src/share/vm/adlc/output_h.cpp

Fri, 20 Dec 2013 13:51:14 +0100

author
goetz
date
Fri, 20 Dec 2013 13:51:14 +0100
changeset 6499
ad3b94907eed
parent 6490
41b780b43b74
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8030863: PPC64: (part 220): ConstantTableBase for calls between args and jvms
Summary: Add ConstantTableBase node edge after parameters and before jvms. Adapt jvms offsets.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // output_h.cpp - Class HPP file output routines for architecture definition
    26 #include "adlc.hpp"
    28 // The comment delimiter used in format statements after assembler instructions.
    29 #if defined(PPC64)
    30 #define commentSeperator "\t//"
    31 #else
    32 #define commentSeperator "!"
    33 #endif
    35 // Generate the #define that describes the number of registers.
    36 static void defineRegCount(FILE *fp, RegisterForm *registers) {
    37   if (registers) {
    38     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
    39     fprintf(fp,"\n");
    40     fprintf(fp,"// the number of reserved registers + machine registers.\n");
    41     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
    42   }
    43 }
    45 // Output enumeration of machine register numbers
    46 // (1)
    47 // // Enumerate machine registers starting after reserved regs.
    48 // // in the order of occurrence in the register block.
    49 // enum MachRegisterNumbers {
    50 //   EAX_num = 0,
    51 //   ...
    52 //   _last_Mach_Reg
    53 // }
    54 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
    55   if (_register) {
    56     RegDef *reg_def = NULL;
    58     // Output a #define for the number of machine registers
    59     defineRegCount(fp_hpp, _register);
    61     // Count all the Save_On_Entry and Always_Save registers
    62     int    saved_on_entry = 0;
    63     int  c_saved_on_entry = 0;
    64     _register->reset_RegDefs();
    65     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
    66       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
    67           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
    68       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
    69           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
    70     }
    71     fprintf(fp_hpp, "\n");
    72     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
    73     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
    74     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
    75     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
    77     // (1)
    78     // Build definition for enumeration of register numbers
    79     fprintf(fp_hpp, "\n");
    80     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
    81     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
    82     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
    84     // Output the register number for each register in the allocation classes
    85     _register->reset_RegDefs();
    86     int i = 0;
    87     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
    88       fprintf(fp_hpp,"  %s_num,", reg_def->_regname);
    89       for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
    90       fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
    91               i++,
    92               reg_def->register_num(),
    93               reg_def->register_encode());
    94     }
    95     // Finish defining enumeration
    96     fprintf(fp_hpp, "  _last_Mach_Reg            // %d\n", i);
    97     fprintf(fp_hpp, "};\n");
    98   }
   100   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
   101   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
   102   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
   103   fprintf(fp_hpp, "#define FORALL_BODY ");
   104   int len = RegisterForm::RegMask_Size();
   105   for( int i = 0; i < len; i++ )
   106     fprintf(fp_hpp, "BODY(%d) ",i);
   107   fprintf(fp_hpp, "\n\n");
   109   fprintf(fp_hpp,"class RegMask;\n");
   110   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
   111   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
   112 }
   115 // Output enumeration of machine register encodings
   116 // (2)
   117 // // Enumerate machine registers starting after reserved regs.
   118 // // in the order of occurrence in the alloc_class(es).
   119 // enum MachRegisterEncodes {
   120 //   EAX_enc = 0x00,
   121 //   ...
   122 // }
   123 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
   124   if (_register) {
   125     RegDef *reg_def = NULL;
   126     RegDef *reg_def_next = NULL;
   128     // (2)
   129     // Build definition for enumeration of encode values
   130     fprintf(fp_hpp, "\n");
   131     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
   132     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
   133     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
   135     // Find max enum string length.
   136     size_t maxlen = 0;
   137     _register->reset_RegDefs();
   138     reg_def = _register->iter_RegDefs();
   139     while (reg_def != NULL) {
   140       size_t len = strlen(reg_def->_regname);
   141       if (len > maxlen) maxlen = len;
   142       reg_def = _register->iter_RegDefs();
   143     }
   145     // Output the register encoding for each register in the allocation classes
   146     _register->reset_RegDefs();
   147     reg_def_next = _register->iter_RegDefs();
   148     while( (reg_def = reg_def_next) != NULL ) {
   149       reg_def_next = _register->iter_RegDefs();
   150       fprintf(fp_hpp,"  %s_enc", reg_def->_regname);
   151       for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
   152       fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
   153     }
   154     // Finish defining enumeration
   155     fprintf(fp_hpp, "};\n");
   157   } // Done with register form
   158 }
   161 // Declare an array containing the machine register names, strings.
   162 static void declareRegNames(FILE *fp, RegisterForm *registers) {
   163   if (registers) {
   164 //    fprintf(fp,"\n");
   165 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
   166 //    fprintf(fp,"extern const char *regName[];\n");
   167   }
   168 }
   170 // Declare an array containing the machine register sizes in 32-bit words.
   171 void ArchDesc::declareRegSizes(FILE *fp) {
   172 // regSize[] is not used
   173 }
   175 // Declare an array containing the machine register encoding values
   176 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
   177   if (registers) {
   178     // // //
   179     // fprintf(fp,"\n");
   180     // fprintf(fp,"// An array containing the machine register encode values\n");
   181     // fprintf(fp,"extern const char  regEncode[];\n");
   182   }
   183 }
   186 // ---------------------------------------------------------------------------
   187 //------------------------------Utilities to build Instruction Classes--------
   188 // ---------------------------------------------------------------------------
   189 static void out_RegMask(FILE *fp) {
   190   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
   191 }
   193 // ---------------------------------------------------------------------------
   194 //--------Utilities to build MachOper and MachNode derived Classes------------
   195 // ---------------------------------------------------------------------------
   197 //------------------------------Utilities to build Operand Classes------------
   198 static void in_RegMask(FILE *fp) {
   199   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
   200 }
   202 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
   203   int i = 0;
   204   Component *comp;
   206   if (oper->num_consts(globals) == 0) return;
   207   // Iterate over the component list looking for constants
   208   oper->_components.reset();
   209   if ((comp = oper->_components.iter()) == NULL) {
   210     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
   211     const char *type = oper->ideal_type(globals);
   212     if (!strcmp(type, "ConI")) {
   213       if (i > 0) fprintf(fp,", ");
   214       fprintf(fp,"  int32          _c%d;\n", i);
   215     }
   216     else if (!strcmp(type, "ConP")) {
   217       if (i > 0) fprintf(fp,", ");
   218       fprintf(fp,"  const TypePtr *_c%d;\n", i);
   219     }
   220     else if (!strcmp(type, "ConN")) {
   221       if (i > 0) fprintf(fp,", ");
   222       fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
   223     }
   224     else if (!strcmp(type, "ConNKlass")) {
   225       if (i > 0) fprintf(fp,", ");
   226       fprintf(fp,"  const TypeNarrowKlass *_c%d;\n", i);
   227     }
   228     else if (!strcmp(type, "ConL")) {
   229       if (i > 0) fprintf(fp,", ");
   230       fprintf(fp,"  jlong          _c%d;\n", i);
   231     }
   232     else if (!strcmp(type, "ConF")) {
   233       if (i > 0) fprintf(fp,", ");
   234       fprintf(fp,"  jfloat         _c%d;\n", i);
   235     }
   236     else if (!strcmp(type, "ConD")) {
   237       if (i > 0) fprintf(fp,", ");
   238       fprintf(fp,"  jdouble        _c%d;\n", i);
   239     }
   240     else if (!strcmp(type, "Bool")) {
   241       fprintf(fp,"private:\n");
   242       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
   243       fprintf(fp,"public:\n");
   244     }
   245     else {
   246       assert(0, "Non-constant operand lacks component list.");
   247     }
   248   } // end if NULL
   249   else {
   250     oper->_components.reset();
   251     while ((comp = oper->_components.iter()) != NULL) {
   252       if (!strcmp(comp->base_type(globals), "ConI")) {
   253         fprintf(fp,"  jint             _c%d;\n", i);
   254         i++;
   255       }
   256       else if (!strcmp(comp->base_type(globals), "ConP")) {
   257         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   258         i++;
   259       }
   260       else if (!strcmp(comp->base_type(globals), "ConN")) {
   261         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   262         i++;
   263       }
   264       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
   265         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   266         i++;
   267       }
   268       else if (!strcmp(comp->base_type(globals), "ConL")) {
   269         fprintf(fp,"  jlong            _c%d;\n", i);
   270         i++;
   271       }
   272       else if (!strcmp(comp->base_type(globals), "ConF")) {
   273         fprintf(fp,"  jfloat           _c%d;\n", i);
   274         i++;
   275       }
   276       else if (!strcmp(comp->base_type(globals), "ConD")) {
   277         fprintf(fp,"  jdouble          _c%d;\n", i);
   278         i++;
   279       }
   280     }
   281   }
   282 }
   284 // Declare constructor.
