734   // completed.
   735   HeapWord*
   736   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   738   HeapWord*
   739   oops_on_card_seq_iterate_careful(MemRegion mr,
   740                                    FilterOutOfRegionClosure* cl);
   742   // The region "mr" is entirely in "this", and starts and ends at block
   743   // boundaries. The caller declares that all the contained blocks are
   744   // coalesced into one.
   745   void declare_filled_region_to_BOT(MemRegion mr) {
   746     _offsets.single_block(mr.start(), mr.end());
   747   }
   749   // A version of block start that is guaranteed to find *some* block
   750   // boundary at or before "p", but does not object iteration, and may
   751   // therefore be used safely when the heap is unparseable.
   752   HeapWord* block_start_careful(const void* p) const {
   753     return _offsets.block_start_careful(p);
   754   }
   756   // Requires that "addr" is within the region.  Returns the start of the
   757   // first ("careful") block that starts at or after "addr", or else the
   758   // "end" of the region if there is no such block.
   759   HeapWord* next_block_start_careful(HeapWord* addr);
   761   // Returns the zero-fill-state of the current region.
   762   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
   763   bool zero_fill_is_allocated() { return _zfs == Allocated; }
   764   Thread* zero_filler() { return _zero_filler; }
   766   // Indicate that the contents of the region are unknown, and therefore
   767   // might require zero-filling.
   768   void set_zero_fill_needed() {
   769     set_zero_fill_state_work(NotZeroFilled);
   770   }
   771   void set_zero_fill_in_progress(Thread* t) {
   772     set_zero_fill_state_work(ZeroFilling);
   773     _zero_filler = t;
   774   }
   775   void set_zero_fill_complete();
   776   void set_zero_fill_allocated() {
   777     set_zero_fill_state_work(Allocated);
   778   }
   780   void set_zero_fill_state_work(ZeroFillState zfs);
   782   // This is called when a full collection shrinks the heap.
   783   // We want to set the heap region to a value which says
   784   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
   785   // that role.
   786   void reset_zero_fill() {
   787     set_zero_fill_state_work(NotZeroFilled);
   788     _zero_filler = NULL;
   789   }
   791 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   792   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   793   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   795   CompactibleSpace* next_compaction_space() const;
   797   virtual void reset_after_compaction();
   799   void print() const;
   800   void print_on(outputStream* st) const;
   802   // Override
   803   virtual void verify(bool allow_dirty) const;
   805 #ifdef DEBUG
   806   HeapWord* allocate(size_t size);
   807 #endif
   808 };
   810 // HeapRegionClosure is used for iterating over regions.
   811 // Terminates the iteration when the "doHeapRegion" method returns "true".
   812 class HeapRegionClosure : public StackObj {
   813   friend class HeapRegionSeq;
   814   friend class G1CollectedHeap;
   816   bool _complete;
   817   void incomplete() { _complete = false; }
   819  public:
   820   HeapRegionClosure(): _complete(true) {}
   822   // Typically called on each region until it returns true.
   823   virtual bool doHeapRegion(HeapRegion* r) = 0;
   825   // True after iteration if the closure was applied to all heap regions
   826   // and returned "false" in all cases.
   827   bool complete() { return _complete; }
   828 };
   830 // A linked lists of heap regions.  It leaves the "next" field
   831 // unspecified; that's up to subtypes.
   832 class RegionList {
   833 protected:
   834   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
   835   virtual void set_next(HeapRegion* chr,
   836                         HeapRegion* new_next) = 0;
   838   HeapRegion* _hd;
   839   HeapRegion* _tl;
   840   size_t _sz;
   842   // Protected constructor because this type is only meaningful
   843   // when the _get/_set next functions are defined.
   844   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
   845 public:
   846   void reset() {
   847     _hd = NULL;
   848     _tl = NULL;
   849     _sz = 0;
   850   }
   851   HeapRegion* hd() { return _hd; }
   852   HeapRegion* tl() { return _tl; }
   853   size_t sz() { return _sz; }
   854   size_t length();
   856   bool well_formed() {
   857     return
   858       ((hd() == NULL && tl() == NULL && sz() == 0)
   859        || (hd() != NULL && tl() != NULL && sz() > 0))
   860       && (sz() == length());
   861   }
   862   virtual void insert_before_head(HeapRegion* r);
   863   void prepend_list(RegionList* new_list);
   864   virtual HeapRegion* pop();
   865   void dec_sz() { _sz--; }
   866   // Requires that "r" is an element of the list, and is not the tail.
   867   void delete_after(HeapRegion* r);
   868 };
   870 class EmptyNonHRegionList: public RegionList {
   871 protected:
   872   // Protected constructor because this type is only meaningful
   873   // when the _get/_set next functions are defined.
   874   EmptyNonHRegionList() : RegionList() {}
   876 public:
   877   void insert_before_head(HeapRegion* r) {
   878     //    assert(r->is_empty(), "Better be empty");
   879     assert(!r->isHumongous(), "Better not be humongous.");
   880     RegionList::insert_before_head(r);
   881   }
   882   void prepend_list(EmptyNonHRegionList* new_list) {
   883     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
   884     //     "Better be empty");
   885     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
   886            "Better not be humongous.");
   887     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
   888     //     "Better be empty");
   889     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
   890            "Better not be humongous.");
   891     RegionList::prepend_list(new_list);
   892   }
   893 };
   895 class UncleanRegionList: public EmptyNonHRegionList {
   896 public:
   897   HeapRegion* get_next(HeapRegion* hr) {
   898     return hr->next_from_unclean_list();
   899   }
   900   void set_next(HeapRegion* hr, HeapRegion* new_next) {
   901     hr->set_next_on_unclean_list(new_next);
   902   }
   904   UncleanRegionList() : EmptyNonHRegionList() {}
   906   void insert_before_head(HeapRegion* r) {
   907     assert(!r->is_on_free_list(),
   908            "Better not already be on free list");
   909     assert(!r->is_on_unclean_list(),
   910            "Better not already be on unclean list");
   911     r->set_zero_fill_needed();
   912     r->set_on_unclean_list(true);
   913     EmptyNonHRegionList::insert_before_head(r);
   914   }
   915   void prepend_list(UncleanRegionList* new_list) {
   916     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
   917            "Better not already be on free list");
   918     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
   919            "Better already be marked as on unclean list");
   920     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
   921            "Better not already be on free list");
   922     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
   923            "Better already be marked as on unclean list");
   924     EmptyNonHRegionList::prepend_list(new_list);
   925   }
   926   HeapRegion* pop() {
   927     HeapRegion* res = RegionList::pop();
   928     if (res != NULL) res->set_on_unclean_list(false);
   929     return res;
   930   }
   931 };
   933 // Local Variables: ***
   934 // c-indentation-style: gnu ***
   935 // End: ***
   937 #endif // SERIALGC

mercurial