   285 // Parameters start with condition code, then all other constants
   286 //
   287 // (0) public:
   288 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
   289 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
   290 //
   291 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
   292                               ComponentList &lst, bool is_ideal_bool,
   293                               Form::DataType constant_type, FormDict &globals) {
   294   fprintf(fp,"public:\n");
   295   // generate line (1)
   296   fprintf(fp,"  %sOper(", name);
   297   if( num_consts == 0 ) {
   298     fprintf(fp,") {}\n");
   299     return;
   300   }
   302   // generate parameters for constants
   303   uint i = 0;
   304   Component *comp;
   305   lst.reset();
   306   if ((comp = lst.iter()) == NULL) {
   307     assert(num_consts == 1, "Bad component list detected.\n");
   308     switch( constant_type ) {
   309     case Form::idealI : {
   310       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
   311       break;
   312     }
   313     case Form::idealN :      { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
   314     case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
   315     case Form::idealP :      { fprintf(fp,"const TypePtr *c%d", i); break; }
   316     case Form::idealL :      { fprintf(fp,"jlong c%d", i);   break;        }
   317     case Form::idealF :      { fprintf(fp,"jfloat c%d", i);  break;        }
   318     case Form::idealD :      { fprintf(fp,"jdouble c%d", i); break;        }
   319     default:
   320       assert(!is_ideal_bool, "Non-constant operand lacks component list.");
   321       break;
   322     }
   323   } // end if NULL
   324   else {
   325     lst.reset();
   326     while((comp = lst.iter()) != NULL) {
   327       if (!strcmp(comp->base_type(globals), "ConI")) {
   328         if (i > 0) fprintf(fp,", ");
   329         fprintf(fp,"int32 c%d", i);
   330         i++;
   331       }
   332       else if (!strcmp(comp->base_type(globals), "ConP")) {
   333         if (i > 0) fprintf(fp,", ");
   334         fprintf(fp,"const TypePtr *c%d", i);
   335         i++;
   336       }
   337       else if (!strcmp(comp->base_type(globals), "ConN")) {
   338         if (i > 0) fprintf(fp,", ");
   339         fprintf(fp,"const TypePtr *c%d", i);
   340         i++;
   341       }
   342       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
   343         if (i > 0) fprintf(fp,", ");
   344         fprintf(fp,"const TypePtr *c%d", i);
   345         i++;
   346       }
   347       else if (!strcmp(comp->base_type(globals), "ConL")) {
   348         if (i > 0) fprintf(fp,", ");
   349         fprintf(fp,"jlong c%d", i);
   350         i++;
   351       }
   352       else if (!strcmp(comp->base_type(globals), "ConF")) {
   353         if (i > 0) fprintf(fp,", ");
   354         fprintf(fp,"jfloat c%d", i);
   355         i++;
   356       }
   357       else if (!strcmp(comp->base_type(globals), "ConD")) {
   358         if (i > 0) fprintf(fp,", ");
   359         fprintf(fp,"jdouble c%d", i);
   360         i++;
   361       }
   362       else if (!strcmp(comp->base_type(globals), "Bool")) {
   363         if (i > 0) fprintf(fp,", ");
   364         fprintf(fp,"BoolTest::mask c%d", i);
   365         i++;
   366       }
   367     }
   368   }
   369   // finish line (1) and start line (2)
   370   fprintf(fp,")  : ");
   371   // generate initializers for constants
   372   i = 0;
   373   fprintf(fp,"_c%d(c%d)", i, i);
   374   for( i = 1; i < num_consts; ++i) {
   375     fprintf(fp,", _c%d(c%d)", i, i);
   376   }
   377   // The body for the constructor is empty
   378   fprintf(fp," {}\n");
   379 }
   381 // ---------------------------------------------------------------------------
   382 // Utilities to generate format rules for machine operands and instructions
   383 // ---------------------------------------------------------------------------
   385 // Generate the format rule for condition codes
   386 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
   387   assert(oper != NULL, "what");
   388   CondInterface* cond = oper->_interface->is_CondInterface();
   389   fprintf(fp, "       if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
   390   fprintf(fp, "  else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
   391   fprintf(fp, "  else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
   392   fprintf(fp, "  else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
   393   fprintf(fp, "  else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
   394   fprintf(fp, "  else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
   395   fprintf(fp, "  else if( _c%d == BoolTest::overflow ) st->print(\"%s\");\n",i,cond->_overflow_format);
   396   fprintf(fp, "  else if( _c%d == BoolTest::no_overflow ) st->print(\"%s\");\n",i,cond->_no_overflow_format);
   397 }
   399 // Output code that dumps constant values, increment "i" if type is constant
   400 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
   401   if (!strcmp(ideal_type, "ConI")) {
   402     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
   403     fprintf(fp,"   st->print(\"/0x%%08x\", _c%d);\n", i);
   404     ++i;
   405   }
   406   else if (!strcmp(ideal_type, "ConP")) {
   407     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   408     ++i;
   409   }
   410   else if (!strcmp(ideal_type, "ConN")) {
   411     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   412     ++i;
   413   }
   414   else if (!strcmp(ideal_type, "ConNKlass")) {
   415     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   416     ++i;
   417   }
   418   else if (!strcmp(ideal_type, "ConL")) {
   419     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
   420     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%d);\n", i);
   421     ++i;
   422   }
   423   else if (!strcmp(ideal_type, "ConF")) {
   424     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
   425     fprintf(fp,"    jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
   426     fprintf(fp,"    st->print(\"/0x%%x/\", _c%di);\n", i);
   427     ++i;
   428   }
   429   else if (!strcmp(ideal_type, "ConD")) {
   430     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
   431     fprintf(fp,"    jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
   432     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%dl);\n", i);
   433     ++i;
   434   }
   435   else if (!strcmp(ideal_type, "Bool")) {
   436     defineCCodeDump(oper, fp,i);
   437     ++i;
   438   }
   440   return i;
   441 }
   443 // Generate the format rule for an operand
   444 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
   445   if (!for_c_file) {
   446     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
   447     // compile the bodies separately, to cut down on recompilations
   448     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
   449     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
   450     return;
   451   }
   453   // Local pointer indicates remaining part of format rule
   454   int idx = 0;                   // position of operand in match rule
   456   // Generate internal format function, used when stored locally
   457   fprintf(fp, "\n#ifndef PRODUCT\n");
   458   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
   459   // Generate the user-defined portion of the format
   460   if (oper._format) {
   461     if ( oper._format->_strings.count() != 0 ) {
   462       // No initialization code for int_format
   464       // Build the format from the entries in strings and rep_vars
   465       const char  *string  = NULL;
   466       oper._format->_rep_vars.reset();
   467       oper._format->_strings.reset();
   468       while ( (string = oper._format->_strings.iter()) != NULL ) {
   470         // Check if this is a standard string or a replacement variable
   471         if ( string != NameList::_signal ) {
   472           // Normal string
   473           // Pass through to st->print
   474           fprintf(fp,"  st->print(\"%s\");\n", string);
   475         } else {
   476           // Replacement variable
   477           const char *rep_var = oper._format->_rep_vars.iter();
   478           // Check that it is a local name, and an operand
   479           const Form* form = oper._localNames[rep_var];
   480           if (form == NULL) {
   481             globalAD->syntax_err(oper._linenum,
   482                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
   483             assert(form, "replacement variable was not found in local names");
   484           }
   485           OperandForm *op      = form->is_operand();
   486           // Get index if register or constant
   487           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
   488             idx  = oper.register_position( globals, rep_var);
   489           }
   490           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
   491             idx  = oper.constant_position( globals, rep_var);
   492           } else {
   493             idx = 0;
   494           }
   496           // output invocation of "$..."s format function
   497           if ( op != NULL ) op->int_format(fp, globals, idx);
   499           if ( idx == -1 ) {
   500             fprintf(stderr,
   501                     "Using a name, %s, that isn't in match rule\n", rep_var);
   502             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
   503           }
   504         } // Done with a replacement variable
   505       } // Done with all format strings
   506     } else {
   507       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
   508       oper.int_format(fp, globals, 0);
   509     }
   511   } else { // oper._format == NULL
   512     // Provide a few special case formats where the AD writer cannot.
   513     if ( strcmp(oper._ident,"Universe")==0 ) {
   514       fprintf(fp, "  st->print(\"$$univ\");\n");
   515     }
   516     // labelOper::int_format is defined in ad_<...>.cpp
   517   }
   518   // ALWAYS! Provide a special case output for condition codes.
   519   if( oper.is_ideal_bool() ) {
   520     defineCCodeDump(&oper, fp,0);
   521   }
   522   fprintf(fp,"}\n");
   524   // Generate external format function, when data is stored externally
   525   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
   526   // Generate the user-defined portion of the format
   527   if (oper._format) {
   528     if ( oper._format->_strings.count() != 0 ) {
   530       // Check for a replacement string "$..."
   531       if ( oper._format->_rep_vars.count() != 0 ) {
   532         // Initialization code for ext_format
   533       }
   535       // Build the format from the entries in strings and rep_vars
   536       const char  *string  = NULL;
   537       oper._format->_rep_vars.reset();
   538       oper._format->_strings.reset();
   539       while ( (string = oper._format->_strings.iter()) != NULL ) {
   541         // Check if this is a standard string or a replacement variable
   542         if ( string != NameList::_signal ) {
   543           // Normal string
   544           // Pass through to st->print
   545           fprintf(fp,"  st->print(\"%s\");\n", string);
   546         } else {
   547           // Replacement variable
   548           const char *rep_var = oper._format->_rep_vars.iter();
   549          // Check that it is a local name, and an operand
   550           const Form* form = oper._localNames[rep_var];
   551           if (form == NULL) {
   552             globalAD->syntax_err(oper._linenum,
   553                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
   554             assert(form, "replacement variable was not found in local names");
   555           }
   556           OperandForm *op      = form->is_operand();
   557           // Get index if register or constant
   558           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
   559             idx  = oper.register_position( globals, rep_var);
   560           }
   561           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
   562             idx  = oper.constant_position( globals, rep_var);
   563           } else {
   564             idx = 0;
   565           }
   566           // output invocation of "$..."s format function
   567           if ( op != NULL )   op->ext_format(fp, globals, idx);
   569           // Lookup the index position of the replacement variable
   570           idx      = oper._components.operand_position_format(rep_var, &oper);
   571           if ( idx == -1 ) {
   572             fprintf(stderr,
   573                     "Using a name, %s, that isn't in match rule\n", rep_var);
   574             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
   575           }
   576         } // Done with a replacement variable
   577       } // Done with all format strings
   579     } else {
   580       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
   581       oper.ext_format(fp, globals, 0);
   582     }
   583   } else { // oper._format == NULL
   584     // Provide a few special case formats where the AD writer cannot.
   585     if ( strcmp(oper._ident,"Universe")==0 ) {
   586       fprintf(fp, "  st->print(\"$$univ\");\n");
   587     }
   588     // labelOper::ext_format is defined in ad_<...>.cpp
   589   }
   590   // ALWAYS! Provide a special case output for condition codes.
   591   if( oper.is_ideal_bool() ) {
   592     defineCCodeDump(&oper, fp,0);
   593   }
   594   fprintf(fp, "}\n");
   595   fprintf(fp, "#endif\n");
   596 }
   599 // Generate the format rule for an instruction
   600 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
   601   if (!for_c_file) {
   602     // compile the bodies separately, to cut down on recompilations
   603     // #ifndef PRODUCT region generated by caller
   604     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
   605     return;
   606   }
   608   // Define the format function
   609   fprintf(fp, "#ifndef PRODUCT\n");
   610   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
   612   // Generate the user-defined portion of the format
   613   if( inst._format ) {
   614     // If there are replacement variables,
   615     // Generate index values needed for determining the operand position
   616     if( inst._format->_rep_vars.count() )
   617       inst.index_temps(fp, globals);
   619     // Build the format from the entries in strings and rep_vars
   620     const char  *string  = NULL;
   621     inst._format->_rep_vars.reset();
   622     inst._format->_strings.reset();
   623     while( (string = inst._format->_strings.iter()) != NULL ) {
   624       fprintf(fp,"  ");
   625       // Check if this is a standard string or a replacement variable
   626       if( string == NameList::_signal ) { // Replacement variable
   627         const char* rep_var =  inst._format->_rep_vars.iter();
   628         inst.rep_var_format( fp, rep_var);
   629       } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
   630         const char* rep_var =  inst._format->_rep_vars.iter();
   631         const Form *form   = inst._localNames[rep_var];
   632         if (form == NULL) {
   633           fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
   634           assert(false, "ShouldNotReachHere()");
   635         }
   636         OpClassForm *opc   = form->is_opclass();
   637         assert( opc, "replacement variable was not found in local names");
   638         // Lookup the index position of the replacement variable
   639         int idx  = inst.operand_position_format(rep_var);
   640         if ( idx == -1 ) {
   641           assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
   642           assert( false, "ShouldNotReachHere()");
   643         }
   645         if (inst.is_noninput_operand(idx)) {
   646           assert( false, "ShouldNotReachHere()");
   647         } else {
   648           // Output the format call for this operand
   649           fprintf(fp,"opnd_array(%d)",idx);
   650         }
   651         rep_var =  inst._format->_rep_vars.iter();
   652         inst._format->_strings.iter();
   653         if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
   654           Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
   655           if ( constant_type == Form::idealD ) {
   656             fprintf(fp,"->constantD()");
   657           } else if ( constant_type == Form::idealF ) {
   658             fprintf(fp,"->constantF()");
   659           } else if ( constant_type == Form::idealL ) {
   660             fprintf(fp,"->constantL()");
   661           } else {
   662             fprintf(fp,"->constant()");
   663           }
   664         } else if ( strcmp(rep_var,"$cmpcode") == 0) {
   665             fprintf(fp,"->ccode()");
   666         } else {
   667           assert( false, "ShouldNotReachHere()");
   668         }
   669       } else if( string == NameList::_signal2 ) // Raw program text
   670         fputs(inst._format->_strings.iter(), fp);
   671       else
   672         fprintf(fp,"st->print(\"%s\");\n", string);
   673     } // Done with all format strings
   674   } // Done generating the user-defined portion of the format
   676   // Add call debug info automatically
   677   Form::CallType call_type = inst.is_ideal_call();
   678   if( call_type != Form::invalid_type ) {
   679     switch( call_type ) {
   680     case Form::JAVA_DYNAMIC:
   681       fprintf(fp,"  _method->print_short_name(st);\n");
   682       break;
   683     case Form::JAVA_STATIC:
   684       fprintf(fp,"  if( _method ) _method->print_short_name(st);\n");
   685       fprintf(fp,"  else st->print(\" wrapper for: %%s\", _name);\n");
   686       fprintf(fp,"  if( !_method ) dump_trap_args(st);\n");
   687       break;
   688     case Form::JAVA_COMPILED:
   689     case Form::JAVA_INTERP:
   690       break;
   691     case Form::JAVA_RUNTIME:
   692     case Form::JAVA_LEAF:
   693     case Form::JAVA_NATIVE:
   694       fprintf(fp,"  st->print(\" %%s\", _name);");
   695       break;
   696     default:
   697       assert(0,"ShouldNotReachHere");
   698     }
   699     fprintf(fp,  "  st->print_cr(\"\");\n" );
   700     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
   701     fprintf(fp,  "  st->print(\"        # \");\n" );
   702     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
   703   }
   704   else if(inst.is_ideal_safepoint()) {
   705     fprintf(fp,  "  st->print(\"\");\n" );
   706     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
   707     fprintf(fp,  "  st->print(\"        # \");\n" );
   708     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
   709   }
   710   else if( inst.is_ideal_if() ) {
   711     fprintf(fp,  "  st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
   712   }
   713   else if( inst.is_ideal_mem() ) {
   714     // Print out the field name if available to improve readability
   715     fprintf(fp,  "  if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
   716     fprintf(fp,  "    ciField* f = ra->C->alias_type(adr_type())->field();\n");
   717     fprintf(fp,  "    st->print(\" %s Field: \");\n", commentSeperator);
   718     fprintf(fp,  "    if (f->is_volatile())\n");
   719     fprintf(fp,  "      st->print(\"volatile \");\n");
   720     fprintf(fp,  "    f->holder()->name()->print_symbol_on(st);\n");
   721     fprintf(fp,  "    st->print(\".\");\n");
   722     fprintf(fp,  "    f->name()->print_symbol_on(st);\n");
   723     fprintf(fp,  "    if (f->is_constant())\n");
   724     fprintf(fp,  "      st->print(\" (constant)\");\n");
   725     fprintf(fp,  "  } else {\n");
   726     // Make sure 'Volatile' gets printed out
   727     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->is_volatile())\n");
   728     fprintf(fp,  "      st->print(\" volatile!\");\n");
   729     fprintf(fp,  "  }\n");
   730   }
   732   // Complete the definition of the format function
   733   fprintf(fp, "}\n#endif\n");
   734 }
   736 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
   737   if (!_pipeline)
   738     return;
   740   fprintf(fp_hpp, "\n");
   741   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
   742   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
   744   if (_pipeline->_maxcycleused <=
   745 #ifdef SPARC
   746     64
   747 #else
   748     32
   749 #endif
   750       ) {
   751     fprintf(fp_hpp, "protected:\n");
   752     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
   753     fprintf(fp_hpp, "public:\n");
   754     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
   755     if (_pipeline->_maxcycleused <= 32)
   756       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
   757     else {
   758       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
   759       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
   760     }
   761     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
   762     fprintf(fp_hpp, "    _mask = in._mask;\n");
   763     fprintf(fp_hpp, "    return *this;\n");
   764     fprintf(fp_hpp, "  }\n\n");
   765     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
   766     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
   767     fprintf(fp_hpp, "  }\n\n");
   768     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
   769     fprintf(fp_hpp, "    _mask <<= n;\n");
   770     fprintf(fp_hpp, "    return *this;\n");
   771     fprintf(fp_hpp, "  }\n\n");
   772     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
   773     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
   774     fprintf(fp_hpp, "  }\n\n");
   775     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
   776     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
   777   }
   778   else {
   779     fprintf(fp_hpp, "protected:\n");
   780     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   781     uint l;
   782     fprintf(fp_hpp, "  uint ");
   783     for (l = 1; l <= masklen; l++)
   784       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
   785     fprintf(fp_hpp, "public:\n");
   786     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
   787     for (l = 1; l <= masklen; l++)
   788       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
   789     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
   790     for (l = 1; l <= masklen; l++)
   791       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
   792     for (l = 1; l <= masklen; l++)
   793       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
   795     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
   796     for (l = 1; l <= masklen; l++)
   797       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
   798     fprintf(fp_hpp, "    return *this;\n");
   799     fprintf(fp_hpp, "  }\n\n");
   800     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
   801     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
   802     for (l = 1; l <= masklen; l++)
   803       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
   804     fprintf(fp_hpp, "    return out;\n");
   805     fprintf(fp_hpp, "  }\n\n");
   806     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
   807     fprintf(fp_hpp, "    return (");
   808     for (l = 1; l <= masklen; l++)
   809       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
   810     fprintf(fp_hpp, ") ? true : false;\n");
   811     fprintf(fp_hpp, "  }\n\n");
   812     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
   813     fprintf(fp_hpp, "    if (n >= 32)\n");
   814     fprintf(fp_hpp, "      do {\n       ");
   815     for (l = masklen; l > 1; l--)
   816       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
   817     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
   818     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
   819     fprintf(fp_hpp, "    if (n > 0) {\n");
   820     fprintf(fp_hpp, "      uint m = 32 - n;\n");
   821     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
   822     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
   823     for (l = 2; l < masklen; l++) {
   824       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
   825     }
   826     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
   827     fprintf(fp_hpp, "    }\n");
   829     fprintf(fp_hpp, "    return *this;\n");
   830     fprintf(fp_hpp, "  }\n\n");
   831     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
   832     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
   833     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
   834   }
   836   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
   837   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
   838   fprintf(fp_hpp, "};\n\n");
   840   uint rescount = 0;
   841   const char *resource;
   843   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
   844       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
   845       if ((mask & (mask-1)) == 0)
   846         rescount++;
   847     }
   849   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
   850   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
   851   fprintf(fp_hpp, "protected:\n");
   852   fprintf(fp_hpp, "  // Mask of used functional units\n");
   853   fprintf(fp_hpp, "  uint _used;\n\n");
   854   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
   855   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
   856   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
   857   fprintf(fp_hpp, "  bool _multiple;\n\n");
   858   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
   859   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
   860   fprintf(fp_hpp, "public:\n");
   861   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
   862   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
   863   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
   864   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
   865   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
   866   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
   867   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
   868   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
   869   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
   870   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
   871   fprintf(fp_hpp, "  }\n\n");
   872   fprintf(fp_hpp, "  void step(uint cycles) {\n");
   873   fprintf(fp_hpp, "    _used = 0;\n");
   874   fprintf(fp_hpp, "    _mask <<= cycles;\n");
   875   fprintf(fp_hpp, "  }\n\n");
   876   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
   877   fprintf(fp_hpp, "};\n\n");
   879   fprintf(fp_hpp, "// Pipeline_Use Class\n");
   880   fprintf(fp_hpp, "class Pipeline_Use {\n");
   881   fprintf(fp_hpp, "protected:\n");
   882   fprintf(fp_hpp, "  // These resources can be used\n");
   883   fprintf(fp_hpp, "  uint _resources_used;\n\n");
   884   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
   885   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
   886   fprintf(fp_hpp, "  // Number of elements\n");
   887   fprintf(fp_hpp, "  uint _count;\n\n");
   888   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
   889   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
   890   fprintf(fp_hpp, "public:\n");
   891   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
   892   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
   893   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
   894   fprintf(fp_hpp, "  , _count(count)\n");
   895   fprintf(fp_hpp, "  , _elements(elements)\n");
   896   fprintf(fp_hpp, "  {}\n\n");
   897   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
   898   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
   899   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
   900   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
   901   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
   902   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
   903   fprintf(fp_hpp, "  void reset() {\n");
   904   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
   905   fprintf(fp_hpp, "  };\n\n");
   906   fprintf(fp_hpp, "  void step(uint cycles) {\n");
   907   fprintf(fp_hpp, "    reset();\n");
   908   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
   909     rescount);
   910   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
   911   fprintf(fp_hpp, "  };\n\n");
   912   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
   913   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
   914     rescount);
   915   fprintf(fp_hpp, "  friend class Pipeline;\n");
   916   fprintf(fp_hpp, "};\n\n");
   918   fprintf(fp_hpp, "// Pipeline Class\n");
   919   fprintf(fp_hpp, "class Pipeline {\n");
   920   fprintf(fp_hpp, "public:\n");
   922   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
   923     _pipeline ? "true" : "false" );
   925   assert( _pipeline->_maxInstrsPerBundle &&
   926         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
   927           _pipeline->_instrFetchUnitSize &&
   928           _pipeline->_instrFetchUnits,
   929     "unspecified pipeline architecture units");
   931   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
   933   fprintf(fp_hpp, "  enum {\n");
   934   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
   935     _pipeline->_variableSizeInstrs ? 1 : 0);
   936   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
   937     _pipeline->_variableSizeInstrs ? 0 : 1);
   938   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
   939     _pipeline->_branchHasDelaySlot ? 1 : 0);
   940   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
   941     _pipeline->_maxInstrsPerBundle);
   942   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
   943     _pipeline->_maxBundlesPerCycle);
   944   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
   945     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
   946   fprintf(fp_hpp, "  };\n\n");
   948   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
   949     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
   950   if( _pipeline->_bundleUnitSize != 0 )
   951     if( _pipeline->_instrUnitSize != 0 )
   952       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
   953     else
   954       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
   955   else
   956     fprintf(fp_hpp, "// Bundling is not supported\n\n");
   957   if( _pipeline->_instrUnitSize != 0 )
   958     fprintf(fp_hpp, "  // Size of an instruction\n");
   959   else
   960     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
   961   fprintf(fp_hpp, "  static uint instr_unit_size() {");
   962   if( _pipeline->_instrUnitSize == 0 )
   963     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
   964   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
   966   if( _pipeline->_bundleUnitSize != 0 )
   967     fprintf(fp_hpp, "  // Size of a bundle\n");
   968   else
   969     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
   970   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
   971   if( _pipeline->_bundleUnitSize == 0 )
   972     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
   973   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
   975   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
   976     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
   978   fprintf(fp_hpp, "private:\n");
   979   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
   980   fprintf(fp_hpp, "\n");
   981   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
   982   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
   983   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
   984   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
   985   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
   986   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
   987   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
   988   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
   989   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
   990   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
   991   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
   992   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
   993   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
   994   fprintf(fp_hpp, "\n");
   995   fprintf(fp_hpp, "public:\n");
   996   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
   997   fprintf(fp_hpp, "           uint                            count,\n");
   998   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
   999   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
  1000   fprintf(fp_hpp, "           uint                            instruction_count,\n");
  1001   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
  1002   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
  1003   fprintf(fp_hpp, "           bool                            force_serialization,\n");
  1004   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
  1005   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
  1006   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
  1007   fprintf(fp_hpp, "           uint                    * const cycles,\n");
  1008   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
  1009   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
  1010   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
  1011   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
  1012   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
  1013   fprintf(fp_hpp, "  , _read_stages(dst)\n");
  1014   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
  1015   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
  1016   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
  1017   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
  1018   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
  1019   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
  1020   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
  1021   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
  1022   fprintf(fp_hpp, "  {};\n");
  1023   fprintf(fp_hpp, "\n");
  1024   fprintf(fp_hpp, "  uint writeStage() const {\n");
  1025   fprintf(fp_hpp, "    return (_write_stage);\n");
  1026   fprintf(fp_hpp, "  }\n");
  1027   fprintf(fp_hpp, "\n");
  1028   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
  1029   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
  1030   fprintf(fp_hpp, "  }\n\n");
  1031   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
  1032   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
  1033   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
  1034   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
  1035   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
  1036   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
  1037   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
  1038   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
  1039   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
  1040   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
  1041   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
  1042   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
  1043   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
  1044   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
  1045   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
  1046   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
  1047   fprintf(fp_hpp, "  uint instructionCount() const {\n");
  1048   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
  1049   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
  1050   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
  1051   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
  1052   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
  1053   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
  1054   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
  1055   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
  1056   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
  1057   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
  1058   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
  1059   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
  1060   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
  1061   fprintf(fp_hpp, "#endif\n");
  1062   fprintf(fp_hpp, "};\n\n");
  1064   fprintf(fp_hpp, "// Bundle class\n");
  1065   fprintf(fp_hpp, "class Bundle {\n");
  1067   uint mshift = 0;
  1068   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
  1069     mshift++;
  1071   uint rshift = rescount;
  1073   fprintf(fp_hpp, "protected:\n");
  1074   fprintf(fp_hpp, "  enum {\n");
  1075   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
  1076   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
  1077   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
  1078   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
  1079   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
  1080   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
  1081   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
  1082   fprintf(fp_hpp, "\n");
  1083   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
  1084   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
  1085   fprintf(fp_hpp, "  };\n\n");
  1086   fprintf(fp_hpp, "  uint _flags          : 3,\n");
  1087   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
  1088   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
  1089   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
  1090   fprintf(fp_hpp, "public:\n");
  1091   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
  1092   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
  1093   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
  1094   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
  1095   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
  1097   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
  1098   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
  1099   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
  1100   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
  1102   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
  1103   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
  1104   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
  1105   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
  1106   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
  1107   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
  1109   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
  1110   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
  1111   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
  1112   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
  1113   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
  1114   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
  1115   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
  1116   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
  1118   fprintf(fp_hpp, "  enum {\n");
  1119   fprintf(fp_hpp, "    _nop_count = %d\n",
  1120     _pipeline->_nopcnt);
  1121   fprintf(fp_hpp, "  };\n\n");
  1122   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
  1123     _pipeline->_nopcnt);
  1124   fprintf(fp_hpp, "#ifndef PRODUCT\n");
  1125   fprintf(fp_hpp, "  void dump(outputStream *st = tty) const;\n");
  1126   fprintf(fp_hpp, "#endif\n");
  1127   fprintf(fp_hpp, "};\n\n");
  1129 //  const char *classname;
  1130 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
  1131 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
  1132 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
  1133 //  }
  1136 //------------------------------declareClasses---------------------------------
  1137 // Construct the class hierarchy of MachNode classes from the instruction &
  1138 // operand lists
  1139 void ArchDesc::declareClasses(FILE *fp) {
  1141   // Declare an array containing the machine register names, strings.
  1142   declareRegNames(fp, _register);
  1144   // Declare an array containing the machine register encoding values
  1145   declareRegEncodes(fp, _register);
  1147   // Generate declarations for the total number of operands
  1148   fprintf(fp,"\n");
  1149   fprintf(fp,"// Total number of operands defined in architecture definition\n");
  1150   int num_operands = 0;
  1151   OperandForm *op;
  1152   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
  1153     // Ensure this is a machine-world instruction
  1154     if (op->ideal_only()) continue;
  1156     ++num_operands;
  1158   int first_operand_class = num_operands;
  1159   OpClassForm *opc;
  1160   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  1161     // Ensure this is a machine-world instruction
  1162     if (opc->ideal_only()) continue;
  1164     ++num_operands;
  1166   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
  1167   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
  1168   fprintf(fp,"\n");
  1169   // Generate declarations for the total number of instructions
  1170   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
  1171   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
  1174   // Generate Machine Classes for each operand defined in AD file
  1175   fprintf(fp,"\n");
  1176   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
  1177   // Iterate through all operands
  1178   _operands.reset();
  1179   OperandForm *oper;
  1180   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
  1181     // Ensure this is a machine-world instruction
  1182     if (oper->ideal_only() ) continue;
  1183     // The declaration of labelOper is in machine-independent file: machnode
  1184     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
  1185     // The declaration of methodOper is in machine-independent file: machnode
  1186     if ( strcmp(oper->_ident,"method") == 0 ) continue;
  1188     // Build class definition for this operand
  1189     fprintf(fp,"\n");
  1190     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
  1191     fprintf(fp,"private:\n");
  1192     // Operand definitions that depend upon number of input edges
  1194       uint num_edges = oper->num_edges(_globalNames);
  1195       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
  1196         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
  1197               num_edges );
  1199       if( num_edges > 0 ) {
  1200         in_RegMask(fp);
  1204     // Support storing constants inside the MachOper
  1205     declareConstStorage(fp,_globalNames,oper);
  1207     // Support storage of the condition codes
  1208     if( oper->is_ideal_bool() ) {
  1209       fprintf(fp,"  virtual int ccode() const { \n");
  1210       fprintf(fp,"    switch (_c0) {\n");
  1211       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
  1212       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
  1213       fprintf(fp,"    case  BoolTest::lt : return less();\n");
  1214       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
  1215       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
  1216       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
  1217       fprintf(fp,"    case  BoolTest::overflow : return overflow();\n");
  1218       fprintf(fp,"    case  BoolTest::no_overflow: return no_overflow();\n");
  1219       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
  1220       fprintf(fp,"    }\n");
  1221       fprintf(fp,"  };\n");
  1224     // Support storage of the condition codes
  1225     if( oper->is_ideal_bool() ) {
  1226       fprintf(fp,"  virtual void negate() { \n");
  1227       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
  1228       fprintf(fp,"  };\n");
  1231     // Declare constructor.
  1232     // Parameters start with condition code, then all other constants
  1233     //
  1234     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
  1235     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
  1236     //
  1237     Form::DataType constant_type = oper->simple_type(_globalNames);
  1238     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
  1239                       oper->_components, oper->is_ideal_bool(),
  1240                       constant_type, _globalNames);
  1242     // Clone function
  1243     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
  1245     // Support setting a spill offset into a constant operand.
  1246     // We only support setting an 'int' offset, while in the
  1247     // LP64 build spill offsets are added with an AddP which
  1248     // requires a long constant.  Thus we don't support spilling
  1249     // in frames larger than 4Gig.
  1250     if( oper->has_conI(_globalNames) ||
  1251         oper->has_conL(_globalNames) )
  1252       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
  1254     // virtual functions for encoding and format
  1255     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
  1256     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
  1257     // Check the interface type, and generate the correct query functions
  1258     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
  1260     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
  1261             machOperEnum(oper->_ident));
  1263     // virtual function to look up ideal return type of machine instruction
  1264     //
  1265     // (1)  virtual const Type    *type() const { return .....; }
  1266     //
  1267     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
  1268         (oper->_matrule->_rChild == NULL)) {
  1269       unsigned int position = 0;
  1270       const char  *opret, *opname, *optype;
  1271       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
  1272       fprintf(fp,"  virtual const Type    *type() const {");
  1273       const char *type = getIdealType(optype);
  1274       if( type != NULL ) {
  1275         Form::DataType data_type = oper->is_base_constant(_globalNames);
  1276         // Check if we are an ideal pointer type
  1277         if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
  1278           // Return the ideal type we already have: <TypePtr *>
  1279           fprintf(fp," return _c0;");
  1280         } else {
  1281           // Return the appropriate bottom type
  1282           fprintf(fp," return %s;", getIdealType(optype));
  1284       } else {
  1285         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
  1287       fprintf(fp," }\n");
  1288     } else {
  1289       // Check for user-defined stack slots, based upon sRegX
  1290       Form::DataType data_type = oper->is_user_name_for_sReg();
  1291       if( data_type != Form::none ){
  1292         const char *type = NULL;
  1293         switch( data_type ) {
  1294         case Form::idealI: type = "TypeInt::INT";   break;
  1295         case Form::idealP: type = "TypePtr::BOTTOM";break;
  1296         case Form::idealF: type = "Type::FLOAT";    break;
  1297         case Form::idealD: type = "Type::DOUBLE";   break;
  1298         case Form::idealL: type = "TypeLong::LONG"; break;
  1299         case Form::none: // fall through
  1300         default:
  1301           assert( false, "No support for this type of stackSlot");
  1303         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
  1308     //
  1309     // virtual functions for defining the encoding interface.
  1310     //
  1311     // Access the linearized ideal register mask,
  1312     // map to physical register encoding
  1313     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
  1314       // Just use the default virtual 'reg' call
  1315     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
  1316       // Special handling for operand 'sReg', a Stack Slot Register.
  1317       // Map linearized ideal register mask to stack slot number
  1318       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
  1319       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
  1320       fprintf(fp,"  }\n");
  1321       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
  1322       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  1323       fprintf(fp,"  }\n");
  1326     // Output the operand specific access functions used by an enc_class
  1327     // These are only defined when we want to override the default virtual func
  1328     if (oper->_interface != NULL) {
  1329       fprintf(fp,"\n");
  1330       // Check if it is a Memory Interface
  1331       if ( oper->_interface->is_MemInterface() != NULL ) {
  1332         MemInterface *mem_interface = oper->_interface->is_MemInterface();
  1333         const char *base = mem_interface->_base;
  1334         if( base != NULL ) {
  1335           define_oper_interface(fp, *oper, _globalNames, "base", base);
  1337         char *index = mem_interface->_index;
  1338         if( index != NULL ) {
  1339           define_oper_interface(fp, *oper, _globalNames, "index", index);
  1341         const char *scale = mem_interface->_scale;
  1342         if( scale != NULL ) {
  1343           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
  1345         const char *disp = mem_interface->_disp;
  1346         if( disp != NULL ) {
  1347           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
  1348           oper->disp_is_oop(fp, _globalNames);
  1350         if( oper->stack_slots_only(_globalNames) ) {
  1351           // should not call this:
  1352           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
  1353         } else if ( disp != NULL ) {
  1354           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
  1356       } // end Memory Interface
  1357       // Check if it is a Conditional Interface
  1358       else if (oper->_interface->is_CondInterface() != NULL) {
  1359         CondInterface *cInterface = oper->_interface->is_CondInterface();
  1360         const char *equal = cInterface->_equal;
  1361         if( equal != NULL ) {
  1362           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
  1364         const char *not_equal = cInterface->_not_equal;
  1365         if( not_equal != NULL ) {
  1366           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
  1368         const char *less = cInterface->_less;
  1369         if( less != NULL ) {
  1370           define_oper_interface(fp, *oper, _globalNames, "less", less);
  1372         const char *greater_equal = cInterface->_greater_equal;
  1373         if( greater_equal != NULL ) {
  1374           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
  1376         const char *less_equal = cInterface->_less_equal;
  1377         if( less_equal != NULL ) {
  1378           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
  1380         const char *greater = cInterface->_greater;
  1381         if( greater != NULL ) {
  1382           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
  1384         const char *overflow = cInterface->_overflow;
  1385         if( overflow != NULL ) {
  1386           define_oper_interface(fp, *oper, _globalNames, "overflow", overflow);
  1388         const char *no_overflow = cInterface->_no_overflow;
  1389         if( no_overflow != NULL ) {
  1390           define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow);
  1392       } // end Conditional Interface
  1393       // Check if it is a Constant Interface
  1394       else if (oper->_interface->is_ConstInterface() != NULL ) {
  1395         assert( oper->num_consts(_globalNames) == 1,
  1396                 "Must have one constant when using CONST_INTER encoding");
  1397         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
  1398           // Access the locally stored constant
  1399           fprintf(fp,"  virtual intptr_t       constant() const {");
  1400           fprintf(fp,   " return (intptr_t)_c0;");
  1401           fprintf(fp,"  }\n");
  1403         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
  1404           // Access the locally stored constant
  1405           fprintf(fp,"  virtual intptr_t       constant() const {");
  1406           fprintf(fp,   " return _c0->get_con();");
  1407           fprintf(fp, " }\n");
  1408           // Generate query to determine if this pointer is an oop
  1409           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
  1410           fprintf(fp,   " return _c0->reloc();");
  1411           fprintf(fp, " }\n");
  1413         else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
  1414           // Access the locally stored constant
  1415           fprintf(fp,"  virtual intptr_t       constant() const {");
  1416           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
  1417           fprintf(fp, " }\n");
  1418           // Generate query to determine if this pointer is an oop
  1419           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
  1420           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
  1421           fprintf(fp, " }\n");
  1423         else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
  1424           // Access the locally stored constant
  1425           fprintf(fp,"  virtual intptr_t       constant() const {");
  1426           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
  1427           fprintf(fp, " }\n");
  1428           // Generate query to determine if this pointer is an oop
  1429           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
  1430           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
  1431           fprintf(fp, " }\n");
  1433         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
  1434           fprintf(fp,"  virtual intptr_t       constant() const {");
  1435           // We don't support addressing modes with > 4Gig offsets.
  1436           // Truncate to int.
  1437           fprintf(fp,   "  return (intptr_t)_c0;");
  1438           fprintf(fp, " }\n");
  1439           fprintf(fp,"  virtual jlong          constantL() const {");
  1440           fprintf(fp,   " return _c0;");
  1441           fprintf(fp, " }\n");
  1443         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
  1444           fprintf(fp,"  virtual intptr_t       constant() const {");
  1445           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
  1446           fprintf(fp, " }\n");
  1447           fprintf(fp,"  virtual jfloat         constantF() const {");
  1448           fprintf(fp,   " return (jfloat)_c0;");
  1449           fprintf(fp, " }\n");
  1451         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
  1452           fprintf(fp,"  virtual intptr_t       constant() const {");
  1453           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
  1454           fprintf(fp, " }\n");
  1455           fprintf(fp,"  virtual jdouble        constantD() const {");
  1456           fprintf(fp,   " return _c0;");
  1457           fprintf(fp, " }\n");
  1460       else if (oper->_interface->is_RegInterface() != NULL) {
  1461         // make sure that a fixed format string isn't used for an
  1462         // operand which might be assiged to multiple registers.
  1463         // Otherwise the opto assembly output could be misleading.
  1464         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
  1465           syntax_err(oper->_linenum,
  1466                      "Only bound registers can have fixed formats: %s\n",
  1467                      oper->_ident);
  1470       else {
  1471         assert( false, "ShouldNotReachHere();");
  1475     fprintf(fp,"\n");
  1476     // // Currently all XXXOper::hash() methods are identical (990820)
  1477     // declare_hash(fp);
  1478     // // Currently all XXXOper::Cmp() methods are identical (990820)
  1479     // declare_cmp(fp);
  1481     // Do not place dump_spec() and Name() into PRODUCT code
  1482     // int_format and ext_format are not needed in PRODUCT code either
  1483     fprintf(fp, "#ifndef PRODUCT\n");
  1485     // Declare int_format() and ext_format()
  1486     gen_oper_format(fp, _globalNames, *oper);
  1488     // Machine independent print functionality for debugging
  1489     // IF we have constants, create a dump_spec function for the derived class
  1490     //
  1491     // (1)  virtual void           dump_spec() const {
  1492     // (2)    st->print("#%d", _c#);        // Constant != ConP
  1493     //  OR    _c#->dump_on(st);             // Type ConP
  1494     //  ...
  1495     // (3)  }
  1496     uint num_consts = oper->num_consts(_globalNames);
  1497     if( num_consts > 0 ) {
  1498       // line (1)
  1499       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
  1500       // generate format string for st->print
  1501       // Iterate over the component list & spit out the right thing
  1502       uint i = 0;
  1503       const char *type = oper->ideal_type(_globalNames);
  1504       Component  *comp;
  1505       oper->_components.reset();
  1506       if ((comp = oper->_components.iter()) == NULL) {
  1507         assert(num_consts == 1, "Bad component list detected.\n");
  1508         i = dump_spec_constant( fp, type, i, oper );
  1509         // Check that type actually matched
  1510         assert( i != 0, "Non-constant operand lacks component list.");
  1511       } // end if NULL
  1512       else {
  1513         // line (2)
  1514         // dump all components
  1515         oper->_components.reset();
  1516         while((comp = oper->_components.iter()) != NULL) {
  1517           type = comp->base_type(_globalNames);
  1518           i = dump_spec_constant( fp, type, i, NULL );
  1521       // finish line (3)
  1522       fprintf(fp,"  }\n");
  1525     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
  1526             oper->_ident);
  1528     fprintf(fp,"#endif\n");
  1530     // Close definition of this XxxMachOper
  1531     fprintf(fp,"};\n");
  1535   // Generate Machine Classes for each instruction defined in AD file
  1536   fprintf(fp,"\n");
  1537   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
  1538   declare_pipe_classes(fp);
  1540   // Generate Machine Classes for each instruction defined in AD file
  1541   fprintf(fp,"\n");
  1542   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
  1543   _instructions.reset();
  1544   InstructForm *instr;
  1545   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  1546     // Ensure this is a machine-world instruction
  1547     if ( instr->ideal_only() ) continue;
  1549     // Build class definition for this instruction
  1550     fprintf(fp,"\n");
  1551     fprintf(fp,"class %sNode : public %s { \n",
  1552             instr->_ident, instr->mach_base_class(_globalNames) );
  1553     fprintf(fp,"private:\n");
  1554     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
  1555     if ( instr->is_ideal_jump() ) {
  1556       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
  1559     fprintf(fp, "public:\n");
  1561     Attribute *att = instr->_attribs;
  1562     // Fields of the node specified in the ad file.
  1563     while (att != NULL) {
  1564       if (strncmp(att->_ident, "ins_field_", 10) == 0) {
  1565         const char *field_name = att->_ident+10;
  1566         const char *field_type = att->_val;
  1567         fprintf(fp, "  %s _%s;\n", field_type, field_name);
  1569       att = (Attribute *)att->_next;
  1572     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const {\n");
  1573     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
  1574     fprintf(fp,"    return _opnd_array[operand_index];\n");
  1575     fprintf(fp,"  }\n");
  1576     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) {\n");
  1577     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
  1578     fprintf(fp,"    _opnd_array[operand_index] = operand;\n");
  1579     fprintf(fp,"  }\n");
  1580     fprintf(fp,"private:\n");
  1581     if ( instr->is_ideal_jump() ) {
  1582       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
  1583       fprintf(fp,"    _index2label.at_put_grow(index_num, blockLabel);\n");
  1584       fprintf(fp,"  }\n");
  1586     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
  1587       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
  1590     out_RegMask(fp);                      // output register mask
  1591     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
  1592             instr->_ident);
  1594     // If this instruction contains a labelOper
  1595     // Declare Node::methods that set operand Label's contents
  1596     int label_position = instr->label_position();
  1597     if( label_position != -1 ) {
  1598       // Set/Save the label, stored in labelOper::_branch_label
  1599       fprintf(fp,"  virtual void           label_set( Label* label, uint block_num );\n");
  1600       fprintf(fp,"  virtual void           save_label( Label** label, uint* block_num );\n");
  1603     // If this instruction contains a methodOper
  1604     // Declare Node::methods that set operand method's contents
  1605     int method_position = instr->method_position();
  1606     if( method_position != -1 ) {
  1607       // Set the address method, stored in methodOper::_method
  1608       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
  1611     // virtual functions for attributes
  1612     //
  1613     // Each instruction attribute results in a virtual call of same name.
  1614     // The ins_cost is not handled here.
  1615     Attribute *attr = instr->_attribs;
  1616     bool avoid_back_to_back = false;
  1617     while (attr != NULL) {
  1618       if (strcmp (attr->_ident, "ins_cost") != 0 &&
  1619           strncmp(attr->_ident, "ins_field_", 10) != 0 &&
  1620           // Must match function in node.hpp: return type bool, no prefix "ins_".
  1621           strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") != 0 &&
  1622           strcmp (attr->_ident, "ins_short_branch") != 0) {
  1623         fprintf(fp, "  virtual int            %s() const { return %s; }\n", attr->_ident, attr->_val);
  1625       // Check value for ins_avoid_back_to_back, and if it is true (1), set the flag
  1626       if (!strcmp(attr->_ident, "ins_avoid_back_to_back") != 0 && attr->int_val(*this) != 0)
  1627         avoid_back_to_back = true;
  1628       if (strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") == 0)
  1629         fprintf(fp, "  virtual bool           is_TrapBasedCheckNode() const { return %s; }\n", attr->_val);
  1631       attr = (Attribute *)attr->_next;
  1634     // virtual functions for encode and format
  1636     // Virtual function for evaluating the constant.
  1637     if (instr->is_mach_constant()) {
  1638       fprintf(fp,"  virtual void           eval_constant(Compile* C);\n");
  1641     // Output the opcode function and the encode function here using the
  1642     // encoding class information in the _insencode slot.
  1643     if ( instr->_insencode ) {
  1644       if (instr->postalloc_expands()) {
  1645         fprintf(fp,"  virtual bool           requires_postalloc_expand() const { return true; }\n");
  1646         fprintf(fp,"  virtual void           postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);\n");
  1647       } else {
  1648         fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
  1652     // virtual function for getting the size of an instruction
  1653     if ( instr->_size ) {
  1654       fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
  1657     // Return the top-level ideal opcode.
  1658     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
  1659     // if the ideal_Opcode == Op_Node.
  1660     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
  1661          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
  1662       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
  1663             instr->ideal_Opcode(_globalNames) );
  1666     if (instr->needs_constant_base() &&
  1667         !instr->is_mach_constant()) {  // These inherit the funcion from MachConstantNode.
  1668       fprintf(fp,"  virtual uint           mach_constant_base_node_input() const { ");
  1669       if (instr->is_ideal_call() != Form::invalid_type &&
  1670           instr->is_ideal_call() != Form::JAVA_LEAF) {
  1671         // MachConstantBase goes behind arguments, but before jvms.
  1672         fprintf(fp,"assert(tf() && tf()->domain(), \"\"); return tf()->domain()->cnt();");
  1673       } else {
  1674         fprintf(fp,"return req()-1;");
  1676       fprintf(fp," }\n");
  1679     // Allow machine-independent optimization, invert the sense of the IF test
  1680     if( instr->is_ideal_if() ) {
  1681       fprintf(fp,"  virtual void           negate() { \n");
  1682       // Identify which operand contains the negate(able) ideal condition code
  1683       int   idx = 0;
  1684       instr->_components.reset();
  1685       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
  1686         // Check that component is an operand
  1687         Form *form = (Form*)_globalNames[comp->_type];
  1688         OperandForm *opForm = form ? form->is_operand() : NULL;
  1689         if( opForm == NULL ) continue;
  1691         // Lookup the position of the operand in the instruction.
  1692         if( opForm->is_ideal_bool() ) {
  1693           idx = instr->operand_position(comp->_name, comp->_usedef);
  1694           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
  1695           break;
  1698       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
  1699       fprintf(fp,"    _prob = 1.0f - _prob;\n");
  1700       fprintf(fp,"  };\n");
  1704     // Identify which input register matches the input register.
  1705     uint  matching_input = instr->two_address(_globalNames);
  1707     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
  1708     if( matching_input != 0 ) {
  1709       fprintf(fp,"  virtual uint           two_adr() const  ");
  1710       fprintf(fp,"{ return oper_input_base()");
  1711       for( uint i = 2; i <= matching_input; i++ )
  1712         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
  1713       fprintf(fp,"; }\n");
  1716     // Declare cisc_version, if applicable
  1717     //   MachNode *cisc_version( int offset /* ,... */ );
  1718     instr->declare_cisc_version(*this, fp);
  1720     // If there is an explicit peephole rule, build it
  1721     if ( instr->peepholes() != NULL ) {
  1722       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
  1725     // Output the declaration for number of relocation entries
  1726     if ( instr->reloc(_globalNames) != 0 ) {
  1727       fprintf(fp,"  virtual int            reloc() const;\n");
  1730     if (instr->alignment() != 1) {
  1731       fprintf(fp,"  virtual int            alignment_required() const { return %d; }\n", instr->alignment());
  1732       fprintf(fp,"  virtual int            compute_padding(int current_offset) const;\n");
  1735     // Starting point for inputs matcher wants.
  1736     // Use MachNode::oper_input_base() for nodes based on MachNode class
  1737     // if the base == 1.
  1738     if ( instr->oper_input_base(_globalNames) != 1 ||
  1739          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
  1740       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
  1741             instr->oper_input_base(_globalNames));
  1744     // Make the constructor and following methods 'public:'
  1745     fprintf(fp,"public:\n");
  1747     // Constructor
  1748     if ( instr->is_ideal_jump() ) {
  1749       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
  1750     } else {
  1751       fprintf(fp,"  %sNode() { ", instr->_ident);
  1752       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
  1753         fprintf(fp,"_cisc_RegMask = NULL; ");
  1757     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
  1759     bool node_flags_set = false;
  1760     // flag: if this instruction matches an ideal 'Copy*' node
  1761     if ( instr->is_ideal_copy() != 0 ) {
  1762       fprintf(fp,"init_flags(Flag_is_Copy");
  1763       node_flags_set = true;
  1766     // Is an instruction is a constant?  If so, get its type
  1767     Form::DataType  data_type;
  1768     const char     *opType = NULL;
  1769     const char     *result = NULL;
  1770     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
  1771     // Check if this instruction is a constant
  1772     if ( data_type != Form::none ) {
  1773       if ( node_flags_set ) {
  1774         fprintf(fp," | Flag_is_Con");
  1775       } else {
  1776         fprintf(fp,"init_flags(Flag_is_Con");
  1777         node_flags_set = true;
  1781     // flag: if this instruction is cisc alternate
  1782     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
  1783       if ( node_flags_set ) {
  1784         fprintf(fp," | Flag_is_cisc_alternate");
  1785       } else {
  1786         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
  1787         node_flags_set = true;
  1791     // flag: if this instruction has short branch form
  1792     if ( instr->has_short_branch_form() ) {
  1793       if ( node_flags_set ) {
  1794         fprintf(fp," | Flag_may_be_short_branch");
  1795       } else {
  1796         fprintf(fp,"init_flags(Flag_may_be_short_branch");
  1797         node_flags_set = true;
  1801     // flag: if this instruction should not be generated back to back.
  1802     if ( avoid_back_to_back ) {
  1803       if ( node_flags_set ) {
  1804         fprintf(fp," | Flag_avoid_back_to_back");
  1805       } else {
  1806         fprintf(fp,"init_flags(Flag_avoid_back_to_back");
  1807         node_flags_set = true;
  1811     // Check if machine instructions that USE memory, but do not DEF memory,
  1812     // depend upon a node that defines memory in machine-independent graph.
  1813     if ( instr->needs_anti_dependence_check(_globalNames) ) {
  1814       if ( node_flags_set ) {
  1815         fprintf(fp," | Flag_needs_anti_dependence_check");
  1816       } else {
  1817         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
  1818         node_flags_set = true;
  1822     // flag: if this instruction is implemented with a call
  1823     if ( instr->_has_call ) {
  1824       if ( node_flags_set ) {
  1825         fprintf(fp," | Flag_has_call");
  1826       } else {
  1827         fprintf(fp,"init_flags(Flag_has_call");
  1828         node_flags_set = true;
  1832     if ( node_flags_set ) {
  1833       fprintf(fp,"); ");
  1836     fprintf(fp,"}\n");
  1838     // size_of, used by base class's clone to obtain the correct size.
  1839     fprintf(fp,"  virtual uint           size_of() const {");
  1840     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
  1841     fprintf(fp, " }\n");
  1843     // Virtual methods which are only generated to override base class
  1844     if( instr->expands() || instr->needs_projections() ||
  1845         instr->has_temps() ||
  1846         instr->is_mach_constant() ||
  1847         instr->needs_constant_base() ||
  1848         instr->_matrule != NULL &&
  1849         instr->num_opnds() != instr->num_unique_opnds() ) {
  1850       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
  1853     if (instr->is_pinned(_globalNames)) {
  1854       fprintf(fp,"  virtual bool           pinned() const { return ");
  1855       if (instr->is_parm(_globalNames)) {
  1856         fprintf(fp,"_in[0]->pinned();");
  1857       } else {
  1858         fprintf(fp,"true;");
  1860       fprintf(fp," }\n");
  1862     if (instr->is_projection(_globalNames)) {
  1863       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
  1865     if ( instr->num_post_match_opnds() != 0
  1866          || instr->is_chain_of_constant(_globalNames) ) {
  1867       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
  1869     if ( instr->rematerialize(_globalNames, get_registers()) ) {
  1870       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
  1873     // Declare short branch methods, if applicable
  1874     instr->declare_short_branch_methods(fp);
  1876     // See if there is an "ins_pipe" declaration for this instruction
  1877     if (instr->_ins_pipe) {
  1878       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
  1879       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
  1882     // Generate virtual function for MachNodeX::bottom_type when necessary
  1883     //
  1884     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
  1885     // or else alias analysis on the matched graph may produce bad code.
  1886     // Moreover, the aliasing decisions made on machine-node graph must be
  1887     // no less accurate than those made on the ideal graph, or else the graph
  1888     // may fail to schedule.  (Reason:  Memory ops which are reordered in
  1889     // the ideal graph might look interdependent in the machine graph,
  1890     // thereby removing degrees of scheduling freedom that the optimizer
  1891     // assumed would be available.)
  1892     //
  1893     // %%% We should handle many of these cases with an explicit ADL clause:
  1894     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
  1895     if( data_type != Form::none ) {
  1896       // A constant's bottom_type returns a Type containing its constant value
  1898       // !!!!!
  1899       // Convert all ints, floats, ... to machine-independent TypeXs
  1900       // as is done for pointers
  1901       //
  1902       // Construct appropriate constant type containing the constant value.
  1903       fprintf(fp,"  virtual const class Type *bottom_type() const {\n");
  1904       switch( data_type ) {
  1905       case Form::idealI:
  1906         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
  1907         break;
  1908       case Form::idealP:
  1909       case Form::idealN:
  1910       case Form::idealNKlass:
  1911         fprintf(fp,"    return  opnd_array(1)->type();\n");
  1912         break;
  1913       case Form::idealD:
  1914         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
  1915         break;
  1916       case Form::idealF:
  1917         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
  1918         break;
  1919       case Form::idealL:
  1920         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
  1921         break;
  1922       default:
  1923         assert( false, "Unimplemented()" );
  1924         break;
  1926       fprintf(fp,"  };\n");
  1928 /*    else if ( instr->_matrule && instr->_matrule->_rChild &&
  1929         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
  1930         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
  1931       // !!!!! !!!!!
  1932       // Provide explicit bottom type for conversions to int
  1933       // On Intel the result operand is a stackSlot, untyped.
  1934       fprintf(fp,"  virtual const class Type *bottom_type() const {");
  1935       fprintf(fp,   " return  TypeInt::INT;");
  1936       fprintf(fp, " };\n");
  1937     }*/
  1938     else if( instr->is_ideal_copy() &&
  1939               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
  1940       // !!!!!
  1941       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
  1942       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
  1944     else if( instr->is_ideal_loadPC() ) {
  1945       // LoadPCNode provides the return address of a call to native code.
  1946       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
  1947       // since it is a pointer to an internal VM location and must have a zero offset.
  1948       // Allocation detects derived pointers, in part, by their non-zero offsets.
  1949       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
  1951     else if( instr->is_ideal_box() ) {
  1952       // BoxNode provides the address of a stack slot.
  1953       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
  1954       // This prevent s insert_anti_dependencies from complaining. It will
  1955       // complain if it sees that the pointer base is TypePtr::BOTTOM since
  1956       // it doesn't understand what that might alias.
  1957       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
  1959     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
  1960       int offset = 1;
  1961       // Special special hack to see if the Cmp? has been incorporated in the conditional move
  1962       MatchNode *rl = instr->_matrule->_rChild->_lChild;
  1963       if( rl && !strcmp(rl->_opType, "Binary") ) {
  1964           MatchNode *rlr = rl->_rChild;
  1965           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
  1966             offset = 2;
  1968       // Special hack for ideal CMoveP; ideal type depends on inputs
  1969       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
  1970         offset, offset+1, offset+1);
  1972     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
  1973       int offset = 1;
  1974       // Special special hack to see if the Cmp? has been incorporated in the conditional move
  1975       MatchNode *rl = instr->_matrule->_rChild->_lChild;
  1976       if( rl && !strcmp(rl->_opType, "Binary") ) {
  1977           MatchNode *rlr = rl->_rChild;
  1978           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
  1979             offset = 2;
  1981       // Special hack for ideal CMoveN; ideal type depends on inputs
  1982       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
  1983         offset, offset+1, offset+1);
  1985     else if (instr->is_tls_instruction()) {
  1986       // Special hack for tlsLoadP
  1987       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
  1989     else if ( instr->is_ideal_if() ) {
  1990       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
  1992     else if ( instr->is_ideal_membar() ) {
  1993       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
  1996     // Check where 'ideal_type' must be customized
  1997     /*
  1998     if ( instr->_matrule && instr->_matrule->_rChild &&
  1999         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
  2000         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
  2001       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
  2002     }*/
  2004     // Analyze machine instructions that either USE or DEF memory.
  2005     int memory_operand = instr->memory_operand(_globalNames);
  2006     // Some guys kill all of memory
  2007     if ( instr->is_wide_memory_kill(_globalNames) ) {
  2008       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  2010     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  2011       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  2012         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
  2014       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
  2017     fprintf(fp, "#ifndef PRODUCT\n");
  2019     // virtual function for generating the user's assembler output
  2020     gen_inst_format(fp, _globalNames,*instr);
  2022     // Machine independent print functionality for debugging
  2023     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
  2024             instr->_ident);
  2026     fprintf(fp, "#endif\n");
  2028     // Close definition of this XxxMachNode
  2029     fprintf(fp,"};\n");
  2030   };
  2034 void ArchDesc::defineStateClass(FILE *fp) {
  2035   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
  2036   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
  2038   fprintf(fp,"\n");
  2039   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
  2040   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
  2041   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
  2042   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
  2043   fprintf(fp,"#define STATE__VALID(index) ");
  2044   fprintf(fp,"    (%s)\n", state__valid);
  2045   fprintf(fp,"\n");
  2046   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
  2047   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
  2048   fprintf(fp,"\n");
  2049   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
  2050   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
  2051   fprintf(fp,"\n");
  2052   fprintf(fp,"#define STATE__SET_VALID(index) ");
  2053   fprintf(fp,"  (%s)\n", state__set_valid);
  2054   fprintf(fp,"\n");
  2055   fprintf(fp,
  2056           "//---------------------------State-------------------------------------------\n");
  2057   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
  2058   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
  2059   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
  2060   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
  2061   fprintf(fp,"// two for convenience, but this could change).\n");
  2062   fprintf(fp,"class State : public ResourceObj {\n");
  2063   fprintf(fp,"public:\n");
  2064   fprintf(fp,"  int    _id;         // State identifier\n");
  2065   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
  2066   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
  2067   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
  2068   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
  2069   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
  2070   fprintf(fp,"\n");
  2071   fprintf(fp,"  State(void);                      // Constructor\n");
  2072   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
  2073   fprintf(fp,"\n");
  2074   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
  2075   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
  2076   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
  2077   fprintf(fp,"\n");
  2078   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
  2079   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
  2080   fprintf(fp,"\n");
  2081   fprintf(fp,"  // Access function for _valid bit vector\n");
  2082   fprintf(fp,"  bool valid(uint index) {\n");
  2083   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
  2084   fprintf(fp,"  }\n");
  2085   fprintf(fp,"\n");
  2086   fprintf(fp,"  // Set function for _valid bit vector\n");
  2087   fprintf(fp,"  void set_valid(uint index) {\n");
  2088   fprintf(fp,"    STATE__SET_VALID(index);\n");
  2089   fprintf(fp,"  }\n");
  2090   fprintf(fp,"\n");
  2091   fprintf(fp,"#ifndef PRODUCT\n");
  2092   fprintf(fp,"  void dump();                // Debugging prints\n");
  2093   fprintf(fp,"  void dump(int depth);\n");
  2094   fprintf(fp,"#endif\n");
  2095   if (_dfa_small) {
  2096     // Generate the routine name we'll need
  2097     for (int i = 1; i < _last_opcode; i++) {
  2098       if (_mlistab[i] == NULL) continue;
  2099       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
  2102   fprintf(fp,"};\n");
  2103   fprintf(fp,"\n");
  2104   fprintf(fp,"\n");
  2109 //---------------------------buildMachOperEnum---------------------------------
  2110 // Build enumeration for densely packed operands.
  2111 // This enumeration is used to index into the arrays in the State objects
  2112 // that indicate cost and a successfull rule match.
  2114 // Information needed to generate the ReduceOp mapping for the DFA
  2115 class OutputMachOperands : public OutputMap {
  2116 public:
  2117   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  2118     : OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
  2120   void declaration() { }
  2121   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
  2122   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
  2123                        OutputMap::closing();
  2125   void map(OpClassForm &opc)  {
  2126     const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
  2127     fprintf(_cpp, "  %s", opc_ident_to_upper);
  2128     delete[] opc_ident_to_upper;
  2130   void map(OperandForm &oper) {
  2131     const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
  2132     fprintf(_cpp, "  %s", oper_ident_to_upper);
  2133     delete[] oper_ident_to_upper;
  2135   void map(char *name) {
  2136     const char* name_to_upper = _AD.machOperEnum(name);
  2137     fprintf(_cpp, "  %s", name_to_upper);
  2138     delete[] name_to_upper;
  2141   bool do_instructions()      { return false; }
  2142   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
  2143 };
  2146 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
  2147   // Construct the table for MachOpcodes
  2148   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
  2149   build_map(output_mach_operands);
  2153 //---------------------------buildMachEnum----------------------------------
  2154 // Build enumeration for all MachOpers and all MachNodes
  2156 // Information needed to generate the ReduceOp mapping for the DFA
  2157 class OutputMachOpcodes : public OutputMap {
  2158   int begin_inst_chain_rule;
  2159   int end_inst_chain_rule;
  2160   int begin_rematerialize;
  2161   int end_rematerialize;
  2162   int end_instructions;
  2163 public:
  2164   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  2165     : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
  2166       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
  2167   {};
  2169   void declaration() { }
  2170   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
  2171   void closing()     {
  2172     if( begin_inst_chain_rule != -1 )
  2173       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
  2174     if( end_inst_chain_rule   != -1 )
  2175       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
  2176     if( begin_rematerialize   != -1 )
  2177       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
  2178     if( end_rematerialize     != -1 )
  2179       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
  2180     // always execute since do_instructions() is true, and avoids trailing comma
  2181     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
  2182     OutputMap::closing();
  2184   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
  2185   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
  2186   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
  2187                                 else      fprintf(_cpp, "  0"); }
  2188   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
  2190   void record_position(OutputMap::position place, int idx ) {
  2191     switch(place) {
  2192     case OutputMap::BEGIN_INST_CHAIN_RULES :
  2193       begin_inst_chain_rule = idx;
  2194       break;
  2195     case OutputMap::END_INST_CHAIN_RULES :
  2196       end_inst_chain_rule   = idx;
  2197       break;
  2198     case OutputMap::BEGIN_REMATERIALIZE :
  2199       begin_rematerialize   = idx;
  2200       break;
  2201     case OutputMap::END_REMATERIALIZE :
  2202       end_rematerialize     = idx;
  2203       break;
  2204     case OutputMap::END_INSTRUCTIONS :
  2205       end_instructions      = idx;
  2206       break;
  2207     default:
  2208       break;
  2211 };
  2214 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
  2215   // Construct the table for MachOpcodes
  2216   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
  2217   build_map(output_mach_opcodes);
  2221 // Generate an enumeration of the pipeline states, and both
  2222 // the functional units (resources) and the masks for
  2223 // specifying resources
  2224 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
  2225   int stagelen = (int)strlen("undefined");
  2226   int stagenum = 0;
  2228   if (_pipeline) {              // Find max enum string length
  2229     const char *stage;
  2230     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
  2231       int len = (int)strlen(stage);
  2232       if (stagelen < len) stagelen = len;
  2236   // Generate a list of stages
  2237   fprintf(fp_hpp, "\n");
  2238   fprintf(fp_hpp, "// Pipeline Stages\n");
  2239   fprintf(fp_hpp, "enum machPipelineStages {\n");
  2240   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
  2242   if( _pipeline ) {
  2243     const char *stage;
  2244     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
  2245       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
  2248   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
  2249   fprintf(fp_hpp, "};\n");
  2251   fprintf(fp_hpp, "\n");
  2252   fprintf(fp_hpp, "// Pipeline Resources\n");
  2253   fprintf(fp_hpp, "enum machPipelineResources {\n");
  2254   int rescount = 0;
  2256   if( _pipeline ) {
  2257     const char *resource;
  2258     int reslen = 0;
  2260     // Generate a list of resources, and masks
  2261     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2262       int len = (int)strlen(resource);
  2263       if (reslen < len)
  2264         reslen = len;
  2267     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2268       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
  2269       int mask = resform->mask();
  2270       if ((mask & (mask-1)) == 0)
  2271         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
  2273     fprintf(fp_hpp, "\n");
  2274     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2275       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
  2276       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
  2278     fprintf(fp_hpp, "\n");
  2280   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
  2281   fprintf(fp_hpp, "};\n");

mercurial